When: Oct 03 @ 3:00 PM
Where: Olin Hall 305
Olin Hall 305

Title: New Diagnostic and Therapeutic Tools for Intravascular Magnetic Resonance Imaging (IVMRI)
Abstract: Intravascular (IV) magnetic resonance imaging (IVMRI) is a developing technology that uses minimally-invasive MRI coils to guide diagnosis and treatment. The combination of signal-to-noise (SNR) enhancement from the microscopic MRI local coils and the multi-contrast mechanisms provided by MRI has enlarged the possibilities of high-resolution imaging-guided diagnosis and treatment of atherosclerosis and nearby or surrounding cancers. Recent years have seen the development of many advanced MRI techniques including MRI thermometry and real-time MRI, yet the development of procedures that apply these advances to intravascular MRI remain challenging.
Among interventional diagnostic techniques, MRI endoscopy is an IVMRI technique that transfers MRI from the laboratory frame-of-reference to the IV-coil’s frame-of-reference. This enables high-resolution MRI of blood vessels with endoscopic-style functionality. Prior MRI endoscopy work was limited to ~2 frames-per-second (fps), which is not real-time and potentially limiting in clinical applications. Improving the speed of MRI endoscopy further without excessive undersampling artifacts could enable the rapid deployment and advancement of an IVMRI endoscope entirely by MRI guidance to evaluate local, advanced, intra- and extra-vascular disease at high resolution using MRI’s unique multi-contrast and multi-functional assessment capabilities. Furthermore, with its unique capability in high-resolution thermometry, IVMRI is suitable to guide and monitor ablation therapy delivery in disease such as vessel-involving cancers. Prior work using an IVMRI loopless antenna for both MRI and radiofrequency ablation (RFA) was limited in precision and ablated only the tissue in direct contact with the probe. Thus, one goal is to extend IVMRI methods using state-of-the-art real-time MRI acceleration methods to provide MRI endoscopy at a speed comparable to that of existing catherization and optical endoscopy procedures.
A second goal is to provide a minimally-invasive, IV-accessed ablation technology that could provide precision localization and perivascular ablation to render resectable, an otherwise inaccessible or non-resectable cancer with vascular involvement.
To these ends, a Max-Planck Institute (MPI) real-time MRI system employing graphic processing units (GPU) is first adapted to facilitate MRI endoscopy at 10 fps endoscopy with real-time display and is demonstrated in vitro and in vivo. To further improve image quality, we propose to use a neural network (CNN) trained on artifact patterns generated from motionless endoscopy to ameliorate artifacts during real-time imaging. A new method based on generative models and manifold learning is then proposed to optimize image contrast responsive to the varying endoscopic surroundings.
To address the second goal, an intravascular ultrasound ablation transducer is integrated with IVMRI to provide a tool that can also deliver therapy. By integrating an IV high-intensity ultrasound (HIFU) ablation component, the precision and depth of ablation is extended and contact injuries can be avoided. Procedures are developed to evaluate accuracy using ex vivo samples and feasibility is demonstrated in animals in vivo.