When: Apr 08 @ 3:00 PM

Note: This is a virtual presentation. Here is the link for where the presentation will be taking place.
Title: Engineering Colloidal Quantum-Confined Nanomaterials for Multi-junction Solar Cell Applications
Abstract: Current single junction solar cell technologies are rapidly approaching their theoretical limits of approximately 33% power conversion efficiency. Semiconductor nanoparticles such as colloidal quantum dots (CQDs) are of interest for photovoltaic applications due to their infrared absorption, size-tunable optical properties and low-cost solution processability. Lead sulfide (PbS) CQDs offer the potential to increase solar cell efficiencies via multi-junction architectures due to these properties. This project aims to develop new strategies for implementing PbS CQDs as a material for multi-junction architectures to improve solar cell efficiencies and expand potential applications.
The first phase of the proposed research begins with developing a better-performing single junction PbS CQD solar cell by improving the performance-limiting hole transport layer HTL) in these devices. We will employ two methods to improve and replace this layer. First, we will use sulfur infusion via electron beam evaporation to alter the stoichiometry of the standard HTL. We also plan to completely replace the standard HTL with 2D nanoflakes of tungsten diselenide, an atomically-thin semiconducting transition metal dichalcogenide. The second phase of the reserach involves developing a PbS CQD multi-junction solar cell, including a novel recombination layer. The third phase of the research involves developing a hybrid multi-junction strategy in which PbS CQD films employing photonic band engineering for spectral selectivity serve as the infrared cell and other materials serve as the visible cell. The ultimate goal of these three research phases is to use photonic and materials engineering to improve efficiency and flexibility in CQD-based multi-junction solar cells to meet the demand for affordable, sustainable solar energy.
Committee Members

Susanna Thon, Department of Electrical and Computer Engineering
Jacob Khurgin, Department of Electrical and Computer Engineering
Amy Foster, Department of Electrical and Computer Engineering