When: Aug 21 @ 11:00 AM

This presentation will be taking place remotely. Follow this link to enter the Zoom meeting where it will be hosted. Do not enter the meeting before 10:45 AM EDT.
Title: Task-based Optimization of Administered Activity for Pediatric Renal SPECT Imaging
Abstract: Like any real-world problem, the design of an imaging system always requires tradeoffs. For medical imaging modalities using ionization radiation, a major tradeoff is between diagnostic image quality (IQ) and risk to the patient from absorbed dose (AD). In nuclear medicine, reducing the AD requires reducing the administered activity (AA). Lower AA to the patient can reduce risk and adverse effects, but can also result in reduced diagnostic image quality. Thus, ultimately, it is desirable to use the lowest AA that gives sufficient image quality for accurate clinical diagnosis.
In this dissertation, we proposed and developed tools for a general framework for optimizing RD with task-based assessment of IQ. Here, IQ is defined as an objective measure of the user performing the diagnostic task that the images were acquired to answer. To investigate IQ as a function of renal defect detectability, we have developed a projection image database modeling imaging of 99mTc-DMSA, a renal function agent. The database uses a highly-realistic population of pediatric phantoms with anatomical and body morphological variations. Using the developed projection image database, we have explored patient factors that affect IQ and are currently in the process of determining relationships between IQ and AA in terms of these found factors. Our data have shown that factors that are more local to the target organ may be more robust than weight for estimating the AA needed to provide a constant IQ across a population of patients. In the case of renal imaging, we have discovered that girth is more robust than weight (currently used in clinical practice) in predicting AA needed to provide a desired IQ. In addition to exploring the patient factors, we also did some work on improving the task simulating capability for anthropomorphic model observer. We proposed a deep learning-based anthropomorphic model observer to fully and efficiently (in terms of both training data and computational cost) model the clinical 3D detection task using multi-slice, multi-orientation images sets. The proposed model observer is important and could be readily adapted to model human observer performance on detection tasks for other imaging modalities such as PET, CT or MRI.
Committee Members
Eric Frey – Department of Radiology and Radiological Science. Faculty adviser.
Yong Du – Department of Radiology and Radiological Science. Second reader.
Vishal Patel – Department of Electrical and Computer Engineering.
George Sgouros – Department of Radiology and Radiological Science.
Archana Venkataraman – Department of Electrical and Computer Engineering.