Book Chapters and Volumes
- N.S. D’Souza and A. Venkataraman. Network Comparisons for Connectomics. Book chapter under review for Connectomics Analysis, Eds. M.D. Schirmer, A. Wern Chung, T. Arichi, Elsevier Academic Press, In Press, 2022.
- M.D. Schirmer, A. Venkataraman, I. Rekik, M. Kim, A. Wern Chung (Eds.). Connectomics in Neuroimaging: MICCAI Workshops. ShenZhen, China, 2019.
- A. Venkataraman. Autism Spectrum Disorders: Unbiased Functional Connectomics Provide New Insights into a Multifaceted Neurodevelopmental Disorder. Connectomics: Methods, Mathematical Models and Applications, Eds. B. Munsel, G. Wu, P. Laurienti, Elsevier Academic Press, 2018.
- T. Schultz, G. Nedjati-Gilani, A. Venkataraman, L. O’Donnell, E. Panagiotaki (Eds.). Computational Diffusion MRI and Brain Connectivity: MICCAI Workshops. Nagoya, Japan, 2014.
Submitted Papers Under Review or Revision
- R. Shankar and A. Venkataraman. Adaptive Rhythm Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping. Under Review for Interspeech, 2022.
- S. Pati et al. (>50 authors). Federated Learning Enables Big Data for Rare Cancer Boundary Detection. Under Review for Nature Medicine, 2022.
- D. Currey, J. Craley, D. Hsu, R. Ahmed, A. Venkataraman. EPViz: A Flexible and Lightweight Visualizer to Facilitate Predictive Modeling for Multi-channel EEG. Under Review for Human Brain Mapping, 2022.
- N. Nandakumar, D. Hsu, R. Ahmed, A. Venkataraman. DeepSOZ: A Graph Convolutional Network for Automated Seizure Onset Zone Localization from Resting-State fMRI Connectivity. Under Review for IEEE Transactions on Biomedical Engineering, 2022.
- R. Shankar, H.-W. Hsieh, N. Charon, A. Venkataraman. A Diffeomorphic Flow-based Variational Framework for Multi-speaker Emotion Conversion. Under Revision for IEEE Trans on Audio, Speech, and Language Processing, 2022.
- B. Tang, Y. Zhao, A. Venkataraman, K. Tsapkini, M. Lindquist, J. Pekar, B. Caffo. Changes in Functional Connectivity after Transcranial Direct-Current Stimulation: A Connectivity Density Point of View. Under Rev for Human Brain Mapping, 2022.
Working Papers and Unpublished Preprints
- A. Somayazulu*, R. Shankar* and A. Venkataraman. A Comprehensive Study of Augmentation Techniques for Deep-Learning based Speech Emotion Recognition. In Preparation for ICASSP, 2022.
* Joint first authorship
Journal Articles
- J. Craley, C. Jouny, E. Johnson, R. Ahmed, D. Hsu, A. Venkataraman. Automated Seizure Activity Tracking and Onset Zone Localization from Scalp EEG using Deep Neural Networks. PLoS One, 17(2): e0264537, 2022.
- N.S. D’Souza, M.B. Nebel, D. Crocetti, N. Wymbs, J. Robinson, S. Mostofsky, A. Venkataraman. Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectivity for Multidimensional Clinical Characterizations. NeuroImage, 241:118388, 2021.
- Y. Kobayashi*, A. Bukowski*, S. Das*, N. Wagle, S. Bakshi, M. Saha, J. Kaltschmidt+, A. Venkataraman+, S. Kulkarni+. COUNTEN, an AI-Driven Tool for Rapid and Objective Structural Analyses of the Enteric Nervous System. eNeuro, 8(4):1-6, 2021.
* Joint first authorship +Joint senior authorship - N. Nandakumar, K. Manzoor, S. Agarwal, J. Pillai, S. Gujar, H. Sair, A. Venkataraman. Automated Eloquent Cortex Localization in Brain Tumor Patients Using Multi-task Graph Neural Networks. Medical Image Analysis (MedIA), 74:102203, 2021.
- S. Ghosal, Q. Chen, G. Pergola, A.L. Goldman, W. Ulrich, K.F. Berman, A. Rampino, G. Blasi, L. Fazio, A. Bertolino, D.R. Weinberger, V.S. Mattay, A. Venkataraman. A Generative Discriminative Framework that Integrates Imaging, Genetic, and Diagnosis into Coupled Low Dimensional Space. NeuroImage: 238:118200, 2021.
- M.D. Schirmer, A. Venkataraman, I. Rekik, M. Kim, S. Mostofsky, M.B. Nebel, K. Rosch, K. Seymour, D. Crocetti, H. Irzan, M. Hutel, S. Ourselin, N. Marlow, A. Melbourne, E. Levchenko, S. Zhou, M. Kunda, H. Lu, N.C. Dvornek, J. Zhuang, G. Pinto, S. Samal, J.L. Bernal-Rusiel, R. Pienaar, A. Wern Chung. Neuropsychiatric Disease Classification Using Functional Connectomics — Results of the Connectomics in NeuroImaging Transfer Learning Challenge, Medical Image Analysis (MedIA), 70:101972, 2021.
- J. Craley, C. Jouny, E. Johnson, A. Venkataraman. Automated Inter-Patient Seizure Detection Using Multichannel Convolutional and Recurrent Neural Networks. Journal of Biomedical Signal Processing and Control, 64:102360, 2021 (Online Access 2020).
- X. Liu, K. Akiyoshi, M. Nakano, K. Brady, B. Bush, R. Nandkarni, A. Venkataraman, R.C. Koehler, J.K. Lee, C.W. Hogue, M. Czosnyka, P. Smielewski, C.H. Brown. Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery. Journal of Critical Care Medicine, 49(4):650-660, 2021 (Online Access 2020).
- N.S. D’Souza, N. Wymbs, M.B. Nebel, S. Mostofsky, A. Venkataraman. A Joint Network Optimization Framework to Predict Clinical Severity from Resting State fMRI Data. NeuroImage, 206:116314, 2020.
- J. Craley, E. Johnson, A. Venkataraman. A Spatio-Temporal Model of Seizure Propagation in Focal Epilepsy. IEEE Transactions on Medical Imaging, 39(5):1404-1418, 2020 (Online Access 2019).
- D. Rangaprakash, M.N. Dretsch, A. Venkataraman, J.S. Katz, T.S. Denney Jr., G. Deshpande. Identifying Disease Foci from Static and Dynamic Effective Connectivity Networks: Illustration in Soldiers with Trauma. Human Brain Mapping, 39(1):264-287, 2018.
- S. Zhao, D. Rangaprakash, A. Venkataraman, P. Liang, G. Deshpande. Investigating Focal Connectivity Deficits in Alzheimer’s Disease using Directional Brain Networks Derived from Resting-State fMRI. Frontiers on Aging Neuroscience, 9:1-12, 2017.
- S. van Noordt, J. Wu, A. Venkataraman, M.J. Larson, M. South, M.J. Crowley. Inter-trial Coherence of Medial Frontal Theta Oscillations Linked to Differential Feedback Processing in High-Functioning Autism. Research in Autism Spectrum Disorders, 37:1-10, 2017.
- A. Venkataraman, D. Yang, N. Dvornek, L.H. Staib, J.S. Duncan, K.A. Pelphrey, P. Ventola. Pivotal Response Treatment Prompts a Functional Rewiring of the Brain Among Individuals with Autism Spectrum Disorder. NeuroReport, 27(14):1081-1085, 2016.
- D. Yang, K.A. Pelphrey, D.G. Sukhodolsky, M.J. Crowley, E. Dayan, N. Dvornek, A. Venkataraman, J.S. Duncan, L.H. Staib, P. Ventola. Brain Responses to Biological Motion Predict Treatment Outcome in Young Children with Autism. Translational Psychiatry, 6(11):e948 2016.
- A. Venkataraman, D. Yang, K.A. Pelphrey, J.S. Duncan. Bayesian Community Detection in the Space of Group-Level Functional Differences. IEEE Transactions Medical Imaging, 35(8):1866-1882, 2016.
- A. Venkataraman, J.S. Duncan, D. Yang, K.A. Pelphrey. An Unbiased Bayesian Approach to Functional Connectomics Implicates Social-Communication Networks in Autism. NeuroImage Clinical, 8:356-366, 2015.
- A. Venkataraman, M. Kubicki, P. Golland. From Brain Connectivity Models to Region Labels: Identifying Foci of a Neurological Disorder. IEEE Transactions on Medical Imaging, 32(11):2078-2098, 2013.
- A. Venkataraman, T.J. Whitford, C-F. Westin, P. Golland, M. Kubicki. Whole Brain Resting State Functional Connectivity Abnormalities in Schizophrenia. Schizophrenia Research, 139(1-3):7-12, 2012.
- A. Venkataraman, Y. Rathi, M. Kubicki, C-F. Westin, P. Golland. Joint Modeling of Anatomical and Functional Connectivity for Population Studies. IEEE Transactions on Medical Imaging, 31(2):164-182, 2012.
- K.R.A. Van Dijk, T. Hedden, A. Venkataraman, K.C. Evans, S.W. Lazar, R.L. Buckner. Intrinsic Functional Connectivity As a Tool For Human Connectomics: Theory, Properties, and Optimization. J Neurophysiology, 103(1):297-321, 2010.
Peer-Reviewed Conference Papers
- N. Nandakumar, K. Manzoor, S. Agarwal, H. Sair, A. Venkataraman. RefineNet: An Automated Framework to Generate Task and Subject-Specific Brain Parcellations for Resting-State fMRI Analysis. To Appear in Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022. [Acceptance Rate ≈ 30%] Selected for Early Acceptance (Top 13% of Submissions)
- J. Craley, E. Johnson, C. Jouny, D. Hsu, R. Ahmed, A. Venkataraman. SZLoc: A Multi-resolution Architecture fo Automated Epileptic Seizure Localization from Scalp EEG. To Appear in Medical Imaging with Deep Learning (MIDL), 2022.
- S. Ghosal, Q. Chen, G. Pergola, A.L. Goldman, W. Ulrich, D.R. Weinberger, A. Venkataraman. A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Propagations and Imaging Biomarkers of Disease. In Proc. ICLR: International Conference on Learning Representations, pp. 1-18, 2022.
[Acceptance Rate ≈ 30%] - N.S. D’Souza, M.B. Nebel, D. Crocetti, N. Wymbs, J. Robinson, S. Mostofsky, A. Venkataraman. A Matrix Auto-encoder Framework to Align the Functional and Structural Connectivity Manifolds as Guided by Behavioral Phenotypes. In Proc. MICCAI: Medical Image Computing and Computer Assisted Intervention, LNCS 12907:625-636, 2021. [Acceptance Rate ≈ 30%]
- N.S. D’Souza, M.B. Nebel, D. Crocetti, N. Wymbs, J. Robinson, S. Mostofsky, A. Venkataraman. M-GCN: A Multimodal Graph Convolutional Network to Integrate Functional and Structural Connectomics Data to Predict Multidimensional Phenotypic Characterizations. In Proc. MIDL: Medical Imaging with Deep Learning, PMLR:1-12, 2021. Selected for a Long Oral Pres (<15% of Papers)
- N. Nandakumar, K. Manzoor, S. Agarwal, J. Pillai, S. Gujar, H. Sair, A. Venkataraman. A Multi-Scale Spatial and Temporal Attention Network on Dynamic Connectivity to Localize The Eloquent Cortex in Brain Tumor Patients. In Proc. IPMI: Information Processing in Medical Imaging, LNCS 12729:241-252, 2021. [Acceptance Rate ≈ 30%]
- Y. Peng, N.S. D’Souza, B. Bush, C. Brown, A. Venkataraman. Predicting Acute Kidney Injury via Interpretable Ensemble Learning and Attention Weighted Convoutional–Recurrent Neural Networks. In Proc. Conference on Information Sciences and Systems (CISS), pp. 1-6, 2021.
- D. Currey, D. Hsu, R. Ahmed, A. Venkataraman, J. Craley. Cross-Site Epileptic Seizure Detection Using Convolutional Neural Networks. In Proc. Conf on Information Sciences and Systems (CISS), pp. 1-6, 2021.
- S. Ghosal, Q. Chen, G. Pergola, A.L. Goldman, W. Ulrich, K.F. Berman, A. Rampino, G. Blasi, L. Fazio, A. Bertolino, D.R. Weinberger, V.S. Mattay, A. Venkataraman. G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for Biomarker Identification and Disease Classification. In Proc. SPIE, vol.11596, 2021. Selected an Oral Presentation (<15% of Papers) – Best Paper Award
- N. Nandakumar, N.S. D’Souza, K. Manzoor, J. Pillai, S. Gujar, S. Agarwal, H. Sair, A. Venkataraman. A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in Brain Tumor Patients using Both Static and Dynamic Functional Connectivity. In Proc. MLCN: MICCAI Workshop on Machine Learning for Clinical Neuroimaging, LNCS 12449:34-44, 2020.
Selected for an Oral Presentation – Best Paper Award - N.S. D’Souza, M.B. Nebel, D. Crocetti, N. Wymbs, J. Robinson, S. Mostofsky, A. Venkataraman. A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism. In Proc. MICCAI: Medical Image Computing and Computer Assisted Intervention, LNCS 12267:437-447, 2020. [Acceptance Rate ≈ 30%]
- R. Shankar, H.-W. Hsieh, N. Charon, A. Venkataraman. Multispeaker Emotion Conversion via a Chained Encoder-Decoder-Predictor Network and Latent Variable Regularization. In Proc. Interspeech: Conference of the International Speech Communication Association, 3391-3395, 2020.
- R. Shankar, J. Sager, A. Venkataraman. Non-parallel Emotion Conversion using a Pair Discrimination Deep-Generative Hybrid Model. In Proc. Interspeech: Conf of the International Speech Communication Association, 3396-3400, 2020.
- N. Nandakumar, K. Manzoor, J. Pillai, S. Gujar, H. Sair, A. Venkataraman. A Novel Graph Neural Network to Localize Eloquent Cortex in Brain Tumor Patients from Resting-State fMRI Connectivity. In Proc. CNI: MICCAI Workshop on Connectomics in Neuroimaging, LNCS 11848:10-20, 2019.
Selected for an Oral Presentation (<25% of Papers) – Best Paper Award - R. Shankar, J. Sager, A. Venkataraman. A Multi-Speaker Emotion Morphing Model Using Highway Networks and Maximum Likelihood Objective. In Proc. Interspeech: Conference of the International Speech Communication Association, 2848-2852, 2019. Selected for an Oral Presentation (<20% of Papers)
- J. Sager, J. Reinhold, R. Shankar, A. Venkataraman. VESUS: A Crowd-Annotated Database to Study Emotion Production and Perception in Spoken English. In Proc. Interspeech: Conf of the International Speech Communication Association, 316-320, 2019. Selected for an Oral Presentation (<20% of Papers)
- R. Shankar, H.-W. Hsieh, N. Charon, A. Venkataraman}. Automated Emotion Morphing in Speech Based on Diffeomorphic Curve Registration and Highway Networks. In Proc. Interspeech: Conference of the International Speech Communication Association, 4499-4503, 2019.
- R. Shankar and A. Venkataraman. Weakly Supervised Syllable Segmentation by Vowel-Consonant Peak Classification. In Proc. Interspeech: Conf of the Intl Speech Communication Association, 644-648, 2019.
- J. Craley, C. Jouny, E. Johnson, A. Venkataraman. Automated Noninvasive Seizure Detection and Localization Using Switching Markov Models and Convolutional Neural Networks. In Proc. MICCAI: Medical Image Computing and Computer Assisted Intervention, LNCS 11767:253-262, 2019. [Acceptance Rate ≈ 30%] Selected for Early Acceptance (Top 18% of Submissions)
- S. Ghosal, Q. Chen, A.L. Goldman, W. Ulrich, K.F. Berman, D.R. Weinberger, V.S. Mattay, A. Venkataraman. Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-Dimensional Framework. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11767:647-655, 2019. [Acceptance Rate ≈ 30%]
Selected for Early Acceptance (Top 18% of Submissions) - N.S. D’Souza, N. Wymbs, M.B. Nebel, S. Mostofsky, A. Venkataraman. Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11766:709-717, 2019. [Acceptance Rate ≈ 30%]
- J. Craley, E. Johnson, A. Venkataraman. Integrating Convolutional Neural Networks and Probabilistic Graphical Modeling for Epileptic Seizure Detection in Multichannel EEG. In Proc. IPMI: Information Processing in Medical Imaging, LNCS 11492:291-303, 2019. [Acceptance Rate ≈ 30%]
Selected for an Oral Presentation (<30% of Papers) - N.S. D’Souza, N. Wymbs, M.B. Nebel, S. Mostofsky, A. Venkataraman. A Coupled Manifold Optimization Framework to Jointly Model the Functional Connectomics and Behavioral Data Spaces. In Proc. IPMI: Information Processing in Medical Imaging, LNCS 11492:605-616, 2019. [Acceptance Rate ≈ 30%]
- S. Ghosal, Q. Chen, A.L. Goldman, W. Ulrich, D.R. Weinberger, V.S. Mattay, A. Venkataraman. A Generative-Predictive Framework to Capture Altered Brain Activity in fMRI and its Association with Genetic Risk: Application to Schizophrenia. SPIE Medical Imaging, vol. 10949, 2019.
- N. Nandakumar, N.S. D’Souza, J. Craley, K. Manzoor, J. Pillai, S. Gujar, H. Sair, A. Venkataraman. Defining Patient Specific Functional Parcellations in Lesional Cohorts via Markov Random Fields. In Proc. CNI: MICCAI Workshop on Connectomics in Neuroimaging, LNCS 11083:88-98, 2018.
Selected for an Oral Presentation (<25% of Papers) - N.S. D’Souza, N. Wymbs, M.B. Nebel, S. Mostofsky, A. Venkataraman. A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data. In Proc. MICCAI: Intl Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11072:163-171, 2018. [Acceptance Rate ≈ 30%]
Selected for Early Acceptance (Top 15% of Submissions) - J. Craley, E. Johnson, A. Venkataraman. A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11072:482-489, 2018. [Acceptance Rate ≈ 30%]
Selected for Early Acceptance (Top 15% of Submissions) - A. Venkataraman, N. Wymbs, M.B. Nebel, S. Mostofsky. A Unified Bayesian Approach to Extract Network-Based Functional Differences from a Heterogeneous Patient Cohort. In Proc CNI: MICCAI Workshop on Connectomics in Neuroimaging, LNCS 10511, pp. 60-69 2017.
Selected for an Oral Presentation (<20% of Papers) - N.C. Dvornek, D. Yang, A. Venkataraman, P. Ventola, L.H. Staib, K.A. Pelphrey, J.S. Duncan. Prediction of Autism Treatment Response from Baseline fMRI using Random Forests and Tree Bagging. In Proc. MICCAI Workshop on Multimodal Learning for Clin Dec Support, pp. 1-8, 2016. Selected for an Oral Presentation
- A. Venkataraman, D. Yang, K.A. Pelphrey, J.S. Duncan. Community Detection in the Space of Functional Abnormalities Reveals both Heightened and Reduced Brain Synchrony in Autism. In Proc. BAMBI: Bayesian and Graphical Models for Biomedical Imaging, pp. 1-12, 2015. Selected for an Oral Presentation
- A. Sweet*, A. Venkataraman*, S.M. Stufflebeam, H. Liu, N. Tanaka, P. Golland. Detecting Epileptic Regions Based on Global Brain Connectivity Patterns. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 8149:98-105, 2013. [Acceptance Rate ≈ 30%] Selected for an Oral Presentation (<10% of Papers)
*Joint first authorship (equal contributions) - A. Venkataraman, M. Kubicki, P. Golland. From Brain Connectivity Models to Identifying Foci of a Neurological Disorder. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 7510:697-704, 2012. [Acceptance Rate ≈ 30%]
Selected for an Oral Presentation (<10% of Papers) - A. Venkataraman, Y. Rathi, M. Kubicki, C-F. Westin, P. Golland. Joint Generative Model for fMRI/DWI and its Application to Population Studies. In Proc. MICCAI: International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 6361:191-199, 2010. [Acceptance Rate ≈ 30%]
Selected for an Oral Presentation (<10% of Papers) - A. Venkataraman, M. Kubicki, C-F. Westin, P. Golland. Robust Feature Selection in Resting-State fMRI Connectivity Based on Population Studies. In Proc. MMBIA: IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis: 63-70, 2010.
- A. Venkataraman, K.R.A Van Dijk, R.L. Buckner, P. Golland. Exploring Functional Connectivity in fMRI via Clustering. In Proc. ICASSP: IEEE Conference on Acoustics, Speech and Signal Proc, 441-444, 2009.
- P. Golland, D. Lashkari, A. Venkataraman. Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data. In Proc. Asilomar Conf on Signals, Systems and Computers, 1402-1409, 2008.
- A. Venkataraman, A.V. Oppenheim, Signal Approximation using the Bilinear Transform, In Proc. ICASSP: IEEE Conference on Acoustics, Speech and Signal Processing, 3729-3732, 2008.
Conference Abstracts
- D. Currey, J. Craley, D. Hsu, R. Ahmed, A. Venkataraman. EPViz: A Flexible and Lightweight Visualizer to Facilitate Predictive Modeling for Multi-channel EEG. American Epilepsy Society Annual Meeting, 2021.
- J. Craley, C. Jouny, E. Johnson, Raheel Ahmed, David Hsu, A. Venkataraman. GraphTrack: Automated Seizure Detection and Tracking in Scalp EEG Recordings. American Epilepsy Society Annual Meeting, 2021.
- S. Ghosal, Qiang Chen, Giulio Pergola, Daniel Weinberger, A. Venkataraman. An End-to-End Multimodal Imaging-Genetics Framework for Biomarker Identification and Disease Classification. Asilomar Invited Session: From Neural Networks to Neural Systems: Using AI to Decode the Brain in Health and Disease, 2020.
- N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky, A. Venkataraman. A Joint Network Optimization Framework to Predict Clinical Severity from Resting-State Functional MRI Data. Second International Conference on Medical Imaging and Case Reports, 2019. Invited Abstract and Presentation
- N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky, A. Venkataraman. A Joint Network Optimization Framework to Predict Clinical Severity from Resting-State Functional Connectomics. Flux Congress, 2019.
- A. Venkataraman, N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky. Predicting Behavior from Resting-State fMRI Connectivity. SAND9: Stat Analysis of Neuronal Data, 2019. Selected for a Young Investigator Spotlight Presentation
- N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky, A. Venkataraman. A Generative-Discriminative Basis Learning Framework to Predict Autism Spectrum Disorder Severity. ISBI: International Symposium on Biomedical Imaging, 2018.
- N. Nandakumar, N.S. D’Souza, H. Sair, A. Venkataraman. A Modified K-Means Algorithm for Resting State FMRI Analysis of Brain Tumor Patients, As Validated by Language Localization. ISBI: Intl Symposium on Biomedical Imaging, 2018.
- J. Craley, E. Johnson, A. Venkataraman. Robust Seizure Detection Using Coupled Hidden Markov Models. ISBI: Intl Symposium on Biomedical Imaging, 2018.
- A. Venkataraman, J.S. Duncan, D. Yang, K.A. Pelphrey. Abnormal Functional Communities in Autism. IMFAR: Intl Meeting For Autism Research, 2016. Selected for an Oral Presentation (<5% of Abstracts)
- D. Rangaprakash, G. Deshpande, A. Venkataraman, J.S. Katz, T.S. Denney, M.N. Dretsch. Identifying Foci of Brain Disorders from Effective Connectivity Networks, ISMRM, 2016. Selected for an Honorable Mention
- A. Venkataraman, J.S. Duncan, D. Yang, K.A. Pelphrey. An Unbiased Bayesian Approach to Functional Connectomics Implicates Social-Communication Networks in Autism. In Proc. ISBI: International Symposium on Biomedical Imaging, 2015. Invited Abstract and Presentation
- S. Zhao, A. Venkataraman, P. Liang, G. Deshpande. Investigating the Role of Brain Stem in Alzheimer’s Disease using Directional Brain Networks derived from Resting State fMRI, ISMRM, 2015.
- A. Venkataraman, M. Kubicki, P. Golland. From Brain Connectivity Models to Identifying Foci of a Neurological Disorder. 3rd Biennial Conference on Resting State Brain Connectivity, Sept 2012.
- A. Venkataraman, K.R.A Van Dijk, R.L. Buckner, P. Golland. Exploring Functional Connectivity in fMRI via Clustering, OHBM, June 2009.
Dissertations
- J. Craley. Novel Graphical Model and Neural Network Frameworks for Automated Seizure Detection, Tracking, and Localization in Focal Epilepsy. PhD Thesis. Johns Hopkins University, Baltimore MD, 2021.
- N.S. D’Souza. Blending Generative Models with Deep Learning for Multidimensional Phenotypic Prediction from Brain Connectivity Data. PhD Thesis. Johns Hopkins University, Baltimore MD, 2021.
- R. Nandkarni. Examination of the Association Between Arterial Blood Pressure Below the Lower Limit of Autoregulation and Acute Kidney Injury After Cardiac Surgery. MSE Thesis. Johns Hopkins University, Baltimore MD, 2019.
- A. Venkataraman. Generative Models of Brain Connectivity for Population Studies. PhD Thesis. Massachusetts Institute of Technology, Cambridge MA, 2012.
- A. Venkataraman. Signal Approximation Using the Bilinear Transform. MEng Thesis. Massachusetts Institute of Technology, Cambridge MA, 2007.