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Abstract

Network science has provided us with foundational machinery to study

complex entities such as social networks, genomics etc. The human brain is

a complex network that has garnered immense interest within data science.

Connectomics or the study of the underlying brain connectivity patterns has

become important for the characterization of various neurological disorders

such as Autism, Schizophrenia etc.

This thesis proposes a collection of mathematical models that can fuse infor-

mation from functional and structural connectivity with clinical phenotypes.

Here, functional connectivity is measured by resting state functional MRI

(rs-fMRI), while anatomical connectivity is captured using Diffusion Tensor

Imaging (DTI). The phenotypes could be continuous measures of behavior or

cognition, or may capture levels of impairment in the case of neuropsychiatric

disorders and are often scored by clinicians.

We first develop a joint network optimization framework to predict clinical

severity from rs-fMRI connectivity. This model couples two key terms into

a unified optimization framework: a generative matrix factorization and a

discriminative linear regression. We demonstrate that the proposed joint infer-

ence successfully generalizes to predicting impairments in Autism Spectrum
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Disorder (ASD). Moreover, the model can extract brain biomarkers that are

informative of individual clinical measures. We then present two modeling

extensions to non-parametric and neural networks in lieu of linear regression.

Next, we extend our framework to incorporate multimodal information

from Diffusion Tensor Imaging (DTI) and dynamic functional connectivity.

Our generative matrix factorization now estimates a time-varying functional

decomposition. At the same time, it is guided by anatomical connectivity

priors in a graph-based regularization. This framework is coupled with a deep

network that predicts multidimensional clinical characterizations and models

the temporal dynamics of the functional scan. Overall, we can simultane-

ously explain multiple impairments, isolate stable multi-modal connectivity

signatures, and study the evolution of various brain states at rest.

Lastly, we focus on end-to-end geometric frameworks which are designed

to characterize the complementarity between functional and structural con-

nectomes, while using clinical information as a secondary guide. Our rep-

resentation learning scheme is a matrix autoencoder that can reflect the un-

derlying data geometry. This is coupled with a manifold alignment model

that maps from function to structure and a deep network that maps to pheno-

typic information. We demonstrate that the model reliably recovers structural

connectivity patterns across individuals, while robustly extracting predictive

yet interpretable brain biomarkers. Finally, we also present a preliminary

exposition on the theoretical aspects of the representation.
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Chapter 1

Introduction

The human brain is a complex and mysterious entity that is at the core of our

existence and being. It integrates and coordinates key information received

from the sense organs. It codifies instructions that control the rest of the body,

thus playing a central role in decision making. From an anatomical standpoint,

it can be described as a network of individual processing centers intercon-

nected by neural axons. Functionally, the brain partitions itself into a myriad

of regional hubs that specialize at complex and sometimes abstract tasks. With

recent technological advancements, non-invasive imaging techniques such

as MRI, CT, PET, EEG allow us to probe the organization of the brain [1].

Traditional clinical analyses have focused on characterizing localized morpho-

metric properties such as segmenting key structures [2], tracking changes in

volume or tissue properties within disease types [3], and pinpointing regions

of (aberrant) functional activation [4].

Over the past decade, there has been a growing emphasis in neuroscience

to analyze the human brain as a complex network of interacting entities.

Connectomics is the study of such underlying connectivity patterns. In fact,
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connectomics studies have provided several fundamental insights into the

organization of the human brain.

In this thesis, we take a close look at structural and functional connectivity

between brain regions at a population level. Structural connectivity informs us

about the neuronal fiber bundles that connect regions of the brain, and is often

measured using Diffusion Tensor Imaging (DTI) [5]. DTI provides a proxy

for these structural connections by measuring the directional (anisotropic)

diffusion of water molecules within the brain. Further, a computational

algorithm (tractography) [6] is employed in order to estimate and track the

location and direction of these fiber bundles within the white matter in the

brain.

In parallel, functional neuroimaging provides a glimpse into communica-

tion patterns in the brain. A common neuroimaging modality for measuring

the functional connectivity is the functional Magnetic Resonance Imaging

(fMRI) protocol. FMRI studies the co-activation patterns across different brain

regions either in response to external stimuli or at rest, the underlying assump-

tion being that two brain regions which reliably co-activate are more likely to

participate in similar neural processes as opposed to two uncorrelated regions

[7, 8, 9].

Task-based fMRI has been widely in order to isolate brain regions that are

functionally associated with the completion of a specific task. These protocols

require careful experimental design as well as subject training against the task

paradigm. On the other hand, resting state fMRI (rs-fMRI) is acquired in the

absence of external stimuli. In practice, the underlying functional connectivity
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is often quantified via temporal correlations between neural fMRI responses.

Thus, rs-fMRI can be used to probe the intrinsic functional specialization of

brain regions/networks in steady state. This could be particularly useful for

brain mapping in individuals with motor, language or cognitive impairments,

neurodevelopmental disorders, or pediatric populations.

We explore two key ideas in this thesis, namely (1) representation learning

for functional and structural connectivity and (2) prediction of fine-grained

multidimensional phenotypic measures. We build up a unified framework that

integrates DTI (structural) and rs-fMRI (dynamic functional) connectivity data.

Deriving inspiration from classical representation learning, our generative

models are designed to interpretable rather than black-box in nature. This in

turn helps us probe learned representations and isolate canonical connectivity

signatures (referred to as subnetworks). In order to better explain subject-level

differences within a cohort, we focus on the prediction of phenotypic measures

in unseen patients. Our models leverage the representational flexibility of

deep networks in order to map to multidimensional and diverse clinical

characterizations. We also leverage key insights from the fields of numerical

optimization, machine learning, graph theory, and deep learning to ensure our

models are well posed and computationally tractable. Overall, these efforts

help us obtain a more holistic understanding of brain connectivity and its

behavioral implications.
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Figure 1.1: Dual representation of the brain as given by (L) functional connectivity
and (R) structural connectivity. The former is measured by functional Magnetic
Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI)

1.1 Multimodal Integration of Functional and Struc-
tural Connectivity

The brain is increasingly being viewed as an interconnected network. Two key

elements of this network are the structural pathways between brain regions

and the functional signaling that rides on top. In this sense, DTI and rs-

fMRI studies provide a dual representation of the brain, as can be seen in

Fig. 1.1. We have functional connectivity to the left while we have structural

connectivity represented on the right. One of the key contributions of this

work is to develop generative frameworks that are amenable to the network

based, multimodal representation of brain connectivity.

Fundamentally, function and structure are two distinct yet related view-

points. There is strong evidence in literature of of both direct and indirect

correspondences between functional and structural pathways within the brain

[10, 11, 12]. Neuroimaging studies also suggest that this functional connec-

tivity may be mediated by either direct or indirect anatomical connections

[12, 13, 11, 14]. Going a step further, structural and functional connectivity

4



have been shown to be predictive of each other at varying scales [15, 16, 17].

Thus, rs-fMRI and DTI data provide complementary information about con-

nectivity, which when integrated together can be used to construct a more

comprehensive picture of brain organization in health and disease.

Consequently, clinical research has recently been pivoting to multimodal

integration with the goal of reliably inferring key properties of the brain. For

example, these studies have provided us with fundamental insights into brain

dysfunction in neurological disorders such as Autism [18], Schizophrenia [19],

and Epilepsy [20, 21]. While very informative, hypothesis-driven discovery in

this domain is nevertheless challenging due to the high data dimensionality,

environmental confounds, and considerable inter-individual variability.

1.1.1 Evolution of Brain Connectivity Analysis

Traditionally, the analysis of brain connectivity has focused heavily on extract-

ing key statistics from the scan, and quantifying variations in these statistics

either between groups or across individuals. An example of such an approach

in resting state functional MRI is seed based correlation analysis [22]. Here,

the goal is to identify functional systems in the brain as voxels whose tempo-

ral dynamics are strongly correlated with that of a pre-specified anatomical

“seed" location. Simple statistical differences in rs-fMRI and DTI connectivity

between individuals have been shown to be indicative disrupted patterns of

brain organization in Alzheimer’s disease [23] or Progressive Supranuclear

Palsy (PSP) [24]. Similarly, classical statistical models such as multivariate

analysis [25, 26] or random effects models [27] have also been employed for
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uncovering disease biomarkers from multimodal connectivity data. A pop-

ular alternative strategy involves the use of graph theory to summarize key

connectome properties using aggregate network notions [28, 29, 30]. Nev-

ertheless, most summary measures are typically independently computed

for each modality and/or each region pair to further isolate connections that

collectively differ across clinical populations and healthy individuals.

It is believed that the brain is organized as distributed network of localized

and overlapping neuronal sub-systems that process and relay information.

Often the full richness of this characterization may be lost in the extraction

of network statistics. In this regard, model based alternatives (eg. mechanis-

tic [31] or generative [32] models) that analyze functional and/or structural

connectivity have largely focused on the identification and characterization of

subsystems [33, 34] in the brain. A well known example of such a subsystem

is the Default Mode Network (DMN) [35], which is ubiquitous across findings

within network neuroscience studies. While these frameworks lay the founda-

tion for modular characterizations of brain connectivity, they focus primarily

on isolating group-level effects. Even studies that incorporate variability

among individuals within the population [36] exhibit little generalization onto

new subjects.

In a bid to expand the horizons of neuroscientific discovery, data-driven

methods have been gaining prominence in connectomics [37, 38]. Often,

these studies aim to automatically underscore connectivity patterns that are

informative of differences between diseased and healthy cohorts. Owing to

the high data dimensionality, these often follow a two stage Feature Selection
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→ Prediction pipeline. Common algorithms include Principal Component

Analysis (PCA) and Independent Component Analysis (ICA) that concentrate

connectivity information into a small set of canonical bases by leveraging

key statistical properties of the feature distribution. While highly informative

at diagnostic classification, group level confounds often overwhelm inter-

individual variability within these models [39]. As a result, they exhibit

limited generalization for predicting finer grained patient characteristics. This

divide has been partially bridged by end-to-end deep learning models.

Deep learning is becoming ubiquitous for connectome analyses due to its

ability to automatically extract complex representations from data that are

simultaneously meaningful for a downstream prediction task. Neural Net-

works have the ability to efficiently learn abstractions of the input data without

requiring careful feature engineering [40]. Consequently, simple models such

as Multi-Layered Perceptrons (MLP), Convolutional Neural Networks (CNN)

and Graph Neural Networks (GNN) have been applied for case/controls clas-

sification of neuropsychiatric disorders such as schizophrenia [41] or Autism

Spectrum Disorder [42, 43]. While few models consider fine-grained predic-

tion of clinical measures [44], a downside to these models is that the learned

representations may be hard to directly interpret. In addition, they often

require large amounts of training data for adequate generalization, which may

not be the case with clinical neuroimaging studies.
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1.1.2 Predicting Clinical Severity from Brain Connectivity

Several previously introduced frameworks have been demonstrated varying

levels of success at behavioral characterization, particularly at case/control

diagnosis. An important point to note is that the unification of diverse individ-

uals under a single diagnostic umbrella may not always provide a comprehen-

sive clinical picture. For example, differences among patients in symptomatic

manifestation of complex disorders may be subtle and thus often ignored

under a strict case/control distinction. These individual-specific differences

tend to be subtle and often overwhelmed by group level confounds. As a

result, the characterization finer-grained measures of clinical severity in the

literature continues to remain an open challenge.

Modeling this dichotomy between group-level effects and subject-specific

differences from connectivity data (See Fig. 1.2) is a key motivation for the

frameworks introduced in this thesis.

1.1.3 Representation Learning for Connectomics

We borrow from network decomposition strategies in classical representation

learning. A key advantage of this approach lies in the interpretability, as

opposed to the black box nature of deep models. Typically, network decompo-

sition models are mathematically designed to tease apart the shared structure

S within the rs-fMRI data {Xn} from individual specific effects Mn.

The constituent components or factors are unknowns that map to the data

via a function F (·) with a parametric form. In the simplest case, F (·) is a

matrix product. To estimate the factors, a least squares reconstruction error is
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Figure 1.2: Decomposition of Brain Connectivity to tease apart group level and patient
specific information

optimized:

LBSS = ∑
n
||Xn − SMn||2F (1.1)

Such algorithms are often referred to as Blind Source Separation (BSS)

as they decompose the signal into constituent components that are apriori

unknown. To obtain a joint solution in the individual factors, an alternating

minimization [45] procedure may be utilized. Essentially, this procedure

alternates through the estimation of the individual factors one at a time, fixing

the estimates of the other unknowns.

A common example of a BSS algorithm is Independent Component Anal-

ysis (ICA), which has been used to pinpoint spatial [46] and temporal spe-

cialization [47], perform multi-subject analysis [48] and group comparisons

[49]. ICA enforces a notion of statistical independence between the constituent

signal components of the raw time series data, which translates to an explicit

constraint within the optimization. While useful, strict notions of spatial or

temporal independence may be too restrictive in practice, especially in the
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presence of considerable noise in the time-series data.

As an alternative, we choose to build generative frameworks that lever-

age the underlying structure within functional connectivity matrices rather

than the rs-fMRI time series. Our strategy is inspired by [50], which decom-

poses connectivity matrices into group level and patient-specific components

modeled as canonical outer product factors. These rank one components

effectively leverage the low rank geometric matrix structure within the data.

As opposed an unsupervised decomposition [50], our goal is to effectively

explain variability among patients in the related behavioral space (clinical

measures). In essence, we explicitly link the neuroimaging and behavioral

spaces in the form a predictive regression model. Our model is evaluated on

generalizability onto unseen subjects, rather than data-fit. Effectively, this pro-

cedure reliably uncovers neural signatures that are informative of behavioral

deficits in clinical populations. Fig. 1.2 pictorially illustrates this framework.

1.2 Application to Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that

affects an estimated 1 in 68 children in the United States. Young adults and

children afflicted with ASD often face considerable social, communication and

behavioral challenges, leading to significant personal and societal costs [51].

Neurologically, ASD is believed to result in aberrant inter-regional com-

munication within the brain via impaired structural pathways [52, 53] and

functional signalling [54, 55]. In fact, rather than being attributed to a single

unified dysfunction, ASD is known to reflect distributed impairments across
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several regional networks [56, 57]. Subnetworks within the brain may be

thought of as a collection of communicating regions that are associated with

a specific function, for example, the visual network. Identifying such key

subnetworks associated with ASD is a key link to better understanding the

social and behavioral implications of the disorder.

From a behavioral standpoint, patient variability in ASD manifests as a

spectrum of impairments. Typically these measures are quantified by a “be-

havioral score" of clinical severity that is obtained from an expert assessment.

Behavioral phenotypes of ASD include communicative deficits, social and

emotional reciprocity, motor impairments etc [58]. Moreover, the manifesta-

tion of these symptoms across patients is known to exhibit acute heterogeneity

within a single diagnostic umbrella. These caveats render the problems of

uncovering the pathogenesis of ASD and designing directions for treatment

particularly challenging.

1.2.1 Multidimensional Clinical Characterizations

At the same time, there is a growing consensus in clinical psychiatry that

complex disorders, such as autism and schizophrenia, are inherently multi-

dimensional [59]. Furthermore, there is considerable patient heterogeneity

within a single diagnostic umbrella that reflects subtle differences in the under-

lying etiology [60]. In fact, the National Institute of Mental Health (NIMH) in

the United States has released the RDoc research framework [61], which advo-

cates for a multidimensional characterization to understand the full spectrum

of mental health and illness. Keeping this in mind, our generative frameworks
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aim to uncover connectivity signatures that in turn can explain a spectrum of

diverse impairments under the ASD umbrella.

As a first exploratory step in this direction, our frameworks have a central

focus on the simultaneously prediction of multiple deficits or multiscore

prediction. This is a challenging and largely uncharted clinical paradigm in

data-driven connectivity analysis.

1.3 Summary

Our goal is to propose flexible frameworks that are capable of representing

the information within brain connectivity data effectively. We aim to leverage

the extracted representations in order to map to clinical and behavioral char-

acterizations. Through this exercise, we seek to better understand the brain

and its relationship to diagnostic and clinical information.

1.3.1 Our Contributions

The main contributions of this work are four-fold:

• From an application standpoint, we build up a unified framework to

integrate structural (DTI) and (dynamic) rs-fMRI connectivity together

to map to behavior.

• From a clinical standpoint, our frameworks provide us with the flexibil-

ity to simultaneously explain multidimensional clinical characterizations

in Autism.
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• From a technical standpoint, we propose unique alternatives to black-box

models (eg. end-to-end deep networks) by combining the interpretability

of classical techniques with the representational power of strategically-

designed deep neural networks.

• Using these principles, we develop end-to-end geometric models that

probe the relationship between the complementary connectivity spaces,

i.e. function and structure beyond simple phenotypic prediction.

In summary, the aforementioned frameworks carefully balance generaliz-

ability with interpretability, thus bridging the representational gap between

structure, function and behavior. Additionally, using both experimental evi-

dence and preliminary analytical insights, we demonstrate how our geometric

frameworks are a first step to extracting powerful canonical connectivity

representations.

1.3.2 Thesis Outline

To set the stage for subsequent chapters, Chapter 2 provides us with back-

ground information on our problem of interest and relevant literature. Chap-

ter 3 introduces a joint network optimization model (JNO) that predicts clinical

severity from rs-fMRI correlation matrices by combining a generative matrix

factorization with a discriminative regression model. Chapter 4 focuses on

extends the discriminative model to combine non-parametric regression and

neural network predictors with the generative model. Chapter 5 extends the

generative framework to model incorporate and multimodal connectivity
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and complement the discriminative frameworks to predict multiple clinical

characterizations.

Chapter 6 discusses a technical refinement that marries classical represen-

tation learning with the simplicity of end-to-end stochastic optimization. It

introduces a geometric framework (matrix autoencoder) that can robustly pre-

dict structural connectivity from functional connectivity while being guided

by a secondary phenotypic prediction task. We also present some preliminary

analytical and experimental results that probe the representational aspects of

this framework.

Complementary to these mathematical models, Chapter 8 takes an al-

ternate end-to-end strategy of fusing function and structure for phenotypic

prediction. Specifically, this chapter explores convolutional models that treat

the brain as an interconnected modular entity with rich topological properties.
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Chapter 2

Background

Functional and structural neuroimaging modalities provide complementary

viewpoints of brain connectivity. Therefore, in this chapter, we first give a

brief overview on the acquisition of the data via the two neuroimaging modal-

ities. We focus on the evolution of brain connectivity analysis. We describe

traditional models that largely rely on domain knowledge to the recent wave

of machine learning models that seek to automatically integrate multimodal

information in a data-driven fashion. We then describe our Autism dataset to

may the groundwork for our clinical problem of interest. Finally, we conclude

this chapter with an overview of the notation for the rest of the thesis.

2.1 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimag-

ing modality that measures changes in blood oxygenation within the brain.

Haemoglobin in the blood is diamagnetic when oxygenated, in contrast with

de-oxygenated haemoglobin, which is paramagnetic. Blood Oxygen Level
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Figure 2.1: Haemodynamic Response Function Profile

Dependent (BOLD) fMRI uses a T2∗-weighted protocol to measures localized

changes in oxygenation over the course of the scan. Specifically, in oxygen-rich

regions, the T2∗ relaxes slowing and results in higher signal intensity [62]. The

temporal resolution of fMRI signals is limited (1-5 seconds between volumes)

despite the reasonable spatial resolution (2-5mm3). Representation wise, fMRI

signals are 4− D with the first three dimension representing the voxel location

and the fourth dimension denoting progression of time samples over the scan.

fMRI relies on the fact that neuronal activation within the brain and blood

flow are coupled. When a certain region of the brain is in use, blood flow

to that region also increases. It is hypothesized that the regions of the brain

exhibiting increased local blood flow (and thus oxygen metabolism) are likely

linked to heightened energy utilization during neurobiological processes [63].

Unfortunately, the exact relationship between the underlying neural signals

and haemodynamic response is ill understood.
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2.1.1 Localizing Functional Responses

Traditionally, task-evoked fMRI has been widely employed in order to local-

ize brain regions that are involved in functional specialization. The task or

event paradigm needs to be carefully designed to evoke and isolate activation

responses from regions of interest. Such task-based data is typically analyzed

via a Generalized Linear Model (GLM) [64]. GLMs inherently assume that

each individual experimental condition elicits a linear contribution to the

overall fMRI response. Let zi ∈ RT×1 represent the fMRI activation time

course at the spatial location i. The experimental paradigm is encoded in

a temporal design matrix X ∈ RT×M. The relationship between neuronal

activity and the fMRI signal takes the form of a parametric transfer function.

This hemodynamic response function (HRF) models neurovascular coupling

and is typically convolved with the experimental protocol in order to obtain

the columns of the design matrix X. Fig. 2.1 illustrates the HRF profile. GLMs

pose the following regression

zi = Xβi + ϵi (2.1)

Here, βi ∈ RM×1 is an activation vector that we wish to estimate. It denotes

the response to each stimulus. Finally, we assume that the corruptions ϵi

arise as additive white Gaussian noise. Mathematically, we can solve for β

using the least squares solution β̂ = (XTX)−1XTy. To interpret these results,

a high-valued entry in β̂i indicates that region i has a strong response to a

particular stimulus, thus informing us of the role played by region i within

the brain.
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2.1.2 Exploring Functional Connectivity at Rest

On the other hand, resting state fMRI is acquired in the absence of a task

paradigm to capture steady-state patterns of co-activation within brain regions.

Participants are typically instructed to lie still within the scanner while being

imaged at rest. While we no longer have an experimental protocol to infer

the GLM activation responses from, we can instead rely on uncovering and

analyzing the co-activation across pairs of regional responses. Further, it is

believed that these correlation patterns within these signals illuminate the

intrinsic communication between brain regions [7].

Thus, functional co-activation patterns at rest offer us insight into the "func-

tional connectivity" (i.e. functional relationships) with brain regions. Rs-fMRI

thus obviates the need for compliance with a strict task protocol. This makes it

an attractive option for clinical studies, particularly in case of atypical or pedi-

atric populations. Primary examples of such studies include characterization

of neuropsychiatric disorders such as Autism Spectrum Disorder (ASD) [65],

Attention Deficit Hyperactivity Disorder (ADHD) [66], and schizophrenia

[67], development and assessment of behavioral therapy [68], pre-surgical

planning [69] etc.

With this brief introduction, the rest of this thesis will utilize resting state

fMRI acquisitions for analysis. From a clinical standpoint, we are interested

in how functional connectivity relates to behavior, and in exploring the link

between the functional organization of the brain and manifestation of impair-

ments in patient cohorts.
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2.2 Analysis of Functional Connectivity

Traditional rs-fMRI analysis has concentrated on comparing the statistics of

the rs-fMRI data, or variation in these statistics, across individuals or between

different cohorts. For example, statistical differences in rs-fMRI features

between a patient cohort and neurotypical controls may be considered as

biomarkers of a given disorder. However, the high dimensionality of rs-fMRI

data, along with the considerable inter-patient variability, make it extremely

difficult to reliably predict clinical manifestations on a individual level.

2.2.1 Exploring Functional Concordance

Rs-fMRI studies have uncovered the presence of spontaneous fluctuations

within regions of the brain typically concentrated within a frequency band

(< 0.08Hz) [8]. Despite the lack of external stimuli, these response signals have

been found to are strongly correlated across multiple brain structures across

individuals. Analysis of functional connectivity patterns aim to pinpoint and

study the coherence within these response to improve the understanding of

the brain and its organization.

Perhaps the earliest approach for isolating functional systems was seed-

based correlation analysis, in which the functional connectivity of specific

seed regions to the rest of the brain is assessed [70] and may be compared

across patient cohorts [71, 72]. The seeds are typically determined by domain

knowledge and fixed a priori. They are typically of the order of 3 − 5 voxels in

diameter and are embedded within the gray matter tissue. Once the expert

specifies the location of the seed, one may wish to quantify its concordance
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with targeted and large subsystems within the brain (for example, the somato-

motor or visual network). Denoting this target subsystem by a collection S , we

can compute the average regional time series associated with this subsystem

as zS = 1
|S| ∑j∈S zj. To quantify the concordance with the seed of interest i,

we may quantify a correlation measure between the time series as:

ρ =
zT

i zS
||zS ||||zi||

(2.2)

In each case, the time series are mean centered before estimating the correlation

value. Seed based analysis has been extremely useful in identifying brain

systems reliably across subjects or discovering new systems, typically by

thresholding correlations at a suitable value. A common example is the

default mode network [63]. It is active at rest of when an individual performs

an internally focused task and deactivates during sensory-motor experiments.

The default mode network is believed to be critical for mediating cognitive

processes about the environment and for memory related tasks [35].

Despite its success, seed based connectivity analysis is limited by the

ability to specify the initial ROI. Further, the consistence of the results within

populations may be heavily rely on the choice of threshold [73]. Hence,

recent research has been pivoting towards leveraging statistical frameworks

to instead focus on whole brain connectome-wide comparisons.
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2.2.2 Statistical Approaches for Connectome Wide Compar-
isons

Connectome wide comparisons examine effects at the level of individual

pairwise measures within the connectome. In this regard, there has been

considerable work in developing statistical frameworks for performing com-

parisons of pairwise connectivity measures across populations. Examples

include standard multivariate [74] or random effects models [75] that aim to

capture population level differences in functional connectivity. Additionally,

these analyses may involve a prohibitively large number of multiple compar-

isons, where a simple Bonferroni correction could prove to be too conservative

for uncovering and studying the underlying effects. Several approaches have

been proposed to address these problems [76, 77, 78, 79] with notable exam-

ples including the network based statistic and the Spatial Pairwise Clustering

techniques [77, 79].

While straightforward to implement, these techniques do not adequately

characterize distributed impairments across multiple brain systems. This char-

acterization is believed to be crucial for understanding the complex patholo-

gies associated with neuropsychiatric disorders [80, 55, 81]. This limitation

has warranted the development of network-based models to study the inter

and intra-subject variation across populations.

2.2.3 Network Models and Graph Theoretic Analysis

Network-based rs-fMRI studies typically group voxels in the brain into regions

of interest (ROIs) using a standard anatomical or functional atlas. Further, the
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Figure 2.2: For the fMRI data, we group voxels in the brain into ROIs defined by a
standard atlas and compute the average time courses for each ROI. The elements
of the functional connectome capture the pairwise synchrony in these average time
courses.

synchrony between the average regional time courses is summarized using

a similarity matrix, which is the input for further analyses. This extraction

procedure is demonstrated in Fig. 2.2. From here, we could extract global and

local network properties to analyze the connectivity within the brain graph.

One may treat the brain as a complex network graph. Under this formalism,

the works of [28, 29, 30] use graph theoretic notions of connectivity based on

aggregate network measures, such as node degree, betweenness centrality,

and eigenvector centrality to study the functional organization of the brain.

These measures are extremely useful to compactly summarize the connectivity

information onto a restricted set of nodes which map to brain regions.

A more global network property is small-worldedness [82], which de-

scribes an architecture of sparsely connected clusters of nodes. These charac-

terizations are quite successful at capturing global connectivity information as

well as implicating dysconnectivity within psychiatric disorders. For example,

changes in small-worldedness have been implicated in many neurological

disorders [83, 84] such as schizophrenia.
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Constructing a comprehensive picture of brain organization requires us

to simultaneously explain global as well as localized properties. Modularity

analysis is the first step to examining this organization at the node level and

builds up a notion of intra-modular and inter-modular connections [85]. Effec-

tively, intra-modular connectivity measures the node’s relative connectivity

to other nodes within the same module, whereas inter-modular connectivity

describes the way in which a node’s connectivity is distributed across vari-

ous modules. Together, nodes with high intra-modular connectivity (termed

provincial hubs) and nodes with relatively comparable connectivity across

modules (termed connector hubs) play key roles in functional specialization

and functional integration respectively [86].

2.2.4 Mechanistic and Generative Models of Functional Con-
nectivity

From the earliest work on seed-based correlation analyses, there is mount-

ing evidence that the brain contains numerous modular sub-networks that

specialize in different functionality. Within the graph based models, these

sub-networks are captured as collections of densely connected nodes that

interact with each other, also known as “communities".

While centrality, small-worldedness, and modularity that were introduced

above have been useful in many applications, they collapse the richness of

the full connectome into a few summary statistics. To address the limitations

of aggregate notions, recent focus has shifted towards mechanistic network

models, which are capable of incorporating hierarchy onto existing graph

connectivity notions.
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Community detection techniques are a class of population-level models

which are used to identify highly interconnected subgraphs within a larger

network. These techniques have become popular for understanding the or-

ganization of complex systems like the brain network architecture [87]. An

application of this approach to identify regions having abnormal connectivity

in schizophrenia patients can be found in [88]. Similarly, Bayesian community

detection algorithms developed in [89] have provided valuable insights in

characterizing the social and communicative deficits associated with autism.

An alternative network topology is the hub-spoke model, which targets re-

gions associated with a large number of altered connections [88, 90, 91].

Overall, these techniques have been highly successful at leveraging the

underlying topology and hierarchy within brain organization for group dis-

crimination [88] and subject-specific ROI identification [92]. However, the

above methods focus on group characterizations, and even studies that con-

sider patient variability [36] have little generalization power on new subjects.

2.2.5 Data-Driven Approaches

The functional connectivity matrices are often vectorized to convert them

into connectivity features, which are the "patterns" of interest in downstream

analysis. The goal of data-driven analysis is to isolate the connectivity patterns

that are most discriminative across the population. However, the number of

features are order of magnitudes larger than the number of subjects in the

study. Thus, data-driven techniques often cast the neuroimaging prediction

problem as a two stage procedure. Essentially, the first step is a feature
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selection or a dimensionality reduction stage, while the second stage uses the

output of the first to predict the subject characteristics.

A simple representation learning framework entails a careful sub-selection

of specialized biomarkers [93, 94]. On a whole brain level, data-driven ap-

proaches treat the patient connectivity information as a feature map and esti-

mate lower dimensional projections, typically through PCA, kernel-PCA [95]

or ICA [96]. From here, the most popular classifier (i.e. a stage two algorithm)

is a Support Vector Machine (SVM) [97], which optimizes the decision bound-

ary between patients and neurotypical controls [96]. SVMs have also been

shown to identify disease sub-types [94] from the lower dimensional features

with high accuracy.

While this two stage pipeline has been successful in the classification realm,

characterizing finer-grained measures of clinical severity in the fMRI literature

has largely been restricted to associative analysis, as opposed to an actual

prediction on unseen data. For example, the work of [98] identifies key visual

and motor ICA components, which are then used to compute a visuo-motor

measure that is significantly correlated with social-communicative and motor

deficit measures in ASD. In the context of a continuous value prediction, [99]

develops a modified random forest regression algorithm for stacked multi-

output score estimation from multiple ROI-voxel correlation maps.

Finally, deep learning methods have become popular for several neu-

roimaging data analysis. These models have the ability to efficiently learn

complex abstractions of the input data without requiring careful feature

engineering. As a result, they have been quite successful in a number of
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case/control classification tasks [43, 40, 42]. Common architectures that have

been used for functional connectivity analysis include Multi-Layered Percep-

trons, Convolutional Neural Networks and Graph Neural Networks. How-

ever, a downside to these models is the requirement of large amounts of

training data for adequate generalization, which is rarely the case with clinical

studies. Consequently, there has been limited success in predicting behavior

from rs-fMRI data using neural networks.

In this thesis, we wish to isolate functional connectivity signatures that

can explain variation within a clinical cohort. This variation is quantified in

the clinical space, where differences among individuals may be subtle. As

explained in Chapter 1, modeling group level structure coupled with patient-

specific factors simultaneously is key to generalizability. Therefore, we will

focus on network decomposition models that are designed specifically for

functional connectivity matrices. These models will also allow us to probe

canonical patterns of co-activation in the brain, offering interpretability.

2.2.6 Dynamic Functional Connectivity: Hypothesis and Mod-
els

There is now growing evidence that functional connectivity is a dynamic

process that toggles between different intrinsic states evolving over a static

structural connectome [100]. These states manifest over short time windows

that are typically of the order of a tens of seconds to a few minutes. Several

studies such as [101, 102, 103] indicate the importance of modeling this evolu-

tion for characterizing neuropsychiatric disorders such as schizophrenia and

ASD.
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Figure 2.3: For the fMRI data, voxels in the brain are grouped into ROIs according
to a standard atlas. From the average time courses for each ROI, a sliding window
protocol may be used to extract time-varying functional connectivity matrices.

In the simplest case, the rs-fMRI time-series are fit to a Markov model that

encodes a state transition behavior [104]. Alternatively, model based frame-

works may also be used to detect dynamic changes in correlation patterns

rather than working with the time series directly. Often, these measures are

estimated between large-scale brain networks such as the Default Mode Net-

work, Somatosensory Network etc. An example is the Dynamic Conditional

Correlation (DCC) protocol that was initially developed in the econometrics

and finance literature [105] and later adapted to the study of brain organiza-

tion using rs-fMRI [106]. It poses a time-varying matrix estimation problem to

explicitly model the evolution of connectivity patterns in the brain, and has

shown robustness in the test-retest setting [107] with rs-fMRI. Another exam-

ple is the time varying graphical lasso [103]. Unfortunately, many of these

methods are unstable when scaled up [108, 109]. For example, at a whole brain

ROI-level analysis of dynamic connectivity, the correlation matrices may be ill

conditioned in the absence of additional regularization. Consequently, most

dynamic connectivity studies continue to rely on sliding-window correlations

as inputs.
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In this thesis (specifically, Chapter 5), we will employ sliding window

correlation patterns to capture dynamic connectivity across the scan. The

sliding window protocol is defined by the window length and stride, as

illustrated in Fig. 2.3. The window length defines the length of the time

sequence considered by each dynamic correlation matrix, while the stride

controls the overlap in successive sliding windows.

After computing the dynamic connectivity, the downstream analysis mim-

ics the static approaches described above. For example, network decompo-

sitions may be used to isolate the intrinsic brain states. From here, typical

network comparisons involve comparing key statistics of dynamic evolution,

such as mean dwell time or the number of transitions between states. Dif-

ferences in such statistics have been found within diseased vs neurotypical

populations, acting as biomarkers of dysfunction.

In our treatment of dynamic connectivity, we pursue a dual line of inquiry.

Firstly, we focus on encoding the transient brain states behavior. Essentially,

we want to isolating key neural signatures in the form of subnetworks and

model their individual contribution as it evolves over the course of the scan.

To this end, we employ Long Short Term Memory (LSTM) networks which are

capable of tracking the dynamics of the patient specific factors while implicitly

enforcing temporal smoothness. The canonical bases or "states" are fixed over

the scan and are shared across the cohort while their relative contribution is

allowed to vary. Second, we are interested in identifying which time points of

the scan are most important for clinical prediction. For this purpose, we make

use of temporal attention models [110] which have been shown to be useful
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in a variety of domains. Overall, such carefully crafted deep learning models

help us extend our representational frameworks. This in turn helps refine our

understanding of functional connectivity and its relationship with behavioral

characterizations.

2.3 Integration of Multimodal Connectivity Data

There is strong evidence within the neuroimaging literature of the correspon-

dence between functional and anatomical pathways within the brain [10]. In

fact, several studies suggest that the functional connectivity may be mediated

by either direct or indirect anatomical connections [12, 13, 11, 14]. Diffusion

Tensor Imaging (DTI) is a protocol of Magnetic Resonance Imaging which has

been adopted for tracking the structural pathways within the brain.

Together, rs-fMRI and DTI data provide complementary information about

function and structure respectively. Thus, it is of great interest to integrate

the two views together to construct a more comprehensive picture of brain

organization in health and disease. Therefore, multimodal integration has

become an promising direction of study for uncovering the neurobiological

underpinnings of Autism Spectrum Disorder (ASD) [111], Attention Deficit

Hyperactivity Disorder (ADHD) [112], and Schizophrenia [67].

Similar to Subsection 2.2, clinical applications have motivated several key

advances in the analysis of multi-modal connectivity data.
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2.3.1 Diffusion Tensor Imaging

An axon or nerve fiber can be described as a long, threadlike extension of a

neuron. It connects specific regions within the brain, relaying crucial infor-

mation via targeted electrical impulses. The white matter within the brain is

primarily composed of bundles of such myelinated nerve fibers. These fibers

may be tightly packed together into fiber tracts or fiber bundles with common

source and final destination.

Diffusion Tensor Imaging (DTI) characterizes the anisotropic diffusion

of water as it traverses soft tissue [5]. In particular, this diffusion of water

molecules happens less freely across white matter fiber bundles in the brain

rather than along them. DTI protocols leverage this effect to illuminate the

structural organization of the brain. From the point of view of clinical appli-

cations, DTI has been successful in discovering abnormalities within white-

matter diseases such as Multiple Sclerosis [113] or tracking the progression in

Alzhiemer’s disease [114] or for localizing strokes [115].

A single DTI volume is obtained by applying a magnetic pulse sequence in

a specific gradient direction uk. The resulting signal intensity Ik at each voxel

is then given by:

Ik = I0 exp−buT
k Duk (2.3)

according to the Stejskal-Tanner equations [116]. I0 is the intensity at the

corresponding voxel with no gradient pulse is applied. b is the b-value which

can be pre-calculated according to the timing, amplitude and shape of the

gradient pulse and is typically constant for the complete acquisition. Finally,

D is the diffusion tensor and is symmetric and postitive semi-definite. It
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characterizes the directional mobility of the water molecule. I0 and D are

voxel-specific .

2.3.1.1 Quantifying Anatomical Connectivity

By collecting several images from unique gradient directions, one can estimate

the pointwise diffusion tensor entries Dij. Typically, DTI scans may use

six or more such gradient directions to derive directional information on

the underlying neuronal fiber bundles. From the diffusion tensor D, scalar

measures of anatomical connectivity may then be computed and compared

across individuals. Typically, these measures are computed at the voxel level

from the eigenvalues of the diffusion tensor D, {λ1, λ2, λ3}. A simple example

is the Mean Diffusivity statistic which computes the arithmetic mean λ̄ =

λ1 + λ2 + λ2/3 of the eigenvalues. A more sensitive measure is the Fractional

Anisotropy (FA), that describes the degree of anisotropy of a diffusion process.

This is mathematically computed as

FA =

√︃
3
2

√︁
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√︂

λ2
1 + λ2

2 + λ2
3

(2.4)

A number of biological processes are believed to contribute to changes in

FA. For example, local FA values have been found to be significantly affected

due to the inflammation of underlying white matter fiber bundles, as well as

by changes in myelination [117]. Differences in the statistics of the FA value

distribution have been found to be associated with neurological disorders

such as Schizophrenia [118].
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Figure 2.4: Tractography is performed on the raw DWI data to track the path of
neuronal fibers in the brain. Based on the parcellation scheme, we construct a map of
the fibre tracts between ROIs in the brain.

2.3.1.2 Exploring and Tracking Structural Pathways

Going one step further, we can use fiber tracking algorithms (i.e. tractography)

to construct detailed 3D maps of anatomical pathways within the brain based

on the diffusion tensors. This procedure is laid out in Fig. 2.4 There are two

broad categories of algorithms used for tractography, namely deterministic

and probabilistic approaches.

Streamline fiber tractography [119] is deterministic in the sense that it

assumes each voxel to be characterized by a single primary fiber orientation

as dictated by the dominant eigenvalue and eigenvector of D subject to addi-

tional smoothness constraints. It then infers global fiber trajectories by piecing

together the local orientations. Mathematically, one may consider the set of

(local) fiber orientations as a 3D vector field. A streamline can be defined as a

curve that is tangent to the vector field along its trajectory. Thus, the global

fiber trajectories are the streamlines. A white matter tract is the the molecule

follows in this vector field from a fixed starting location referred to as the

"seed".
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Often, the local fiber orientation estimates from tractography may be sub-

ject to errors. Here, local imaging noise, artifacts, as well as inaccuracies in

the streamline integration and local modelling errors contribute to the final

global fiber track estimation. Particularly in steamline tractography, mea-

surement uncertainty may propagate and compound in effect. Probabilistic

tractography [119] algorithms aim to directly characterize this uncertainty, by

generating a large collection of possible trajectories from each seed point. This

effectively characterizes a "distribution" over possible fiber tracts rather than a

fixed trajectory. Probabilistic tractography algorithms build upon the stream-

line ones, with a key difference being that the orientations for propagation of

the tract are drawn at random from a orientation distribution function (ODF)

defined locally. Brain regions with resulting trajectories of higher density are

deemed to have a high probability of anatomical connection with the seed

point. This effectively allows fiber tracking to continue in regions with high

uncertainty, which may often be missed within streamline algorithms.

Given the results of tractography, one may wish to quantify anatomical

connectivity along the estimated white matter pathways using various mea-

sures. For example, one may compute the probability of diffusion between

two brain regions, or the number of fibers linking the regions, or the mean

Functional Anisotropy (FA) along the tracts connecting them.

Traditional streamline tractography algorithms often suffer from issues

with tracking multiple fibers. Particularly, the estimated diffusion tensor may

be nearly isotropic even in the case where two fibers cross or merge. Conse-

quently, the algorithm may follow an incorrect trajectory. For our in house
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dataset, we utilize a probabilistic tracking framework designed to handle

multiple fiber orientations [120]. This utilizes a relevance determination mech-

anism such that at crossing regions, the algorithm maintains the orientation

of the streamline while still tracking non-dominant pathways. [120] demon-

strate that this offers better sensitivity in tracking non-dominant fibres, while

avoiding significant changes to results within the dominant pathways.

Our frameworks utilize the results of fiber tractography to convert the

tracking information into a symmetric region-to-region graph of anatomical

connectivity A. Each element of the graph A[i, j] indicates the number of fiber

tracts connecting two region pairs. A well known issue with probabilistic

tracking is that larger white matter bundles may be favored over smaller ones.

In order to avoid this, the anatomical network may be represented as a binary

matrix, with value 1 indicating the presence of at least l fiber tract connecting

the region pairs, where l is relatively small threshold.

2.3.2 Statistical Approaches to Joint Modeling of Function
and Structure

Traditional multimodal analyses of rs-fMRI and DTI data have largely focused

on post-hoc statistical comparisons of features extracted from the data. For ex-

ample, simple statistical differences in rs-fMRI and DTI connectivity between

subjects have been used to discover disrupted patterns of brain organization

in Alzheimer’s disease [23] and Progressive Supranuclear Palsy (PSP) [24].

At a population level, multivariate analysis [25, 26] or random effects

models [27] have been employed to first independently compute, and then

34



combine features from both modalities. Despite their success at biomarker

discovery, these techniques often fail to generalize at a patient-specific level.

Furthermore, they often ignore higher-order interactions between multiple

subsystems in the brain. As alluded to earlier, this characterization is be-

lieved to be critical for improving the understanding understanding complex

neuropsychiatric disorders [80, 55].

Overall, such shortcomings have pushed research in multimodal integra-

tion towards adopting a multi-modal network based treatment of connectivity.

The goal is to develop techniques that are capable of simultaneously account-

ing for both inter-subject and intra-subject variability.

2.3.3 Graph Theoretic Analysis and Mechanistic Models for
Multimodal Data

Similar to the functional connectome, the structural connectivity matrix de-

rived from tractography captures the strength of the pairwise anatomical

connection between different ROIs, as seen in Fig. 2.4.

Some of the simplest approaches to analyzing network properties are

rooted in the field of graph theory. For example, the works of [28, 29, 30] use

aggregate network measures such as centrality or small worldedness to study

the organization of the brain. Complementary changes in small-worldedness

in both anatomical and functional networks have been well documented across

the literature [121, 122], with concurrent disruptions of functional networks

[123] or structural networks [124] implicated in neuropsychiatric disorders

such as schizophrenia. One of the main limitations of these approaches is
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that they independently analyze the fMRI and DTI data, and as such, draw

heuristic conclusions about the relationship between the two modalities.

Building on the community models described in Subsection 2.2.4 which

exclusively focus on functional connectivity, a natural direction would be to

incorporate structural connectivity as prior information guiding the inference.

In this light, the work of [125] proposes a probabilistic framework that jointly

models latent anatomical and functional connectivity to discover population-

level differences in schizophrenia. Similarly, the work of [126] uses a unified

Bayesian framework to identify gender-differences in multimodal connectivity

patterns across different age groups.

While successful at combining multi-modal information for group differ-

entiation, these techniques do not directly address inter-individual variability.

2.3.4 Data-Driven Multimodal Integration

Data-driven methods integrating structural and functional connectivity have

also focused heavily on groupwise discrimination from the static connectomes.

These methods also usually follow a two-step approach where feature selectors

and discriminators are trained sequentially in a pipeline. For example, the

authors in [127] combine graph theoretic features computed from rs-fMRI and

DTI graphs with Support Vector Machines (SVMs) to identify individuals with

Mild Cognitive Impairment. Another example is the work of [128], which

employs a pipeline consisting of joint-Independent Component Analysis (j-

ICA) on the two modalities followed by Canonical Correlation Analysis (CCA)

to combine them and distinguish schizophrenia patients from controls.
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In contrast to the pipelined approaches, end-to-end deep learning meth-

ods combining feature selection and prediction are becoming ubiquitous in

multimodal neuroimaging studies. These are highly successful due to their

ability to learn complex abstractions directly from input data. As an example,

the work of [129] uses a Deep Belief Network (DBN) on multimodal data to

disambiguate patients with ASD from healthy controls.

As mentioned previously, two main limitations of utilizing deep learning

are the requirement of large amounts of data for generalization, and the lack

of insight they provide into interpretation. To circumvent these issues, our

frameworks perform multimodal integration using regularized generative

models instead of end-to-end networks. While the frameworks are designed

to incorporate the dichotomy between intra-subject and inter-subject differ-

ences, they also allow us to probe the signatures of brain connectivity that are

representative across the population and predictive of clinical information.

2.4 Dataset: Acquisition and Preprocessing

In this section we outline the acquisition protocol used to collect the data and

the subsequent pre-processing steps.

Our primary clinical dataset consists of 58 children with high functioning

Autism Spectrum Disorder (ASD) acquired at the Kennedy Krieger Institute

in Baltimore, USA. Henceforth, we refer to this as the KKI dataset. The age of

the subjects from this cohort is 10.06 ± 1.26 with an IQ of 110 ± 14.03.

Social and communicative deficits in ASD are believed to arise from aber-

rant interactions between regions of the brain that are linked by structural and
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functional connectivity [130]. Thus, identifying these patterns plays a crucial

role in better understanding the disorder and is a key motivating application

to developing our frameworks.

2.4.1 Neuroimaging Data

2.4.1.1 rs-fMRI Acquisition and Pre-processing

rs-fMRI acquisition was performed on a Phillips 3T Achieva scanner with a

single shot, partially parallel gradient-recalled EPI sequence with TR/TE =

2500/30ms, flip angle 70◦, res = 3.05 × 3.15 × 3mm, having 128 or 156 time

samples. The children were instructed to relax with eyes open and focus on a

central cross-hair while remaining still. We used an in-house pre-processing

pipeline pre-validated across several studies [98, 36]. This consists of slice

time correction, rigid body realignment, and normalization to the EPI version

of the MNI template using SPM [131], followed by temporal detrending of the

time courses to remove gradual trends in the data. A CompCorr50 [132, 133]

strategy was used to estimate and remove spatially coherent noise from the

white matter and ventricles, along with the linearly detrended versions of the

six rigid body realignment parameters and their first derivatives, followed

by spatial smoothing using a 6mm FWHM Gaussian kernel and temporal

smoothing via a band pass filter (0.01 − 0.1Hz). Lastly, the data was despiked

using the AFNI package [134].
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2.4.1.2 DTI Acquisition and Pre-processing

The DTI acquisition for the KKI dataset was collected on a 3T Philips scanner

(EPI, SENSE factor= 2.5, TR= 6.356s, TE= 75ms, res = 0.8 × 0.8 × 2.2mm, and

FOV= 212). We collected two identical runs, each with a single b0 and 32 non-

collinear gradient directions at b = 700s/mm2. The data was pre-processed

using the standard FDT [135] pipeline in FSL consisting of susceptibility distor-

tion correction, followed by corrections for eddy currents, motion and outliers.

From here, tensor model fitting was performed to generate the transformation

matrices and extract atlas based metrics. We used the BEDPOSTx tool in FSL

[120] to perform a bayesian estimation of the diffusion parameters at each

voxel, followed by tractography using PROBTRACKx [120].

2.4.2 Phenotypic Data

We analyzed three independent measures of clinical severity for the KKI

dataset. These include:

1 Autism Diagnostic Observation Schedule, V. 2 (ADOS-2) total raw score

2 Social Responsiveness Scale (SRS) total raw score

3 Praxis total percent correct score

The ADOS consists of several sub-scores which quantify the social- commu-

nicative deficits in individuals along with the restrictive/repetitive behaviors

[136]. The test evaluates the child against a set of guidelines and is admin-

istered by a trained clinician. We compute the total score by adding the
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individual sub-scores. The dynamic range for ADOS is between 0 − 30, with

higher score indicating greater impairment.

The SRS scale quantifies the level of social responsiveness of a subject

[137]. Typically, these attributes are scored by parent/care-giver or teacher

who completes a standardized questionnaire that assess various aspects of

the child’s behavior. Consequently, SRS reporting tends to be more variable

across subjects, as compared to ADOS, since the responses are heavily biased

by the parent/teacher attitudes. The SRS dynamic range is between 70 − 200

for ASD subjects, with higher values corresponding to higher severity in terms

of social responsiveness.

Finally, Praxis is assessed using the Florida Apraxia Battery (modified for

children) [138]. It assesses the ability to perform skilled motor gestures on com-

mand, by imitation, and with actual tool use. Several studies [138, 139, 140, 98]

reveal that children with ASD show marked impairments in Praxis a.k.a., de-

velopmental dyspraxia, and that impaired Praxis correlates with impairments

in core autism social-communicative and behavioral features. Performance is

videotaped and later scored by two trained research-reliable raters, with total

percent correctly performed gestures as the dependent variable of interest.

Scores therefore range from 0− 100, with higher scores indicating better Praxis

performance.

2.5 Preliminaries

For the rest of the thesis, we follow a notational convention where we denote

matrices by bold capital letters and vectors by bold lower case letters. Indices
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for both matrices and vectors are denoted using lower case letters.

Recall that network-based models often group voxels into regions of inter-

est (ROIs) using a standard anatomical or functional atlas [141]. The choice

of atlas specifies the “resolution" of information that will be the basis for

subsequent analyses. The synchrony between representative (often average)

regional time series quantifies the functional relationships between these

regions.

Formally, let P be the number of regions in the parcellation, N be the

number of subjects in the cohort, and T be the number of time-points in the

rs-fMRI scan for subject n. We use Xn ∈ RP×T to denote the collection of

regional time series for subject n. The functional connectome Γn ∈ RP×P is

calculated as:

Γn(i, j) = f (Xn[i, :], Xn[j, :]) ∀ i, j ∈ {1, . . . , P} (2.5)

In an abstract sense, the function f (·) captures the similarity between

pairs of regional time series, denoted in Eq. (2.2) by Xn[i, :] and Xn[j, :]. Most

commonly, f (·) is a non-directed measure, and Γn is symmetric. Fig. 2.3

depicts the computation of dynamic or time-varying connectivity {Γt
n} (at

time point t) using the sliding window protocol. In this specific case, instead

of using the entire time series for estimating a single snapshot of functional

connectivity, the scan is divided into individual short segments.

Our experiments rely on the Automatic Anatomical Labelling (AAL) atlas

[142] parcellation for the rs-fMRI and DTI data. AAL consists of 116 cortical,
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subcortical and cerebellar regions. Thus, for each individual, we have correla-

tion matrices of size 116 × 116 based on the Pearson’s Correlation Coefficient

between the average regional time-series.

Γn[i, j] =
(Xn[i, :]− X̄n[i, :])T(Xn[j, :]− X̄n[j, :])

||Xn[i, :]− X̄n[i, :]||2||Xn[j, :]− X̄n[j, :]||2
(2.6)

Where X̄n[i, :] = ∑k X[i, k] is the average signal. This is a symmetric and

non-directed measure of functional connectivity. Empirically, we observed

a consistent noise component with nearly unchanging contribution from all

brain regions and low predictive power for both datasets. Therefore, we

subtracted out the first eigenvector contribution from each of the correlation

matrices and used the residual matrices for each subject.

As mentioned previously, our frameworks decompose functional connec-

tivity matrices Γn into a group level and patient specific representation (See

Fig. 1.2). To lay the groundwork for chapters 3-5, we will briefly describe the

representational setup.

We will use the matrix B ∈ RP×K to denote the canonical basis. Effec-

tively, it is a concatenation of K elemental vectors bk ∈ RP×1, i.e. B :=

[b1 b2 ... bK]. Since K ≪ P, we effectively perform dimensionality reduc-

tion on the functional connectivity matrices. While the bases are common to all

patients in the cohort, the combination of these subnetworks is unique to each

patient and is captured by the non-negative coefficients cnk. These coefficients

model the variability in the dataset along in the space of the elemental basis

vectors.

On the behavioral side, yn can be thought of as a vector with the individual
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scalar measures of clinical severity concatenated together. Our frameworks

model the link between connectivity and behavior as a predictive regression

model g(·) that takes in as input the patient specific coefficients. Effectively, we

would like to approximate a mapping such that g(cn) = yn. By combining the

estimation of the generative and discriminative setup, we seek representations

which faithfully capture informative representations. We will evaluate the

fidelity of this procedure via the predictive generalization in a cross validated

setting.

Finally, each DTI connectivity matrix An is binary, where [An]ij = 1 cor-

responds to the presence of at least one tract between the regions i and j,

116 in total for AAL. For Chapters 5 and 8, we utilize this binary DTI graph

as an anatomical prior on the functional connectivity. Effectively, this acts

as a regularization that acts on the functional matrix decomposition. Specif-

ically, we will use the graph laplacian regularizer Ln derived from An as

Ln = V− 1
2

n (Vn − An)V
− 1

2
n . Here, Vn = diag(An1) is the degree matrix. In our

experiments, we will use k-fold cross validation as the evaluation strategy

for all our models and baselines. Hence, for the KKI dataset, we impute the

missing DTI connectivity for the individuals, who do not have DTI based on

the training data in each cross validation fold.

In Chapter 6, our treatment of structural connectivity is a bit more nu-

anced. Instead of only predicting pheotypes from connectivity, we are instead

interested in how functional and structural connectivity are related to each

other. Therefore, we examine whether we can reliably predict structural con-

nectivity from functional connectivity matrices across the population. We
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adopt a non-binarized weighted version of An. Each An[i, j] quantifies the

relative strength of connection between region pairs. Mathematically, this is

computed as the ratio of the number of tracts connecting the pairs to the total

number of estimated tracts. Further, this normalization induces the property

that ||A||1 = 1, which defines the geometry of the structural connectivity

space. We will describe in Chapter 6 how we design our framework to make

use of these properties within the learned mapping.

2.6 Summary

To summarize, prior work on brain connectivity and behavior has employed

a wide toolkit using simple data statistics, graph theoretic approaches, and

machine learning to uncover patterns of interaction between structure and

function. Several frameworks use specialized feature extraction on the rs-fMRI

and DTI, then draw correspondences between them post-hoc. In addition,

several techniques take a two-step approach, which effectively decouples

the feature extraction from the downstream prediction/classification. From

an application standpoint, several studies focus exclusively on group-wise

discrimination, and do not map to more fine-grained continuous clinical

measures that are important for characterizing neuropsychiatric disorders.

Finally, several machine/deep learning frameworks vectorize features from

the connectomes at the input, due to which they do not fully exploit the

structure within the connectomes themselves.

In our work, we leverage techniques from optimization, deep learning,

geometric modeling to address the aforementioned issues from a modeling
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standpoint. Subsequent chapters will detail how our research departs from

prior work and advances the field of brain connectivity analysis for clinical

applications.
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Chapter 3

JNO: A Joint Network
Optimization Framework for
Functional Connectomics and
Clinical Severity

As discussed in Chapter 2, understanding the relationship between the func-

tional connectivity and behavioral data spaces can offer key insights into

characterizing complex neuropsychiatric disorders. However, most prior

work in this application area examines a case/control classification problem.

A typical pipeline has two stages, a feature extraction (from statistics, graph

theory, machine learning) followed by a discriminative model. Characterizing

finer-grained measures of clinical severity in the fMRI literature has been

restricted to associative analysis, as opposed to an actual prediction on unseen

data.

Dictionary learning [143, 50] methods move away from the pipelined

representations, and have recently gained traction due to their ability to simul-

taneously model both group level and patient specific information. The work
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of [144] proposed a correlation matrix decomposition strategy, in which, multi-

ple rank one outer products capture an underlying generative basis. The sparse

basis representation identifies meaningful co-activation patterns common to

all the patients, while patient-specific coefficients combine the subnetworks

and model the individual variability in the dataset. An extension of their

work [145] looks at classification of young adults versus children, again, by

the addition of an SVM like hinge loss. Our work builds on this representation

by using the discriminative nature of these coefficients to predict their clinical

severity via a linear regression penalty.

This Joint Network Optimization (JNO) framework combines both a gen-

erative and discriminative term, as opposed to a pipelined hyperparameter

search. We employ an alternating minimization strategy to jointly infer the set

of bases, coefficients and regression weights that best explain the data. The

generalizability of the model is indicated by the regression performance on

unseen data, instead of the correlation fit as used in [144]. This refinement

demonstrates the potential of our JNO framework in identifying patient-

predictive biomarkers of a given disorder.

Outline: The work presented in this chapter appeared in [146, 39]. The rest

of the chapter is organized as follows. Section 3.1 introduces our generative

model, while Section 3.2 describes the discriminative model to map to clinical

severity. Sections 3.5 and 3.4 describes our joint objective and the alternating

minimization scheme for inference. Sections 3.5, 3.6, and 3.7 present empirical

validation for our framework including experiments on synthetic and real
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world data. Finally, Section 3.8 and 3.9 discuss the clinical significance, ro-

bustness of the framework under different settings, and the advantages and

limitations.

Fig. 3.1 presents a graphical overview of our model. The two inputs to our

model are the rs-fMRI similarity matrices (upper left) and the scalar clinical

severity scores for each patient (lower right). As mentioned earlier, Fig. 2.2

illustrates the construction of the similarity matrix from the data. These

matrices quantify the Pearson’s Correlation Coefficient between the average

time courses for each region of interest (ROI). The clinical scores are obtained

from an expert evaluation and quantify the severity of the symptoms for the

individual.

Notice that the correlation matrices in Fig. 3.1 have a dual representation.

Figure 3.1: A two level joint model for connectivity and prediction. Purple Box:
Depicts the functional data representation or ‘generative’ term. The correlation matrix
is decomposed into a group basis term and a patient specific coefficient term. The
columns of the basis matrix correspond to individual subnetworks when projected
onto the brain. We stack these coefficients into a matrix. Green Box: Prediction of
symptom severity via linear regression
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The generative part of the model is indicated in the purple box. Here, we

decompose the correlation matrix into a basis term and a patient coefficient

term. The columns of the basis capture ROI co-activation patterns common

to the entire cohort, while the coefficients differ across patients and quantify

the strength of each basis column in the matrix representation. The green

box indicates the discriminative part of the model. Here, we leverage the

information from the patient-specific coefficients to estimate a given measure

of clinical severity via a linear regression model for each individual.

3.1 Generative Model for Functional Connectomics

We define Γn ∈ RP×P as the correlation matrix for patient n, where P is the

number of regions given by the parcellation. As seen in Fig. 3.1, we model

Γn using a group average basis representation and a patient-specific network

strength term. The matrix B ∈ RP×K is a concatenation of K elemental

bases vectors bk ∈ RP×1, i.e. B := [b1 b2 ... bK], where K ≪ P. These

bases capture steady state patterns of co-activation across regions in the brain.

While the bases are common to all patients in the cohort, the combination

of these subnetworks is unique to each patient and is captured by the non-

negative coefficients cnk. We include a non-negativity constraint cnk ≥ 0 on the

coefficients to preserve the positive semi-definite structure of the correlation

matrices {Γn}. Our complete rs-fMRI data representation is:

Γn ≈ ∑
k

cnkbkbT
k s.t. cnk ≥ 0 (3.1)
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As seen in Eq. (3.1), we model the heterogeneity in the cohort using a patient

specific term in the form of cn := [cn1 ... cnK]
T ∈ RK×1. Taking diag(cn)

to be a diagonal matrix with the K patient coefficients on the diagonal and

off-diagonal terms set to zero, Eq. (3.1) can be re-written in matrix form as

follows:

Γn ≈ Bdiag(cn)BT s.t. cnk ≥ 0 (3.2)

Overall, this formulation strategically reduces the dimensionality of the data,

while providing a patient level description of the correlation matrices.

3.2 Discriminative Model for Clinical Severity

As shown in the green box of Fig. 3.1, the patient coefficients {cnk} from the

representation term, are used to model the clinical severity score yn using a

linear regression vector w ∈ RK×1

yn ≈ cT
n w (3.3)

Concatenating the vectors cn into a matrix C := [c1 ... cN] ∈ RK×N, and

the severity scores into a vector y := [y1 ... yN]
T ∈ RN×1, Eq. (3.3) can be

equivalently represented in matrix form:

y ≈ CTw (3.4)
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3.3 Joint Objective

We combine the two contrasting viewpoints described above into a joint

objective by summing the contributions of Eq. (3.2) and Eq. (3.4) below:

J (B, C, w) = ∑
n
||Γn − Bdiag(cn)BT||2F +γ||y − CTw||22 s.t. cnk ≥ 0 (3.5)

Here, ∑n ||Γn − Bdiag(cn)BT||2F is the total error in the representation of the

N patient correlation matrices, and ||y − CTw||22 is the prediction error for

the behavioral data. Finally, γ is the trade-off between the rs-fMRI data-

representation and score prediction terms.

3.3.1 Regularization Penalties

Since we wish to capture a compact, yet clinically informative subnetwork

representations, we add an ℓ1 penalty to encourage sparsity in B. Intuitively,

this regularizer will sub-select a small number of nonzero entries in B that

explain the data. From an optimization perspective, notice that scaled solution

pairs {B, C} and {αB, 1
α2 C}, as well as {C, w} and {βC, 1

β w} give rise to

equivalent data representations. As a result, we introduce a quadratic penalty

on C to act as a bound constraint. Similarly, we add an ℓ2 regularization term

to the regression vector w analogous to ridge regression. Mathematically, the

three regularizers can be written as:

λ1||B||1 + λ2||C||2F + λ3||w||22 (3.6)
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Figure 3.2: Our Optimization Strategy, we iterate through four main steps until global
convergence

The penalty terms in Eq. (3.6) are added to the main objective in Eq. (3.5). The

final joint objective is as follows:

J (B, C, w) = ∑
n
||Γn − Bdiag(cn)BT||2F + γ||y − CTw||22 + λ1||B||1

+ λ2||C||2F + λ3||w||22 s.t. cnk ≥ 0 (3.7)

The parameter λ1 controls the number of nonzero elements in B by scaling

the contribution of the ℓ1 penalty. Similarly, λ2 and λ3 relate to element wise

bounds on the entries in C and w since they scale the contribution of their

respective ℓ2 norms.

3.4 Joint Inference Strategy

We employ an alternating minimization technique in order to infer the set of

latent variables {B, C, w}. Here, we optimize the JNO objective function from

Eq. (3.7) for each output variable, while holding the estimates of the other

unknowns constant.

Proximal gradient descent [147] is an attractive algorithm to handle the
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non-differentiable sparsity penalty on B in Eq. (3.7), when the supporting

terms in the variable of interest are convex. However, from Eq. (3.7), we

see that the Frobenius norm terms expand to a biquadratic representation

in B, which is non-convex. We circumvent this problem by introducing N

constraints of the form Dn = Bdiag(cn). We enforce these constraints using

the Augmented Lagrangian [148], denoting the set of Lagrangian matrices by

{Λn}. The modified objective function in Eq. (3.7) takes the form:

J (·) = ∑
n
||Γn − DnBT||2F + γ||y − CTw||22 + ∑

n
Tr

[︂
ΛT

n (Dn − Bdiag(cn))
]︂

+ ∑
n

1
2
||Dn − Bdiag(cn)||2F + λ1||B||1 + λ2||C||2F + λ3||w||22 s.t. cnk ≥ 0

(3.8)

Tr[M] is the trace operator, which sums the diagonal elements of the argument

matrix M. The additional Frobenius norm terms ||Dn− Bdiag(cn)||2F act as

regularizers for the trace constraints. Observe that Eq. (3.8) is now convex

in both B and the set {Dn}, which allows us to optimize them via standard

procedures.

Fig. 3.2 provides an overview of the alternating minimization strategy

employed. Each individual block in our optimization is described below.
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3.4.1 Proximal Gradient Descent on B

We first write out the optimization problem with respect to B when the esti-

mates of {C, w} are held constant:

Bk+1 = argminBλ1||B||1 + ∑
n
||Γn − DnBT||2F + ∑

n
Tr

[︂
ΛT

n (Dn − Bdiag(cn))
]︂

+∑
n

1
2
||Dn − Bdiag(cn)||2F

∴ Bk+1 = argminB||B
k||1 +

1
λ1

G(Bk)

We see that the proximal gradient iteration is the solution to the following

fixed point problem:

0 ∈ 1
λ1

∂G
∂B

+ ∂(||B||1)

Here, − ∂G
∂B is a descent direction for the B update, and t controls the magnitude

of the step we take in this direction. In practice, we fix t at 10−4 for stable

convergence. The derivative of G with respect to B, is computed as:

∂G
∂B

= ∑
n

[︂
2
[︂
BDT

n Dn − ΓnDn

]︂
− Dndiag(cn)

]︂
+∑

n

[︂
Bdiag(cn)

2 − Λndiag(cn)
]︂

Given the fixed learning rate parameter t, the proximal update for B is easily

computed as:

Bk+1 = sgn(X) ◦ (max(|X| − t, 0)) (3.9)

X = Bk − (t/λ1)
∂G
∂B

(3.10)

54



This step first estimates a locally smooth quadratic model at each iterate Bk

and applies a step of iterative shrinkage thresholding to the compute the local

solution of B. The resulting iterative algorithm is computationally efficient

compared to the counterpart sub-gradient based descent methods and arrives

at a good local solution for an appropriate choice of the learning rate.

At a high level, Eq. (3.10) performs an iterative shrinkage thresholding

operation to handle the non-smoothness of the ||B||1 using a locally smooth

quadratic model.

3.4.2 Optimizing C using Quadratic Programming

The objective is quadratic in C when B, and w are held constant. Furthermore,

the diag(cn) term decouples the updates for cn across patients. Each cn is the

solution to the a separate optimization problem of the following form:

ck+1
n = argmincn∈RK+ Tr

[︂
ΛT

n (Dn − Bdiag(ck
n))

]︂
+ λ2||ck

n||
2
2

+
1
2
||Dn − Bdiag(ck

n)||
2
F + γ((ck

n)
Tw − yn)

2

Hence, we use N quadratic programs (QP) of the form below to solve for the

vectors {cn} :
1
2

cT
n Hncn + fT

n cn s.t. Ancn ≤ bn
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The QP parameters for our problem are given by:

Hn = IK ◦ (BTB) + 2γwwT + 2λ2IK (3.11)

fn = −2
[︂
IK ◦ (DT

n + ΛT
n )B

]︂
1 − 2γynw; (3.12)

An = −IK bn = 0 (3.13)

The non-negativity constraint requires us to project the quadratic program-

ming solution to the space of positive reals in K dimensions for each cn through

An and bn. Since the Hessians {Hn} for our problem are positive definite,

there exist polynomial time algorithms for solving the bound constrained QPs

to the global optimum value. The decoupling of the {cn} allows us to solve

for each coefficient vector in parallel.

3.4.3 Closed Form Update for w

The global minimizer of w is computed at the first order stationary point of

the convex objective, which is:

J (w) = λ3||w||22 + γ||CTw − y||22

∂J
∂w

= 0 = 2λ3w + 2γ(CCTw − Cy)

The closed form update can be expressed as:

w = (CCT +
λ3

γ
IK)

−1(Cy)

Thus, the ratio λ3
γ acts as a regularizer for the matrix inversion in our estimate,

ensuring that the update for w is well defined at each iterate. This is analogous
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to a regularized linear regression update for w.

3.4.4 Optimizing the Constraint Variables Dn and Λn

A closed form solution for the primal variables {Dn} can be obtained by

setting their first derivatives to zero:

∂J
∂Dn

= 0 = diag(cn)BT + 2ΓnB − Λn − Dn − 2DnBTB

∴ Dn = (diag(cn)BT + 2ΓnB − Λn)(IK + 2BTB)−1

The gradient ascent update on {Λn} is as follows:

∂J
∂Λn

= Dn − Bdiag(cn)

Λk+1
n = Λk

n + ηk
∂J
∂Λn

Similar to the case of the coefficients cn, each of the N pairs of updates

{Dn, Λn} are decoupled from each other, and can be solved in parallel.

Overall, the sets of Λn gradient ascent updates ensure that the respective

set of constraints Dn = Bdiag(cn) is satisfied with increasing certainty at each

iteration. The Augmented Lagrangian construct ||Dn − Bdiag(cn)||2F prevents

trivial Lagrangian Λn solutions.

The updates for Dn and Λn ensure that the proximal constraints are satis-

fied with increasing certainty at each iteration. The learning rate parameter

ηk for the gradient ascent step of the augmented Lagrangian is chosen to

guarantee sufficient decrease for every iteration of alternating minimization.
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In practice, we initialize this value to 10−3, and scale it by 0.5 at each iteration.

3.4.5 Prediction on an unseen patient

In order to estimate the coefficients ĉ for a new patient, we re-solve the

quadratic program in Eq. (3.13) using the {B∗, w∗} computed from the training

data via the procedure outlined in Section 3.4. We explicitly set the contri-

bution from the data term in Eq. (3.8) to 0, since the corresponding value of

ŷ is unknown for the new patient. We also implicitly assume that the con-

ditions for the proximal operator hold, i.e. the constraint D̂ = B∗diag(ĉ) is

exactly satisfied. The estimation of the unseen patient’s coefficients are thus

mathematically formulated as follows:

ĉ = argminc||Γn − Bdiag(c)BT||2F + λ2||c||22 s.t. ck ≥ 0 (3.14)

Once again, Eq. (3.14) can be formulated as a quadratic program. The parame-

ters from Eq. (3.13) correspond to:

Hn = 2(BTB) ◦ (BTB) + 2λ2IK

fn = −2
[︂
IK ◦ (BTΓnB)

]︂
1;

An = −IK bn = 0

The estimate for the behavioral score for the test patient is given by the vector

product ŷ = ĉTw∗.
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Figure 3.3: A typical two stage baseline. We input the correlation matrices to Stage 1,
which performs Feature Extraction on the raw correlations. This step could be a
technique from machine learning, graph theory or a statistical measure. Stage 2 fits
an associative regression model to the output representation of Stage 1

3.5 Model Evaluation

3.5.1 Baseline Methods

We evaluate the performance of our method against a set of well established

statistical, graph theoretic, and data-driven frameworks that have been used

to provide rich feature representations. Fig. 3.3 describes a general two stage

pipeline for our task. The first stage is a representation learning step used for

feature extraction. Stage 2 is a regression model to map the learned features

to behavioral data. We evaluate our method against several choices of linear

and non-linear algorithms for Stage 1. These are combined with a regularized

linear regression in Stage 2, similar to our method. Additionally, we evaluate

the performance obtained by omitting a Stage 1 and training a deep neural

network end-to-end on the input correlation features. Lastly, we demonstrate

the advantage provided by combining the neuroimaging and behavioral

representations in the JNO framework. For this, we present a comparison

where the feature learning and prediction stages are decoupled, similar to the

baselines.
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3.5.1.1 Machine Learning Approach (PCA)

We start with the P × P correlation matrix Γn for each patient. Since this

matrix is symmetric, we have M = P×(P−1)
2 distinct rs-fMRI correlation pairs

between various communicating sub-regions. Accordingly, the features from

every individual are composed into a descriptor matrix X ∈ RM×N. We

further concentrate these feature into a small number of representative bases.

The basis extraction procedure in Stage 1 corresponds to a linear mapping

in the original correlation space via a Principal Component Analysis (PCA).

In Stage 2, we construct a regularized linear regression (ridge regression)

on the projected features to predict the clinical severity. PCA projects the

observations onto a set of uncorrelated principal component basis by means of

an orthogonal linear decomposition. Mathematically, PCA poses the following

dimensionality reduction problem:

F (·) = argminµ,U,Y||X − µ1T − UZ||2F s.t. UTU = Id, Z1 = 0 (3.15)

Here, U ∈ RN×d is the d dimensional subspace basis which best approximates

the information from X in the Frobenius norm sense, computed by calculating

the eigenvectors of the sample covariance matrix XXT. Thus, Z ∈ Rd×N

is a compact d dimensional representation of X, where d ≪ M. 1 is a d

dimensional vector of ones. The constraint Z1 = 0 centers Z.

3.5.1.2 Statistical Approach (ICA)

Here, we use Independent Component Analysis (ICA) as the Stage 1 algo-

rithm combined with ridge regression. ICA operates on the raw time series
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data to extract representative spatial patterns that explain rs-fMRI connectivity.

ICA has become ubiquitous for identifying group level as well as individual-

specific connectivity signatures. It decomposes a multivariate signal into

‘independent’ non-Gaussian components based on the statistics of the data.

Mathematically, ICA models the components {yk} of the observed signal

y =
[︁
y1, . . . , ym

]︁
as a sum of n independent components S =

[︁
s1, . . . , sn

]︁
combined via the mixing matrix A =

[︁
a1, . . . , an

]︁
y =

n

∑
i=1

siai i.e. Y = AS (3.16)

s can be recovered by multiplying the observed signals Y with the inverse of

the mixing matrix W = A−1. We adaptively estimate both the mixing matrix

A and the components s by setting up a cost function that maximizes the

non-gaussianity of si = wT
i y or minimizes the mutual information.

Group ICA extends this algorithm to a multi-subject analysis for extracting

independent spatial patterns common across patients, but combined via indi-

vidual time courses. We use the GIFT [149] software to perform Group-ICA

to derive independent spatial maps for each patient. The correlation values

between the identified components are fed to the regression model.

3.5.1.3 Graph Theoretic Approach (Node Degree)

Each correlation matrix Γn can be thresholded and considered a graph ad-

jacency matrix, which we denote by Ψ ∈ RP×P. The element Ψij gives the

strength of association between two communicating sub-regions i and j. The
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underlying graph topology can be summarized using node/edge based im-

portance measures [28, 82]. Again, we use a regularized linear regression

technique to estimate the severity score from the reduced representation. This

treatment closely parallels the machine learning approach, as we can view

the graph measures as a dimensionality reduction. We compute Node Degree

(DN) from the adjacency graph followed by a ridge regression on the features.

Given the adjacency matrix Ψ, the degree of region v is equal to the number

of edges incident on v, with loops counted twice. Mathematically, the degree

DN(v) is computed as follows:

DN(v) = ∑
j ̸=v

1(Ψjv > 0) (3.17)

where, 1(.) is the indicator function, which takes the value 1 if the condition

is satisfied, and 0 otherwise. This metric captures the importance of each

node in explaining the graph, which in our case, corresponds to the average

connectivity strength of each region in the brain.

3.5.1.4 A Neural Network Approach

Recently, there has been an upsurge in using neural networks to investigate

neuroimaging correlates of developmental disorders [80]. Here, we test the

efficacy of a simple Artificial Neural Network (ANN) for predicting the sever-

ity score from the correlation feature matrix X defined above. The network

architecture encodes a series of non-linear transformations of the input corre-

lations to approximate the severity score. Recall that the size of the input is

dependent on our choice of parcellation, which could be of considerable width

62



Figure 3.4: A ten-fold cross validation for evaluating performance

(of the order of ≈ 5000 connections for P = 100). After evaluating several

architectures, we employ a two hidden layer network with widths 8000 and

10 respectively. We use a Rectified Linear Unit (ReLU) non-linearity after the

first hidden layer and a Tanh non-linearity after the second hidden layer. We

used the ADAM optimizer with an initial learning rate of 10−4, scaled by 0.9

per 10 epochs, and a momentum of 0.9 to train the network.

3.5.2 Predictive Performance

We characterize the performance of each method using a 10 fold cross vali-

dation as illustrated in Fig. 3.4. For a given parameter setting, we first split

the data set into 10 training and test folds. For each of the folds, we train

the models on a 90 percent training set split of the data. We report the score

prediction on the held out 10 percent, which constitutes the testing set for that

fold. Note that each datapoint is in the test set in exactly one of the 10 folds.

We report two quantitative measures of performance. Median Absolute

Error (MAE) quantifies the absolute distance between the measured and

predicted scores:

MAE = median(|ŷ − y|),
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where the median is computed across the set of patients. We report MAE

values with the standard deviation of the error. Lower MAE indicates better

testing performance.

Normalized Mutual Information (NMI) assesses the similarity in the distri-

bution of the predicted and observed score distributions across test patients.

NMI is computed as follows:

NMI(y, ŷ) =
H(y) + H(ŷ)− H(y, ŷ)

min {H(y), H(ŷ)}

where H(y) denotes the entropy of y and H(y, ŷ) is the joint entropy be-

tween y and ŷ. NMI ranges from 0 − 1 with higher values indicating a better

agreement between predicted and measured score distributions, and thus

characterizing improved performance.

3.5.3 Implementation Details

Our method has five user-specified parameters {γ, λ1, λ2, λ3, K}. Recall that

K is the number of basis networks, γ is the penalty tradeoff between the

representation and regression terms, λ1 is the sparsity penalty, while λ2 and

λ3 are the regularization penalties on the coefficients C and regression weights

w respectively.

We use the knee point of the eigenspectrum of the correlation matrices

Γn to select the number of bases (K = 8). Empirically, the JNO model is

insensitive to the choice of λ3 and γ, so we fix both at one. Effectively, we are

left with two free parameters, which we optimize by performing a bivariate

grid search. We note that the generalization accuracy is dependent on the
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dynamic range of the scores and is sensitive to λ1 and λ2. Based on the cross

validation results, we finally use the following settings in our experiments:

For the KKI dataset, {λ2 = 0.2, λ1 = 30} for ADOS, {λ2 = 0.9, λ1 = 50}

for SRS and {λ2 = 0.6, λ1 = 20} for Praxis. We will discuss the parameter

sensitivity in Subsection 3.9.

To provide a fair comparison with our JNO framework, we use a joint

grid search on the Stage 1 hyperparameters and the Stage 2 ridge penalty to

optimize these values for every baseline method. Again, we report the best

performance in a ten fold cross validation setting.

We select 10 PCA components for the KKI dataset, and 15 for the NYU

dataset. For ICA, we obtained good performance for 35 spatial maps obtained

from GIFT [149]. For the graph theoretic baseline, we threshold the correlation

matrices {Γn} at 0.2 to obtain valid adjacency matrices {Ψn}. In conjunction

with these, the ridge penalty parameter was swept across four orders of

magnitude. Finally, we include the performance upon decoupling the ridge

regression and the matrix decomposition in Eq. (3.5) as a sanity check. This is

akin to the two stage treatment in the baselines where the two terms are not

explicitly coupled as in the JNO objective.

3.6 Experiments on Synthetic Data

As a sanity check, we first sample data from the generative model in Eq. (3.5)

and use the optimization outlined in Section 3.4 to estimate the unknowns

{B, C, w}. This procedure helps us analyze the performance of the algorithm

under different noise scenarios.
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Figure 3.5: The graphical model for the joint objective. For our synthetic experiments,
we fix the model parameters σC = 2, σw = 0.2

The inputs to our model are the correlation matrices {Γn} and the clinical

scores {yn}. We note that the model gives a complete description of each

Γn in terms of the basis vectors {bk} and the patient coefficients {cn}. Since

the data representation terms for each patient are coupled solely through the

basis representation, the coefficient descriptors are independent of each other.

In a similar observation, each score yn is explained by the corresponding cn,

independent of the remaining subjects, when we fix the regression vector

w. We use this information to describe the observed data {Γn, yn} using a

generative model with the likelihood model based on the hidden variables

{B, C, w}.

Notice that, when treated as a Bayesian log-likelihood (i.e. taking a nega-

tive exponent of the objective), the ℓ2 norms in Eq. (3.5) translate into Gaussian
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distributions, and the ℓ1 norm is equivalent to a Laplacian prior. The corre-

sponding graphical model is shown in Fig. 3.5. The observed variables are

indicated by the shaded circles. The white circles contain the hidden vari-

ables. The distribution parameters for the hidden variables are indicated in

the corresponding rectangle pointing to the variable. The Laplacian parameter

σB controls the overlap in the patterns of sparsity in B, which relates to λ1.

C and w are described by Gaussians with means zero (i.e. ℓ2 norm offset).

The variances σ2
C and σ2

w are related to the penalty parameters λ2 and λ3

respectively. The non-negativity constraint on cn is handled by folding (i.e.

taking the absolute value of) the normal distribution to restrict the cn values

to be positive reals. The observed variable {yn}, translates to a Gaussian

with mean µyn = cT
n w, and variance parameters σyn . This is again folded to

reflect positive values of yn. The correlation matrices {Γn} are drawn from

a Gaussian distribution with mean µΓn = Bdiag(cn)BT (which is positive

Figure 3.6: Performance on synthetic experiments. (L): Varying the level of sparsity
(σΓn = 0.4, σyn = 0.2), (M): Varying the level of noise in yn (σB = 0.2, σΓn = 0.4) ,
(R): Varying the level of noise in Γn under (σB = 0.2, σyn = 0.2) Values on the x-axis
have been normalized to reflect a [0 − 1] range by dividing by the maximum value
of the variable. Deviations from the mean recovered similarity for each parameter
setting is indicated in the figure and have been reported as a standard error value.
The reported x-axis range reflects the regimes within which the algorithm converges
to a local solution
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semi-definite by construction) and variance σΓn .

There are two sources of noise for the observed variables, which include

the error in the correlation matrices Γn, and the error in the severity scores yn.

These scenarios can be directly related to controlling the variance parameters

σΓn and σyn respectively. Additionally, we are interested in the performance of

the algorithm under varying levels of overlap in the sparsity patterns in B.

We evaluate the performance using an average inner-product measure of

similarity S between each recovered network, b̂k, and its corresponding best

matched generating network, bk, both normalized to unit norm, i.e.:

S =
1
K ∑

k

|bT
k bkˆ |

||bk||2||b̂k||2
. (3.18)

Fig. 3.6 depicts the performance of the algorithm in these three cases. The

x-axis corresponds to increasing the levels of noise, while the y-axis indicates

the similarity metric S computed for the particular setting. In the leftmost

plot, an x-axis value close to 0 indicates high percentage of sparsity in B,

while increasing values correspond to denser basis matrices. Throughout this

experiment, the values of the other free parameters in the generative model

were held constant. The middle plot evaluates subnetwork recovery when the

noise in the scores, i.e. σyn is increased. The x-axis reports normalised values

of σyn while the remaining free parameters were held constant. Similarly, the

rightmost plot in Fig. 3.6 indicates performance under varying noise in the

correlation matrices Γn. Again, normalized σΓn values are reported on the

x-axis. Numerical results have been aggregated over 100 independent trials.

As expected, increasing the noise in the correlation matrices and scores
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Figure 3.7: KKI dataset: Prediction performance for the ADOS score for Black Box:
JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box:
ANN on correlation features Blue Box: Decoupled matrix cactorization and ridge
Regression

worsens the recovery performance of the algorithm. This is indicated by the

decay in the similarity measure with increasing noise parameters as well

as an increase in the corresponding variance. Additionally, the algorithm

performs better when there is lesser overlap in the columns of B, i.e. when the

generating basis is sparse. However, we observe that our algorithm is robust

in the noise regime estimated from the real-world rs-fMRI data (0.01 − 0.2)

and recovered sparsity levels (0.1 − 0.4). In addition, we identify the stable

parameter settings for the algorithm which guide our real world experiments.
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3.7 Population Studies on Autism

Figs. 3.7−3.9 compare the performance of our method against the baselines

described in Section 3.5.1 for the prediction of ADOS, SRS and Praxis respec-

tively for the KKI dataset. We plot the score predicted by the algorithm on the

y-axis against the measured ground truth score on the x-axis. The bold x = y

line indicates ideal performance. The red points correspond to training data,

while the green points represent the held out testing data for all the folds in

the cross validation. Our method is indicated at the top left corner.

We observe that, although the training performance of the baselines is

good (i.e. the red points follow the x = y line), the JNO achieves the best

training performance in all cases. Furthermore, we notice that all the two

stage baseline testing performances track the mean value of the held out data

(indicated by the black horizontal line). Our method clearly outperforms the

baselines and is able to capture a trend in the data, beyond a mean value

estimation in case of both datasets for all scores. This can be observed by

the spread of the green points about the x = y line in the case of the JNO

method. Through our experiments, we noticed that the testing performance

of the ANN is dependent on the choice of architecture. For example, the

architecture chosen in Section 3.5 performs well on predicting ADOS for the

KKI dataset, but performs poorly on all other comparisons. Our empirical

evaluations could not identify a single architecture that performed well in all

cases, like our JNO framework. The failure of the two stage decomposition in

the bottom right comparison figures strengthens our hypothesis that a joint

modeling of the neuroimaging and behavioral data is necessary in the context
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Figure 3.8: KKI dataset: Prediction performance for the SRS score for Black Box:
JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box:
ANN on correlation features Blue Box: Decoupled matrix factorization and ridge
regression

of generalization onto unseen data. The lackluster generalization performance

of the baselines is testament to the difficulty of the task at hand. The number

of connections or features available to us are of the order of a 6670 dimen-

sional vector representation for ≈ 60 patients. Both the machine learning and

graph theoretic techniques we selected for a comparison are well known in

literature for being able to robustly provide compact characterizations for

high dimensional datasets. However, we see that PCA and ICA are unable

to estimate a reliable projection of the data that is particularly indicative of

clinical severity. Similarly, the node degree measure heavily rely on being able

to accurately identify informative network topologies from the observed cor-

relation matrices. However, its aggregate nature captures general trends and
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Figure 3.9: KKI dataset: Prediction performance for the Praxis score for Black Box:
JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box:
ANN on correlation features Blue Box: Decoupled matrix factorization and ridge
regression

is not successful in characterizing subtle patient level differences. The failure

of the decoupled matrix factorization and ridge regression makes a strong

case for including the regression term as a part of our JNO objective. The basis

obtained in this case are not indicative of clinical severity, due to which the

regression performance suffers. Despite sweeping parameters across several

orders of magnitude, we observe that the baselines are only good at capturing

group level information, as is indicated by the training fit. However, they

fail to characterize patient level differences for an unseen subject and simply

predict the mean of the given cohort. On the other hand, the generalization

power of the ANN is contingent on the model order choice. This is demon-

strated by its inability to perform well on comparisons outside of ADOS. Said
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another way, we have to change the network architecture for different severity

measures across datasets. This is a major computational disadvantage when

compared with our method.

A key difference between the JNO framework and the baselines is that

we utilize the structure of the correlation matrices to guide the predictive

model. In essence, we optimize for the tradeoff between the neuroimaging

and behavioral data representations jointly, instead of posing it as a two stage

problem. The matrix decomposition we employ explicitly models the group

information through the basis, and the patient differences through the coeffi-

cients. The limited number of basis elements we employ to decompose the

data provides us with compact representations which explain the connectivity

information well. The regularization terms and constraints ensure that the

problem is well posed, while providing clinically meaningful and informative

representations about the data. We also quantify the performance indicated in

these figures in Tables 3.1

3.8 Clinical Significance

Figs. 3.10−3.12 illustrate the subnetworks in B, as trained on the ADOS, SRS

and Praxis in the KKI dataset, respectively. Since each column of the basis

corresponds to a set of co-activated subregions, we plot the normalized values

stored in these columns onto the corresponding AAL ROIs. The colorbar

indicates subnetwork contribution to the AAL regions. Regions colored as

negative values are anticorrelated with regions storing positive ones. We rank

the 8 subnetworks obtained from SRS and Praxis according to their overlap
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Score Method MAE Train MAE Test NMI Train NMI Test

ADOS

PCA & ridge 2.18 ± 2.2 2.99 ± 1.71 0.22 0.18
ICA & ridge 2.13 ± 1.1 3.01 ± 1.90 0.31 0.23
DN & ridge 1.22 ± 0.91 3.68 ± 2.53 0.45 0.39

ANN 2.68 ± 2.21 2.28 ± 1.30 0.91 0.58
Decoupled 2.36 ± 2.33 2.63 ± 1.90 0.15 0.30

JNO Framework 0.088 ± 0.13 2.53 ± 1.86 0.99 0.52

SRS

PCA & ridge 12.92 ± 10.48 19.09 ± 12.48 0.64 0.39
ICA & ridge 7.96 ± 6.35 20.8 ± 17.3 0.83 0.63
DN & ridge 5.77 ± 4.88 19.63 ± 17.23 0.85 0.59

ANN 4.77 ± 4.09 21.25 ± 14.63 0.81 0.56
Decoupled 12.06 ± 10.04 18.5 ± 16.4 0.74 0.37

JNO Framework 0.13 ±0.07 13.27 ± 10.85 0.99 0.78

Praxis

PCA & ridge 9.44 ± 6.83 12.83 ± 8.84 0.64 0.37
ICA & ridge 4.79 ± 4.17 13.08 ± 13.07 0.73 0.63
DN & ridge 4.78 ± 3.24 13.93 ± 8.14 0.68 0.56

ANN 9.34 ± 7.21 14.90 ± 10.06 0.69 0.39
Decoupled 10.17 ± 7.96 13.24 ± 10.38 0.68 0.29

JNO Framework 0.11 ± 0.065 10.18± 6.58 0.99 0.79

Table 3.1: Performance evaluation using Median Absolute Error (MAE) and Nor-
malized Mutual Information (NMI) fit, both for testing & training. Lower MAE
& higher NMI score indicate better performance. We have highlighted the best
performance in bold. Near misses have been underlined.

with the subnetworks from ADOS. As seen from these figures, corresponding

subnetworks show considerable overlap in regional co-activation patterns.

The individual variations can arise from the fundamental differences in the

behavioral traits that each score is trying to capture.

From a clinical standpoint, Subnetwork 7 includes competing i.e. anti-

correlated contributions from regions of the default mode network (DMN)

and somatomotor network (SMN). Abnormal connectivity within the DMN

and SMN has been previously reported in ASD [150, 98]. Subnetwork 5 com-

prises of competing contributions from SMN regions. Additionally, it includes

higher order visual processing areas in the occipital and temporal lobes, which
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Figure 3.10: Subnetworks estimated to predict the ADOS score by the JNO. Regions
having negative contributions are anti-correlated with areas having positive values

is consistent with behavioral reports of reduced visual-motor integration in

the ASD literature [98]. Subnetwork 1 has competing from prefrontal and

subcortical contributions, mainly the thalamus, amygdala and hippocampus.

The thalamus is responsible for relaying sensory and motor signals to the cere-

bral cortex in the brain. The hippocampus is known to play a crucial role in

the consolidation of long and short term memory, along with spatial memory

to aid navigation. Altered memory functioning has been shown to manifest

in children diagnosed with ASD [151]. Along with the amygdala, which is

known to be associated with emotional responses, these areas may be crucial

for social-emotional regulation in ASD. Finally, Subnetwork 2 is comprised of

competing contributions from the central executive control network and the

insula, which is thought to be critical for switching between self-referential

and goal-directed behavior [152].
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Figure 3.11: Subnetworks estimated to predict the SRS score. Regions having negative
contributions are anti-correlated with areas having positive values

Figure 3.12: Subnetworks estimated to predict the Praxis score. Regions having
negative contributions are anti-correlated with areas having positive values
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3.8.1 Robustness in Subnetwork Recovery

Notice that we estimate a different basis matrix B for each cross validation

fold. Therefore, one important property to verify is that these subnetworks

are similar across different cohorts of the data.

We observed an average similarity of 0.79±0.06 for the ADOS networks,

0.86±0.04 for the SRS networks, and 0.76±0.06 for the Praxis networks across

their cross validation runs. Additionally, upon a cross comparison between

the ADOS and SRS networks, we obtained an average similarity of 0.82±0.07.

Similarly, the overlap between ADOS and Praxis is 0.79±0.04, and between

SRS and Praxis is 0.77±0.06. For a convenient visual inspection, we have

arranged the networks in Fig. 3.11 (SRS) and Fig. 3.12 (Praxis) in the order

of their inner product similarity with the ADOS networks in Fig. 3.10. This

finding strengthens the hypothesis that our model is successful at capturing

the stable underlying mechanisms which explain the different sets of deficits

of the disorder.

3.8.2 Comparing Subnetwork Representations

In this section, we compare the subnetworks identified by the JNO to the

representations learned by the baseline methods. Recall that we have used a

regularized linear regression as the Stage 2 predictor for the baselines. There-

fore, we can probe the learned regression weights to characterize the baseline

network representations.

Degree centrality looks at the relative importance of each brain region or

‘node’ to the overall representation. To visualize the pattern identified by

77



Figure 3.13: (A): Representation learned from the prediction of ADOS by Node degree
centrality + ridge regression. The colorbar indicates the weight of the ROI assigned
by the ridge regression. (B): Top two subnetworks identified by the prediction of
the ADOS score by PCA + ridge regression. The colorbar indicates the weight of the
connection.

Figure 3.14: Connectivity patterns identified as important in the prediction of the
ADOS score by ICA + ridge regression. Each plot displays 2 spatial components
contributing to the correlation feature. The colorbar indicates the weight of the
connection.

the degree centrality + ridge regression baseline, we display the regression

weights on the brain surface plots in Fig. 3.13 (A), normalized to unit norm.

The colorbar indicates the strength of co-activation. Regions storing negative

values are anticorrelated with regions storing positive weights. We again
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Figure 3.15: Connectivity patterns identified in the prediction of the ADOS score by
the ANN. The colorbar indicates the weight of the connections. The narrow range of
values are indicative that the ANN assigns equal weighting to most connections on
an average

Figure 3.16: Subnetworks estimated to predict ADOS score by decoupling the matrix
decomposition and ridge regression. Regions having negative contributions are
anti-correlated with areas having positive values

observe patterns from the DMN in the subnetwork plot. Note that the DMN

was also a key connectivity pattern identified by the JNO. However, several

other subnetworks identified by the JNO do not figure in this representation.

On the other hand, for the PCA + ridge regression baseline, the regression

weights inform us of the relative importance of the principal components

in prediction. Since the features fed into PCA are the M = (P × (P − 1))/2

correlation values, we are left with a 6670 dimensional edge connectivity

representation for the AAL per component. We first examine the absolute
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value of the regression weights learned, and then display the connectivity

in the top 2 basis components in Fig. 3.13 (B). We render this connectivity

measure using the BrainNet Viewer [153] software. For clarity, we have

chosen to display the top 5 percent of the connections obtained. The solid

edges signify retained connections, while the blue spheres correspond to

nodes of the AAL regions. The colorbar to the right indicates the strength of

the connections. We notice that the components consist of several crossing

connections spread across different regions of the brain. As compared to our

model, which pinpoints key subnetworks already known to be associated

with ASD, the representation obtained is not immediately interpretable.

In the ICA + ridge regression baseline, the input to the regression model

are the correlation values between the components identified by ICA. After

the model is fit, we sort the input correlations based on the learned regression

weights. This helps us identify the features important for prediction. In

Fig. 3.14 , we display the spatial maps of the top 2 connections identified by

the algorithm. We again, observe patterns from the DMN and visual areas.

However, it fails to capture several other subnetwork patterns that the JNO

identifies as important for ASD.

For the ANN, we use the weight matrix learned at the input layer to inform

us of the subnetwork connectivity. Recall that this matrix is of dimension M ×

D, where M = (P × (P − 1))/2 = 6670 for the AAL atlas. For our application,

D is of width 8000. We first take the absolute values of these weights, and then

normalize the columns of this matrix to unit norm. We then average across

the rows to obtain a single 6670 dimensional edge-edge connectivity vector.
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Again, we use the BrainNet connectivity plots to display this information

in Fig. 3.15. We have chosen to display the top 1 percent of the connections

obtained. The solid edges signify retained connections, while the blue spheres

correspond to nodes of the AAL regions. The colorbar to the right indicates

the strength of the connections. We observe several overlapping connectivity

patterns spread across the entire brain despite applying a stringent threshold.

Additionally, the narrow range of values indicates that the ANN assigns nearly

equal weight to all connections on an average. Similar to the PCA baseline,

this representation is unable to capture interpretable connectivity patterns

which explain behavior.

Finally, we examine the representation learned by performing the matrix

decomposition and prediction separately, i.e. the decoupled case. Note that

the learned basis matrix B follows the same interpretation as that of the JNO.

We display the corresponding co-activation patterns in Fig. 3.16. Again, the

colorbar indicates the strength of activation of the AAL ROIs. Negative regions

are anticorrelated with the positive regions. For convenience, we have ordered

the 8 subnetworks according to their similarity with the ADOS subnetworks

identified in Fig. 3.10. Since we use the same matrix decompotion as the

JNO, we observe several similarities in the learned representations. We also

notice subtle differences in the patterns on account of the coupling with the

predictive term in the JNO. We conjecture that these learned differences are

what gives the JNO the leverage to generalize to unseen data.
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3.9 Discussion

We have shown both predictive power and interpretabilitiy of our model

thus far. Furthermore, characterizing model generalizability is important for

future application of our framework. Here, we first examine the sensitivity

of our prediction results with respect to the model hyperparameters. We

discuss mitigation strategies to handle hyperparameter sensitivity that make

our framework more robust.

3.9.1 Mitigating Parameter Sensitivity

As initially described in Section 3.5, our JNO framework is insensitive to

the regression tradeoff γ and ridge penalty λ3. We also have a natural way

to set the number of subnetworks K. However, we observe that our JNO

framework is fairly sensitive to the sparsity on B and the ridge penalty on

the coefficients cn, i.e. λ1 and λ2 respectively. Fig. 3.17 represents the MAE

recovery performance of the algorithm for varying settings of λ1 and λ2,

holding the remaining parameter settings constant when evaluated on the

KKI dataset. The red plots in each case indicate the performance of the

JNO framework. The x-axis denotes the parameter value, while the y-axis

quantifies the MAE from cross validation. Observe that the best λ1 and λ2

settings for the individual scores are different, i.e ADOS-{λ1 = 30, λ2 = 0.2},

SRS-{λ1 = 50, λ2 = 0.9}, and Praxis-{λ1 = 20, λ2 = 0.6}. Additionally, the

kinks in the plots (shown by the black arrow) also indicate that small changes

in the sparsity and coefficient regularization lead to a dramatic change in

performance, i.e. the operating points for these two parameters are narrow. We
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suspect that the hyperparameter differences can be partially attributed to the

different dynamic range of each clinical score. Specifically, these differences

impact the tradeoff between the representation learning and prediction terms

in the JNO optimization. This in turn affects the generalization performance

at a particular hyperparameter setting. These observations further illustrate

the difficulty of the problem we are trying to address.

We propose two main modifications to tackle the observed hyperparameter

sensitivity in λ1 and λ2. Given that the dynamic ranges of the scores are quite

different and potentially impact generalization, our first mitigation strategy

is to rescale the measures to a fixed interval. Since ADOS is the most widely

accepted observational measure of clinical autism severity, we have scaled

and offset the remaining scores to have a range of 0–30 (similar to ADOS). To

mitigate the narrow ‘operating point’, we include an extra template average

correlation term in Eq. (3.5). We now model the residual outer-product terms

as deviations around a mean template correlation matrix Bavg. The rationale

behind this additional term is that it encourage sparsity in the basis matrix

along with the explicit ℓ1 penalty. The modified objective is as follows:

J (B, Bavg, C, w) = ∑
n
||Γn − Bavg − Bdiag(cn)BT||2F

+ γ||y − CTw||22 + λ1||B||1 + λ2||C||2F + λ3||w||22 s.t. cnk ≥ 0, (3.19)

Notice that Bavg has a closed form update, which does not add much

computational overhead. The updates for the remaining variables follow the

same procedure as described in Section. 3.4, except that the term, {Γn} is
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replaced with {Γn − Bavg} in every update.

The green plots in Fig. 3.17 illustrate the cross validated performance of the

modified JNO framework from Eq. (3.19). The operating point {λ1, λ2} for the

modified framework is fairly consistent across the scores. Moreover, the green

plots exhibit a larger stable range (highlighted in yellow) compared to the red

plots. Accordingly, we identify the settings {λ1 = 10–30, λ2 = 0.08–0.6} as

the operating range for the modified JNO objective, which is roughly an order

of magnitude larger than the original formulation and does not exhibit any

kinks. Fig. 3.18 and Fig. 3.19 illustrate the best generalization performance for

SRS and Praxis using the two algorithms.

Notice that the modified JNO has a slight tradeoff in regression perfor-

mance at the expense of the gain in parameter stability. We highlight the

importance of this exploration, as future applications of our work include

applying our method to rs-fMRI and severity scores from a variety of neuro-

logical disorders. Our modified formulation provides additional flexibility in

this sense, and extends the overall generalizability of our model.

3.9.2 Evaluating Generalizability

Finally, notice that the training examples (red points) in Figs. 3.7−3.9 follow

the x = y line nearly perfectly. Here, we explain this (potentially misleading)

phenomenon in terms of the parametrizatization of our joint objective in

Eq. (3.7).

Recall that Section 3.4.5 describes the procedure for calculating the coeffi-

cients for an unseen patient c̄n from the training solution set {B∗, w∗}. Recall
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Figure 3.17: Comparing the sensitivity of the JNO framework with the modified
objective in Eq. (3.19). Prediction performance with varying Top λ1 for (L-R): ADOS,
SRS and Praxis Bottom λ2 for (L-R): ADOS, SRS and Praxis

Figure 3.18: A performance comparison for SRS prediction after modifying the ob-
jective according to Eq. (3.19). (L) Original Method (R) After re-scaling and average
template addition

that we explicitly set the contribution from the data term in Eq. (3.5) to 0.

Since the patient is not a part of the training set, the corresponding value of

ŷ is unknown. In contrast, the training performance is computed based on

the estimated coefficients cn, which have access to the severity scores. Here,

we examine the effect of removing the severity information when calculating

the coefficients for the training patients. In other words, we estimate the
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Figure 3.19: A performance comparison for Praxis prediction after modifying the
objective according to Eq. (3.19). (L) Original Method (R) After re-scaling and average
template addition

Figure 3.20: Prediction Performance of the JNO for ADOS on training data when (L)
The data term is included in computing cn (R) The data term is excluded from the
computation of cn

corresponding severity y excluding the ridge regression term. Accordingly,

Fig. 3.20 highlights the differences in training fit with and without this term

is not included in estimating cn. Notice that in the latter, the training accu-

racy has the same distribution as the testing points in Figs. 3.7−3.9. Taken

together, we conclude that, the linear predictive term overparamterizes the

search space of solutions for cn to yield a near perfect fit. We use this obser-

vation to emphasize that the subnetworks and regression model learned by

our JNO framework are capturing the underlying data distribution and not

simply ‘overfitting’ the training data.
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Lastly, our paper [39] evaluates our model on a second ASD cohort ac-

quired at the NYU site within the ABIDE database [154]. It also evaluates the

effect of changing the parcellation scheme of choice, i.e. effect of changing

resolution of the functional connectivity data. In each comparison, we ob-

serve that the JNO framework provides consistent improvements over several

baselines. More importantly, [39] presents additional results on test-retest

reliability by examining cross-site generalizability and robustness to the choice

of parcellation scheme. All of these comparisons allude to the efficacy of the

JNO at reliably extracting representations from rs-fMRI connectivity data that

are explanative of clinical measures.

3.10 Summary and Conclusion

Our JNO model cleverly exploits the structure intrinsic to rs-fMRI correlation

matrices through an outer product representation. The regression term fur-

ther guides the basis decomposition to explain the group level and patient

specific information. The compactness of our representation serves as a dimen-

sionality reduction step that is related to the clinical score of interest, unlike

the pipelined treatment commonly found in the literature. As seen from the

results, our JNO framework outperforms a wide range of well established

baselines from the machine learning and graph theoretic methods ubiquitous

in fMRI analysis on two separate real world datasets.

We conjecture that the baseline techniques fail to extract representative pat-

terns from the correlation data, and learn only the group level representation
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for the cohort. Consequently, they overfit the training set, despite sweep-

ing the parameters across several orders of magnitude. Any patient level

symptomatic and connectivity level differences are lost due to the restrictive

pipelined procedure and the group level confounds.

Our Joint Network Optimization Framework is also agnostic to the choice

of parcellation scheme. We have demonstrated this by our additional ex-

periments on the KKI dataset, where we chose the 246 region Brainnetome

parcellation to extract correlation matrices (see Section 3.6 in [39]). We further

emphasize that our framework makes minimal assumptions on the data. Pro-

vided we have access to a valid behavioral and network similarity measure,

this analysis can be easily adapted to other neurological disorders and even

predictive network models outside the medical realm. This greatly broadens

the scope of the method to numerous potential applications.

3.10.1 Limitations and Scope for Refinement

From the behavioral standpoint, the JNO focuses on predicting scalar mea-

sures of severity individually rather than a collective. However, it is known

that complex disorders such as ASD are inherently multi-dimensional in

manifestation.

A natural direction of exploration would thus be a simple multi-score

extension which can incorporate data from different behavioral domains.

Unfortunately, a naive multi-output modification of Eq. (3.5) performs poorly

on this task. An alternative would be to replace the linear regression term in

Eq. (3.5) with more powerful non-linear counterparts, thus providing us with
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the flexibility to model more complex decision functions which can better map

the behavioral space. This paves way for our discussion in Chapter 4, where

we refine our discriminative models to explore non-parametric and neural

network regressors.

Another avenue for refinement is to incorporate structural connectivity

information in the form of anatomical priors from Diffusion Tensor Imaging

(DTI). As mentioned previously, these scans are used to define and track ex-

isting anatomical pathways in the brain. Furthermore, this work analyzes

functional connectivity as a static snapshot, rather than an evolving process

over the scan duration. Incorporating this information into the network op-

timization model could be an important step towards unifying anatomical,

functional and behavioral domains to better understand altered brain func-

tioning in the context of neurological disorders such as Autism, ADHD, and

Schizophrenia. This would require us to refine the generative model we have

developed for the neuroimaging data. We reserve this discussion to Chapter 5,

which builds on the ideas we just presented to develop a model capable of

parsing multimodal and dynamic connectivity simultaneously.
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Chapter 4

Beyond Linear Regression Models

This chapter explores two mathematical extensions to the JNO framework

from Chapter 3. Our main motivation is to improve the representational

flexibility of the discriminative model. In essence, we would like to have the

ability to model more complex relationships between the low dimensional

neuroimaging space and the behavioral space.

Outline: Section 4.1 presents a coupled manifold optimization framework

that combines non-parametric regression with the dictionary learning on the

rs-fMRI correlation matrices. Going a step further, Section 4.2 presents a

technique that marries classical representation learning with neural network

predictors into the same optimization.

4.1 CMO: A Coupled Manifold Optimization Frame-
work for Connectomics and Behavior

In this section, we borrow ideas from non-parametric models and manifold

learning to extend our discriminative model.
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Numerous non-parametric approaches have been employed to study com-

plex brain topologies, especially in the context of disease classification. For

supervised learning, the most popular classifier is a support vector machine

(SVM) [97], which optimizes a separating hyperplane between two [96] or

more [60] classes. These hyperplanes may be defined either in the native

space (linear SVM) of rs-fMRI features or in a contrived higher dimensional

space (kernel SVM) non-parametrically. Alternatively, the work of [155] used

graph kernels on the spatio-temporal fMRI time series dynamics to distinguish

between the autistic and healthy groups. Going one step further, [156] used

higher order morphological kernels to classify ASD sub-populations.

While these methods are computationally efficient and simple in formula-

tion, their generalization power is limited by the input data features. Often,

subtle individual level changes are overwhelmed by group level confounds.

To this end, we again take the approach integrate the feature learning step di-

rectly into our framework. We simultaneously optimize both the embeddings

and the projection onto the behavioral space. Since this optimization is also

coupled to the brain basis, it helps us model the behavioral and neuroimaging

data space jointly by reliably capturing individual variability. We leverage the

kernel trick to provide both the representational flexibility and computational

tractability to outperform a variety of baselines. The rest of this section is

based on work which appeared in this conference paper [157].
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Figure 4.1: Joint Model for the Functional Connectomics and Behavioral Data. Blue
Box: Matrix Manifold Representation Gray Box: Non-Linear kernel Ridge Regression

4.1.1 Non-Parametric Regression Model

Fig. 4.1 presents our Coupled Manifold Optimization (CMO) framework. The

blue box represents our neuroimaging term. Since we group voxels into P

ROIs, this yields the P × P input correlation matrices {Γn}N
n=1 for N patients.

As seen, the correlation matrices are projected onto a low rank subspace

spanned by the group basis. The loadings are related to severity via a non-

linear manifold and the associated kernel map, as indicated in the gray box.

Recall that Γn is positive semi-definite by construction. Again, we employ

a patient specific low rank decomposition Γn ≈ QnQT
n to represent the cor-

relation matrix. Each rank K factor {Qn ∈ RP×K} , where K ≪ P , projects

onto a low dimensional subspace spanned by the columns of a group ba-

sis B ∈ RP×K. The vector cn ∈ RK×1 denotes the patient specific loading
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coefficients as follows:

Γn ≈ QnQT
n = Bdiag(cn)BT (4.1)

where diag(cn) is a matrix with the entries of cn on the leading diagonal,

and the off-diagonal elements as 0. Eq. (4.1) resembles a joint eigenvalue

decomposition for the set {Γn}, similar to one provided by Common Principal

Components [158]. The bases bk ∈ RP×1 capture co-activation patterns

common to the group, while the coefficient loadings cnk capture the strength

of basis column k for patient n.

We use these coefficients to predict clinical severity via a non-linear man-

ifold. We define an embedding map ϕ(·) : RK → RM, which maps the

native space representation of the coefficient vector c to an M dimensional

embedding space, i.e. ϕ(cn) ∈ RM×1. If yn is the clinical score for patient n,

we have the non-linear regression:

yn ≈ ϕ(cn)
Tw (4.2)

with weight vector w ∈ RM×1. Once again, our joint objective combines

Eq. (4.1) and Eq. (4.2)

J (B, {cn}, w) = ∑
n

[︂
||Γn − Bdiag(cn)BT||2F + λ||yn − ϕ(cn)

Tw||22
]︂

(4.3)

along with the constraint cnk ≥ 0 to maintain positive semi-definiteness of

{Γn}. Here, λ controls the trade-off between the two representations. We

include an ℓ1 penalty on B to promote sparse solutions for the basis. We

also regularize both the coefficients {cn} and the regression weights w with
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ℓ2 penalties to ensure that the objective is well posed. We add the terms

γ1||B||1 + γ2∑n ||cn||22 + γ3||w||22 to J (·) in Eq. (4.3) with the penalties γ1,γ2

and γ3 respectively.

4.1.2 Joint Inference Strategy

Again, we use alternating minimization to estimate the hidden variables

{B, {cn}, w}. This procedure iteratively optimizes each unknown variable in

Eq. (4.3) by holding the others constant until global convergence is reached.

Proximal gradient descent [147] is an efficient algorithm which provides

good convergence guarantees for the non-differentiable ℓ1 penalty on B. How-

ever, it requires the objective to be convex in B, which is not the case due to

the bi-quadratic Frobenius norm expansion in Eq. (4.3). Hence, we introduce

N constraints of the form Dn = Bdiag(cn), similar to our work in [146, 39].

We enforce these constraints using the Augmented Lagrangians {Λn}:

J (B, {cn}, w, {Dn}, {Λn}) = ∑
n
||Γn − DnBT||2F + λ∑

n
||yn − ϕ(cn)

Tw||22

+ ∑
n

[︃
Tr

[︂
ΛT

n (Dn − Bdiag(cn))
]︂
+

1
2
||Dn − Bdiag(cn)||2F

]︃
(4.4)

with cnk ≥ 0. The additional terms ||Dn − Bdiag(cn)||2F regularize the trace

constraints. Eq. (4.4) is now convex in both B and the set {Dn}, which allows

us to optimize them via standard procedures.

We iterate through the following four update steps till global convergence:
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4.1.2.1 Proximal Gradient Descent on B

The gradient of J with respect to B is:

∂J
∂B

= ∑
n

2
[︂
BDT

n − Γn

]︂
Dn − Dndiag(cn) + Bdiag(cn)

2 − Λndiag(cn)

With a learning rate t, the proximal update with respect to ||B||1 is given by:

Bk = prox||·||1

[︃
Bk−1 −

[︃
t

γ1

]︃
∂J
∂B

]︃
s.t. proxt(L) = sgn(L) ◦ (max(|L| − t, 0))

(4.5)

Effectively, this update performs an iterative shrinkage thresholding on a

locally smooth quadratic model of ||B||1.

4.1.2.2 Kernel Ridge Regression for w:

We denote y as the vector of the clinical severity scores and stack the patient

embedding vectors i.e. ϕ(cn) ∈ RM×1 into a matrix Φ(C) ∈ RM×N. The

portion of J (·) that depends on w is:

F (w) = λ||y − Φ(C)Tw||22 + γ3||w||22 (4.6)

Setting the gradient of Eq. (4.6) to 0, and applying the matrix inversion lemma,

the closed form solution for w is similar to kernel ridge regression:

w = Φ(C)
[︂
Φ(C)TΦ(C) +

γ3

λ
IN

]︂−1
y = Φ(C)α = ∑

j
αjϕ(cj) (4.7)

where IN is the identity matrix. Let κ(·, ·) : RM ×RM → R be the kernel

map for ϕ, i.e. κ(c, ĉ) = ϕ(c)Tϕ(ĉ). The dual variable α can be expressed

as α = (K + γ3
λ IN)

−1y, where K = Φ(C)TΦ(C) is the Gram matrix for
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the kernel κ(·, ·). Eq. (4.7) implies that w lies in the span of the coefficient

embeddings defining the manifold. We use the form of w in Eq. (4.7) to update

the loading vectors in the following step, without explicitly parametrizing the

vector ϕ(cn).

4.1.2.3 Trust Region Update for {cn}

The objective function for each patient loading vector cn decouples as follows

when the other variables are fixed:

F (cn) = λ||yn − ϕ(cn)
Tw||22 + γ2||cn||22 + Tr

[︂
ΛT

n (Dn − Bdiag(cn))
]︂

+
1
2
||Dn − Bdiag(cn)||2F s.t. cnk ≥ 0 (4.8)

We now substitute this form into Eq. (4.8) and use the kernel trick, to write:

||yn − ϕ(cn)
Tw||22 = ||yn − ∑

j
ϕ(cn)

Tϕ(ĉj)αj||22 = ||yn − ∑
j

κ(cn, ĉj)αj||22

where {ĉn} denotes the coefficient vector estimates from the previous step

to compute w. Notice that the kernel trick buys a second advantage, in that

we only need to optimize over the first argument of κ(·, ·). Since kernel

functions typically have a nice analytic form, we can easily compute the

gradient ∇κ(cn, ĉj) and hessian ∇2κ(cn, ĉj) of κ(cn, ĉj) with respect to cn.
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Given this, the gradient of F (·) with respect to cn takes the following form:

gn =
∂F
∂cn

= cn ◦
[︂[︂
IR ◦ (BTB)

]︂
1
]︂
−

[︂
IR ◦ (ΛT

n B + DT
n B)

]︂
1 + 2γ2cn

− λ∑
i

αi

[︄
2∇κ(cn, ĉi)yi − ∑

k
αk [κ(cn, ĉi)∇κ(cn, ĉk) + κ(cn, ĉk)∇κ(cn, ĉi)]

]︄

where 1 is the vector of all ones. Notice that the top line of the gradient term

is from the matrix decomposition and regularization terms, and the bottom

line corresponds to the kernel regression. The Hessian Hn = ∂2F/∂c2
n can be

similarly computed.

Given the low dimensionality of cn, we derive a trust region optimizer for

this variable. The trust region algorithm provides guaranteed convergence,

like the popular gradient descent method, with the speedup of second-order

procedures. The algorithm iteratively updates cn according to the descent di-

rection pk, i.e. c(k+1)
n = c(k)n + pk. The vector pk is computed via the following

quadratic objective, which is a second order Taylor expansion of F around ck
n :

p∗ = argminpF (ck
n) + gk

n(c
k
n)

Tp +
1
2

pTHk
n(c

k
n)p s.t. ||p||2 ≤ δk , ck

nr + pr ≥ 0

where gn(·) and Hn(·) are the gradient and Hessian referenced above evalu-

ated at the current iterate ck
n. We recursively search for a suitable trust region

radius δk such that we are guaranteed sufficient decrease in the objective at

each iteration. This algorithm has a lower bound on the function decrease

per update, and with an appropriate choice of the δk, converges to a local

minimum of F (·) [159].
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4.1.2.4 Augmented Lagrangian Update for Dn and Λn

Each {Dn} has a closed form solution, while the dual variables {Λn} are

updated via gradient ascent:

Dn = (diag(cn)BT + 2ΓnB − Λn)(IK + 2BTB)−1 (4.9)

Λk+1
n = Λk

n + ηk(Dn − Bdiag(cn)) (4.10)

We cycle through the updates in Eqs. (4.9-4.10) to ensure that the proximal

constraints are satisfied with increasing certainty at each step. We choose

the learning rate parameter ηk for the gradient ascent step of the Augmented

Lagrangian to guarantee sufficient decrease for every iteration of alternating

minimization.

4.1.2.5 Prediction on unseen data

We use the estimates {B∗, w∗, {c∗n}} obtained from the training data to com-

pute the loading vector c̄ for an unseen patient. We must remove the data

term in Eq. (4.4), as the corresponding value of ȳ is unknown for the new

patient. Hence, the kernel terms in the gradient and hessian disappear. We

also assume that the conditions for the proximal operator hold with equality;

this eliminates the Augmented Lagrangians in the computation. The objective

in c̄ reduces to the following quadratic form:

1
2

c̄TH̄c̄ + f̄T c̄ s.t. Āc̄ ≤ b̄ (4.11)

98



Note that the formulation is similar to the trust region update we used previ-

ously. For an unseen patient, the parameters from Eq. (4.11) are:

H̄ = 2(BTB) ◦ (BTB) + 2γ2IK

f̄ = −2IK ◦ (BTΓnB)1; Ā = −IK b̄ = 0

The Hessian H̄ is positive definite, which leads to an efficient quadratic pro-

gramming solution to Eq. (4.11). The severity score for the test patient is

ȳ = ϕ(c̄)Tw∗ = ∑j κ(c̄, c∗j )α
∗
j , where α∗ =

[︁
Φ(C∗)TΦ(C∗) + γ3

λ IN
]︁−1 y.

4.1.3 Model Evaluation

Our evaluation strategy for the CMO is similar in spirit to Chapter 3, except

that we focus on non-parametric regression models in Stage 2. We again

employ a ten fold cross validation strategy, and employ the Median Absolute

Error and Mutual Information metric for numerical comparison.

4.1.3.1 Baselines

We compare our algorithm with the standard manifold learning pipeline to

predict the target severity score. We consider two classes of representation

learning techniques motivated from the machine learning and graph theoretic

literature. We construct a non-linear regression model similar to manifold

learning term in Eq. (4.3). Our five baseline comparisons are as follows:

1. Principal Component Analysis (PCA) on the stacked P×(P−1)
2 correlation

coefficients followed by a kernel ridge regression (kRR) on the projec-

tions
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2. Kernel Principal Principal Component Analysis (kPCA) on the correla-

tion coefficients followed by a kRR on the embeddings

3. Node Degree computation (DN) based on the thresholded correlation

matrices followed by a kRR on the P node features

4. Betweenness Centrality (CB) on the thresholded correlation matrices

followed by a kRR on the P node features

5. Decoupled Matrix Decomposition (Eq.(4.3)) and kRR on the loadings

{cn}.

Baseline 5 helps us evaluate and quantify the advantage provided by our

joint optimization approach as opposed to a pipelined prediction of clinical

severity.

4.1.3.2 Implementation Details

We evaluate every algorithm in a ten fold cross validation setting, i.e. we train

the model on a 90 percent split of our data, and report the performance on the

unseen 10 percent.

The number of components was fixed at 15 for PCA and at 10 for k-PCA.

For k-PCA, we use an RBF kernel with the coefficient parameter 0.1. There

are two free parameters for the kRR, namely, the kernel parameter C and

ℓ2 parameter β. We obtain the best performance for the following settings:

ADOS {C = 0.1, β = 0.2}, SRS {C = 0.1, β = 0.8}, and Praxis {C = 0.01, β =

0.2}. For the graph theoretic baselines, we obtained the best performance by

thresholding the entries of {Γn} at 0.2. We fixed the parameters in our CMO
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Figure 4.2: Recovery Top: Exponential Bottom: Polynomial Kernel

framework using a grid search for {λ, γ1, γ2, γ3}. The values were varied

between (10−3 − 10). The performance is insensitive to λ and γ3, which are

fixed at 1. The remaining parameters were set at {γ1 = 10, γ2 = 0.7, γ3 = 1}

for all the scores. We fix the number of networks, K, at the knee point of the

eigenspectrum of {Γn}, i.e. (K = 8).

Based on simulated data, we observed that the standard exponential kernel

provides a good recovery performance in the lower part of the dynamic range,

while polynomial kernels are more suited for modeling the larger behavioral

scores, as shown in Fig 4.2. Thus, we use a mixture of both kernels to capture

the complete behavioral characteristics:

κ(ci, cj) = exp

[︄
−
||ci − cj||22

σ2

]︄
+

ρ

l

(︂
cT

j ci + 1
)︂l

We vary the kernel parameters across 2 orders of magnitude and select the

settings: ADOS {σ2 = 1, ρ = 0.8, l = 2.5}, SRS {σ2 = 1, ρ = 2, l = 1.5} and
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Praxis {σ2 = 1, ρ = 0.5, l = 1.5}. The varying polynomial orders reflect the

differences in the dynamic ranges of the scores.

4.1.4 Experiments on Real Data

Fig. 4.3, Fig. 4.4, and Fig. 4.5 illustrate the regression performance for ADOS,

SRS, and Praxis respectively. The bold x = y line indicates ideal performance.

The red points denote the training fit, while the blue points indicate testing

performance. Note that baseline testing performance tracks the mean value of

the data (indicated by the horizontal black line). In comparison, our method

not only consistently fits the training set more faithfully, but also generalizes

much better to unseen data. We emphasize that even the pipelined treatment

Table 4.1: Performance evaluation using Median Absolute Error (MAE) & Mutual
Information (MI). Lower MAE & higher MI indicate better performance.

Score Method MAE Train MAE Test MI Train MI Test

ADOS

PCA & kRR 1.29 3.05 1.46 0.87
k-PCA & kRR 1.00 2.94 1.48 0.38

CB & kRR 2.10 2.93 1.03 0.95
DN & kRR 2.09 3.03 0.97 0.96
Decoupled 2.11 3.11 0.82 1.24

CMO Framework 0.035 2.73 3.79 2.10

SRS

PCA & kRR 7.39 19.70 2.78 3.30
k-PCA & kRR 5.68 18.92 2.85 1.74

CB & kRR 11.00 17.72 2.32 3.66
DN & kRR 11.46 17.79 2.24 3.60
Decoupled 15.9 18.61 2.04 3.71

CMO Framework 0.09 13.28 5.28 4.36

Praxis

PCA & kRR 5.33 12.5 2.50 2.68
k-PCA & kRR 4.56 11.15 2.56 1.51

CB & kRR 8.17 12.61 1.99 3.05
DN & kRR 8.18 13.14 2.00 3.20
Decoupled 10.11 13.33 3.28 1.53

CMO Framework 0.13 9.07 4.67 3.87
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using the matrix decomposition in Eq. (4.3), followed by a kernel ridge re-

gression on the learnt projections fails to generalize. This finding makes a

strong case for coupling the two representation terms in our CMO strategy.

We conjecture that the baselines fail to capture representative connectivity

patterns that explain both the functional neuroimaging data space and the

patient behavioral heterogeneity. On the other hand, our CMO framework

leverages the underlying structure of the correlation matrices through the

basis manifold representation. At the same time, it seeks those embedding

directions that are predictive of behavior. As reported in Table 4.1, our method

quantitatively outperforms the baselines approaches, in terms of both the

Median Absolute Error (MAE) and the Mutual Information (MI) metrics. The

Figure 4.3: Prediction performance for the ADOS score for Red Box: CMO Frame-
work. Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node
Degree Centrality and kRR (R) Betweenness Centrality and kRR Blue Box: Matrix
Decomposition from Eq. (4.3) followed by kRR
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Figure 4.4: Prediction performance for the SRS score for Red Box: CMO Framework.
Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node Degree Cen-
trality and kRR (R) Betweenness Centrality and kRR Blue Box: Matrix Decomposition
from Eq. (4.3) followed by kRR

CMO also provides comparable performance with the JNO on all performance

measures.

4.1.5 Clinical Interpretation

Fig. 4.6 illustrates the subnetworks {Bk} trained on ADOS. The colorbar indi-

cates subnetwork contributions to the AAL regions. Regions storing negative

values are anticorrelated with positive regions. From a clinical standpoint,

Subnetwork 4 includes the somatomotor network (SMN) and competing i.e.

anticorrelated contributions from the default mode network (DMN), pre-

viously reported in ASD [98]. Subnetwork 8 comprises of the SMN and

competing contributions from the higher order visual processing areas in the
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Figure 4.5: Prediction performance for the Praxis score for Red Box: CMO Frame-
work. Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node
Degree Centrality and kRR (R) Betweenness Centrality and kRR Blue Box: Matrix
Decomposition from Eq. (4.3) followed by kRR

occipital and temporal lobes. These findings are in line with behavioral reports

of reduced visual-motor integration in ASD [98]. Though not evident from

the surface plots, Subnetwork 5 includes anticorrelated contributions from

subcortical regions, mainly, the amygdala and hippocampus, believed to be

important for socio-emotional regulation in ASD. Finally, Subnetwork 6 has

competing contributions from the central executive control network and in-

sula, which are critical for switching between self-referential and goal-directed

behavior [152]. Fig. 4.7 compares Subnetwork 2 obtained from ADOS, SRS

and Praxis prediction. There is a significant overlap in the bases subnetworks

obtained by training across the different scores. Additionally, several subnet-

works that we extract are shared across the JNO and CMO. This strengthens

the hypothesis that our method is able to identify representative, as well as
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Figure 4.6: Eight subnetworks identified by our model from the prediction of ADOS.
The blue & green regions are anticorrelated with the red & orange regions.

Figure 4.7: Subnetwork 2 obtained from L: ADOS M: SRS and R: Praxis prediction

predictive connectivity patterns.

4.1.6 Discussion

Our Coupled Manifold Optimization strategy jointly analyzes data from two

distinct, but related, domains through its shared projection. In contrast to

conventional manifold learning, it optimizes for the relevant embedding di-

rections that are predictive of clinical severity. Consequently, the method

captures representative connectivity patterns that are important for quantify-

ing and understanding the spectrum of clinical severity among ASD patients.

Again, this framework makes very few assumptions about the data and can

be adapted to work with different similarity matrices and clinical scores.
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4.1.6.1 Limitations and Scope

As alluded to earlier, mapping to multiple clinical measures is a first step

to obtaining a more holistic understanding of complex brain disorders. We

explored adapting Eq. (4.6) to perform multiscore regression. Accordingly,

in Table 4.2, we compare against the single score regression. For the single

output regression task, six of the eight hypeparameters were the same for the

three scores, namely: the basis sparsity penalty basis γ1, the tradeoff between

the KR and the dictionary learning λ, the ℓ2 penalty on the coefficients γ2

and the regression weights γ3, the dispersion for the exponential kernel σ2

and the number of networks K. For the multi-score prediction task in Table 4.2,

we fix these. The other two hyperparameters for the KR, i.e. the tradeoff

between kernels ρ and the polynomial kernel order l are score-specific. Since

ADOS is the most widely accepted measure of ASD clinical severity, we report

the multi-score performance using the ADOS settings. In fact, altering these

hyperparameters, at best, enables us to predict one of the three scores well,

but always at the expense of the generalization on the other two measures.

This modeling limitation motivates the next section of this chapter where

Score Method MAE Test NMI Test

ADOS
Single Score 2.73 ± 2.63 0.54
Multi Score 3.17 ± 2.00 0.35

SRS
Single Score 13.28 ± 14.94 0.89
Multi Score 33.11 ± 28.07 0.51

Praxis
Single Score 9.07 ± 11.91 0.82
Multi Score 30.11 ± 26.47 0.61

Table 4.2: Comparing the CMO Framework on Single vs Multi-Target Regression
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we move away from non-parametric regression in the quest to develop more

powerful discriminative frameworks. We will show that leveraging the rep-

resentational flexibility of neural networks helps us generalize to multiscore

prediction.

4.2 Blending Model Based Representations with
Neural Networks

This work first appeared in [160]. In this paper, we proposed one of the first

end-to-end frameworks that embeds a traditional model-based representation

(dictionary learning) with deep networks into a single optimization. This

model derives inspiration from [146, 157] to project the patient correlation

matrices onto a shared basis. However, in a notable departure from prior work,

we couple the patient projection onto the dictionary with a neural network for

multi-score behavioral prediction.

Specifically, we jointly optimize for the basis, patient representation, and neural

network weights by combining gradient information from the two objectives.

We demonstrate that our unified framework provides us with the necessary

representational flexibility to model complex interactions in the brain, and

to learn effectively from limited training data. Our optimization strategy

outperforms state-of-the-art baseline methods at estimating a generalizable

multi-dimensional patient characterization.
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4.2.1 An Integrated Framework for Dictionary Learning and
Neural Networks

Fig. 4.8 illustrates our framework. The blue box denotes our dictionary learn-

ing representation, while the gray box is the neural network architecture.

Again, N is the number of patients and P is the number of regions in our

brain parcellation. We decompose the correlation matrix Γn ∈ RP×P for each

patient n, via K dictionary elements of a shared basis B ∈ RP×K, and a subject-

specific loading vector cn ∈ RK×1. Thus, our dictionary learning objective D

is as follows:

D(·) = ∑
n

[︂
||Γn − Bdiag(cn)BT||2F + γ2||cn||22

]︂
+ γ1||B||1 (4.12)

where diag(cn) denotes a matrix with the entries of cn on the leading diagonal

and the non-diagonal entries as 0. Since Γn is positive semi-definite, we add

the constraint cnk ≥ 0. The columns of B capture representative patterns of

co-activation common to the cohort. The loadings cnk capture the network

strength of basis k in patient n. We add an ℓ1 penalty to B to encourage sparsity,

and an ℓ2 penalty to {cn} to ensure that the objective is well posed. γ1 and γ2

are the corresponding regularization weights.

The loadings cn are also the input features to a neural network. The

network parameters Θ encode a series of non-linear transformations that map

the input features to behavior. Yn ∈ RM×1 is a vector of M concatenated

clinical measures, which describe the location of patient n on the behavioral

spectrum. Ŷn is estimated using the latent representation cn. We employ the
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Figure 4.8: A unified framework for integrating neural networks and dictionary learn-
ing. Blue Box: Dictionary Learning from correlation matrices Gray Box: Neural Network
architecture for multidimensional score prediction

Mean Square Error (MSE) to define the network loss L:

L({cn}, Θ; {Yn}) = ∑
n
ℓΘ(cn, Yn) = λ ∑

n
||Ŷn − Yn||

2
F (4.13)

Since L(·) is added to D(·) defined in Eq. (4.12), λ balances the contribution

of the dictionary learning and neural network terms to the objective.

Our proposed network architecture is highlighted in the gray box. Our

modeling choices require us to carefully control for two key network design

aspects: representational capacity, and convergence of the optimization. Given

the low dimensionality of the input cn, we opt for a simple fully connected

Artificial Neural Network (ANN) with two hidden layers and a width of 40

and ReLU activation. Experimentally, we found that these modeling choices

are robust to issues with saturation and vanishing gradients, which commonly

confound neural network training.
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4.2.2 Joint Inference Strategy

We use alternating minimization to iteratively optimize for the dictionary

elements B, the patient projections {cn}, and ANN parameters Θ. Here, we

sequentially optimize for each hidden variable in the objective by fixing the

rest, until global convergence.

We use Proximal Gradient Descent to handle the non-differentiable ℓ1

penalty in Eq. (4.12), which requires the rest of the objective to be convex

in B. We circumvent this issue by the strategy in [146]. Namely, we intro-

duce N constraints of the form Dn = Bdiag(cn), and substitute them into

the Frobenious norm terms in Eq. (4.12). These constraints are enforced

using the Augmented Lagrangians {Λn}. We add N terms of the form

Tr
[︁
ΛT

n (Dn − Bdiag(cn))
]︁
+ 1

2 ||Dn − Bdiag(cn)||2F to Eq. (4.12). We then iter-

ate through the following four steps until convergence.

4.2.2.1 Proximal Gradient Descent on B

Each step of the proximal algorithm constructs a a locally smooth quadratic

model of ||B||1 based on the gradient of D with respect to B. Using this model,

the algorithm iteratively updates B through shrinkage thresholding. We fix

the learning rate for this step at 10−4. The updates are similar in form to

Eq. (4.5).

4.2.2.2 Updating the Neural Network Weights Θ

We optimize the weights Θ according to the loss function L using backpropa-

gation to estimate gradients. There are several obstacles in training a neural
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network to generalize and few available theoretical guarantees to guide design

considerations. We pay careful attention to this, since the global optimization

procedure couples the updates between Θ and {cn}.

We employ the ADAM optimizer [161], which is robust to small datasets.

We randomly initialize at the first main update. We found a learning rate of

10−4, scaled by 0.9 every 5 epochs to be sufficient for encoding the training

data, while avoiding bad local minima and over-fitting. We train for 50 epochs

with a batch-size of 12. Finally, we fix the obtained weights to update {cn}.

4.2.2.3 L-BFGS update for {cn}

The objective for each cn decouples as follows:

J (cn) = ℓΘ(cn, Yn) + γ2||cn||22 + Tr
[︂
ΛT

n (Dn − Bdiag(cn))
]︂

+
1
2
||Dn − Bdiag(cn)||2F s.t. cnk ≥ 0 (4.14)

Notice that we can use a standard backpropagation algorithm to compute the

gradient of ℓΘ(.) with respect to cn, denoted by ∇ℓΘ(cn, Yn). The gradient of

J with respect to cn, denoted g(cn), can then be computed as follows:

g(cn) = ∇ℓΘ(cn, Yn)+ cn ◦
[︂[︂
IK ◦ (BTB)

]︂
1
]︂
−
[︂
IK ◦ (ΛT

n B + DT
n B)

]︂
1+ 2γ2cn

where 1 is the vector of all ones. The first term is from the ANN, while

the rest are from the modified dictionary learning objective. The gradient

combines information from the ANN function landscape with that from the

correlation matrix estimation. For each iteration r, the BFGS [159] algorithm
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recursively constructs a positive-definite Hessian approximation H(cr
n) based

on the gradients estimated. Next, we iteratively compute a descent direction

p for cr
n using the following bound-constrained objective:

p∗ = argminpJ (cr
n) + g(cr

n)
Tp +

1
2

pTH(cr
n)p s.t. cr

nk + pk ≥ 0 (4.15)

We then update cn as: cr+1
n = cr

n + δp∗, repeating this procedure until con-

vergence. Effectively, the BFGS update leverages second-order curvature

information through each H(cn) estimation. In practice, δ is set to 0.9.

4.2.2.4 Augmented Lagrangian Update for the Constraint Variables.

We have a closed form solution for computing the constraint argument {Dn}.

The dual Lagrangians, i.e. {Λn} are updated via gradient ascent. We cycle

through the collective updates for these two variables until convergence. We

use a learning rate of 10−4, scaled by 0.75 at each iteration of gradient ascent.

The variable updates are similar in form to Eq. (4.9-4.10).

4.2.2.5 Prediction on Unseen Data

We use cross validation to assess our framework. For a new patient, we

compute the loading vector c̄ using the estimates {B∗, Θ∗} obtained during

training. We remove the contribution of the ANN term from the joint objective,

as we do not know the corresponding value of Ȳ for a new patient. The

proximal operator conditions are assumed to hold with equality, removing
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the Lagrangian terms. The optimization in c̄ takes the following form:

1
2

c̄TH̄c̄ + f̄T c̄ s.t. Āc̄ ≤ b̄ (4.16)

H̄ = 2(BTB) ◦ (BTB) + 2γ2IK

f̄ = −2IK ◦ (BTΓnB)1; Ā = −IK b̄ = 0

This formulation is similar to Eq. (4.15) from the BFGS update for {cn}. H̄ is

also positive definite, thus giving an efficient quadratic programming solution

to Eq. (4.16). We estimate the score vector Ȳ by a forward pass.

4.2.3 Model Evaluation

4.2.3.1 Baseline Models

We compare against two baselines that predict severity scores from correlation

matrices Γn ∈ RP×P. The first has a joint optimization flavor similar to this

work, while the second uses a CNN to exploit the structure in {Γn}:

1. The Joint Network Optimization Framework in [146, 39]

2. BrainNet Convolutional Neural Network (CNN) from [44]

4.2.3.2 Implementation Details

The model in [146, 39] adds a linear predictive term γ||CTw − y||22 + λ3||w||22
to the dictionary learning objective in Eq.(4.12). This estimates a single re-

gression vector w to compute a scalar measure yn from the loading matrix

C ∈ RK×N . To provide a fair comparison, we modify this discriminative term
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to γ||CTW − Y||22 + λ3||W||22, to predict the vectors {Yn ∈ RM×1}N
n=1 using

the weight matrix W ∈ RK×M. According to [146, 39], we fixed λ3 and γ at

1, and swept the other parameters over a suitable range. We set number of

networks to K = 8, which is the knee point of the eigenspectrum for {Γn}.

The network architecture in [44] predicts two cognitive measures from cor-

relation matrices. In our case, {Γn} are of size P × P. For our comparison, we

modify the output layer to be of size M. We use the recommended guidelines

in [44] for setting the learning rate, batch-size and momentum during training.

0 

Our Method Generative-Discriminative Framework BrainNet CNN 

MAE:  2.97    MI:  2.30 MAE:  2.95    MI:  2.27 MAE:  2.67    MI:  3.26 

MAE:  16.21    MI:  4.20 

MAE:  41.07    MI:  2.47 

MAE:  20.24    MI:  3.76 

MAE:  11.70    MI:  3.70 

MAE:  19.28    MI:  2.82 

MAE:  15.89    MI:  3.21 

Figure 4.9: Multi-Score Prediction performance for Top: ADOS Middle: SRS Bot-
tom: Praxis by Red Box: Our Framework. Green Box: Generative-Discriminative
Framework from [146]. Blue Box: BrainNet CNN from [44]
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4.2.4 Experiments on Autism Dataset

Fig. 4.9 illustrates the multi-score regression performance of each method based

on ten fold cross validation. Our quantitative metrics are median absolute

error (MAE) and mutual information (MI) between the actual and computed

scores. Lower MAE and higher MI indicate better performance. The orange

points indicate training fit, while the blue points denote performance on held

out samples. The x = y line indicates ideal performance. We restrict our

comparison to patients with all three scores, i.e. ADOS, SRS, and Praxis.

Observe that both the Generative-Discriminative model (JNO) and the

BrainNet CNN perform comparably to our model for predicting ADOS. How-

ever, our model outperforms the baselines in terms of MAE and MI for SRS

and Praxis, with the blue points following the x = y line more closely. Gen-

erally, we find that as we vary the free parameters, the baselines predict one

of the three scores well (in Fig. 4.9, ADOS), but fit the rest poorly. In contrast,

only our framework learns a representation that predicts all three clinical

measures simultaneously, and hence overall outperforms the baselines. We

believe that the representational flexibility of neural networks along with our

joint optimization is key to generalization.

4.2.4.1 Subnetwork Identification

Fig. 4.10 illustrates the subnetworks in {Bk}. Regions storing positive values

are anticorrelated with negative regions. From a clinical standpoint, Sub-

network 8 includes the somatomotor network (SMN) and competing, i.e.
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Figure 4.10: Eight subnetworks identified by our model from multi-score prediction.
The blue and green regions are anticorrelated with the red and orange regions.

anticorrelated, contributions from the default mode network (DMN). Sub-

network 3 also has contributions from the DMN and SMN, both of which

have been widely reported in ASD [98]. Along with the DMN, Subnetworks 5

and 2 contain positive and competing contributions from the higher order

visual processing areas (i.e. occipital and temporal lobes) respectively. These

findings concur with behavioral reports of reduced visual-motor integration

in ASD [98]. Finally, Subnetworks 2, 3, and 8 exhibit central executive control

network and insula contributions, believed to be critical for switching between

self-referential and goal-directed behavior [152].

4.2.5 Discussion

This work introduces one of the first unified framework to combine classical

optimization with the modern-day representational power of neural networks.

This integrated strategy allows us to characterize and predict multidimen-

sional behavioral severity from rs-fMRI connectomics data. Namely, our

dictionary learning term provides us with interpretability in the brain basis for

clinical impairments. The predictive term cleverly exploits the ability of neural

networks to learn rich representations from data. The joint optimization helps
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learn informative connectivity patterns from limited training data.

This framework makes very few assumptions about the data and can be

adapted to work with complex clinical score prediction scenarios. An example

is an extension of this model to handle case/control severity prediction using

a mixture density network (MDN) [162] in lieu of a regression network. The

MDN models a mixture of Gaussians to fit a target multi-modal distibution.

Accordingly, the network loss function is a negative log-likelihood, which

differs from conventional formulations. This is another scenario that may ad-

vance our understanding of neuropsychiatric disorders. For example, this can

be used for case/control ASD severity prediction or to underscore differences

among sub-types within ASD or ADHD.

So far, we have looked at the brain through the lens of static functional

connectivity profiles. The next chapter provides a more holistic exploration

where we extend these ideas to incorporate dynamic and multimodal (i.e.

structural) connectivity.
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Chapter 5

Deep sr-DDL - A Deep Generative
Hybrid Model for
Multidimensional Phenotypic
Prediction from Multimodal and
Dynamic Connectomics Data

As mentioned in Chapter 2, techniques integrating structural and functional

connectivity focus heavily on groupwise discrimination from the static connec-

tomes. Methods include statistical tests on the node or edge biomarkers [10],

data-driven representations [128], and neural networks [129] for classification.

However, none of these methods tackle continuous-valued prediction, e.g.,

quantifying level of deficit.

On the other hand, deep learning is becoming increasingly popular for

continuous prediction. The work of [44] proposes a specialized end-to-end

convolutional network that predicts clinical outcomes from DTI connectomes.

In [160] we combined a dictionary learning on the rs-fMRI correlations with a

neural network to predict clinical severity in ASD patients. However, these
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methods focus on a single neuroimaging modality and do not leverage com-

plementary information between structure and function.

There is also mounting evidence that functional connectivity between

regions is a dynamically evolving process [100]. Modeling this evolution is

believed to be important for understanding disorders like ASD [102, 101].

In this regard, recent methods have been proposed that use either a sparse

decomposition of the rs-fMRI connectomes [103], or a temporal clustering for

ASD/control discrimination [163]. While promising, these approaches focus

exclusively on rs-fMRI and ignore structural information.

In this chapter, we describe a deep-generative model that integrates struc-

tural and dynamic functional connectivity with behavior into a unified opti-

mization framework. Our generative component is a structurally-regularized

Dynamic Dictionary Learning (sr-DDL) model, which uses anatomical priors

from DTI to regularize a time-varying decomposition of the rs-fMRI correla-

tion matrices. Here, the connectivity profiles are explained by shared basis

networks and time-varying patient-specific loadings. Simultaneously, these

loadings are input to a deep network which uses an LSTM (Long Short Term

Memory Network) to model temporal trends and an ANN (Artificial Neural

Network) to predict clinical severity. Our optimization procedure learns the

bases, loadings, and neural network weights most predictive of behavioral

deficits in ASD. We obtain a representation which is both interpretable and

generalizes to unseen patients, thus providing a comprehensive characteriza-

tion of the disorder.

Outline: This chapter is based on work that appeared in [164, 165]. Section 5.1
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introduces the extension of our generative framework to dynamic connec-

tivity, while Section 5.2 explains our structural regularization as guided by

anatomical priors and Section 5.3 describes our deep network for multioutput

prediction. Section 5.5 describes our joint optimization strategy, while Sec-

tions 5.6-5.8 describes our evaluation strategy. Finally, Section 5.9 discusses

the clinical significance of the results.

Fig. 5.1 presents a graphical overview of our framework. We have two sets

of inputs to the model for each individual namely, the dynamic individual-

specific correlation matrices, and the DTI structural connectome graph (upper

left). Our outputs are the scalar clinical scores (bottom right). We use the

sliding window approach in Fig. 2.3 to extract dynamic rs-fMRI correlation

matrices and tractography to extract the DTI connectomes as shown in Fig. 2.4.

The DTI input to our model is the Graph Laplacian obtained from a binary DTI

adjacency matrix capturing the presence/absence of a fiber between regions.

Finally, the behavioral scores for each individual are obtained from an expert

assessment. This score can correspond to either cognitive outcomes or severity

of symptoms in case of neurodevelopmental diseases.

The green box in Fig. 5.1 describes the generative component of our frame-

work. Here, the dynamic rs-fMRI correlation matrices are decomposed using

a structurally regularized dynamic dictionary learning (sr-DDL). The columns

in the bases subnetworks capture representative patterns common to the co-

hort. The loading coefficients differ across subjects, and evolve over time.

At each timepoint, they determine the contribution of each basis to the dy-

namic functional connectivity profile of the individual. Finally, the DTI Graph
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Laplacians re-weight the decomposition to focus on the functional connec-

tivity between anatomically linked regions. The gray box denotes the deep

networks part of our model. This network combines a Long Short Term

Memory (LSTM) module with an Artificial Neural Network (ANN) to predict

multiple behavioral scores. The LSTM models the temporal trends in the

subject-specific loading coefficients giving rise to a hidden representation. The

ANN then uses this representation to predict the corresponding behavioral

outcomes.

Figure 5.1: Framework to integrate structural and dynamic functional connectivity
for clinical severity prediction Green Box: The generative sr-DDL module. The
rs-fMRI dynamic correlation matrices are decomposed into the subnetwork basis
and time-varying subject-specific loadings. The DTI connectivity regularizes this
decomposition. Gray Box: Deep LSTM-ANN module for multi-score prediction. The
sr-DDL coefficients are input into the LSTM to generate a hidden representation. The
predictor ANN (P-ANN) generates a time varying estimate for the scores, while the
attention ANN (A-ANN) weights the predictions across time to generate the final
clinical severity estimate.
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5.1 Dynamic Dictionary Learning for Time-Varying
Functional Connectivity

We denote the set of time varying functional correlation matrices for individual

n by the set {Γt
n}Tn

t=1 ∈ RP×P. Here, Tn denotes the number of sliding windows

applied to the rs-fMRI scan, and P is the number of ROIs in the parcellation

scheme. As seen in Fig. 5.1 (green box), we model this information using a

group average basis, and subject-specific temporal loadings. The dictionary

B ∈ RP×K is a concatenation of K elemental bases vectors bk ∈ RP×1, i.e. B :=

[b1 b2 ... bK], where K ≪ P. This basis captures representative brain

states which each subject cycles through over the course of the scan. We further

constrain the basis vectors to be orthogonal to each other. This constraint

acts as an implicit regularizer, ensuring that the learned subnetworks are

uncorrelated, yet explain the rs-fMRI data well.

While the bases are shared across the cohort, the strength of their com-

bination differs across individuals and varies over time. These loadings are

denoted by the set {ct
n}Tn

t=1 and combine the basis subnetworks uniquely to

best explain each subject’s functional connectivity. We introduce an explicit

non-negativity constraint ct
nk to ensure that the positive semi-definiteness of

Γt
n is preserved. The complete rs-fMRI data representation takes the form:

Γt
n ≈ ∑

k
ct

nkbkbT
k s.t. cnk ≥ 0, BTB = IK, (5.1)

where IK is the K × K identity matrix. As seen in Eq. (5.1), the subject-specific

loading vector at time t, ct
n := [ct

n1 ... ct
nK]

T ∈ RK×1 models the hetero-

geneity in the cohort. Denoting diag(ct
n) as a diagonal matrix with the K
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subject-specific coefficients on the diagonal and off-diagonal terms set to zero,

Eq. (5.1) can be re-written in the following matrix form:

Γt
n ≈ Bdiag(ct

n)B
T s.t. ct

nk ≥ 0, BTB = IK (5.2)

This matrix factorization serves to reduce the dimensionality of the data, while

simultaneously modeling group-level and subject-specific information.

5.2 Structural DTI Regularization Using Anatomi-
cal Priors

Let An ∈ RP×P be a binary adjacency matrix derived from the structural

connectome of subject n. For example, An can be constructed by thresholding

the number of fibers estimated between two regions via tractography. Let

E denote the set of edges in this graph. We compute the corresponding

Normalized Graph Laplacian [166] as Ln = V− 1
2

n (Vn − An)V
− 1

2
n , where Vn =

diag(An1) is the degree matrix and 1 is the vector of all ones. Intuitively,

the Graph Laplacian is a discrete analog of the Laplace difference operator in

Euclidean space. The Laplace difference operator has been used to characterize

local properties of functions in Euclidean space (for example, to easily identify

and characterize local optima). The Graph Laplacian generalizes this notion

to discrete graphs and functions that are defined on graphs. Specifically, the

Graph Laplacian has become a popular spatial regularizer in computer vision

[167], genetics [168], and neuroimaging [14, 169]. This regularization implicitly

assumes that there is a data signal associated with each node of the graph,

and it encourages these signals to be similar for nodes of the graph that have
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an edge between them.

We use a matrix analog to Graph Laplacian regularization via the weighted

Frobenius norm i.e. ||.||Ln
[170, 171], which we use in place of the isotropic

ℓ2 penalty in Eq. (5.2). In this case, the graph “signal" corresponds to the

vector (i.e., profile) of approximation errors given in Eq. (5.2) between the

node in question and all other nodes in the graph. The underlying anatomical

connectivity graph is defined by the DTI Graph Laplacian Ln for each patient.

Mathematically, our dictionary learning loss takes the following form:

||Γt
n − Bdiag(ct

n)B
T||Ln

= Tr
[︂
(Γt

n − Bdiag(ct
n)B

T)Ln(Γ
t
n − Bdiag(ct

n)B
T)
]︂

(5.3)

Let Et
n = Γt

n − Bdiag(ct
n)BT denote the element-wise approximation error of

the the correlation matrix Γt
n. Similarly, we define Ẽt

n = V− 1
2

n Et
n as a weighted

version of this error based on the degree matrix. For notational convenience,

we will drop the subscripts n and t from the following computation.

||E||L = Tr[ETLE] = Tr[ETV− 1
2 (V − A)V− 1

2 E]

= Tr[ẼT
(V − A)Ẽ] where Ẽ = V− 1

2 E

= ∑
i

∑
j

∑
k

Ẽ(i, j)[V(i, k)− A(i, k)]Ẽ(k, j)

= ∑
i,j,k

V(i, k)Ẽ(i, j)Ẽ(k, j)− ∑
i,j,k

A(i, k)Ẽ(i, j)Ẽ(k, j)
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= ∑
i,j

V(i, i)Ẽ(i, j)Ẽ(i, j)− ∑
i,j,k

A(i, k)Ẽ(i, j)Ẽ(k, j)

= ∑
j

∑
(i,k)∈E

2[Ẽ(i, k)]2 − ∑
j

∑
(i,k)∈E

2[Ẽ(i, j)Ẽ(k, j)]

= ∑
j

[︂
∑

(i,k)∈E
[Ẽ(i, k)]2 + ∑

(i,k)∈E
[Ẽ(k, j)]2

]︂
− ∑

j
∑

(i,k)∈E
2[Ẽ(i, j)Ẽ(k, j)]

= ∑
j

∑
(i,k)∈E

[︂
Ẽ(i, j)− Ẽ(k, j)

]︂2

= ∑
(i,k)∈E

||Ẽ(i, :)− Ẽ(k, :)||22

= ∑
(i,k)∈E

||[V(i, i)]−
1
2 E(i, :)− [V(k, k)]−

1
2 E(k, :)||22

Writing out the appropriate subscripts and superscripts we dropped earlier,

we obtain the expression:

||Γt
n − Bdiag(ct

n)B
T||Ln = ∑

(i,k)∈E
||Ẽt

n(i, :)− Ẽt
n(k, :)||

2
2 (5.4)

= ∑
(i,k)∈E

||[Vn(i, i)]−
1
2 Et

n(i, :)− [Vn(k, k)]−
1
2 E(k, :)||22

(5.5)

Notice that for terms where (i, k) ̸∈ E , i.e. there is no anatomical connection

between nodes i and k, the corresponding error term in the summation drops

out. Said another way, this construction minimizes the sum of the square

difference between the rs-fMRI reconstruction profiles (Ẽt
n(i, :) and Ẽt

n(k, :))

between nodes (i and k) that are adjacent via the DTI graph. This effectively re-

weights the rs-fMRI reconstruction profiles of anatomically connected nodes

according to their relative degrees (Vn(i, i) and Vn(k, k)) in the DTI graph
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pairwise. Thus, the functional connectivity at a particular node is directly

influenced by its anatomical connections with other nodes in the graph. At a

high level, this construction implicitly regularizes the rs-fMRI reconstruction

loss according to the underlying anatomical connectivity prior.

Finally, based on the formulation in Eq. (5.3), the final sr-DDL objective

D(.) can be expressed as follows:

D(·) = ∑
t

1
Tn

||Γt
n − Bdiag(ct

n)B
T||Ln

s.t. ct
nk ≥ 0, BTB = IK (5.6)

5.3 Deep Network for Multidimensional Prediction

As seen in the gray box in Fig. 5.1, the subject-specific coefficients {ct
n} are

input to an LSTM-ANN to predict the clinical scores, as parametrized by the

weights Θ. The M clinical scores for each individual are concatenated into

a vector yn := [yn1 ... ynM]T ∈ RM×1. The LSTM models the temporal

variations in the coefficients {ct
n} to generate a hidden representation {ht

n}Tn
t=1.

From here, the Predictor ANN (P-ANN) generates a time varying estimates of

the scores {ŷt
n}

Tn
t=1 ∈ RM×1. At the same time, the Attention ANN (A-ANN)

generates Tn scalars from the hidden representation. These are then softmax

across time to obtain the attention weights: {at
n}Tn

t=1. The final prediction

is an attention-weighted average across the time estimates, which takes the

following form:

ŷn = ∑
t

ŷt
nat

n (5.7)

Effectively, the attention weights determine which time points for each subject

are most relevant for behavioral prediction. Additionally, they allow us to
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handle rs-fMRI scans of varying durations. Mathematically, we compute the

multi-score prediction error L(.) using the Mean Squared Error (MSE) loss

function as follows:

L({ct
n}, yn; Θ) = ||ŷn − yn||2F =

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓ Tn

∑
t=1

ŷt
nat

n − yn

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓
2

F

(5.8)

At a high level, the deep network distills the temporal information to best

predict each subject’s clinical profile.

We would like to highlight that our choice of the LSTM over a Recurrent

Neural Network (RNN) allows us to track the temporal evolution of connec-

tivity over longer horizons, while avoiding issues with convergence [172].

Our two branched ANN in conjunction with the LSTM directly pools together

time-varying estimates of clinical severity by focusing on the portions of the

rs-fMRI scan most relevant to prediction. We notice that this construction

naturally allows us to handle scans of varying length, while at same time

obviating the need for additional sequence padding as would be required by

a competing 1D CNN.

In Section 5.5, we will develop a coupled optimization procedure to jointly

estimate our unknowns {B, {ct
n}, Θ}. We will show that our estimation proce-

dure for the coefficients and neural network weights only relies on backpropa-

gated gradients from the neural network loss and the parametric gradients

from the dictionary learning. From the joint objective in Eq. (5.9), we can

see that the choice of neural network architecture does not directly affect the

dictionary learning gradients. So long as we can backpropagate the deep

network loss to the coefficients ct
n, we can effectively adopt our optimization
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Figure 5.2: Alternating minimization strategy for joint optimization of Eq. (5.10)

strategy to handle an alternative architecture. Said another way, our coupled

optimization procedure is agnostic to the specific neural network choice.

5.4 Joint Objective

We combine the complementary viewpoints in Eq. (5.6) and Eq. (5.8) into a

single joint objective below:

J (B, {ct
n}, Θ; {Γt

n}, Ln, {yn}) = ∑
n
D(B, {ct

n}; {Γt
n}, Ln)⏞ ⏟⏟ ⏞

sr-DDL loss

+λ ∑
n
L(Θ, {ct

n}; yn)⏞ ⏟⏟ ⏞
deep network loss

= ∑
n

∑
t

1
Tn

||Γt
n − Bdiag(ct

n)B
T||Ln

+λ ∑
n
L(Θ, {ct

n}; yn) s.t. ct
nk ≥ 0, BTB = IK

(5.9)

Here, λ is a hyperparameter than balances the tradeoff between the represen-

tation loss D(.) and the prediction loss L(.).

5.5 Joint Inference Strategy

We employ the alternating minimization technique in order to infer the set of

hidden variables {B, {ct
n}, Θ}. Namely, we optimize Eq. (5.9) for each output
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variable, while holding the other unknowns constant.

We utilize the fact that there is a closed-form Procrustes solution for

quadratic objectives of the form ||M − B||2F [173]. However, Eq. (5.9) is

bi-quadratic in B, so it cannot be directly applied. Therefore, we adopt

the strategy in [157, 160, 39] of introducing ∑n Tn constraints of the form

Dt
n = Bdiag(ct

n). These constraints are enforced via the Augmented La-

grangian algorithm with corresponding constraint variables {Λt
n}. Thus, our

objective from Eq. (5.9) now becomes:

Jc = ∑
n,t

1
Tn

||Γt
n − Dt

nBT||Ln
+ λ ∑

n
L(Θ, {ct

n}; yn)

+ ∑
n,t

γ

Tn

[︂
Tr

[︂
(Λt

n)
T(Dt

n − Bdiag(ct
n))

]︂]︂
+ ∑

n.t

γ

Tn

[︂1
2
||Dt

n − Bdiag(ct
n)||

2
F

]︂
s.t. ct

nk ≥ 0, BTB = IK (5.10)

The Frobenius norm terms ||Dt
n − Bdiag(ct

n)||
2
F regularize the trace constraints

during the optimization. Observe that Eq. (5.10) is convex in the set {Dt
n},

which allows us to optimize this variable via standard procedures. The con-

straint parameter is fixed at γ = 20, based on the guidelines in [174].

Fig. 5.2 depicts our alternating minimization strategy. We describe each

individual block in detail below:

130



5.5.1 Step 1: Closed form solution for B

Notice that Eq. (5.10) reduces to the following quadratic form in B:

B∗ = argminB: BTB=IK
||M − B||2F (5.11)

Given the singular value decomposition M = USVT, we have the following

closed form solution :

B∗ = UVT

where M is computed as follows:

M = ∑
n

1
Tn

∑
t
(Γt

nLn + LnΓt
n)D

t
n +∑

n

1
Tn

[︂
∑

t

γ

2
Dt

ndiag(ct
n) + γΛt

ndiag(ct
n)
]︂

Essentially, B spans the anatomically weighted space of subject-specific dy-

namic correlation matrices.

5.5.2 Step 2: Updating the sr-DDL loadings {ct
n}

The objective Jc(·) in Eq. (5.10) decouples across subjects. We can also incor-

porate the non-negativity constraint ct
nk ≥ 0 by passing an intermediate vector

ĉt
n through a ReLU. Thus:

ct
n = ReLU(ĉt

n) (5.12)
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The ReLU pre-filtering allows us to optimize an unconstrained version of

Eq. (5.10), as follows:

J (·)ĉ = λ ∑
n
L(Θ, {ct

n}; yn) + ∑
n,t

γ

Tn

[︂
Tr

[︂
(Λt

n)
T(Dt

n − Bdiag(ct
n))

]︂]︂

+ ∑
n.t

γ

Tn

[︂1
2
||Dt

n − Bdiag(ct
n)||

2
F

]︂
(5.13)

This optimization can be performed via the stochastic ADAM algorithm

[175] by backpropagating the gradients from the loss in Eq. (5.13) upto the

input {ĉt}. Experimentally, we set the initial learning rate to be 0.02, scaled by

0.9 per 10 iterations. Essentially, this optimization couples the parametric gra-

dient from the Augmented Lagrangian formulation with the backpropagated

gradient from the deep network (parametrized by fixed Θ). After convergence,

the thresholded loadings ct
n = ReLU(ĉt

n) are used in the subsequent steps of

the minimization.

5.5.3 Step 3: Updating the Deep Network weights-Θ

We use backpropagation on the loss L(·) to solve for the unknowns Θ. Notice

that we can handle missing clinical data by dropping the contributions of the

unknown value of ynm to the network loss during backpropagation. Again,

we use the ADAM optimizer [175] with random initialization at the first main

iteration of alternating minimization. We employ a learning rate of 0.2e−4,

scaled by 0.95 every 5 epochs, and batch-size 1. Additionally, we train the

network only for 60 epochs to avoid overfitting.
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5.5.4 Step 4: Updating the Constraint Variables {Dt
n, Λt

n}

Each of the primal variables {Dt
n} has a closed form solution given by:

[Dt
n]

k = KF (5.14)

where, K = (diag(cn)BT + Γt
nLnB + LnΓt

nB − γΛn) and F = (γIK + 2Ln)−1

We update the dual variables {Λn} via gradient ascent:

[Λt
n]

k+1 = [Λt
n]

k + ηk([Dt
n]

k − Bdiag(cn)) (5.15)

We cycle through the primal-dual updates for {Dt
n} and {Λt

n} in Eq. (5.14-5.15)

to ensure that the constraints Dt
n = Bdiag(ct

n) are satisfied with increasing

certainty at each iteration.

The learning rate parameter ηk for the gradient ascent step is selected to a

guarantee sufficient decrease in the objective for every iteration of alternating

minimization. In practice, we initialize η0 to 10−3, and scale it by 0.75 at each

iteration k.

5.5.5 Step 5: Prediction on Unseen Data

In our cross-validated setting, we must compute the sr-DDL loadings {c̄t}T̄
t=1

for a new subject based on the B∗ obtained from the training procedure and

the new rs-fMRI correlation matrices {Γ̄
t} and DTI Laplacians L̄. As we do not

know the score ȳ for this individual, we need remove the contribution L(·)

from Eq. (5.10) and assume that the constraints D̄t = B∗diag(c̄t) are satisfied

with equality. This effectively eliminates the Lagrangian terms. Essentially, the

optimization for {c̄t} now reduces to T̄n decoupled quadratic programming
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(QP) objectives Qt:

c̄∗t = argminc̄t
1
2
(c̄t)TH̄c̄t + f̄T c̄t s.t. Āc̄t ≤ b̄

H̄ = 2(B∗TL̄B∗);

f̄ = −[IK ◦ (B∗T(Γ̄L̄ + L̄Γ̄
t)B∗)]1;

Ā = −IK b̄ = 0

Notice that decoupling the objective across time allows us to parallelize this

computation. Additionally, since H̄ is positive semi-definite, the formulation

above is convex, leading to an efficient QP solution. Finally, we estimate ȳ via

a forward pass through the LSTM-ANN.

Overall, our alternating minimization training procedure explicitly couples

the Dictionary Learning (sr-DDL) and Deep Network (LSTM-ANN) blocks

within the optimization. In contrast, the setup at test time consists of two

steps, namely the coefficient update followed by a forward pass through

the LSTM-ANN. We will demonstrate via our experiments (i.e. Section 5.8)

that the coupled training is key to generalization. Finally, we discuss the

effect of this difference between the training and testing procedures further in

Section 5.10

5.6 Model Evaluation

We evaluate our deep-generative hybrid on two separate cohorts. The first

dataset is a cohort of 150 healthy individuals from the Human Connectome
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Project (HCP) database [176] having both the rs-fMRI and DTI scans. We refer

to this as the HCP dataset. Cognitive outcomes such as fluid intelligence are

believed to be closely connected to structural (SC) and function connectivity

(FC) in the human brain [177]. Thus, jointly modeling multimodal neuroimag-

ing and cognitive data helps exploit this fundamental interweave and uncover

the neural underpinnings of cognition. Finally, we chose to focus on a modest

sized dataset (N = 150) to demonstrate that our framework is suitable for

clinical rs-fMRI applications, many of which have limited sample sizes. Our

second dataset is the clinical ASD dataset described in Chapter 2.

5.6.1 Secondary HCP Dataset

5.6.1.1 Neuroimaging Data

As described in [176], the HCP S1200 dataset was acquired on a Siemens

3T scanner (TR/TE= 0.72ms/0.33ms, spatial resolution = 2 × 2 × 2mm).

The rs-fMRI scans were processed according to the standard pre-processing

pipeline described in [178], which includes additional processing to account

for confounds due to motion and physiological noise. We opted to use a 15

minute interval (typical of clinical rs-fMRI studies of neurodevelopmental

disorders) from the second scan of each subject’s first visit for our analysis.

The DTI data from the HCP dataset was processed using the standard

Neurodata MR Graphs package (ndmg) [179]. This consists of co-registration

to anatomical space via FSL [135], followed by tensor estimation in the MNI

space and probabilistic tractography to compute the fibre tracking streamlines.
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5.6.1.2 Behavioral Data

For the HCP database, we examine the Cognitive Fluid Intelligence Score

(CFIS) described in [180, 181], adjusted for age. This is scored based on

a battery of tests measuring cognitive reasoning, considered a nonverbal

estimate of fluid intelligence in subjects. The dynamic range for the score is

70 − 150, with higher scores indicating better cognitive abilities.

5.6.2 Implementation Details

5.6.2.1 Architectural Details

Our proposed ANN architecture is highlighted in the white box to the bottom

left of Fig. 5.1. Our modeling choices carefully control for representational

capacity and convergence of our coupled optimization procedure. Since the

input to the network, i.e. the coefficient vector ct
n is essentially low dimen-

sional, we opt for a two layered LSTM with the hidden layer width as 40. Both

the P-ANN and the A-ANN are fully connected neural networks with two

hidden layers of width 40. Since the A-ANN outputs a scalar, the width of

its output layer is one, while that of the P-ANN is of size M, i.e. the number

of behavioral scores. We use a Rectified Linear Unit (ReLU) as the activation

function for each hidden layer, as we found that this choice is robust to issues

with vanishing gradients and saturation that commonly confound the training

of deep neural networks [182].
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5.6.2.2 Parameter Settings

In order to fix the hyperparameters for our model and the baselines, we make

use of a second subset of 130 individuals from the HCP database (hereby

referred to as HCP-2). Note that these individuals have no overlap with

those used characterize the performance in Section 5.8 to avoid biasing the

results. First, we set aside 30 of these patients as a validation set to deter-

mine appropriate learning rates for our method and baselines. Recall that our

deep-generative hybrid has two free parameters: namely the penalty λ, which

controls the tradeoff between data representation and clinical prediction, and

K, the number of networks. For our experiments, we chose K = 15 (See

Fig. 5.3) for both datasets based on the knee point of the eigenspectrum of the

correlation matrices {Γt
n}. Based on the results of a 5 fold cross validation and

grid search on HCP-2, we fix λ = 2.5. We will further discuss the robustness to

λ in Section 5.10. Additionally, our sliding window protocol is defined by two

parameters, namely the window length and stride. Although these are not

hyperparameters for the sr-DDL per se, they affect the predictive performance

by controlling the information overlap between successive dynamic rs-fMRI

correlation matrices. Again, these are set based on the cross validation perfor-

mance on HCP-2. We will further discuss the robustness to these parameters

in Section 5.10.

Our experiments rely on the Automatic Anatomical Labelling (AAL) atlas

[142] parcellation for the rs-fMRI and DTI data. AAL consists of 116 cortical,

subcortical and cerebellar regions. We employ a sliding window protocol as
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shown in Fig. 2.3. Due to the different TR, we set the sliding window parame-

ters to window length = 156 and stride = 17 for the HCP dataset, and window

length = 45 and stride = 5 for the KKI dataset to extract dynamic correlation

matrices from the 116 average time courses. We discuss the sensitivity to this

choice in Section 5.10. Thus, for each individual, we have correlation matrices

of size 116 × 116 based on the Pearson’s Correlation Coefficient between the

average regional time-series. Empirically, we observed a consistent noise

component with nearly unchanging contribution from all brain regions and

low predictive power for both datasets. Therefore, we subtracted out the first

eigenvector contribution from each of the correlation matrices and used the

residuals as the inputs {Γn} to the algorithm and the baselines.

5.6.2.3 Initialization

Our coupled optimization strategy requires us to initialize the basis B, coef-

ficients {ct
n}, the deep network weights Θ and the constraint variable pairs

Figure 5.3: Scree Plot of the correlation matrices to corroborate the selected values
for K. (L) KKI Dataset (R) HCP Dataset. The thick line denotes the mean eigenvalue,
while the shaded area indicates the standard deviation across subjects and time points.
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{Dt
n, Λt

n}. We randomly initialize the deep network weights at the first main

iteration. We employ a soft-initialization for {B, {ct
n}} by solving the dictio-

nary objective in Eq. (5.6) without the LSTM-ANN loss terms for 20 iterations.

We then initialize Dt
n = Bdiag(ct

n) and Λt
n = 0 which lie in the feasible set for

our constraints. We empirically observed that this soft initialization helps sta-

bilize the optimization to provide improved predictive performance in fewer

main iterations when compared with a completely random initialization.

5.6.3 Baseline Methods

We evaluate the performance of our framework against three different classes

of baselines, each highlighting the benefit of specific modeling choices made

by our method.

Our first baseline class is a two stage configuration as illustrated in Fig. 5.4

that combines feature extraction on the dynamic rs-fMRI and DTI data, with

a deep learning predictor. These feature engineering techniques are drawn

from a set of well established statistical (Independent Component Analysis

in Subsection ??) and graph theoretic techniques (Betweenness Centrality in

Subsection 5.6.3.1), known to provide rich feature representations. The learned

features are then input to the same deep LSTM-ANN network used by our

method. This network is trained separately to predict the clinical outcomes.

Note that these baselines incorporate multimodal and dynamic information,

but do not directly operate on the network structure of the connectomes. Our

second baseline class omits the two step approach in lieu of an end-to-end

convolutional neural network based on the work of [44]. We train this model
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Figure 5.4: A typical two stage baseline. We input the dynamic correlation matrices
and DTI connectomes to Stage 1, which performs Feature Extraction. This step could
be a technique from machine learning, graph theory or a statistical measure. Stage 2
is a deep network that predicts the clinical scores

on the static rs-fMRI and DTI connectomes in tandem to predict the clinical

scores. This baseline operates directly on the correlation and connectivity

matrices, but ignores the dynamic evolution of functional connectivity. Next,

we present the comparison of our deep sr-DDL by omitting the structural

regularization. This helps us evaluate the benefit provided by the multimodal

integration of DTI and rs-fMRI data. Our final baseline highlights the benefit

of our joint optimization procedure. In this experiment, we decouple the

optimization of the dynamic matrix factorization and deep network in Fig. 5.1

similar to the two stage pipelines.

5.6.3.1 Graph Theoretic Feature Selection

Notice that the subject-specific correlation rs-fMRI matrices {Γt
n} and the

corresponding binary DTI adjacency matrices An indicate time-varying func-

tional and anatomical connectivity between the ROIs respectively. Therefore,

we multiply the two to generate the time-varying multimodal graphs whose

nodes are the brain ROIs and edges are defined by the temporal connectivity

between these ROIs. We denote the corresponding adjacency matrices for

these graphs by {Ψt
n = An ◦ Γt

n ∈ RP×P}, where we threshold each Ψt
n to
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remove negative values. Each element [Ψt
n]ij gives the strength of association

between two communicating sub-regions i and j in individual n at time t.

We summarize the topology of these graphs via Betweenness Centrality (CB)

to obtain a time-varying estimate of brain connectivity for each ROI [28, 82].

CB(v) for region v is calculated as:

Ct
B(v) = ∑

s ̸=v ̸=u∈V

σt
su(v)
σt

su
(5.16)

σt
su is the total number of shortest paths from node s to node u at time t,

and σt
su(v) is the number of those paths that pass through v. This measure

quantifies the number of times a node acts as a bridge along the shortest

path between two other nodes and has found wide usage in characterizing

small-worlded networks in brain connectivity [28]. We effectively reduce the

dimensionality of the connectivity features. Again, the collection of features

{Ct
B} are used to train an LSTM-ANN predictor from Fig. 5.1 with two hidden

layers having width 200 due to the higher input feature dimensionality.

5.6.3.2 ICA Feature Selection

This baseline employs Independent Component Analysis (ICA) combined

an the LSTM-ANN predictor. ICA is a statistical technique that extracts rep-

resentative spatial patterns from the rs-fMRI time series. It has now become

ubiquitous in fMRI analysis for its ability to identify group level differences as

well as model individual-specific connectivity signatures. Essentially, ICA de-

composes multivariate signals into ‘independent’ non-Gaussian components

based on the data statistics.
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This algorithm can be extended to the multi-subject analysis setting via

Group ICA (G-ICA). Specifically, we extract independent spatial patterns

common across patients, by combining the contribution of the individual time

courses. For this baseline, we first perform G-ICA using the GIFT toolbox

[149], and derive independent spatial maps for each subject from their raw

rs-fMRI scans. We then compute the average time courses for each spatial map

considering the constituent voxels. This provides us with a feature representa-

tion of reduced dimension equal to the number of specified maps (d << L)

for each individual. For our experiments, we extract 15 ICA components.

These time courses are input into the LSTM-ANN network in Fig. 5.1 with

two hidden layers of width 40 to predict the clinical outcomes.

5.6.3.3 BrainNet Convolutional Neural Network

The BrainNet CNN [44] relies on specialized fully convolutional layers for

feature extraction, and was originally used to predict cognitive and motor

outcomes from DTI connectomes. Fig. 5.5 provides a pictorial overview of the

original architecture adapted for clinical outcome prediction from multimodal

data. Each branch of the network accepts as input a P × P connectome, to

which it applies a cascade of two edge-edge (E-E) convolutional operations.

This E-E operation combines individual convolutions acting on the row and

column to which the input element belongs. It is followed by a series of edge-

node (E-N) blocks that reduce the dimensionality of the intermediate outputs,

followed by a node-graph (N-G) operation for pooling. Finally, the output

clinical scores are predicted via a fully connected artificial neural network for

regression.
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We feed the rs-fMRI static connectomes (Γ̂n) and DTI Laplacians Ln into

two disjoint fully convolutional branches with the architecture described

above. We integrate the learned features via concatenation and input them

into the fully connected layers described in Fig. 5.5, but with the number of

outputs equal to the dimensionality of the clinical severity vector yn. We set

the learning rate, momentum and weight decay parameters according to the

guidelines in [44].

5.6.3.4 Deep sr-DDL without DTI regularization

In this baseline, we examine the effect of excluding the structural regular-

ization provided by the DTI data from the joint objective in Eq. (5.9). The

Figure 5.5: The BrainNet CNN baseline [44] for severity prediction from multimodal
data

143



resulting objective function takes the following form:

Jw(B, {ct
n}, Θ; {Γt

n}, {yn}) = ∑
n

∑
t

1
Tn

||Γt
n − Bdiag(ct

n)B
T||2F

+ λ ∑
n
L(Θ, {ct

n}; yn) s.t. ct
nk ≥ 0, BTB = IK. (5.17)

Notice that amounts to replacing the Weighted Frobenius Norm formulation

by a regular ℓ2 penalty. This allows us to adopt the alternating minimization

procedure in Section 5.4 to optimize Eq. (5.17) with a few minor modifications.

Specifically, instead of Tn constraints per subject, we use a single constraint

of the form D = B, enforced via a single Augmented Lagrangian Λ. This

effectively ensures that the new objective has a quadratic form in B, along

with a closed form update for D. As before, we cycle through four individual

steps, namely:

• Closed form Procrustes solution for the basis B

• Updating the temporal loadings {ct
n} (ADAM)

• Updating the Neural Network Parameters Θ (ADAM)

• Augmented Lagrangian updates for the constraint variables {D, Λ}

We use K = 15 networks as inputs to the LSTM-ANN network with two

hidden layers of width 40 to predict the clinical outcomes.

5.6.3.5 Deep sr-DDL without dynamics

This baseline examines the effectiveness of using an LSTM-ANN framework

to track the temporal changes in connectivity data. We use the same matrix
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decomposition framework as the sr-DDL, but remove the LSTM-ANN and

replace it with just a simple ANN model. For each dynamic connectivity

matrix, this model provides an estimate of the clinical severity profile at the

given time point, effectively treating each time point as independent. To

obtain the final severity profile, we average the individual estimates. Again,

we use K = 15 networks and an ANN with hidden layer width 40

5.6.3.6 Decoupled Deep sr-DDL

Our final baseline examines the efficacy of our coupled optimization procedure

in Section 5.4 with regards to generalization onto unseen subjects. Here, we

first run the feature extraction using the sr-DDL optimization to extract the

basis B and temporal loadings {ct
n}. We then use the {ct

n} as inputs to train

the LSTM-ANN network in Fig. 5.1 to predict the scores yn. This is akin to the

two-stage baselines delineated in Fig. 5.4. Again, we use K = 15 networks

with an a two layered LSTM-ANN having hidden layer width 40

5.7 Experiments on Synthetic Data

This experiment allows us to assess the behavior of our algorithm under var-

ious noise scenarios. The equivalent generating process for our framework

is captured by the graphical model in Fig. 5.6. The observed variables are

the temporal correlation matrices {Γt
n}, the DTI Laplacians Ln, and the clin-

ical scores {yn}, while the latent variables are the basis B, the coefficients

{ct
n}, and the neural network weights Θ. Note that the dynamic correlation

matrices {Γt
n} are completely described by the basis B, the coefficients {ct

n}
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and the Laplacian weighting Ln. We further observe that the rs-fMRI data

decompositions for each subject couple only through the shared basis and

the clinical predictions through the shared network weights Θ. Conditioned

on these variables, {{Γt
n}, Ln, {ct

n}, Θ, yn} are independent across subjects.

Fig. 5.6 captures these conditional relationships.

We start by generating a basis matrix B̂ ∈ RP×K by drawing its entries

independently from a zero mean Gaussian with variance one. We then use

the Gram-Schmidt procedure to compute an orthogonal basis Bo = orth(B̂).

Finally, we simulate corruptions to this basis via additive Gaussian noise B =

Bo +N (0, σB). Effectively, the value of σB quantifies the deviations of B from

orthogonality, which is an assumption of our model. Note that the coefficient

values in cn are independent across networks and subjects, but not across time.

Figure 5.6: The graphical model for generating synthetic data. We fix the model
parameters σc = 4, number of subjects N at 60, and number networks K at 4. The
dimensionality of yn is M = 3 and the length of the scan Tn = 30 for each subject.
The shaded circles denote observed variables, while the clear circles indicate latent
variables.

146



Thus, for each subject, we generate the temporal coefficients using a isotropic

Gaussian process with zero mean, and variance σc. These values are clipped

at 0 to reflect the non-negativity in the coefficients. The variance parameter σc

defines the scale of the coefficients. Next, we simulate the Graph Laplacians

Ln for each subject based on structural connectivity priors computed using

real-world data. Specifically, for each region pair, we first create a histogram

of connectivity using binary adjacency matrices from the HCP database. With

πL denoting the probability of a connection between ROI pairs, we sample a

symmetric graph adjacency matrix An per subject via a Bernouilli distribution

with parameter πL. We then compute the corresponding Laplacians Ln from

An. This choice of prior helps us generate realistic structural connectivity

profiles. Now, recall that our model seeks to approximate the rs-fMRI dynamic

correlation matrices by Γt
n ≈ Bdiag(ct

n)BT. Additionally, this decomposition

is regularized by the individual Laplacians Ln. Since we wish to evaluate

the quality of this approximation, our generative model simulates Γt
n by

adding structured noise (parametrized by Ln) to Bdiag(ct
n)BT. Specifically,

we use the eigenbasis X of Ln to generate additive noise N = σΓXXT. We

then compute the correlation matrices as Γt
n = Bdiag(ct

n)BT + N. Note that

this procedure preserves the positive semi-definiteness of the decomposition.

Effectively, the parameter σΓ controls the level of corruption in the observed

dynamic correlation matrices. Finally, the observed variable {yn}, translates

to a Gaussian with mean µyn = FΘ({ct
n}) ∈ RM×1, and variance σyn IM. The

function mapping FΘ refers to the LSTM-ANN network with the parameters

Θ - which we randomly initialize. This is again folded to reflect positive

values of yn. Here, σy controls the noise in the clinical scores.
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Figure 5.7: Performance on synthetic experiments. (L): Varying the level of deviation
from orthogonality (σΓ = 0.2, σY = 0.2), (M): Varying the level of noise in Γ (σB = 0.2,
σy = 0.2) , (R): Varying the level of noise in yn under (σB = 0.2, σΓ = 0.2) Values
on the x-axis have been normalized to reflect a [0 − 1] range by dividing by the
maximum value of the variable. We report deviations from the mean for recovered
similarity/MAE at each parameter setting in terms of a standard error value. The
reported x-axis range reflects the regimes within which the algorithm converges to a
local solution

There are two sources of noise for the observed variables. The first is error

in the correlation matrices Γt
n, controlled by changing σΓ. The second case is

error in the clinical scores yn, quantified by the parameter σy. Additionally,

we are also interested in evaluating the performance under varying levels of

deviations of the basis from orthogonality, controlled by the parameter σB.

We evaluate the efficacy of our algorithm using two separate metrics. The

first is an average absolute cosine similarity measure S between each recovered

network, b̄k, and its corresponding best matched ground truth network, bk,

normalizing the latter to unit norm, that is:

S =
1
K ∑

k

|bT
k b̄k|

||bk||2
. (5.18)

The second metric is the Median Absolute Error (MAE) between the output of

the trained LSTM-ANN ŷn and the true scores yn.

Fig. 5.7 depicts the performance of the algorithm in these three cases. In
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the each subplots, the x-axis corresponds to increasing the levels of noise. In

the first two subplots, the y-axis indicates the similarity metric S computed

for the particular setting, while in the rightmost subplot, we plot the MAE for

predicting the three scores. All numerical results have been aggregated over

50 independent trials.

In the leftmost plot, an x-axis value close to 0 indicates low levels of devia-

tion of B from orthogonality, while increasing values corresponds to a more

severe deviation from the modeling assumptions. During this experiment, the

values of the other free parameters in Fig. 5.6 were held constant. We observed

that the MAE of the three scores remains roughly constant for all noise settings

(score 1—1.49 ± 0.09, score 2—1.34 ± 0.07, score 3—3.10 ± 0.11). The middle

plot evaluates subnetwork recovery when the noise in the dynamic correlation

matrices, i.e. σΓ is increased. The x-axis reports normalized values of σΓn while

the remaining free parameters were held constant. Similar to the previous

scenario, the MAE remains roughly constant for varying noise settings (score

1—1.50 ± 0.08, score 2—1.50 ± 0.06, score 3—2.96 ± 0.50). Finally, the rightmost

plot in Fig. 5.7 indicates performance under varying noise in the scores yn.

Again, normalized σy values are reported on the x-axis. For this experiment,

we observed that S = 0.87 ± 0.05 for varying noise levels.

As expected, increased noise in the correlation matrices and deviations

from orthogonality worsens recovery performance of the algorithm. This is

reflected by the decay in the similarity measure along with increasing noise

parameters. Since the parameter σy is held constant, we do not observe much

variation in the the MAE values upon increasing the noise. Lastly, we notice
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Score Method MAE Train MAE Test NMI Train NMI Test

CFIS

Median N/A 13.51 ± 9.97 N/A 0
BC & LSTM-ANN 7.23 ± 6.24 16.50 ± 13.60 0.53 0.72

ICA & LSTM-ANN 4.87 ± 4.84 16.45 ± 14.7 0.58 0.77
BrainNet CNN 3.50 ± 2.1 16.89 ± 12.20 0.79 0.73

Decoupled 3.72 ± 4.33 18.10 ± 14.04 0.78 0.70
W/O DTI reg. 0.77 ± 0.66 20.02 ± 15.04 0.88 0.74

W/O dynamics. 0.97 ± 0.21 15.14 ± 14.71 0.79 0.71
Deep sr-DDL 0.44 ± 0.15 14.76 ± 12.77 0.86 0.77

Table 5.1: HCP Dataset: Performance evaluation on the HCP dataset against our
prior work according to Median Absolute Error (MAE), Normalized Mutual Infor-
mation (NMI). We also report the standard deviation for the MAE Lower MAE and
higher NMI indicate better performance. Best performance is highlighted in bold.

that the algorithm performs better when the level of noise in the scores is

lower. This is indicated by the increasing values of MAE in the right subplot

in Fig. 5.7. Since σB is held constant for this experiment, the metric S remains

fairly constant even upon increasing the noise in the scores.

Taken together, our simulations indicate that the optimization procedure is

robust in the noise regime (0.01 − 0.2) estimated from the real-world rs-fMRI

data. In addition, these experiments help us identify the stable parameter

settings (λ = 1 − 10, learning rates) which govern the convergence of the

algorithm which guide our real world experiments.

5.8 Population Studies

Fig. 5.8 illustrates the performance comparison of our deep sr-DDL framework

against the baselines in Section 5.6.3 on the HCP dataset for predicting the

CFIS. Fig. 5.9 presents the same comparison on the KKI dataset for multi-score

prediction. In each figure, the scores predicted by the algorithm are plotted on

the y-axis against the measured ground truth score on the x-axis. The bold
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Figure 5.8: HCP dataset: Prediction performance for the Cognitive Fluid Intelli-
gence Score by the (a) Red Box: Deep sr-DDL. (b) Black Box: Deep sr-DDL model
without DTI regularization (c) Light Purple Box: Betweenness Centrality on DTI +
dynamic rs-fMRI multimodal graphs followed by LSTM-ANN predictor (d) Green
Box: ICA timeseries followed by LSTM-ANN predictor (e) Purple Box: Branched
BrainNet CNN [44] on DTI and rs-fMRI static graphs (f) Blue Box: Decoupled DDL
factorization followed by LSTM-ANN predictor

x = y line represents ideal performance. The red points represent the training

data, while the blue points indicate the held out testing data for all the cross

validation folds.

We observe that the training performance of the baselines is good (i.e. the

red points follow the x = y line) in all cases for both datasets. However,

in case of testing performance, our method outperforms the baselines in

all cases. This performance gain is particularly pronounced in the case of

multiscore prediction (KKI dataset). Empirically, we are able to tune the

baseline hyperparameters to obtain good testing performance on the KKI

dataset for a single score (ADOS for ICA+LSTM-ANN), but the prediction of
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Figure 5.9: KKI dataset: Multiscore prediction performance for the (L) ADOS, (M)
SRS, and (R) Praxis by the (a) Red Box: Deep sr-DDL (b) Black Box: Model without
DTI regularization (c) Light Purple Box: Betweenness Centrality on DTI + dynamic
rs-fMRI multimodal graphs followed by LSTM-ANN predictor (d) Green Box: ICA
timeseries followed by the LSTM-ANN predictor (e) Purple Box: Branched BrainNet
CNN [44] on DTI Laplacian and rs-fMRI static graphs (f) Blue Box: Decoupled DDL
factorization followed by LSTM-ANN predictor
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the remaining scores (SRS and Praxis for the KKI dataset) suffers. Notice that

the prediction on one or more of scores (KKI dataset) and CFIS (HCP dataset)

hovers around the population median of the score in several cases. In fact, in

some of the multi-score prediction cases, it performs worse than predicting

the median. This is testament to the inherent difficulty of the prediction task

at hand. Finally, we notice that omitting the structural regularization from the

deep sr-DDL performs worse than our method.

In contrast to the baselines, the testing predictions of our framework follow

Score Method MAE Train MAE Test NMI Train NMI Test

ADOS

Median N/A 2.33 ± 2.01 N/A 0
BC & LSTM-ANN 0.68 ± 0.57 4.36 ± 3.36 0.89 0.29

ICA & LSTM-ANN 0.9 ± 0.54 2.47 ± 2.04 0.91 0.41
BrainNet CNN 1.90 ± 0.086 3.50 ± 2.20 0.96 0.25

Decoupled 1.34 ± 0.51 3.93 ± 2.10 0.68 0.29
W/O DTI reg. 0.25 ± 0.099 3.50 ± 3.09 0.99 0.17

W/O dynamics. 1.56 ± 1.51 3.17 ± 2.54 0.95 0.29
Deep sr-DDL 0.2 ± 0.09 2.99 ± 1.99 0.99 0.37

SRS

Median N/A 16.81 ± 12.8 N/A 0
BC & LSTM-ANN 5.10 ± 4.61 18.05 ± 14.22 0.92 0.83

ICA & LSTM-ANN 5.27 ± 3.32 13.64 ± 12.69 0.76 0.59
BrainNet CNN 5.25 ± 2.5 18.96 ± 15.65 0.83 0.75

Decoupled 2.10 ± 2.98 21.45 ± 13.73 0.76 0.78
W/O DTI reg. 0.72 ± 0.61 22.20 ± 14.78 0.95 0.65

W/O dynamics. 3.25 ± 2.74 19.05 ± 18.19 0.93 0.73
Deep sr-DDL 1.21 ± 0.66 18.70 ± 13.51 0.98 0.85

Praxis

Median N/A 10.53 ± 8.81 N/A 0
BC & LSTM-ANN 6.61 ± 3.30 17.49 ± 9.08 0.86 0.70

ICA & LSTM-ANN 4.56 ± 1.26 15.02 ± 11.80 0.82 0.60
BrainNet CNN 3.78 ± 0.59 15.15 ± 11.49 0.95 0.19

Decoupled 1.57 ± 1.12 21.67 ± 12.02 0.75 0.25
W/O DTI reg. 0.61 ± 0.29 18.56 ± 14.32 0.96 0.65

W/O dynamics. 1.67 ± 2.31 16.22 ± 14.91 0.94 0.82
Deep sr-DDL 0.62 ± 0.36 14.99 ± 10.17 0.95 0.82

Table 5.2: KKI Dataset: Performance evaluation on the KKI dataset against our prior
work according to Median Absolute Error (MAE), Normalized Mutual Information
(NMI). We also report the standard deviation for the MAE Lower MAE and higher
NMI indicate better performance. Best performance is highlighted in bold.
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the x = y more closely. The machine learning, statistical and graph theoretic

techniques we selected for a comparison are well known in literature for

being able to robustly provide compact characterizations for high dimensional

datasets. However, we see that ICA is unable to estimate a reliable projection

of the data that is particularly useful for behavioral prediction. Similarly, the

betweenness centrality measure is unable to extract informative topologies

for brain-behavior integration. We conjecture that the aggregate nature of this

measure is useful for capturing group-level commonalities, but falls short of

modeling subject-specific differences. Furthermore, even the BrainNet CNN,

which directly exploits the graph structure of the connectomes falls short of

generalizing to multi-score prediction. Additionally, it ignores the dynamic

information in the rs-fMRI data. In case of the baseline where we omit the

structural regularization, i.e. deep sr-DDL without DTI, we notice that the

method learns a representation of the rs-fMRI data that generalizes beyond

the training set, but still falls short of the performance when anatomical

information is included. We see very similar behavior upon removing the

LSTM-ANN in the no dynamic sr-DDL baseline. This clearly demonstrates

the benefit of supplementing the functional data with structural priors as well

as modeling the time-varying nature of connectivity. Finally, the failure of the

decoupled dynamic matrix factorization and deep-network makes a strong

case for jointly optimizing the neuroimaging and behavioral representations.

The basis estimated independently of behavior are not indicative of clinical

outcomes, due to which the regression performance suffers. We also quantify

the performance indicated in these figures in Table 5.1 (HCP dataset) and

Table 5.2 (KKI dataset) based on the MAE and NMI. For reference, we have

154



added an additional row as a ‘baseline’ in our tables where for each test

subject, we simply predict the median of each score.

Our deep sr-DDL framework explicitly optimizes for a viable tradeoff be-

tween multimodal and dynamic connectivity structures and behavioral data

representations jointly. The dynamic matrix decomposition simultaneously

models the group information through the basis, and the subject-specific dif-

ferences through the time-varying coefficients. The DTI Laplacians streamline

this decomposition to focus on anatomically informed functional pathways.

The LSTM-ANN directly models the temporal variation in the coefficients,

with its weights encoding representations closely interlinked with behavior.

The limited number of basis elements help provide compact representations ex-

plaining the connectivity information well. The regularization and constraints

ensure that the problem is well posed, yet extracts clinically meaningful repre-

sentations.

5.9 Clinical Evaluation

5.9.1 Subnetwork Identification

In this section, we investigate the subnetworks learned in the basis B by the

sr-DDL model when trained on both datasets. Recall that each column of the

basis consists of a set of co-activated AAL subregions. In order to robustly

identify these patterns, we first train the model on 10 randomly sampled

subsets of each dataset. Then, we match the obtained subnetworks based

on their absolute cosine similarity. Since we have 15 subnetworks, we then

illustrate the mean co-activations across the brain regions for each of them
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individually in Fig. 5.10 (HCP) and Fig. 5.11 (KKI). Here, the colorbar in

the figure indicates subnetwork contribution to the AAL regions. Regions

storing negative values (cold colors) are anticorrelated with regions storing

positive ones (hot colors). Alongside, we represent the corresponding standard

deviations across different regions for each of the 15 subnetworks.
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Figure 5.10: Complete set of subnetworks identified by the deep sr-DDL model
for the HCP database. Mean: Mean regional co-activation patterns in basis B The
red and orange regions are anti-correlated with the Purple and green regions. Std.
Dev.: Standard deviations of regional co-activation patterns. A majority of regions
exhibit small deviations from the mean. Both sets of plots have been computed across
cross-validation folds
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Figure 5.11: Complete set of subnetworks identified by the deep sr-DDL model
for the KKI database. Mean: Mean regional co-activation patterns in basis B The
red and orange regions are anti-correlated with the Purple and green regions. Std.
Dev.: Standard deviations of regional co-activation patterns. A majority of regions
exhibit small deviations from the mean. Both sets of plots have been computed across
cross-validation folds

Examining the subnetworks in Fig. 5.10, we notice that Subnetworks 1

& 2, and 11 exhibits positive and competing contributions from regions of

the Default Mode Network (DMN), which has been widely inferred in the

resting state literature [35] and is believed to play a critical role in consolidating

memory [183], as also in self-referencing and in the theory of mind [184]. At the
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same time, Subnetworks 2 and 11 have competing and positive contributions

from regions in the Frontoparietal Network (FPN) respectively. The FPN is

known to be involved in executive function and goal-oriented, cognitively

demanding tasks [185]. Subnetworks 1, 6, 7, 11 and 13 are comprised of regions

from the Medial Frontal Network (MFN). The MFN and FPN are known to

play a key role in decision making, attention and working memory [186, 187],

which are directly associated with cognitive intelligence. Subnetworks 1, 3,

and 9 include contributions from the subcortical and cerebellar regions, while

Subnetworks 10, 2, 14 and 11 include contributions from the Somatomotor

Network (SMN). Taken together, these networks are believed to be important

functional connectivity biomarkers of cognitive intelligence and consistently

appear in previous literature on the HCP dataset [188, 189].

For the KKI dataset, in Fig. 5.11, Subnetwork 1 includes regions from the

DMN, and the SMN. Similarly, Subnetwork 6 includes competing contribu-

tions from the SMN and DMN regions. Aberrant connectivity within the

DMN and SMN regions have previously been reported in ASD [150, 98]. Sub-

networks 7, 3, and 6 exhibit contributions from higher order visual processing

areas in the occipital and temporal lobes along with competing sensorimotor

regions. At the same time, Subnetwork 9 exhibits competing contributions

from the visual network. These findings concur with behavioral reports of

reduced visual-motor integration in autism [98]. Subnetworks 11 and 8 ex-

hibit contributions from the central executive control network (CEN) and

insula. Subnetwork 10 also exhibits anticorrelated CEN contributions. These

regions are believed to be essential for switching between goal-directed and
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self-referential behavior [152]. Subnetwork 5 and Subnetwork 3 includes pre-

frontal and DMN regions, along with subcortical areas such as the thalamus,

amygdala and hippocampus. The hippocampus is known to play a crucial

role in the consolidation of long and short term memory, along with spatial

memory to aid navigation. Altered memory functioning has been shown to

manifest in children diagnosed with ASD [151]. The thalamus is responsible

for relaying sensory and motor signals to the cerebral cortex in the brain and

has been implicated in autism-associated sensory dysfunction, a core feature

of ASD [190]. Along with the amygdala, which is known to be associated

with emotional responses, these areas may be crucial for social-emotional

regulation in ASD. [191].

Finally, we notice that the standard deviations for a majority of the regions

in each of the subnetworks are small compared to the mean coactivation.

Additionally, we observed an average similarity of 0.79 ± 0.13 and 0.81 ± 0.12

for these subnetworks across the runs on subsets of the HCP and KKI datasets

respectively. These results suggests that our deep-generative framework is

able to capture stable underlying mechanisms which robustly explain the dif-

ferent sets of deficits in ASD as well as robustly extract signatures of cognitive

flexibility in neurotypical individuals.

5.9.2 Robustness of Biomarker Discovery

In this experiment, we study the overlap in the subnetworks in the basis B

across different scales of subnetworks, i.e. varying the number of networks

K. Recall from Section 5.6, that the knee point of the eigen-spectrum of {Γt
n}
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for both datasets is between 8 − 20. Namely, we re-run the sr-DDL model

on both the datasets steadily increasing the number of networks from 8 − 20.

In each case, we repeat the experiment using 10 random subsets of the data

and look for subnetworks that appear most often. Fig. 5.10 and Fig. 5.11

illustrate the top ten networks that appear most frequently across different

data subsets and choice of K for the HCP dataset and KKI dataset respectively.

Alongside, we also report the mean and standard deviation of the absolute

cosine similarity (S) for each individual subnetworks across the multiple runs.

Networks which are most consistent exhibit higher similarity across runs with

group 1 being the top five subnetworks (S ≥ 0.95), group 2 being the next

five subnetworks (S > 0.85). Finally, a visual inspection and comparison

with our results in Section 5.9.1 suggest a considerable overlap between the

subnetworks in Fig. 5.10 and Fig 5.12 for the HCP dataset and between Fig. 5.11

and Fig 5.13 for the KKI dataset. These results suggest that our Deep sr-DDL

robustly extracts representative neural signatures indicative of behavior in

Figure 5.12: HCP dataset: Set of top 10 consistent subnetworks across different model
orders. Subnetworks in group 1 exhibit above 0.95 average similarity across data
subsets and model orders. Subnetworks in group 2 exhibit between 0.85 − 0.95
average similarity across data subsets and model orders.
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Figure 5.13: KKI dataset: Set of top 10 consistent subnetworks across different model
orders. Subnetworks in group 1 exhibit above 0.95 average similarity across data
subsets and model orders. Subnetworks in group 2 exhibit between 0.85 − 0.95
average similarity across data subsets and model orders.

both healthy and autistic populations.

Figure 5.14: (Left) Learned attention weights (Right) Variation of network strength
over time on the (Top) HCP dataset (Bottom) KKI dataset
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5.9.3 Uncovering rs-fMRI Network Dynamics

Our deep sr-DDL allows us to map the evolution of functional networks in the

brain by probing the LSTM-ANN representation. Recall that our model does

not require the rs-fMRI scans to be of equal length. Fig. 5.14 (left) illustrates

the learned attentions output by the A-ANN for the subjects from the HCP

dataset on the top and the KKI subjects at the bottom during testing. For the

KKI dataset, the patients with shorter scans have been grouped in the top of

the figure. These time-points have been blackened at the beginning of the

scan. The colorbar indicates the strength of the attention weights. Higher

attention weights denote intervals of the scan considered especially relevant

for prediction. Notice that the network highlights the start of the scan for

several individuals, while it prefers focusing on the end of the scan for some

others, especially pronounced in case of the KKI dataset. The patterns are

comparatively more diffused for subjects in the HCP dataset, although several

subjects manifest selectivity in terms of relevant attention weights. This is

indicative of the underlying individual-level heterogeneity in both the cohorts.

Next, we illustrate the variation of the network strength for a representative

subject from the HCP dataset and KKI dataset over the scan duration in

Fig. 5.14 (right) at the top and bottom respectively. Each solid colored line

corresponds to one of the 15 sub-networks in Fig. 5.11. Notice that, over the

scan duration, each network cycles through phases of activity and relative

inactivity. Consequently, only a few networks at each time step contribute to

the patient’s dynamic connectivity profile. This parallels the transient brain-

states hypothesis in dynamic rs-fMRI connectivity [192], with active states as
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corresponding sub-networks in the basis matrix B.

5.10 Discussion

Our deep-generative hybrid cleverly exploits the intrinsic structure of the

rs-fMRI correlation matrices through the dynamic dictionary representation

to simultaneously capture group-level and subject-specific information. At

the same time, the LSTM-ANN network models the temporal evolution of

the rs-fMRI data to predict behavior. The compactness of our representation

serves as a dimensionality reduction step that is related to the clinical score

of interest, unlike the pipelined treatment commonly found in the literature.

Our structural regularization helps us fold in anatomical information to guide

the functional decomposition. Overall, our framework outperforms a variety

of state-of-the-art graph theoretic, statistical and deep learning baselines on

two separate real world datasets.

We conjecture that the baseline techniques fail to extract representative

patterns from structural and functional data. These techniques are quite

successful at modelling group level information, but fail to generalize to the

entire spectrum of cognitive, symptomatic or connectivity level differences

among subjects. Consequently, they overfit the training data.

5.10.1 Examining Generalizability

Notice that the training examples (red points) in Figs. 5.8 and 5.9 follow the

x = y line perfectly, which may suggest overfitting. This phenomenon can

be explained by the difference between our training procedure, where we
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Figure 5.15: Prediction Performance of the Deep sr-DDL for the CFIS score on training
data when (L) The data term is included in computing {ct

n} (R) The data term is
excluded from the computation of {ct

n}

optimize our joint objective in Eq. (5.9) assuming the scores are known, and

our testing procedure. Recall that Section 5.5.5 describes the procedure for

calculating the temporal sr-DDL loadings for an unseen patient i.e. c̄t
n from

the basis B∗ obtained during training. Since the subject is not a part of the

training set, the corresponding value of ŷ is unknown. Effectively, we must

set the contribution from the data term, i.e., the deep network loss L(·) in

Eq. (5.9) to 0. Here, we examine the effect of employing the same strategy to

Figure 5.16: Median Absolute Error on the Test Set varying the number of samples
used for training. The vertical bars indicate standard errors for each setting
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calculate the coefficients for the training patients. In essence, we estimate the

corresponding severity Ŷ now excluding the deep network loss. Accordingly,

Fig. 5.15 highlights the differences in training fit with and without this term

included in estimating {ct
n} for the HCP dataset. Notice that in the latter, the

training accuracy for the CFIS score has the same distribution as the testing

points in Fig. 5.8. In contrast, inclusion of the deep network loss in our coupled

optimization overparamterizes the search space of solutions for {ct
n} to yield

a near perfect fit.

To further probe the generalization capabilities of our Deep sr-DDL, we

examine the effect of training the models on different sized datasets. For this

experiment, we first set aside 50 individuals from the HCP database as a test

set on which we evaluate the generalization performance. We then sweep the

training set size from N = 50 − 200 in increments of 25 subjects. To avoid

biasing the results, none of these subjects overlap with the HCP-2 valida-

tion set used for parameter tuning in Section 5.6. For each training set size,

we randomly sample the subjects 10 times and compute the generalization

performance on the held-out set.

Fig. 5.16 displays the MAE of the CFIS score prediction on the test set

as a function of the training set size. As expected, we observe that with

increasing training data, the performance on the test set improves at first but

eventually saturates for all methods. This is evinced by a lowering of the

MAE in the initial parts of the curve followed by a subsequent plateau at

roughly 150 − 200 samples. Based on these results, we conjecture that further

addition of training data does not substantially improve the generalization
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Figure 5.17: Performance of the Deep sr-DDL upon varying (L): the penalty parameter
λ (B): window length (R): stride. Our operating point is indicated by the blue arrow

capabilities of our model or the baselines. We also note that the deep sr-DDL

outperforms the baselines across the entire regime. In conjunction with our

results from Section 5.8, we conclude that the deep sr-DDL model performs

reasonably well for small to moderately sized datasets. This is especially

important against the backdrop of potential clinical applications, many of

which have datasets of modest sizes.

5.10.2 Assessing Model Robustness

Our deep sr-DDL framework has only two free hyperparameters. The first

is the number of subnetworks in B. As described in Section 5.6, we use the

eigen-spectrum of {Γt
n} to fix this at 15 for both datasets. The second is the

penalty parameter λ, which controls the trade-off between representation and

prediction. Recall that our data pre-processing includes a sliding window

protocol in Fig. 2.3, which is defined by two parameters, i.e. the sliding

window length and the stride. From a mathematical perspective, our deep

sr-DDL formulation as such is agnostic to these parameters, as they are simply

folded into the input data dimension. However, empirically, they balance the

context size and information overlap within the rs-fMRI correlation matrices
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{Γt
n} and affects the prediction performance.

In this section, we evaluate the performance of our framework under

three scenarios. Specifically, we sweep λ, the window length and the stride

parameter independently, keeping the other two values fixed. We use five fold

cross validation with the MAE metric to quantify the multi-score prediction

performance, which as shown in Section 5.8, is more challenging than single

score prediction. Fig. 5.17 plots the performance for the three scores on the

KKI dataset with MAE value for each score on the y axis and the parameter

value on the x axis.

We observed that our method gives stable performance for fairly large

ranges of each parameter settings. As expected, low values of λ (0.01 − 1)

result in higher MAE values, likely due to underfitting. Similarly, higher

values (> 6) result in overfitting to the training dataset, degrading the gener-

alization performance. Additionally, lower values of window lengths result

in higher variance among the correlation values due to noise, and hence less

reliable estimates of dynamic connectivity [106]. On the other hand, very

large context windows tend to miss nuances in the dynamic evolution of the

scan. Empirically, we observe that a mid-range of window length 100 − 125s

yields a good tradeoff between representation and prediction. The training of

LSTM networks with very long sequence lengths is known to be particularly

challenging owing to vanishing/exploding gradient issues during backpropa-

gation. However, having too short a sequence confounds a reliable estimation

of the LSTM weights from limited data. The stride parameter helps miti-

gate these issue by compactly summarizing the information in the sequence
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while simultaneously controlling the overlap across subsequent samples. Our

experiments found a stride length between 10 − 20s to be suitable for our

application.

In summary, the guidelines we identified for each of the parameters are-

λ ∈ (2 − 5), window length ∈ (100 − 125)s, and stride ∈ (10 − 20)s. Addi-

tionally, our experiments on the HCP dataset using the same settings indicate

that the results of our method are reproducible across different populations.

It is also interesting to note that previous experiments on the HCP dataset

in literature have found similar window lengths to be stable in classification

[193] and various test-retest settings [194].

5.10.3 Clinical Relevance

Our experiments on the KKI dataset evaluate the ability of our Deep sr-DDL

framework to simultaneously explain multiple clinical impairments of ASD.

This multi-target prediction is a challenging task, and in fact, the baseline meth-

ods fail to generalize all three scores. At the same time, one could evaluate the

performance of predicting each score independently via three single-target

regression tasks. Accordingly, Table 5.3 compares the performance of our

Deep sr-DDL framework in the single-target and multi-target settings. Em-

pirically, we observe that the single-target prediction is slightly better than

the multi-target prediction. Indeed, a possible counter perspective would

be to optimize for prediction accuracy of individual measures explained by

potentially different brain bases, for example, as in the work in [146, 39, 157].

This comparison poses a more philosophical question about the benefits of a
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Score Method MAE NMI

ADOS
Single-target 2.91 ± 2.71 0.44
Multi-target 2.99 ± 1.99 0.37

SRS
Single-target 14.78 ± 14.24 0.87
Multi-target 18.70 ± 13.51 0.85

Praxis
Single-target 12.40 ± 11.60 0.85
Multi-target 14.99 ± 10.17 0.82

Table 5.3: Testing performance (5-fold CV) of the sr-DDL framework for single-target
and multi-target prediction on the KKI dataset according to Median Absolute Error
(MAE), Normalized Mutual Information (NMI). We also report the standard devia-
tion for the MAE. Lower MAE and higher NMI scores indicate better performance.

multi-target setup given a possible decline in predictive performance and the

difficultly of the task itself.

To weigh in on this trade off, we note the growing consensus in clinical

psychiatry that complex disorders, such as autism and schizophrenia, are

inherently multidimensional [59]. Furthermore, there is considerable patient

heterogeneity within a single diagnostic umbrella that reflect subtle differences

in the underlying etiology [60]. In fact, the National Institute of Mental Health

(NIHM) in the United States has released the RDoc research framework [61],

which advocates for a multidimensional characterization to understand the

full spectrum of mental health and illness. In this context, our Deep sr-DDL

approach provides a flexible tool to map multiple measures via a consistent

and stable brain basis (as shown by the results in Section 5.9.1). Thus, we view

it as an important foundation to parse complex spectrum disorders that may

even spur new analytical directions in brain connectomics.

Finally, our Deep sr-DDL framework is carefully designed to extract
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subject-level dynamic information. Namely, the attention mechanism au-

tomatically highlights portions of the rs-fMRI scan that are important for

clinical prediction (Fig 5.14). In fact, a comparison of the attention weights in

Fig. 5.14 suggests considerable inter-patient variability of the intervals used

for multi-target prediction in the KKI dataset, as opposed to the relatively

consistent attention weights in the HCP dataset. This pattern may be linked

to the heterogeneity of ASD described above. In conjunction, we observe the

subnetwork contributions phasing in and out prominence over the course of

the scan, which is consistent with the transient brain state hypothesis [192]

In summary, the blend of classical generative modeling and deep learning

prediction in our Deep sr-DDL framework allows for a finer-grained character-

ization of connectivity and behavior. Overall, we believe that the robustness,

stability, clinical interpretability, and flexibility of our Deep sr-DDL render it a

novel and valuable tool for the research community.

5.10.4 Applications, Limitations and Future Scope

As seen in our experiments in Section 5.8, our method is able to extract key

predictive resting state biomarkers from healthy and autistic populations. Ad-

ditionally, our deep sr-DDL makes minimal assumptions. Provided we have

access to a set of consistently defined structural and functional connectivity

measures and clinical scores, this analysis can be easily adapted to other neu-

rological disorders and even predictive network models outside the medical

realm. Overall, these findings broaden the scope of our method for future

applications.
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Although we outperform several baselines on two separate datasets, our

prediction performance in Section 5.8 is far from perfect. This underscores

that multi-score prediction is a challenging clinical problem. One of the key

reasons can be attributed to inherent noise in the clinical measures themselves.

For example, SRS is based on a parent-teacher questionnaire, which tends to

be more subjective than a clinical exam. This renders the behavioral prediction

task especially challenging, which partially accounts for the poor performance

of several baselines we compared against. Keeping this in mind, a natural

clinical direction of exploration is to adopt our method to predicting measures

more directly related to functional connectivity, as opposed to those relying

on clinical reports. Another avenue of exploration includes examining more

coarse indicators of behavior, such as ordered levels of impairment instead

of continuous measures (an ordinal regression problem), or the prevalence of

ASD sub-types.

Another limitation to our method lies in the fact that our estimate of

dynamic functional connectivity relies on the availability of a reliable sliding-

window protocol. As illustrated in Section 5.10.2, an inappropriate window-

length and stride choice has a direct bearing on the predictive performance.

Moreover, this tradeoff is difficult to quantify and correct for analytically.

Keeping this in mind, we are motivated to explore alternatives to the slid-

ing window for better estimating dynamic functional connectivity, which

can at the same time be robustly integrated into multimodal data-analysis

frameworks such as ours.
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From the methodological standpoint, we recognize that our model is sim-

plistic in its assumptions, particularly in the sr-DDL formulation. The DTI

priors guide a data-driven classical rs-fMRI matrix decomposition in a reg-

ularization framework. This modeling choice was deliberately employed to

preserve interpretability in the basis and simplify the inference procedure. A

key limitation of this approach is that it does not directly consider multi-stage

pathways, which may be an important mediator of functional relationships

between communicating sub-regions.

To this end, graph neural networks have shown great promise in brain

connectivity research due to their ability to capture subtle and multi-stage

interactions between communicating brain regions while exploiting the un-

derlying hierarchy of brain organization. Consequently, these methods are

emerging as important tools to probe complex pathologies in brain function-

ing and diagnose neurodevelopmental disorders [195, 196]. In this vein, the

Appendix (Chapter 8) presents an exploratory end-to-end graph convolutional

network that jointly models rs-fMRI and DTI data.
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Chapter 6

Beyond Dictionary
Decompositions and Phenotypic
Prediction: Geometric Frameworks
to Characterize Complementary
Connectivity Spaces

In this chapter, we examine a slightly different problem that goes beyond

just multidimensional phenotypic prediction. Instead, we are interested in

studying the interplay between function and structure more carefully. A

natural direction to pursue is that of multi-view representation learning of the

two connectivity spaces. In this light, we examine the prediction of structural

connectivity from functional connectivity. This helps us better qualify the

complementarity between the two data spaces.

In the clinical neuroscience realm, several studies have found both direct

and indirect correspondences between structural and functional connectiv-

ity [11, 12]. Going a step further, structural and functional connectivity have

been shown to be predictive of each other at varying scales [15, 16, 17]. As
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a result, multimodal integration of these viewpoints has become a key area

of focus for characterizing neuropsychiatric disorders such as autism and

ADHD [197, 198]

As described in Chapter 2, techniques for integrating structural and func-

tional connectivity focus heavily on group-wise discrimination. These works

include statistical tests on edge-based features to identify significant differ-

ences in Alzheimer’s disease [23], parallel ICA using structure and function

to identify discriminative biomarkers of schizophrenia [128], and classical

machine learning techniques to predict diagnosis [199]. While highly informa-

tive at a group level, these methods do not directly address inter-individual

variability, for example by predicting finer grained patient characteristics.

This divide has been partially bridged by end-to-end deep learning models.

Examples include MLPs [200] for age prediction from functional connectomes

and convolutional neural networks [44] for predicting cognitive and motor

measures from structural connectomes. Even so, these models focus exclu-

sively on a single neuroimaging modality and do not exploit the interplay

between function and structure.

Geometric learning frameworks have recently shown great promise in mul-

timodal connectomics studies, both for conventional manifold learning [201]

and in the context of Graph Convolutional Networks (GCN) [202, 198]. Their

primary advantage is the ability to directly incorporate and exploit the under-

lying data geometry. Beyond associative analyses, the work of [17, 203] employ

multi-GCNs combined with a Generative Adversarial Network (GAN) for

the alignment problem. Particularly, [17] examines the problem of recovering
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structural connectomes from patient functional connectomes While this paper

marks a seminal contribution to multimodal integration, the representations

learned by end-to-end GCNs can be hard to interpret. It can also be difficult

to train GANs on modest-sized datasets [204].

Here, we develop an end-to-end matrix autoencoder that maps rs-fMRI

correlation matrices to structural connectomes obtained from DTI tractogra-

phy. Inspired by recent work in Riemannian deep learning [205, 206], our

matrix autoencoder, estimates a low dimensional embedding from rs-fMRI

correlation matrices while taking into account the geometry of the functional

connectivity (FC) manifold. Our second matrix decoder uses this embedding

to reconstruct patient structural connectivity (SC) matrices akin to a manifold

alignment [207] between the FC and SC data spaces. For regularization, the

FC embedding is also used to predict behavioral phenotypes. We demonstrate

that our framework reliably traverses from function to structure and extracts

meaningful brain biomarkers.

Outline: This section is organized as follows: Section 6.1 describes our Matrix

Autoencoder framework to encode functional connectivity matrices, while

Section 6.1.2 explains the alignment to structural connectivity and Section 6.1.3

describes our secondary phenotypic prediction task. Section 6.2 describes our

experimental evaluation. This work appeared recently in MICCAI 2021 as

a conference paper [208]. Finally, we use Section 6.4 to probe the theoretical

aspects of the representation learned by our proposed autoencoder.
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Figure 6.1: A Matrix Autoencoder for aligning the FC and SC manifolds Gray
Box: Matrix encoder-decoder for functional connectomes. Blue Box: Alignment
Decoder for estimating DTI connectomes Green Box: ANN for predicting behavioral
phenotypes

6.1 A Matrix Autoencoder to Model the Functional
Connectivity Space

Fig. 6.1 illustrates our matrix autoencoder framework consisting of an encoder-

decoder for functional connectivity (gray box), manifold alignment for estimat-

ing structural connectivity (blue box), and ANN for prediction of behavioral

phenotypes (green box). Let N be the number of patients and P be the number

of ROIs in our brain parcellation. We denote the rs-fMRI correlation matrix

for patient n by Γn ∈ RP×P. An ∈ RP×P is the corresponding structural

connectivity profile, and yn ∈ RM×1 is a vector of M concatenated phenotypic

measures.
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6.1.1 Functional Connectivity Reconstruction:

By construction, the correlation matrices Γn belong to the manifold of symmet-

ric positive semi-definite matrices P+
P . Our matrix autoencoder estimates a

latent functional embedding Fn ∈ P+
K using a 2D fully connected (2D FC-NN)

layer [206, 205]. Formally, this mapping Φec(·) : P+
P → P+

K is parametrized

by weights W ∈ RP×K and is computed as a cascade of two linear layers with

tied weights: Fn = Φec(Γn) = WTΓnW. Our decoder is another 2D FC-NN

that estimates Γ̃n from Fn via a similar transformation Φdc(·) : P+
K → P+

P that

shares weights with the encoder. Mathematically, our FC reconstruction loss

is represented as follows:

LFC =
1
N ∑

n
||Φdc(Φec(Γn))− Γn||2F =

1
N ∑

n
||WWTΓnWWT − Γn||

2
F (6.1)

The second term of Eq. (6.1) encourages the columns of the brain basis W to

be orthonormal. Conceptually, this specialized loss helps us learn uncorre-

lated patterns that explain the rs-fMRI data well while acting as an implicit

regularizer.

6.1.2 Aligning to Structural Connectivity Prediction

The structural connectivity matrices An are derived from DTI tractography

and belong to the manifold of symmetric (non PSD) matrices SP. Our align-

ment decoder first generates an SC embedding Sn ∈ RK×K from Fn via a 2D

FC-NN layer Φalign(·) : P+
K → P+

K , followed by a second 2D FC-NN layer

Φest(·) : P+
K → P+

P which maps to the structural connectivity matrices. For

stability our SC matrices do not have self-connections and are normalized to
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∥An∥1 = 1. Accordingly, at the output layer, we suppress the diagonal ele-

ments and apply a 2D softmax SF (·) to generate the final output Ãn ∈ RP×P.

Our SC estimation objective is represented as follows:

LSC =
1
N ∑

n

⃓⃓⃓⃓⃓⃓
SF

[︂
Φest(Φalign(Fn)) ◦ [11T − IP]

]︂
− An

⃓⃓⃓⃓⃓⃓2
F

(6.2)

where ◦ is the element-wise Hadamard product. 1 ∈ RP×1 is the vector of

all ones, and IP is the identity matrix of dimension P. Conceptually, the loss

in Eq. (6.2) is akin to manifold alignment [207] between the functional and

structural embeddings based on a two sided Procrustes-like objective.

6.1.3 Mapping to Phenotypes

We map the intermediate representation Xn = ΓnW ∈ RP×K learned by the

FC encoder to the phenotypes yn via a cascade of a 1D convolutional layer and

an ANN. The convolutional layer Fconv(·) collapses Xn along its rows via a

weighted sum to generate a K dimensional feature vector. This feature vector

is input to a simple two layered ANN G(·) to jointly estimate the elements in

ŷn. We use a Mean Squared Error (MSE) loss function:

Lphen =
1

NM ∑
n
||ŷn − yn||2F =

1
NM ∑

n
||G(Fconv(Xn))− yn||22 (6.3)

This prediction task is a secondary regularizer that encourages our matrix

autoencoder to learn representations predictive of inter-subject variability.
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6.2 Evaluation on Real Data

We validate our framework on a dataset of 275 healthy individuals from the

Human Connectome Project database and on the second clinical ASD dataset

described in Chapter 2. We wish to evaluate the model on the robustness

of recovery of structural connectivity patterns across individuals, reliable

phenotypic prediction against a variety of baselines, and on the extraction

of predictive and interpretable brain biomarkers. We adopt a five fold cross-

validated setting.

6.2.1 Implementation Details

We train our framework on a joint objective that combines Eqs. (6.1), (6.2) and

(6.3) as follows:

L = LFC + γ1LSC + γ2Lphen (6.4)

where γ1 and γ2 balance the tradeoff for the SC estimation and phenotypic

prediction relative to the FC reconstruction objective. We employ a two

layered ANN with the hidden layer size V = 60 with Leaky ReLU (ϕ(x) =

max(0, x) + 0.05 ∗ min(0, x)) as the activation function. We employ an ADAM

optimizer [161] with learning rate 0.005 and weight decay regularization [209]

(δ = 0.0005) run for a maximum of 400 epochs. Optimization parameters

were fixed based on a validation set consisting of 30 additional patients from

the HCP database. We use this strategy to set the the dimensionality of our

autoencoder embedding at K = 15 and loss penalities to {γ1, γ2} = 103, 3.

Finally, we utilize a spectral initialization for the encoder-decoder weights W
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in Eq. (6.1) based on the top K eigenvectors of the average patient correlation

matrix Γ̄n for the training set. We use a similar initialization based on Ān

for Φest(·), and default initialization [210] for the remaining layers. Our

model has a runtime of 10-12 minutes on an 8 core machine with 32GB RAM

implemented in PyTorch (v1.5.1).

6.2.2 Evaluating Phenotypic Prediction

6.2.2.1 Baselines

We compare against the following baselines on the phenotypic prediction task:

Matrix AE without rs-fMRI decoder: We start with the architecture in Fig. 6.1

but omit the rs-fMRI decoder loss (LFC) in Eq. (6.4). This helps us evaluate

the benefit of a tied encoder-decoder model for the rs-fMRI matrices.

Matrix AE without DTI decoder: We start with the architecture in Fig. 6.1

but remove the DTI decoder loss (LSC) in Eq. (6.4). This helps us evaluate the

benefit of manifold alignment to constrain the functional embedding.

Decoupled Matrix AE + ANN: We start with the architecture in Fig. 6.1 but

decouple the representation learning on the connectomics data from the predic-

tion of phenotypic measures by training the models separately. This baseline

provides a comparison against allowing the two competing objectives to guide

each other directly during training.

BrainNetCNN: This baseline integrates multimodal connectivity data via the

BrainNetCNN [44]. We modify the original architecture, which is designed

for a single modality, to have two branches, one for the rs-fMRI correlation
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Table 6.1: CFIS prediction on the HCP dataset against the baselines using Median
Absolute Error (MAE), Normalized Mutual Information (NMI) for training and testing
for the test set. Best performance is highlighted in bold.

Method MAE Train MAE Test NMI Train NMI Test
No rs-fMRI dec. 6.31 ± 5.61 16.42 ± 12.41 0.85 0.61

No DTI dec. 6.30 ± 5.80 15.44 ± 13.00 0.86 0.61
Decoupled. 2.53 ± 2.41 14.90 ± 13.60 0.87 0.59

BrainNetCNN 6.80 ± 6.25 14.95 ± 12.74 0.88 0.59
Dict. Learn. + ANN 3.19 ± 2.19 15.26 ± 13.99 0.89 0.66

Our Framework 3.19 ± 2.47 14.08 ± 11.85 0.86 0.69

matrices Γn, and another for the DTI connectomes An. The ANN is modified to

output M measures of clinical severity. We set the hyperparameters according

to [44]

rs-fMRI Dictionary Learning + ANN: The framework in [160] uses rs-fMRI

correlation matrices for the prediction of multiple clinical measures. The

model combines a dictionary learning with a neural network predictor, with

these two blocks optimized in an end-to-end fashion via a coupled optimiza-

tion objective.

6.2.2.2 Predicting Behavioral Phenotypes:

Table 6.1 (and Fig. 6.2) compares the model against the baselines when pre-

dicting CFIS in a five-fold cross validated setting. Lower Median Absolute

Error (MAE) and higher Normalized Mutual Information (NMI) signify im-

proved performance. Our framework outperforms the baselines during test-

ing, though the model of [160] comes in a close second. This suggests that

the Matrix Autoencoder faithfully models subject-specific variation even in

unseen patients.
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Table 6.2: Multi-score performance on the ASD dataset using Median Absolute Error
(MAE), Normalized Mutual Information (NMI), and Correlation Coefficient (R) for
testing. Best performance is highlighted in bold. Near misses are underlined

Measure Method MAE Test NMI Test

ADOS

No rs-fMRI dec. 3.11 ± 2.74 0.46
No DTI dec. 2.61 ± 2.59 0.41
Decoupled 2.64 ± 2.30 0.49

BrainNetCNN 3.89 ± 2.80 0.35
Dict. Learn.+ANN 2.71 ± 2.40 0.43
Our Framework 2.71 ± 1.84 0.49

SRS

No rs-fMRI dec. 16.84 ± 16.01 0.77
No DTI dec. 15.65 ± 12.69 0.81
Decoupled 17.40 ± 14.16 0.74

BrainNetCNN 17.50 ± 15.18 0.73
Dict. Learn.+ANN 16.79 ± 13.83 0.89
Our Framework 16.04 ± 13.40 0.83

Praxis

No rs-fMRI dec. 14.03 ± 10.80 0.74
No DTI dec. 19.65 ± 13.18 0.81
Decoupled 17.08 ± 12.23 0.76

BrainNetCNN 19.35 ± 12.56 0.74
Dict. Learn.+ANN 13.19 ± 10.75 0.82
Our Framework 13.14 ± 10.78 0.86

For the evaluation on the Autism dataset, we carry forward the same model

parameters as used for the HCP dataset. Table 6.2 (and Fig. 6.3) compares the

multi-score prediction testing performance of ADOS, SRS, and Praxis in a five

fold cross validation setting. We observe that only our framework and the

model of [160] can simultaneously predict all three measures. In contrast, the other

baselines achieve good testing performance on one or two of the measures (for

example, No DTI decoder baseline for ADOS and SRS) but cannot generalize

all three. Overall, our experiments on both healthy (HCP) and clinical (ASD)

populations suggest that our model is robust across cohorts and generalizes

effectively even with modest dataset sizes.

182



6.2.3 Functional to Structural Association

We evaluate three aspects of our functional to structural manifold alignment.

First is our ability to recover structural connectivity matrices during testing.

Here, we compare two distance metrics: (1) Fself is the Frobenius norm between

a test example An and the model prediction for the same example Ân, and

(2) Fother is Ân and other SC matrices Am, (m ̸= n). As shown in the left

of Fig. 6.4(a) (HCP) and Fig. 6.6 (a) (KKI) , Fself is consistently smaller than

Fother, with statistical significance determined using the Wilcoxon rank sum

test. This indicates that individual differences in SC are preserved by our

framework. In the same plot, we also benchmark the recovery performance of

our framework against a baseline Matrix encoder-decoder (gray box in Fig. 6.1)

with the SC matrices as input and output. We also compare against a linear

Figure 6.2: HCP Dataset Prediction of CFIS by (a) Our Framework (b) Matrix AE
without rs-fMRI Decoder (c) Matrix AE without DTI Decoder (d) BrainNet CNN (e)
Dictionary Learning + ANN (f) Decoupled Matrix AE and ANN
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Figure 6.3: ASD Dataset: Multi-output prediction performance of (L): ADOS (M):
SRS (R): Praxis by (a) Our Framework (b) Matrix Autoencoder without rs-fMRI De-
coder (c) Matrix Autoencoder without DTI Decoder (d) BrainNet CNN (e) Dictionary
Learning + ANN (f) Decoupled Matrix Autoencoder and ANN
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regression between the vectorized upper diagonal FC features (input) and SC

features (output) to help evaluate the benefit of our matrix decomposition.

As seen, our function → structure decoding achieves similar performance as

directly encoding/decoding the structural connectivity. At the same time, the

linear regression baseline performs worse than both of these techniques. This

suggests that the ability to directly leverage the low rank matrix structure is

key to preserving individual differences during reconstruction.

Second, we use t-SNE to visualize the symmetric FC and SC embeddings,

Fn and Sn, respectively. Fig. 6.4 (b) and Fig. 6.6 (b) (KKI) displays the 2D t-SNE

representation computed from the upper-triangle entries of the embedding.

As seen, the FC and SC are clustered in two different locations within this

space. Interestingly, the learned representations are non-overlapping without

explicit enforcement. This suggests that the alignment decoder Φalign(·) is

learning a conversion between manifolds.

Third, we examine the stability of the transformation learned by the align-

ment decoder, i.e. the weights Walign ∈ RK×K of Φalign(·). We first match the

Figure 6.4: (a) Recovery of SC for (L): Our Framework (M): Linear Regression (R): DTI
only Autoencoder (b) t-SNE visualization for FC and SC embeddings (c) Coefficient
of Variation (Cv) (log scale) for the weights of Φalign(·). Cold colors imply small
deviations, i.e. better stability
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Figure 6.5: Top four bases learned by the Matrix Autoencoder measured by the
absolute correlation coefficient across cross validation folds and initializations.

columns of Walign across cross validation folds according to correspondences

between the functional brain basis. For each entry of Walign, we compute

the coefficient of variation (Cv), i.e. the ratio of the standard deviation to the

mean (in absolute value). Lower values of Cv indicate smaller deviations from

the mean values, i.e. better stability. Fig. 6.4(c) (HCP) and Fig. 6.6(c) (KKI)

displays the log coefficient of variation log(Cv), where the cool colors indicate

smaller Cv. As seen, a majority of the entries of Walign have low variation

over the mean pattern value. Overall, our results suggest that our framework

learns a stable mapping across the manifolds that explains individual patterns

of structural connectivity faithfully.

6.2.4 Evaluating Functional Biomarkers

We explore the functional connectivity patterns learned by our framework by

first matching the brain bases (i.e., columns of W) across the cross validation

folds based on the absolute correlation coefficient. We run this experiment five

times with different initializations for the ANN branch to check for consistency
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Figure 6.6: KKI Dataset: (A) SC recovery by (L): Our Framework (M): Linear Regres-
sion (R): DTI only AE (B) t-SNE visualization of embeddings (C) Coeff. of Var. (Cv)
(log scale) for Φalign(·). Cold colors imply better stability (D) Top four FC bases

in the learned representation. Fig 6.5 (HCP) displays the four most consistent

bases, as projected onto the brain using the region definitions of the AAL atlas.

In each case, we report the mean and standard deviation of the basis across

folds. We notice that while there is spatial overlap between the bases, the

standard deviations are small, which indicates that our framework is learning

stable patters in the data. Subnetwork 1 highlights regions from the default

mode network, which is widely inferred within the resting state literature,

and known to play a critical role in consolidating working memory [183].

Subnetworks 1, 3 and 4 highlight regions from the somatomotor network

and visual cortex, together believed to be important functional biomarkers of

cognitive intelligence [189]. Finally, Subnetwork 2 and 4 displays contributions

from the frontoparietal network and the medial prefrontal network. These
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areas are believed to play a role in working memory, attention, and decision

making, all of which are associated with cognitive intelligence [186]. Fig. 6.6

(D) displays the bases learned when we train the Matrix Autoencoder on the

KKI Dataset.

6.3 Summary

We have introduced a novel matrix autoencoder to map the manifold of rs-

fMRI functional connectivity to the manifold of DTI structural connectivity.

Our framework is strategically designed to leverage the underlying geometry

of the data spaces and robustly recover brain biomarkers that are simulta-

neously explanative of behavioral phenotypes. We demonstrate that our

framework offers both interpretability and generalizability, even for multi-

score prediction on modest sized datasets. Finally, our framework makes

minimal assumptions, and can potentially find application both within and

outside the medical realm.

6.4 Probing the Encoder-Decoder Representation

Beyond clinical applicability, we gear the rest of this discussion towards as-

pects of representation learning. This is primarily motivated by an interesting

empirical observation that arose in our experiments on the Matrix Autoen-

coder. In Fig. 6.7, we plot the deviation of the basis (column normalized W

in Eq. (6.1)) from orthogonality, i.e. ||WTW − IK||2F. On the left, we plot this

quantity for the basis of the encoder-decoder (gray box in Fig. 6.1). On the
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Figure 6.7: HCP Dataset: Deviation of basis from orthogonality (L) Matrix Autoen-
coder with rs-fMRI decoder (R) Matrix Autoencoder without rs-fMRI decoder

right, we plot this quantity for the basis of Φenc(·) when the rs-fMRI decoder

Φdec(·) is removed. In each case, the red plot corresponds to a spectral inital-

ization for the basis, which uses the top eigenvectors of the average correlation

matrix (Γ̄) for the training examples. The blue plots correspond to a default

random initialization. We repeat this experiment on the HCP dataset 10 times

using a subset of the 275 patients for training. Interestingly, we observe that

for the plots on the left, as the training proceeds, the recovered basis move

closer to being nearly orthogonal regardless of the initialization. On the other

hand, when we remove the rs-fMRI decoder, we no longer observe this be-

havior. We also observed the same trend in experiments with the KKI dataset.

Our subsequent analysis aimed at uncovering the theoretical underpinnings

behind this behavior.
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6.4.1 Parallels with Common Principal Components

Recall that in previous chapters, our matrix decomposition strategy on rs-

fMRI correlation matrices was heavily inspired by the Common Principal

Components (CPC) [211] formulation.

From a modeling standpoint, CPC is the generalization of principal com-

ponents to several populations. CPC was designed to model covariance

matrices (henceforth referred to as data matrices {Γn}) among groups of mul-

tidimensional datasets. Their inner products are constrained to share the same

eigenvectors and are therefore simultaneously diagonalizable by a common

decorrelator matrix.

In CPC, the generating common basis B ∈ RP×K is a concatenation of K

elemental bases vectors bk ∈ RP×1, i.e. B := [b1 b2 ... bK], where K ≪ P.

The basis vectors are also constrained to be orthogonal to each other to ensure

that the learned bases are uncorrelated, yet explain the data well.

While the bases (eigenvectors) are shared, the strength of their combination

differs across individual data matrices. These loadings (eigenvalues) are

denoted by the set {cn} and combine the bases uniquely to constitute Γn. The

non-negativity constraint cn ensures the positive semi-definiteness of Γn. In a

noiseless setting, the complete data representation is as follows:

Γn ≈ ∑
k

cnkbkbT
k s.t. cnk ≥ 0, BTB = IK, (6.5)

where IK is the K × K identity matrix. As seen in Eq. (6.5), the loading vectors,

cn := [cn1 ... cnK]
T ∈ RK×1 seek to model the variation in the dataset.

Denoting diag(cn) as a diagonal matrix with the K coefficients on the diagonal
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and off-diagonal terms set to zero, Eq. (6.6) can be re-written in the following

matrix form:

LCPC({Γn}; B, {cn}) = ||Γn − Bdiag(cn)BT||2F s.t. cnk ≥ 0, BTB = IK

(6.6)

This objective serves to minimize the discrepancy between the observed data

and the assumed CPC generating process.

6.4.1.1 CPC Inference Procedure

We can adopt the alternating minimization procedure in Section 5.4 to optimize

Eq. (6.6) with a few minor modifications. Specifically, instead of Tn constraints

per subject, we can use a single constraint of the form D = B, enforced via

a single Augmented Lagrangian Λ. This effectively ensures that the new

objective has a quadratic form in B, along with a closed form update for D.

As before, we cycle through three individual steps, namely:

• Closed form Procrustes solution for the basis B

• Updating the loadings {cn} (having a quadratic form)

• Augmented Lagrangian updates for the constraint variables {D, Λ}. D

has a closed form Procrustes solution as well.

6.4.1.2 Comparing Representational Aspects:

Reverting back our attention to our end-to-end geometric framework, we

observe several parallels with CPC. For the purposes of this discussion, we

refer to the representation in the gray box in Fig. 6.1 and Eq. (6.1) as the Matrix
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Autoencoder representation, which we examine in isolation. For simplicity,

we optimize for the parameters of this network using the Stochastic Gradient

Descent algorihthm with a learning rate of 0.0005. The matrix factorization

imposed by this framework is represented as follows:

LMatAE({Γn}; W) = ∑
n
||Γn − WWTΓnWWT||2F (6.7)

= ∑
n
||Γn − WFnWT||2F where Fn = WΓnWT (6.8)

Both CPC in Eq. (6.6) and the Matrix Autoencoder decomposition in

Eq. (6.8) optimize for a rank K canonical outerproduct decomposition. By

construction, the factor cn is constrained to be a non-negative diagonal loading

matrix. As a consequence of the orthonormality constraint in Eq. (6.6), we

can show [212] that for a fixed estimate of the basis B, the optimal solution

for the loading vector is diag(cn) = diag(BTΓnB) = (BTΓnB) ◦ IK at each

iterative estimate. On the other hand, the factor Fn = WTΓnW in the Matrix

Autoencoder has a similar projection form, but is allowed to have off diagonal

terms along with the non-negative diagonal terms.

6.4.2 Experiments on Synthetic Data

Through our experiments on synthetic data, we wish to qualitatively and

quantitatively compare aspects of representation learning across the CPC and

Matrix Autoencoder formulations. To this end, we sample random positive

semi-definite matrices {Γn} according to a common principal components

[211] generating process.
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We start by generating a common low rank basis matrix B̂no ∈ RP×K

by drawing its entries independently from a zero mean Gaussian with vari-

ance one. We choose K = 30, P = 116 and number of examples N = 100.

We then use the Gram-Schmidt procedure to compute an orthogonal basis

B = orth(B̂no). Note that the coefficient values in cn are independent across

networks and data examples. Thus, for each example, we generate the coeffi-

cients using a Gaussian distribution with zero mean, and variance 1. The true

data matrices are Γn = Bdiag(cn)BT.

We introduce additive corruptions to the data generating process of the

form σ2XnXT
n . This also ensures that the resulting data matrices are positive

semi-definite. We experiment with two noise scenarios. In the first, we draw

Xn randomly from the null space of B, constraining the scale at ||Xn||2 = 1.

For low noise regimes, these corruptions are expected to not generate large

perturbations in the column space of the ground truth basis. In the second sce-

nario, the entries of Xn are drawn from a random normal distribution, which

is a case where noise corruptions have contributions in the column space of

the basis even for low noise regimes. We sweep σ from 0.1− 0.45. We generate

box plots using 10 repeated trials using different random initializations. This

helps us visualize and quantify variations in the recovery of the generating

process across such trials.

6.4.2.1 Perturbations in the Null Space

We first run a sanity check by adding noise strictly to the null space of the

generating low dimensional basis. Fig. 6.8 plots the recovery performance
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Figure 6.8: Recovery Performance using (L) CPC algorithm and (R) Matrix Autoen-
coder according to (Top) Distance between generating and recovered bases and
(Bottom) Data fit. Perturbations are restricted to the null space of the generating basis

of the CPC algorithm to the left and the Matrix Autoencoder to the right.

The x-axis represents the noise, while the y axis plots the distance between

the generated and recovered basis in the top set of plots, and the fit on the

training data. Since solutions may have rotational (and scaling for the Matrix

Autoencoder) equivalence, we normalize the columns to unit norm and per-

form a Procrustes alignment. The residual fit is thus obtained. As expected,

the recovery performance of the CPC algorithm is better than that the Matrix

Autoencoder (as indicated by the smaller fit error bars) since it is reflective

of the generating process for the data. For large noise settings, the CPC is
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Figure 6.9: Recovery Performance using (L) CPC algorithm and (R) Matrix Autoen-
coder according to (Top) Distance between generating and recovered bases and
(Bottom) Data fit. Perturbations are random and can generate corruption onto the
ground truth basis

more robust in terms of the recovery of the generating bases, while the matrix

autoencoder canonical bases are corrupted more easily, resulting in a worse

data fit. For low-moderate noise settings (σ2 ≤ 0.35), there is also a large

overlap between the bases recovered by the two algorithms after accounting

for rotation and scaling.
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6.4.2.2 Random Perturbations in the Data Space

In this scenario, we draw the entries of Xn from a random normal. This

inherently creates corruptions in the column space of the generating basis.

We observe that the fidelity of the Matrix Autoencoder representation under

these perturbations in comparison with the CPC is lower even for relatively

moderate scales of noise.

Interestingly, we observe that the recovered bases for both algorithms have

a considerable overlap even when the bases across examples do not share a

common generating process. Taken together, all these observations suggest a

fundamental link between the two representation learning schemes.

6.4.2.3 Examining Modeling Constraints

CPC Relaxation: Since the Matrix Autoencoder in its formulation does not

impose constraints on the basis, a natural direction would be to examine the

effect of relaxing the orthonormality and non-negativity constraints in the

CPC algorithm (following in Section 6.4.1.1). We refer to this setting as the

Unconstrained CPC via the objective below:

LCPC unc({Γn}; B, {cn}) = ||Γn − Bdiag(cn)BT||2F (6.9)

An interesting observation we made is that the recovered bases for the un-

constrained case are still orthogonal. At the same time, there arises an expected

difference in scaling magnitude factor for recovered solutions {Bkα, 1
α2 cnk}.

We note that this behavior continues to persists even when we break the gen-

erating process by not using a common generating basis across examples. In
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Figure 6.10: Recovery Performance using (L) Unconstrained CPC algorithm and (R)
Matrix Autoencoder (off diagonal suppressed) according to (Top) Distance between
generating and recovered bases and (Bottom) Data fit. Perturbations are random and
can generate corruption onto the ground truth basis

fact, it can be analytically shown that when the estimate of B is held constant

in the objective in Eq. (6.9), the optimal estimates for the coefficients can be

computed as:

cn = A[diag(BTΓnB)] = A[(BTΓnB) ◦ Ik]1K (6.10)

where A = [(BTB) ◦ (BTB)]−1 (6.11)

with A arising as a result of the relaxation of the orthonormality constraint.

197



Inference wise, we continue to utilize an alternating minimization proce-

dure to optimize for Eq. (6.9). However, the closed form solutions for B, {cn}

(and D) are recomputed to reflect the removal of the constraints. At the same

time, the observation is nevertheless surprising given that no explicit orthog-

onality constraints are enforced on the basis representation by any of the

updates.

Constraining the Matrix Autoencoder: Recall that the matrix autoencoder

learns a low dimesnional projection matrix of the form Fn = WTΓnW. This

symmetric product is allowed to have both off-diagonal and (non-negative)

diagonal contributions. We now examine aspects of the recovery when we

artificially discard the off diagonal contributions in the forward pass, i.e. set

Fn = diag(WTΓnW) = (WTΓnW) ◦ IK. This is similar in spirit to the diagonal

CPC loading in Eq. (6.6), albeit without additional constraints on the weights

W. Mathematically, we can write this as:

LMatAE ODS({Γn}; W) = ∑
n
||Γn − Wdiag(WTΓnW)WT||2F (6.12)

= ∑
n
||Γn − WFnWT||2F where Fn = (WΓnWT) ◦ IK (6.13)

We continue to encounter the puzzling phenomenon of recovering nearly

orthonormal bases weights despite the lack of explicit modeling constraints.

The plots on the left of Fig. 6.10 illustrate the performance of the uncon-

strained CPC. for the same random perturbations in the previous subsection,

we observe that the recovery performance here is similar to that of the CPC

(with the orthonormality constraints) across the noise regime. The plots on
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the right of Fig. 6.10 correspond to the Matrix Autoencoder (with off diagonal

terms suppressed) indicate that the recovery performance shows marked im-

provement over the original Matrix Autoencoder formulation. Additionally,

we obtain recovery performance comparable to our experiments on the CPC

(both constrained and unconstrained), which we can think of as ground truth

for this experiment. We also observed a high overlap between the recovered

bases (modulo rotation and scaling equivalence) across the CPC (constrained,

unconstrained) and this formulation.

6.4.3 Scope and Ongoing Work

Our work in this thesis has heavily relied on the representational power of

carefully crafted mathematical models that incorporate data geometry. Specif-

ically in the context of this Chapter, our preliminary experiments suggest a

fundamental link between the classical and end-to-end geometric representa-

tions studied in Eq. (6.6-6.13). Our current understanding of these frameworks

does not sufficiently explain the observed representational phenomenon. We

suspect this would require machinery from the geometry of Riemannian

(specifically PSD) manifolds and from the optimization literature. As an ongo-

ing effort, we are working on developing such an analytic approach to refine

our theoretical understanding of these frameworks.
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Chapter 7

Conclusion

This chapter serves as a summary of the main ideas and frameworks de-

veloped in this thesis. In a nutshell, we introduced powerful mathematical

modeling strategies to jointly analyze brain connectivity and behavior for

clinical applications.

This concluding chapter is organized as follows. We will first summa-

rize the main ideas and the scope of this work and our findings. Next, we

consolidate the comparisons across models we developed in each chapter to

carefully weight the advantages and tradeoffs of each framework. To this

end, we will provide qualitative and quantitative discussions to solidify these

comparisons. Finally, we provide a brief discussion on potential technical and

clinical extensions to the ideas presented.
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7.1 Discussion

7.1.1 Overview

In Chapter 3, we built a generative-discriminative framework (i.e. the Joint

Network Optimization (JNO) model) that can predict behavior from rs-fMRI

connectomes. This work extended the field of representation learning in

functional connectivity for clinical characterizations. We learn a mapping be-

tween the two spaces which is both generalizable and interpretable. Chapter 4

explored extensions of the predictive framework beyond linear prediction

(i.e. the Coupled Manifold Optimization (CMO) and the Dictionary Learn-

ing + ANN frameworks) in the form of non-parametric regression and deep

models respectively. This helps us improve the representational power of

the discriminative framework. We observe that combining classical models

with deep learning allows us to expand our behavioral characterizations to

multidimensional phenotypes. We view this characterization as a first step to

improving our understanding of the pathogenesis of complex disorders.

Chapter 5 focused on two key technical modeling innovations. We in-

troduced the use of structural tractography (DTI) as anatomical priors that

provide complementary connectivity information. To this end, we developed

a deep generative hybrid model (i.e. the Deep structurally regularized Dy-

namic Dictionary Learning (Deep sr-DDL). Secondly, our deep-generative

framework also incorporated a time-varying picture of functional connectivity.

Our comparisons in Tables 5.1 and 5.2 help us evaluate the benefit of each

component (dynamic functional connectivity and multimodal integration)
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individually via ablation studies. Moreover, our strategically designed deep

networks allow us to mimic the evolution of constituent brain states by mod-

eling them as canonical subnetworks. This framework tracks the temporal

phasing of these states and parallels the transient brain states hypothesis in

dynamic connectivity. Our use of temporal attention models adds to model

interpretability by automatically underscoring clinically predictive scan time

points. Together, such dynamic modeling of brain states could pave way for a

more nuanced comparison across patient sub-populations.

In all of these works, our optimization procedure was shown to be key to

obtaining generalizable representations. This property was verified by detailed

performance comparisons against pipelined versions of each framework in

Tables 3.1,4.1,5.1,5.2 . Overall, this inference procedure allowed us to explic-

itly couple the neuroimaging and clinical spaces, ultimately leading to the

extraction of clinically relevant bases. This joint inference is a departure from

prior work in this area, where the feature selection and prediction modules

are typically decoupled.

In Chapter 6, we examined a slightly different yet important representation

learning paradigm, i.e. that of examining the complementarity between func-

tion and structure. Deriving inspiration from classical models, we developed

an end-to-end geometric framework (the Matrix Autoencoder model) to learn

an explicit mapping from functional to structural connectivity matrices. At

the same time, we used multidimensional phenotypes as a secondary guide in

a predictive setting. From a technical standpoint, this framework marries the
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Meas. Method MAE Test NMI Test

CFIS

JNO 16.36 ± 14.28 0.63
CMO 15.91 ± 14.78 0.64

Dict. Learn. + ANN 15.26 ± 13.99 0.66
Deep sr-DDL. 16.31 ± 15.43 0.67

Matrix Autoencoder 14.08 ± 11.85 0.69
M-GCN 12.87 ± 9.65 0.73

Table 7.1: HCP Dataset: Evaluation of single target regression using the Median
Absolute Error (MAE), Normalized Mutual Information (NMI) for the test set. Best
performance is highlighted in bold. Second best is underlined

best of two worlds, i.e. the interpretability in classical models with the sim-

plicity of end-to-end deep stochastic optimization. From a clinical standpoint,

this helps us better understand the interplay between function, structure and

behavior.

Lastly, Chapter 8 takes an alternate end-to-end deep learning approach

that deviates from classical decomposition based models. Instead, we treat

the brain as a network graph entity, with the communication patterns of the

brain dictated by functional and structural connectivity data. Our Multi-

modal Graph Convolutional (M-GCN) framework is capable of exploiting

topological properties of the brain graph via carefully designed graph fil-

tering operations. Overall, this provides improved phenotypic prediction

performance in comparison with our previous models.

7.1.2 Comparing Representational Frameworks

This section provides cross comparisons across the suite of mathematical mod-

els introduced in this thesis, i.e. the Joint Network Optimization (JNO), the

Coupled Manifold Optimization (CMO), the Dictionary Learning + ANN, the
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Meas. Method MAE Test NMI Test

ADOS

JNO 2.79 ± 2.35 0.32
CMO 3.17 ± 2.00 0.35

Dict. Learn. + ANN 2.71 ± 2.40 0.43
Deep sr-DDL 2.84 ± 2.79 0.34

Matrix Autoencoder 2.71 ± 1.84 0.49
M-GCN 2.71 ± 2.15 0.45

SRS

JNO 43.27 ± 30.14 0.61
CMO 33.11 ± 28.07 0.51

Dict. Learn. + ANN 16.79 ± 14.83 0.89
Deep sr-DDL 17.81 ± 16.09 0.88

Matrix Autoencoder 16.04 ± 13.40 0.83
M-GCN 16.50 ± 9.44 0.85

Praxis

JNO 27.12 ± 29.66 0.53
CMO 30.11 ± 26.47 0.61

Dict. Learn. + ANN 13.19 ± 10.75 0.82
Deep sr-DDL 13.50 ± 11.55 0.85

Matrix Autoencoder 13.14 ± 10.78 0.86
M-GCN 12.82 ± 12.04 0.86

Table 7.2: KKI Dataset: Evaluation of multiscore prediction using the Median Ab-
solute Error (MAE), Normalized Mutual Information (NMI). Best performance is
highlighted in bold. Near misses are underlined

Deep structurally regularized dynamic dictionary learning (Deep sr-DDL), the

Matrix Autoencoder framework, and the Multimodal Graph Convolutional

framework (M-GCN).

To streamline the discussion, we focus our quantitative comparisons on

the multi-score phenotypic prediction task on our Autism dataset and the

prediction of cognitive fluid intelligence score on the healthy controls in the

HCP dataset. Tables 7.1 and 7.2 provide a head to head comparison of these

models on the HCP and KKI dataset respectively.

In Chapters 3 and 4, we observed that the JNO and the CMO frameworks
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are one of the first frameworks that generalize onto clinical prediction, out-

performing several machine learning pipelines. By design, these frameworks

allow us to probe the learned representation by extracting subnetwork pat-

terns that are most clinically predictive. While they can be tuned to predict

a single measure (CFIS in Table 7.1 or the Autism severity measures in Ta-

bles 3.1 and 4.1) faithfully, they do not have the flexibility to predict multiple

measures at the same time. We can see from the predictive performance in

Table 7.2, they can be tuned to predict one of the three measures well (ADOS),

but do not generalize to predicting Praxis and SRS. In fact, we found that

adjusting the hyperparameters for these models allows us to predict one of

the scores well, but at the expense of generalization to the other two measures.

On the other hand, the Dictionary learning + ANN and Deep sr-DDL

models provide us with this ability. The added representational flexibility

offered by deep learning allows us to extract a consistent set of brain bases that

can explain a spectrum of behavioral deficits. In addition, the Deep sr-DDL

provides allow us to track the temporal evolution of brain states (See Fig. 5.14)

and incorporate anatomical priors into our functional connectivity representa-

tion. Potentially, this could allow us to perform more nuanced comparisons

across sub-types within the same population and better understand complex

disorders and their behavioral manifestation.

The Matrix Autoencoder framework can be thought of as an end-to-end

version of the previous models, where the low-rank matrix structure is key to

representation learning. In turn, we notice that it provides comparable gen-

eralization to multi- and single score phenotypic prediction on both datasets
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(Tables 7.1 and 7.2) against the Dictionary Learning+ ANN and Deep sr-DDL

model and second best performace overall. However, there are two notable

benefits to the autoencoder representation. Firstly, the end-to-end training of

the autoencoder allows us to avail the computational speed-up and simplic-

ity of end-to-end stochastic optimization as opposed to alternating inference

strategies. Secondly, it allows us to explicitly learn a mapping between the

functional and structural connectivity spaces, which our other frameworks

do not explore. In turn, this setup incorporates and implicitly leverages the

geometry of two spaces, offering elegant strategies to model connectivity data.

In terms of predictive performance, the M-GCN model clearly provides

the best generalization on the HCP dataset. It also demonstrates improved

performance on the multiscore prediction task (best performance on SRS and

Praxis and close to best performance on ADOS). As mentioned previously,

the heterogeneity in the measures renders this task particularly challenging.

As opposed to the previous models, the M-GCN is a geometric model of the

multimodal brain graph. The filtering operations are strategically designed

to leverage topological information within the architecture. This also departs

from a one-nearest neighbour flavour of regularization (as with the sr-DDL)

as it allows us to incorporate multi-hop pathways of structural connectiv-

ity. The structural regularization allows the framework to efficiently extract

generalizable representations from limited data. Despite its successes, this

model is less straightforward to interpret. In this vein, recent advances in the

field of geometric deep learning suggest tools to formalize explainability and

interpretability [213] of such graph models and could be beneficial for future

206



applications of the M-GCN.

7.2 Scope

As seen in this thesis, our methods allow us to hone in on key predictive

resting state biomarkers from healthy and autistic populations. Additionally,

our frameworks makes minimal assumptions. Provided we have access to a

set of consistently defined structural and functional connectivity measures

and clinical scores, these tools can be easily adapted to other neurological

disorders . Long term, such studies may spurn discoveries and advances in

challenging translational and clinical paradigms such as biomarker develop-

ment, behavioral therapeutics, neuro-surgical pre-planning etc. In fact, such

principles may even benefit predictive network models outside the medical

realm. Overall, these findings broaden the scope of our method for future

applications.

7.2.1 Limitations

Despite the benefits of these frameworks, they do suffer from certain limita-

tions.

Although our models have been shown to outperform several baselines on

two separate datasets, our prediction performance is far from perfect, both for

single and multi-target prediction. One of the key reasons can be attributed to

inherent noise in the clinical measures themselves. For example, SRS is based

on a parent-teacher questionnaire, which tends to be more subjective than

a clinical exam [214]. This renders the behavioral prediction task especially
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challenging, and can partially account for the poor performance of predictive

models. Even diagnostic examinations such as ADOS, in which trained clini-

cians score patients tend to suffer from some variability in reporting across

individual, often at floor and ceiling values of these scales [215, 216]. Current

findings in literature have found to cap out at a predictive performance of

about ten percent of total dynamic range [217, 201, 218]. Going one step

further, the performance trends within our frameworks and the baselines sug-

gest that multi-score prediction is a notoriously challenging clinical problem.

Given the exploratory nature of this work, careful investigation is warranted

in clinically interpreting and working towards improving performance results

in practice.

As another example, the assumptions made by these models may be

restrictive for capturing the full complexity of the brain. Our frameworks are

relatively simple to lay the groundwork for such analyses. Thus they do not

directly explore and explicitly incorporate notions of heirarchical and modular

organization of the brain, as well as sophisticated machinery for temporal

connectivity tracking such as conditional correlations.

Another limitation lies in the lack of robustness to distribution shifts. Such

shifts are quite common when data is aggregated across multiple sites. As

a result, this may hinder the identification and characterization of clinically

relevant brain biomarkers across heterogeneous populations. These are key

points of consideration when studying dysfunction associated with clinical

disorders.
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7.3 Future Work

Keeping these points in mind, we identify three avenues of proposed research

that may improve our understanding of brain connectivity and benefit clinical

studies in the long term:

• Multi-Site Representation Learning: While open repositories such as

ABIDE (Autism Brain Imaging Data Exchange) [154, 18] are becoming

extremely popular, such studies pose their own set of unique challenges.

For example, the subject demographics and scanning protocols is known

to vary tremendously across sites. This variation introduces site-specific

biases, which are difficult to account for and often confound neurobio-

logical discovery. As of today, there are very few studies that go beyond

case/control prediction on ABIDE. It is also unclear how to explicitly

account for patient heterogeneity arising from site differences [219].

Such research questions are also fundamentally related to studies which

seek to quantify, understand, and account for the effect of covariates

and confounders [220] when evaluating prediction within heterogenous

cohorts.

As such, our models have been developed on focused clinical datasets

and are not designed to handle the distribution shifts thus arising. A

potential direction of exploration would be to include modelling con-

straints that incorporate site related information (as a second level of

patient heterogeneity) directly within the framework and inference pro-

cedure. Such models may benefit from concepts within the stochastic
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optimization literature such as continual learning [221] or distribution

alignment schemes [222] that are designed for parallel scenarios in other

AI application domains.

• Uncovering Nuanced Clinical Characterizations: This thesis has largely

focused on multidimensional phenotypic prediction, which is a chal-

lenging yet important clinical paradigm. Nevertheless, our prediction

performance is far from perfect. One of the key reasons can be attributed

to inherent noise in the severity measures derived from clinical reports

themselves. For example, reporting across parent-teacher evaluations

could have more variability when compared with measures scored by

trained clinicians. At the same time, such phenotypic scores alone may

not paint a complete clinical picture of such complex and heterogenous

disorders.

In an effort to build up a more holistic picture, one may benefit from ex-

amining more coarse indicators of behavior. Examples include studying

ordered levels of impairment or dysfunction [223], or the prevalence of

behavioral sub-types in disorders such as ASD or ADHD [224, 225], or

co-morbidities among developmental disorders [226, 227], or nosologi-

cal relationships between psychiatric disorders [228]. From a technical

standpoint, these modeling extensions may borrow from clustering or

ordinal regression to supplement our discriminative models. Other in-

teresting avenues of exploration include models which uncover causal

relationships between connectivity and disease phenotypes [229, 230].
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• Sophisticated Modeling of Brain Connectivity: The mathematical mod-

els presented in this thesis restrict the analysis of brain connectivity onto

a set of clinically predictive matrix factors. While this treatment ensures

computational tractability, the actual complexity of interactions within

the brain may not be sufficiently explored by such frameworks. Sim-

ple examples where such matrix/tensor factorization frameworks have

shown promise is in characterizing the hierarchical [231] and modu-

lar [232] organization of the brain, which our models do not directly

incorporate into the representation.

Another scenario of great clinical interest is in the longitudinal modeling

of brain connectivity [220, 233], which is a currently unexplored within

this thesis. We envision that the ability to effectively track and forecast

changes (disruptions) in brain connectivity patterns over disease pro-

gression could ultimately further our understanding of the associated

pathogenesis.

In summary, our models make very minimal assumptions and can poten-

tially be adapted to a wide variety of clinical and neuroscientific applications.

The proposed modeling formulations could serve as powerful tools for brain

connectivity analysis. We are confident that such explorations will go a long

way to advance the field by providing novel insights into the organization of

the human brain.
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Chapter 8

Appendix: Graph Convolutional
Frameworks for Multidimensional
Phenotypic Prediction from
Multimodal Connectivity Data

As seen in the chapters leading into this thesis, the rise of machine learning has

prompted a shift in connectomics towards subject-level predictions. This shift

has been accelerated by deep learning, which provides unparalleled represen-

tational power. In this section, we take an alternate strategy designed to model

the complex topology of brain organization. We revert to the network-centric

view of the brain and propose a geometric deep learning framework based

on graph convolutions to map from the brain connectivity to the behavioral

space.

As mentioned in previous chapters, the bulk of deep learning methods fo-

cus on diagnostic classification. These approaches range from Multi-Layered
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Perceptrons [234], Deep Belief Networks [129], to Convolutional Neural Net-

works [43]. Methods to predict finer-grained characteristics (e.g, demograph-

ics or behavior) are sparser and largely focus on a single modality. For example,

the authors of [44] introduced a convolutional neural network that mapped

DTI connectivity matrices to cognitive and motor measures. The work of

[200] proposes an artificial neural network for age prediction from structural

connectomes. While these methods achieve good empirical performance, they

ignore the interplay between structure and function in the brain.

Our work in [160] takes the alternative approach of combining a genera-

tive dictionary learning framework with a predictive artificial neural network

to simultaneously map multiple clinical measures. However, it still focuses

on functional connectivity alone. To address this gap, we extended [160]

to combine dynamic rs-fMRI correlations with DTI tractography using a

structurally-regularized matrix decomposition in [165, 164]. While promising,

even this method relies on only immediate structural neighbourhood rela-

tionships to guide the representation learning (See Eq. (5.5)). Said another

way, this method does not provide explicit control over the extent to which

multi-hop (indirect) structural connections mediate functional connectivity.

8.1 Graph Neural Networks in Neuroimaging

Graph neural networks are designed to build representations of nodes and

edges within graph structured data, and have found applications in a vari-

ety of domains where data naturally assumes a network-like organization
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[235]. These architectures have shown great promise for modeling multi-

stage interactions between brain regions that also reflect the hierarchy of

brain organization. Hence, these techniques have become important tools in

brain connectivity research. Examples include: modeling dynamic functional

connectivity for groupwise discrimination [193], diagnosis of neurodevel-

opmental disorders [195, 196] from rs-fMRI correlation inputs, or structural

connectivity modeling for disease classification [236]. However, most current

approaches do not leverage the complementarity between the structural and

functional graphs and examine dimensional measures of behavior beyond

diagnostic classification.

Outline: This work describes a multimodal graph convolutional network

(M-GCN) to integrate functional and structural connectivity from rs-fMRI

and DTI data respectively, and map this information to phenotypic measures

in Section 8.2. This employ specialized graph convolutional filters based on

[237, 44] that operate on functional connectivity inputs, as guided by the

subject-level structural graph topology. In Section 8.4, we demonstrate that

our framework generalizes to prediction of phenotypic measures on two

separate real world datasets and learns to extract predictive brain biomarkers

from limited data. The work described here first appeared as a conference

paper in [238].

8.2 Multimodal Graph Convolutional Framework

Fig. 8.1 illustrates our graph convolutional framework, which consists of a rep-

resentation learning module on the connectomics data (Green Box) cascaded
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with a fully connected ANN for regression (Blue Box). Let N be the number

of patients and P be the number of regions in our brain parcellation. Our

framework first extracts the structural connectivity graph G = (V , En) from

DTI tractography. The nodes in V are brain ROIs defined by the parcellation,

while the edges in {En} indicate the presence of at least one fiber tract between

these regions. Let An ∈ RP×P be the adjacency matrix for G. Correspondingly,

we assume that the functional connectivity profile is a signal that rides on the

fixed graph montage and is given by rs-fMRI correlation matrices Γn ∈ RP×P.

Traditional convolutional layers assume a spatial contiguity of the input

features, as in the case of 2-D images. This assumption breaks down in general

graphs, as node orderings may be arbitrary. Thus, graph convolutional net-

works define a layer-wise propagation rule designed to aggregate information

efficiently at each node based on the underlying graph topology [239, 237].

Figure 8.1: Our M-GCN framework for predicting phenotypic measures Green
Box: Graph Convolutional Model for Representation Learning from Multimodal
Connectomics Data. Blue Box: Fully Connected Artificial Neural Network to map to
phenotypic measures.
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For a generic input signal Xl−1 ∈ RP×Cl−1 , a graph filtering operation can be

formulated as follows:

Xl = ϕ(LXl−1W) = ϕ(D̃− 1
2 ÃD̃− 1

2 Xl−1W) (8.1)

where Ã = IP + A; D̃ii = ∑
j

Ãij (8.2)

where W ∈ RCl−1×Cl denotes the filter weights, IP is an identity matrix of di-

mension P, and L = D̃− 1
2 ÃD̃− 1

2 is the graph Laplacian of the reparameterized

adjacency matrix Ã and degree matrix D̃. The authors of [237] demonstrate

that Eq. (8.2) is a first order approximation to spectral filtering in the graph

Fourier domain.

Inspired by Eq. (8.2), we define a graph filtering operation that acts on the

input functional connectivity matrix Γn to generate a connectivity embedding

H1,m
n ∈ RP×P as follows:

H1,m
n (i, j) = ϕ

(︂
(wm

r )
TLnΓn(:, j) + Γn(i, :)Lnwm

c + b1
)︂

m ∈ {1, . . . M} (8.3)

Here, M is the number of channels, each parametrized by a row and column

filter wm
r , wm

c ∈ RP×1 and a bias term b1 ∈ RP×1, resulting in a total of

(2P + 1) learnable parameters per channel. Effective, H1,m
n (i, j) computes a

weighted sum of the functional connectivity profile of nodes i and j, further

regularized by the DTI graph Laplacian Ln. Conceptually, Eq. (8.3) is similar

to the cross shaped E2E filters in [44]. We also note that, despite the symmetry

of the correlation matrices Γn, the embedding H1,m
n can be assymmetric. This

allows us to account for any laterality in functional subsystems.
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Following the connectome embedding in Eq. (8.3), we use two more graph

convolutional layers with pooling to first compute a node-wise representation

H2
n ∈ RP×1 and a whole-graph embedding H3

n ∈ RD×1. Mathematically,

these operations can be represented as:

H2
n = ϕ

(︂
∑
m

LnH1,m
n fm + b2

)︂
H3

n = ϕ
(︂

GLnH2
n + b3

)︂
(8.4)

The filter weights are parameterized by the vectors fm ∈ RP×1 per M

channel, the graph embedding matrix G ∈ RD×P, and the bias terms b2 and

b3 respectively. In total, these layers add another (M + D)P + 2 learnable

parameters. Eq. (8.4) parallels the computation of centrality measures in

graph theoretic literature by summarizing node-wise information based on

functional similarity, as guided by structure. Finally, our graph embedding

H3
n is input to an ANN to map to the phenotypic measures yn ∈ RS×1 for

patient n. The ANN is a simple three layered fully connected network of sizes

D × K1, K1 × K2 and K2 × S.

8.3 Model Evaluation

8.3.1 Implementation Details:

We train our M-GCN on a combination of ℓ2 loss and ℓ1 loss between the

predicted ŷn and true measures yn:

L =
1

NS

N

∑
n=1

[︂
||yn − ŷn||2 + ||yn − ŷn||1

]︂
(8.5)
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The ℓ1 loss function has been shown to be more robust to outliers as compared

to the ℓ2 loss [240], but less stable during training due to the lack of smoothness

near the optimal solution [241]. We found that this combined loss empirically

provided a good tradeoff between stability and generalization. Layer sizes

for the M-GCN were set to M = 32 channels for the connectome embedding,

D = 256 for the graph embedding and {K1, K2} = 128, 30, as we found

these choices to be sufficient to map the connectomics data to the phenotypic

measures during training. We chose a LeakyReLU (ϕ(x) = max(0, x) + 0.1 ∗

min(0, x)) as the activation function with our network layers, which we found

empirically robust to saturation and exploding gradients during training.

We train our M-GCN via stochastic gradient descent (SGD) algorithm with

momentum (δ = 0.9), batch size = 16, with an initial learning rate of 0.001

decayed by 0.9 every 10 epochs. Additionally, we utilize a weight decay of

0.001 as regularization and train our network for 40 epochs to avoid overfitting.

All parameters were determined based on a validation set of 30 additional

patients from the HCP dataset. We carried forward the same settings to the

KKI dataset.

8.3.2 Baselines

We compare the predictive performance of our network against the following

baselines:

Multimodal ANN: We use a four layer ANN that maintains the same number

of parameters, activation, and loss function as the M-GCN. It operates on

the vectorized P × (P − 1)/2 rs-fMRI correlations, each multiplied by the
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corresponding entry of the DTI Laplacian Ln. This baseline evaluates the

benefit of maintaining the graph structure of the data.

rs-fMRI only GCN: We use the same architecture as our M-GCN but omit the

graph Laplacian in Eqs. (8.3-8.4). This baseline evaluates the benefit of DTI

regularization.

BrainNetCNN: We integrate multimodal connectivity data via the Brain-

NetCNN [44], originally designed to predict cognitive outcomes from DTI

data. We modify this architecture to have two branches, one for the rs-fMRI

correlation matrices Γn, and another for the DTI Laplacians Ln. The ANN is

modified to output S measures of clinical severity. We set the hyperparameters

according to [44]

Dictionary Learning + ANN: The integrated framework in [160] uses static

rs-fMRI correlation matrices (Γn) to simultaneously predict multiple clinical

or behavioral measures. The model combines a dictionary learning generative

term with a neural network predictor. The two blocks are optimized jointly in

an end-to-end fashion.

Dynamic Deep-Generative Hybrid: The framework in [164, 165] uses a simi-

lar joint optimization strategy but operates on dynamic rs-fMRI correlation

matrices {Γt
n} and incorporates DTI regularizer in the dictionary learning term.

Overall, these last two baselines evaluate the benefit of GCNs for implicit

representational learning over a classical decomposition strategy. We have

followed the guidelines provided by the authors to set the hyperparameters

and train both of these baselines.
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Meas. Method MAE Test NMI Test

CFIS

Mult. ANN 14.06 ± 10.16 0.61
rs-fMRI only GCN 14.16 ± 8.96 0.54

BrainNetCNN 17.90 ± 17.55 0.58
Dict. Learn. + ANN 15.26 ± 13.99 0.66

Dyn. Deep-Gen. Hyb. 16.31 ± 15.43 0.67
Our Framework 12.87 ± 9.65 0.73

Table 8.1: HCP Dataset: Evaluation using the Median Absolute Error (MAE), Nor-
malized Mutual Information (NMI) for the test set. Best performance is highlighted
in bold.

8.4 Experimental Results

We validate this framework on 275 healthy individuals from the Human Con-

nectome Project and our in-house ASD dataset to predict cognitive measures

and behavioral deficits respectively. For both datasets, we again use the Auto-

matic Anatomical Labeling (AAL) atlas [142] to define 116 cortical, sub-cortical

and cerebellar brain ROIs for both the functional and structural connectivity

matrices. We also subtract the first eigenvector from the rs-fMRI correlation

matrices, which is a roughly constant bias, and use the residual matrices as

the inputs to all models.

8.4.1 Population Studies

8.4.2 Predicting CFIS:

Table 8.1 (and Fig. 8.2) illustrates our method and baselines for predicting

CFIS for the HCP dataset in a five-fold cross validated setting. We quantify the

performance via the Median Absolute Error (MAE), the Normalized Mutual

Information (NMI) between the actual and predicted measures. Lower MAE
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and higher NMI. indicate better performance. The training performance is

good for all methods. However, the M-GCN clearly outperforms the baselines

when generalizing to unseen testing data. As a benchmark, our validation

performance (Test MAE: 13.41 ± 8.17, NMI Test: 0.71) also provides similar

generalization.

8.4.3 Multidimensional Clinical Severity Prediction:

Table 8.2 (and Fig. 8.3) compares the multi-output prediction performance

of ADOS, SRS, and Praxis on the KKI dataset for a five fold cross validation.

Again, we observe that the M-GCN outperforms the baselines for the predic-

tion of all three severity measures in almost every case. Note that, from a

Figure 8.2: HCP Dataset: Prediction of Cognitive Fluid Intelligence Score by (a) Red
Box: M-GCN (b) Black Box: rs-fMRI only GCN (c) Light Blue Box: Multimodal
ANN (d) Green Box: BrainNet CNN (e) Purple Box: Dictionary Learning + ANN (f)
Dark Blue Box: Dynamic Deep-Generative Hybrid
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Figure 8.3: KKI Dataset: Multi-output prediction by Left: ADOS Middle: SRS Right:
Praxis by (a) Red Box: M-GCN (b) Black Box: rs-fMRI only GCN (c) Light Blue
Box: Multimodal ANN (d) Green Box: BrainNet CNN (e) Purple Box: Dictionary
Learning + ANN (f) Dark Blue Box: Dynamic Deep-Generative Hybrid

222



Meas. Method MAE Test NMI Test

ADOS

Mutl. ANN 2.96 ± 2.30 0.30
rs-fMRI only GCN 3.14 ± 2.25 0.41

BrainNetCNN 3.50 ± 2.20 0.25
Dict. Learn. + ANN 2.71 ± 2.40 0.43

Dyn. Deep-Gen. Hyb. 2.84 ± 2.79 0.34
Our Framework 2.71 ± 2.15 0.45

SRS

Mult. ANN 18.47 ± 11.04 0.60
rs-fMRI only GCN 21.34 ± 8.58 0.62

BrainNetCNN 18.96 ± 15.65 0.75
Dict. Learn. + ANN 16.79 ± 13.83 0.89

Dyn. Deep-Gen. Hyb. 17.81 ± 16.09 0.88
Our Framework 16.50 ± 9.44 0.85

Praxis

Mult. ANN 17.12 ± 16.66 0.65
rs-fMRI only GCN 16.71 ± 16.66 0.74

BrainNetCNN 15.15 ± 11.49 0.19
Dict. Learn. + ANN 13.19 ± 10.75 0.82

Dyn. Deep-Gen. Hyb. 13.50 ± 11.55 0.85
Our Framework 12.82 ± 12.04 0.86

Table 8.2: KKI Dataset: Evaluation using the Median Absolute Error (MAE), Nor-
malized Mutual Information (NMI). Best performance is highlighted in bold. Near
misses are underlined.

clinical standpoint, generalization to prediction of multiple deficits is inher-

ently more challenging than predicting a single phenotypic measure. This also

partially accounts for the poor performance of some of the baselines, where

they perform reasonably well for the prediction of one of the measures (for

example, the rs-fMRI only GCN for ADOS), but at the expense of generaliza-

tion onto the other two measures. Overall, our experiments on two different

real world datasets allude to reproducibility and suggest that the M-GCN

generalizes effectively even with modest training sample sizes. Moreover, the

performance gains against the M-GCN baseline without the DTI indicate the

benefit provided by the multimodal integration via our graph convolutional
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framework.

8.4.4 Extracting Clinical Biomarkers:

The representations learned by the row and column filter pairs wr and wc at

the input layer of the M-GCN (i.e. Eq. (8.3)) may illuminate key biomarkers

for each population. We first match the filter pairs across the cross validation

folds based on the average correlation coefficient between the row and column

filter weights. Fig. 8.4 illustrates four filter pairs out of 32 that appear most

frequently across subsets of the HCP and KKI dataset. In each case, we plot

the average row filter (RF) and column filter (CF) weights projected onto the

corresponding regions of the AAL atlas. Compared with the filters learned

by the rs-fMRI only GCN (Fig. 8.5), the DTI regularization in the M-GCN

offers sparsity and better spatial selectivity in the patterns captured. For the

HCP dataset (Fig. 8.4 (a)), we observe that RF1, RF2, CF1 and CF2 display

contributions from regions of the Default Mode Network (DMN), known

to play a critical role in consolidating working memory [183] and is widely

inferred within the resting state literature. RF3 and CF3 highlight regions of

the Frontoparietal Network (FPN) and the Medial Prefrontal Network (MPN),

believed to play a role in working memory, attention and decision making,

which are associated with cognitive intelligence [186]. CF4 highlights regions

from the Somatomotor Network (SMN) while RF4 includes subcortical and

cerebellar regions. Together, these are believed to be important functional

biomarkers of cognitive intelligence in literature [189]. For the KKI dataset

(Fig. 8.4 (b)), we observe that RF1, CF1, CF2 and CF4 highlight areas from the
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Figure 8.4: Four pairs of row & column filter weights learned by the M-GCN on the
(a) HCP dataset and (b) KKI dataset. The colorbar quantifies the filter weight for each
AAL ROI.

DMN and SMN. Altered connectivity within these regions is widely reported

in ASD literature [98]. RF3, RF4 and CF4 also highlight contributions from

the higher order visual processing areas and sensorimotor regions, which

are in line with findings of reduced visual motor integration in Autism [98].

RF3, RF4 and CF4 also display contributions from subcortical regions along

with the prefrontal cortex and DMN, which is believed to be relevant to

social-emotional regulation in ASD [191].
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Figure 8.5: Four pairs of row & column filter weights learned by the rs-fMRI only
GCN on the (a) HCP dataset (b) KKI dataset. The colorbar quantifies the filter weight
for each AAL ROI. In contrast, the patterns in Fig. 3 are sparser and display lesser
overlap across filters

8.5 Summary

This work introduces a novel multimodal graph convolutional framework to

leverage complementary information from functional and structural connec-

tivity. Our M-GCN is designed to effectively utilize the underlying anatomical

pathways to learn rich representations from functional connectivity data that

are simultaneously informative of multidimensional phenotypic character-

izations. We demonstrate that this framework is able to learn effectively

from limited training data and generalize well to unseen patients. Finally,
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our framework makes minimal assumptions, and can potentially be applied

to study other neuro-psychiatric disorders (eg. ADHD, Schizophrenia) as a

diagnostic tool.
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