A graphic highlight Hopkins Engineers named 2024 Sloan Fellows, with headshot photographs of Benjamin Grimmer and Justus Kebschull, the Alfred P. Sloan Foundation logo, and the hashtag #SloanFellows
To date, fellows have gone on to win 57 Nobel Prizes and 71 National Medals of Science.

Assistant Professors Benjamin Grimmer and Justus M. Kebschull have been named 2024 Sloan Research Fellows, a prestigious award celebrating rising stars in academia. A total of five faculty members across Johns Hopkins were selected as fellows this year.

Awarded annually since 1955 by the Alfred P. Sloan Foundation, the fellowship honors exceptional U.S. and Canadian researchers whose creativity, innovation, and research accomplishments make them stand out as the next generation of leaders. Open to scholars in seven fields—chemistry, computer science, Earth system science, economics, mathematics, neuroscience, and physics—the Sloan Research Fellowships are awarded in close coordination with the scientific community. To date, fellows have gone on to win 57 Nobel Prizes and 71 National Medals of Science.

Candidates must be nominated by their fellow scientists and winners are selected by independent panels of senior scholars based on a candidate’s research accomplishments, creativity, and potential to become a leader in their field. More than 1,000 researchers are nominated each year. Winners receive a two-year, $75,000 fellowship which can be used flexibly to advance the fellow’s research.

Including this year’s winners, 87 faculty from Johns Hopkins University have received a Sloan Research Fellowship.

Benjamin Grimmer

Assistant professor, Department of Applied Mathematics and Statistics

Benjamin Grimmer has recently become fascinated with computer-aided optimization of the algorithms used to solve big real-world problems. A new wave of results in his field (optimization) has made computers provably good at this. Many of our now strongest algorithmic guarantees have only been made possible thanks to computer-assistance. Grimmer’s research also recently had breakthrough results, covered by Quanta Magazine, showing that a new computer-aided analysis approach can beat the well-established textbook theory for gradient descent.

Justus M. Kebschull

Assistant professor, Department of Biomedical Engineering

Justus Kebschull‘s research aims to understand the structure and function of the brain. To do so, he takes a comparative approach and engineers molecular, viral, and sequencing technologies to measure neuronal connectivity networks and gene expression at scale in disease models and a wide range of vertebrates. He developed the first barcode sequencing-based approaches to map neuronal connectivity, increasing throughput of single-neuron mapping by orders of magnitude and opening the door to single-cell comparative connectomics. He complements these barcoding approaches by in situ sequencing of barcodes and genes. Leveraging these technologies, his team asks questions including: How do new brain regions and connections evolve to support new computations? What are the organizing principles and fundamental circuit motifs of the vertebrate brain? And how do drugs of abuse and neurodevelopmental disorders break these principles? His work is highly interdisciplinary, residing at the interface of molecular engineering, neuroscience, synthetic and evolutionary biology, genomics, virology, and computational biology.

2024 Fellows in the Krieger School of Arts & Sciences are:

  • Jonathan Lynch
    Assistant Professor
    Biochemistry, Cellular, and Molecular Biology Graduate Program
  • Yahui Zhang
    Assistant Professor
    Department of Physics & Astronomy
  • Stephen Fried
    Assistant Professor
    Departments of Chemistry and Biophysics