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Abstract. We propose a unified Bayesian framework to detect both
hyper- and hypo-active communities within whole-brain fMRI data. Our
model characterizes population-level differences in functional synchrony
between a control and clinical group. We use a variational EM algorithm
to solve for the latent posterior distributions and parameter estimates.
We demonstrate that our method provides valuable insights into the
neural mechanisms underlying social dysfunction in autism, as verified
by the Neurosynth meta-analytic database. In contrast, both univariate
testing and standard community detection via recursive edge elimination
fail to identify stable functional communities associated with autism.

1 Introduction

Statistical analysis of fMRI activation patterns allow us to pinpoint functional
differences induced by neurodevelopmental conditions, such as Autism Spec-
trum Disorder (ASD). While this approach informs us about localized cognitive
deficits, there is increasing evidence that ASD reflects distributed impairments
across multiple brain systems [1]. These findings underscore the importance of
network-based methodologies for functional data. Here, we present a novel frame-
work to extract both hyper- and hypo-active communities from task fMRI.

Community detection is the process of identifying highly interconnected sub-
graphs within a larger network; these nodes share common properties and are
crucial to understanding the organization of complex systems [2, 3]. Most com-
munity detection algorithms are greedy and/or hierarchical procedures that opti-
mize surrogate measures of cluster strength, such as modularity and information
compression [3, 4]. Modularity-based approaches have recently been applied to
fMRI data [5, 6]. Broadly, these works estimate a hierarchical community orga-
nization independently within each subject and use a post-hoc cluster matching
procedure to perform group-level analysis. While promising, the results depend
on preselected thresholds and subroutines (i.e., adjacency matrix construction
and subgraph alignment). Moreover, since these methods do not impose topolog-
ical constraints on group differences, the clinical findings are difficult to interpret.
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Fig. 1. Hierarchical model of community structure for K = 2. The label Ri indicates
whether region i is healthy (white) or whether it belongs to one of the two abnormal
communities (red). The binary variable Yk denotes either a hyper-active (purple) or
hypo-active (yellow) subgraph k. The neurotypical template {Fij} provides a baseline
functional architecture for the brain, whereas the clinical template {F̄ij} describes the
latent organization of ASD. The green connections 〈i, j〉 are unchanged from baseline;
the purple and yellow lines signify heightened and reduced synchrony, respectively.
Each template generates a set of subject observations {Bl

ij} and {B̄m
ij } for the group.

Our approach differs from prior work in three crucial ways. First, we propose
a unified generative model that describes the relationship between population
templates and individual subject observations. Second, we perform community
detection in the space of group-level functional differences, which allows us to
identify both hyper- and hypo-active subgraphs. Finally, our framework can si-
multaneously detect multiple abnormal communities of varying type. We demon-
strate our method on an fMRI study of social perception in autism.

ASD is characterized by impaired social reciprocity, communication deficits,
and repetitive/stereotyped behavior. Task fMRI studies reveal an inconsistent
pattern of altered connectivity between the cortex and limbic structures [7]. How-
ever, the analyses are restricted to predefined neural systems and do not reflect
whole-brain information. At present, network analysis of ASD has focused on
aggregate measures of degree and centrality [8], which fail to pinpoint a concrete
etiological mechanism for the disorder. In contrast, our method robustly identi-
fies hyper- and hypo-active subnetworks that map onto key functional domains,
in which autistic individuals exhibit strengths and vulnerabilities, respectively.

2 Generative Model of Abnormal Communities

Our model assumes that altered whole-brain functional synchrony can be decom-
posed into K non-overlapping communities. Each community is associated with
a binary label Yk that indicates either a hyper-active (Yk = 1) or a hypo-active
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(Yk = −1) subgraph. In this work Yk is specified a priori by the user for greater
control over the results. This level of input is akin to setting the number of clus-
ters or dictionary components in an unsupervised learning scenario; it further
enables us to explore the network evolution in the absence of ground truth. If
desired, it is straightforward to model Yk as an unknown random variable.

We use multinomial variables Fij and F̄ij to denote the latent functional
synchrony between regions i and j in the neurotypical and ASD groups, respec-
tively. Empirically, we find that three states: low (Fij = 0), medium (Fij = 1),
and high (Fij = 2), best capture the dynamic range and variability of our fMRI
data. The conditional relationships are defined such that F̄ij > Fij within a
hyper-active community, and F̄ij < Fij within a hypo-active community.

The fMRI metrics Bl
ij for subject l and B̄m

ij for subject m are noisy observa-
tions of the underlying latent structure. Fig. 1 outlines the generative process.
While the variables are similar to [9], our framework identifies interconnected
subgraphs, and it distinguishes between hyper- and hypo-active functional syn-
chrony. These two properties describe a fundamentally different abnormal net-
work topology, which has not been captured by prior Bayesian models.

Node Selection: The multinomial variable Ri indicates whether region i is
healthy (Ri = 0), or whether it belongs to an abnormal community k. We
assume an i.i.d. multinomial prior for Ri as follows:

P (Ri = k;πr) = πr
k, k = 0, . . . ,K (1)

The unknown parameters πr
k are shared by all regions in the network.

Latent Network Topology: The latent functional synchrony Fij denotes the
co-activation between regions i and j in the neurotypical template. As previously
described, Fij is modeled as a tri-state random variable. The multinomial prior
is i.i.d. across all pairwise connections, i.e., P (Fij = s;πf ) = πf

s , ∀s = 0, 1, 2.
The clinical variable F̄ij depends on the control template Fij and the abnor-

mal communities defined by the region labels R and subgraph type Y . To better
understand the conditional distribution P (F̄ij |Fij , R, Y ), it is convenient to de-
fine an auxiliary variable Tij , which indicates a healthy (Tij = 0) or abnormal
(Tij = 1) edge 〈i, j〉 between member nodes of a community. Mathematically,

P (Tij = 1|Fij , Ri, Rj , Y ; η) =


η, Ri = Rj > 0, Yk = 1, Fij < 2,

η, Ri = Rj > 0, Yk = −1, Fij > 0,

0, Otherwise.

(2)

As seen, Tij is Bernoulli with parameter η if both regions are in the same commu-
nity, with the exception of border conditions Yk = 1, Fij = 2 and Yk = −1, Fij =
0, in which case Tij = 0. Eq. (2) is a special case of the planted `-partition
model [3], where η controls the density of edges within the community.

Ideally, F̄ij = Fij for healthy edges. Conversely, if Tij = 1, then F̄ij > Fij

for Yk = 1, and F̄ij < Fij for Yk = −1. However, we assume a second level of
noise, in which the parameter ε controls the probability of deviating from the
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Ri = Rj = k > 0 and Yk = 1

F̄ij

0 1 2

0 (1 − η)(1 − ε) + ηε (1 − η)(ε/2) + η
(
1−ε
2

)
(1 − η)(ε/2) + η

(
1−ε
2

)

1 ε/2 (1 − η)(1 − ε) + η(ε/2) (1 − η)(ε/2) + η(1 − ε)Fij

2 ε/2 ε/2 1 − ε

Ri = Rj = k > 0 and Yk = −1

F̄ij

0 1 2

0 1 − ε ε/2 ε/2

1 (1 − η)(ε/2) + η(1 − ε) (1 − η)(1 − ε) + η(ε/2) ε/2Fij

2 (1 − η)(ε/2) + η
(
1−ε
2

)
(1 − η)(ε/2) + η

(
1−ε
2

)
(1 − η)(1 − ε) + ηε

Table 1. Conditional density tables P (F̄ij |Fij , R, Y ; η, ε) for hypo-active (top) and
hyper-active (bottom) communities.

above rules. Marginalizing out the graph {Tij} to better estimate the community
assignments Ri yields the conditional relationships in Table 1.

Finally, if regions i and j are not in the same community, then Tij = 0
according to Eq. (2). Representing Fij and F̄ij as length three indicator vectors,
such that FT

ij F̄ij ∈ {0, 1}, we obtain the following baseline distribution:

P (F̄ij |Fij , {Ri 6= Rj |Ri = Rj = 0}; ε) = (1− ε)FT
ij F̄ij

( ε
2

)1−FT
ij F̄ij

(3)

Data Likelihood: The fMRI correlation Bl
ij for subject l is a noisy observa-

tion of the functional template Fij . We assume a conditional Gaussian distribu-
tion, with mean and variance controlled by the latent synchrony: P (Bl

ij |Fij =

s; {µ, σ2}) = N
(
Bl

ij ;µs, σ
2
s

)
. The likelihood for an ASD patient B̄m

ij has the
same functional form and parameter values but relies on the clinical template
F̄ij . Notice that we are modeling the data observations as a mixture of Gaussians,
which can be used to represent non-Gaussian correlation values [10].

Variational Inference: Let Θ = {πr, πf , η, ε, µ, σ2} denote the collection of
non-random model parameters, and recall that the subgraph types Yk are given.
We combine the prior and likelihood terms to obtain the joint density of latent
and observed variables: P (R,F, F̄ , B, B̄|Y ;Θ). The community assignments Ri

induce a complex coupling across pairwise connections 〈i, j〉. Therefore, we em-
ploy a variational EM framework [11] to infer the approximate posterior Q(·)
and corresponding parameters Θ that minimize the variational free energy

F = −EQ[logP (R,F, F̄ , B, B̄|Y ;Θ)]−H(Q). (4)
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Notice that −F is a lower bound to the marginal log-likelihood P (B, B̄|Y ;Θ).
Our approximate posterior assumes the following factorized form:

Q(R,F, F̄ ) =

N∏

i=1

qri (Ri; β̃i)
∏

edges 〈i,j〉
qcij(Fij , F̄ij ; ν̃ij), (5)

where qri (·) is a multinomial distribution with K+1 states, parameterized by β̃i.
Likewise, qcij(·) is a multinomial distribution with 9 states, parameterized by ν̃ij ,
accounting for the 9 configurations in Table 1. Eq. (5) preserves the dependency
between Fij and F̄ij and is scalable to accommodate a large number of regions N .

During the E-step, we fix Θ and iteratively update the elements of Q(·) to
minimize the variational free energy. The iterations for ν̃ij can be expressed

in closed form given β̃. However, the updates for β̃i are coupled. Therefore,
we perform an inner fixed-point iteration until convergence of the region pos-
terior distribution. In the M-step we estimate the model parameters Θ given
Q(R,F, F̄ ). The updates for {πr, πf , µ, σ2} parallel those of a Gaussian mixture
model. We jointly update the concentration η and noise ε via Newton’s method.

We emphasize that given Y , and hence the number of communities K, both
the posterior distribution and the model parameters are estimated directly from
the observed data. We do not tune any auxiliary parameters or thresholds.

Estimating the Abnormal Networks: The idealized graph of functional dif-
ferences {Tij} provides valuable insights into the topological properties of each
abnormal community. We can retrospectively approximate these variables based
on the maximum a posteriori (MAP) solution for R and the parameter estimates
Θ̂. Specifically, given R and Y , our model decouples by pairwise connection, so
we can assign each Tij independently. Furthermore, Eq. (2) implies that Tij = 0
for Ri 6= Rj and Ri = Rj = 0. For the remaining case (Ri = Rj > 0), we can
select the value Tij ∈ {0, 1} according to the following optimization problem:

T̂ij = arg max
T

EQ

[
logP (T |Fij , F̄ij , R̂

MAP , Y ; η̂, ε̂)
]
. (6)

The right-hand side of Eq. (6) can be computed by multiplying the natu-
ral logarithm of entries in Table 1 with the corresponding variational posterior
parameter ν̃ij and summing across all nine configurations of {Fij , F̄ij}. Eq. (6)
weighs the density of edges in the idealized communities η against the latent
noise ε, which encourages deviation of the functional templates.

Model Evaluation: The marginal distribution qri (Ri; β̃i) informs us whether
region i is healthy or if it belongs to one of the K abnormal communities. We
evaluate the robustness of these region assignments via bootstrapping. In par-
ticular, we fit the model to random subsets of the data, such that the ratio of
neurotypical controls to ASD patients is preserved. Each subset contains only
80% of the total number subjects. We re-sample the data subsets 50 times and
average the region posterior probability estimates across the runs.
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The Neurosynth database (www.neurosynth.org) provides an unbiased and
comprehensive evaluation of the functionality supported by each hyper- and
hypo-active community. Given a distributed activation pattern, the meta-analytic
framework enables us to perform a reverse inference by computing the posterior
probability P (Feature|Activation) for individual psychological features [12]. For
each of the detected communities, we computed the region-wise Pearson corre-
lation with the statical maps obtained for each of the 3,099 Neurosyth feature
terms; words with correlation above the default threshold (r > 0.001) were
retained. The corresponding topics were automatically generated by the Neu-
rosynth inference engine via Latent Dirichlet Allocation (LDA).

Finally, we present results from a simulated experiment, which demonstrates
that our variational EM algorithm recovers the ground truth region labels. Here,
the subject correlations are generated according to Fig. 1 using the noise statis-
tics and community organization observed in our fMRI dataset.

Baseline Methods: We compare our generative model with two alternative
techniques: statistical testing and a well-known community detection procedure,
which prunes edges from the original network. Such analyses evaluate the benefit
of explicitly modeling both hyper- and hypo-active communities.

The two sample t-test confirms or rejects the null hypothesis that the group
means of a given task fMRI correlation are equal. The corresponding p-value is
computed via the Student-t distribution and quantifies the statistical significance
of the result. In this experiment, we vary the significance threshold to determine
whether the univariate functional differences naturally exhibit an underlying
community structure, and whether these connections organize by type.

The seminal method of [13] iteratively removes edges from the network in
order to discover community structure. The edges are selected according to a
current-flow betweenness measure, which favors connections that lie between
communities rather than ones that span a single community. Mathematically,
consider the electrical circuit created by placing a unit resistance on each edge
of the network and a unit current source and unit current sink at a given pair of
vertices (s, t). Let A denote the binary adjacency matrix for the network, such
that Aij = 1 if nodes i and j are connected by an edge and Aij = 0 otherwise.
The diagonal matrix D captures the vertex degrees: Dii =

∑
j Aij . Let vi be

the voltage at node i. Then, by Kirchhoff’s laws we have

∑

j

Aij(vi − vj) = δs(i)− δt(i) (7)

where nodes s and t correspond to the source and sink, respectively, and δv(·) is
a unit impulse with mass at vertex v. Eq. (7) can be written in matrix form as

(D−A)v = z (8)

such that zi = 1 if i = s (source), zi = −1 if i = t (sink), and zi = 0 otherwise.
We can invert the graph Laplacian (D − A) in Eq. (8) by selecting a ground
vertex g and removing the corresponding row and column (vg = 0 by default).
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Fig. 2. Results across 50 synthetic trials. Left: Errors in region assignment corre-
sponding to the probability of false alarm (Pfa), the probability of a miss (Pmiss) and
the probability of an abnormal region being assigned to the wrong community (Pwa).
Right: Inverse relationship between Pmiss and the minimum community size.

Our final betweenness score is the absolute difference in voltage along each edge,
as summed over all source/sink pairs in the network. During each iteration,
we remove the edge 〈i, j〉 with the highest current-flow betweenness and then
recalculate these measures based on the reduced graph.

The above community detection procedure requires a sparse binary input
graph A that describes the group-wise functional differences. Rather than av-
eraging and thresholding the fMRI correlation values, we construct A via the
Bayesian connection model described in [10]. Specifically, Aij = 1 if the posterior
probability that the latent functional connectivity templates differ exceeds 0.5.
We take this approach because data thresholding introduces nonlinear dependen-
cies into the analysis, which are known to bias network results [14]. Moreover,
since the fMRI likelihood in [10] is the same as in this work, we can directly
evaluate the gain from our community priors in Eq. (1) and Table 1.

3 Social Perception in Autism

Synthetic Validation: We generate subject observations from our Bayesian
model that have the same signal-to-noise ratio and community properties as the
maximum likelihood solution from the clinical experiment. In particular, we set
(µ1 − µ0) = 0.13, (µ2 − µ1) = 0.2, σ2

0 = 0.07 and σ2
1 = σ2

2 = 0.06 for the data
likelihood. Notice that there is significant overlap in the data distributions for
the three latent connectivity states, i.e, the standard deviation of each Gaussian
is 2-3 times greater than the separation between the means. We mimic the or-
ganization of our clinical dataset by specifying an underlying network with 150
regions and sampling 50 subjects in each population. The latent concentration
and noise parameters are fixed at η = 0.5 and ε = 0.03, respectively.

We assume one hyper-active and one hypo-active community (K = 2). Dur-
ing each trial, we uniformly sample the region prior πr such that 11 − 16% of
regions belong to each abnormal cluster. We generate the random variables in the
following order R → F → F̄ → B → B̄ and use the variational EM algorithm
to infer the region posterior distribution qri (Ri; β̃i). Fig. 2 (left) illustrates the
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Fig. 3. Snapshot of the
coherent biological motion
(left) and scrambled motion
(right) visual stimuli.

average errors across 50 random trials. As seen, the probability of a false alarm
or wrong assignment is negligible. While the probability of a missed detection
is slightly higher, the median error is only 7%, and the 75th percentile error is
under 9%. This error can likely be attributed to the data overlap. Fig. 2 (right)
suggests an inverse relationship between the detection error and the minimum
community size. Intuitively, larger communities have more abnormal edges and
are easier to identify, whereas smaller communities can be overwhelmed by noise.

Biopoint Dataset: We demonstrate our methods on a clinical study of 72 ASD
children and 43 age-matched (p > 0.124) and IQ-matched (p > 0.122) neurotyp-
ical controls. For each subject, a T1-weighted scan (MPRAGE, TR = 1900ms,
TE = 2.96ms, flip angle = 9◦, res = 1mm3) and a task fMRI scan (BOLD,
TR = 2000ms, TE = 25ms, flip angle = 60◦, res = 3.44 × 3.44 × 4mm, 164
volumes) were acquired on a Siemens MAGNETOM Trio TIM 3T scanner.

The experimental paradigm features coherent and scrambled point-light an-
imations created from motion capture data. The coherent biological motion de-
picts an adult male actor performing movements relevant to early childhood
experiences [15]. The scrambled animations combine the trajectories of 16 ran-
domly selected points from the coherent displays. Snapshots of these stimuli are
illustrated in Fig. 3. Six biological motion clips and six scrambled motion clips
were presented without audio in an alternating-block design (24s per block).

We segment the anatomical images into 150 cortical and sub-cortical regions
based on the Destrieux atlas in Freesurfer [16]. The fMRI data was preprocessed
using FSL [17]. The pipeline consisted of: 1) motion correction using MCFLIRT,
2) interleaved slice timing correction, 3) BET brain extraction, 4) spatial smooth-
ing with FWHM 5mm, and 5) high-pass temporal filtering. The functional and
anatomical data were registered to the MNI152 standard brain. The fMRI mea-
sure Bl

ij is computed as the Pearson correlation coefficient between the mean
time courses of regions i and j. For regularization, we center the correlation
distribution of each subject and fix µ1 in subsequent analysis. We randomly ini-
tialize the variational EM algorithm 10 times and select the optimal F solution.

Abnormal Communities: Due to space constraints, we focus on a single con-
figuration of subnetwork types {Yk}. Fig. 4 presents two abnormal communities
inferred by our model. We have specified one hyper-active cluster (Y1 = 1) and
one hypo-active cluster (Y2 = −1). Recall that these subnetworks reflect atypical
functional synchrony across the entire stimulus paradigm.

The hyper-active community is depicted in red and concentrates in the left
superior temporal sulcus (STS), the visual cortex, and the somatosesory cortex.
Conversely, the blue regions indicate hypo-synchrony. As seen, they localize to
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Fig. 4. Abnormal communities inferred by our Bayesian model for K = 2, assum-
ing Y1 = 1 and Y2 = −1. Left: Region membership in each community. Red indi-
cates hyper-synchrony, and blue areas delineate the hypo-active cluster. Right: Esti-
mated network of abnormal functional synchrony. Nodes correspond to regions within
each community. Blue lines signify reduced functional synchrony in ASD across the
paradigm; magenta lines denote increased functional synchrony in ASD.
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Fig. 5. Average marginal posterior probability qri (·) for each community across 50
random samplings of the fMRI data. Each subset includes 80% of the subjects, such
that the ratio of ASD patients to neurotypical controls is preserved. The colorbar
denotes the average posterior probability q̄ri for each region i.

the bilateral ventral prefrontal cortex (vPFC), insula, and posterior cingulate.
The hypo-active network also includes subcortical activations in the caudate and
amgydala, which are not shown on the cortical surface plots. The corresponding
network diagrams [18] reveal increased synchrony between temporal and occip-
ital nodes (magenta lines), along with reduced synchrony between the frontal
and parietal nodes (blue lines). These results support a view of impaired social
communication in ASD. Consistent with neurocognitive findings, Fig. 4 suggests
hyper-connectivity, and perhaps hyper-functionality, in a visual perception net-
work. Hypo-active circuits include two networks that are well known for their
role in social cognition and the high-level interpretation of social stimuli [1].

Fig. 5 reports the average posterior probability q̄ri (·) of each region across 50
resamplings of the data. We have displayed only the regions for which q̄ri > 0.3,



10 Venkataraman et al.

p < 0.01 p < 0.005 p < 0.001

Fig. 6. Population differences in functional connectivity when varying the significance
threshold. Blue lines denote a lower average correlation across ASD patient than for
neurotypical controls. Magenta lines signify the opposite relationship.

Original Remove 80 Remove 160 Remove 240

Fig. 7. Community detection based on current-flow betweenness. Left to right depicts
the original network of pairwise functional differences (294 edges) and the iterative
removal of 80, 160 and 240 edges. Blue lines correspond to reduced functional synchrony
in ASD; magenta lines denote increased functional synchrony in ASD.

thereby emphasizing the most prominent patterns. Favorably, our bootstrapping
analysis consistently recovers both the red hyper-active and blue hypo-active
communities in Fig 4. Additionally, subgraph 2 uncovers medial activations in the
right hemisphere that are not present in Fig. 4. This behavior suggests that while
some regions are weakly implicated by the data, they are not included in the full
variational EM solution. Despite the inconsistency, the level of reproducibility
in Fig. 5 has not been demonstrated in prior fMRI studies of ASD.

Baseline Comparison: Figs. 6 and 7 illustrate the connectivity differences
based on the two sample t-tests and the current-flow betweenness algorithm,
respectively. For ease of visualization, we have colored each pairwise connection
such that blue corresponds to reduced synchrony in ASD, and magenta denotes
increased synchrony in ASD. However, we do not treat the high and low connec-
tions differently when applying the baseline methods.

In Fig. 6 we threshold the (uncorrected) p-value to enforce different levels
of statistical significance. As an aside, none of the connections survive a false
discovery rate (FDR) correction for multiple comparisons, which suggests that
the univariate functional differences are relatively weak in our dataset. Similar
to Fig. 4, we observe interconnected magenta lines in STS region and a high
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Fig. 8. Correlation values of the top 9
features for each network based on the
Neurosynth database. These topics repre-
sent the specificity of neurocognitive func-
tions derived from meta-analytic decoding.
Red corresponds to the hyper-active com-
munity, and blue denotes the hypo-active
subgraph. These networks map onto func-
tional domains that highlight both the rela-
tive strengths (basic visual processing) and
vulnerabilities (interpreting social cues and
emotional processing) of ASD, respectively.

concentration of blue lines in the default mode and precentral cortices for p <
0.01. There is also a second magenta cluster in the left frontal regions. Reducing
the threshold to p < 0.005 prunes some of the connections; however, the frontal
areas no longer exhibit a clique-like organization. Finally, the result for p < 0.001
contains isolated groups of vertices rather than a unified network.

The original network in Fig. 7 consists of 294 edges, which corresponds to
connection-wise latent functional differences, as computed via [10]. We notice
that this graph is a superset of the connections in Figs. 4, 6. However, pruning
the edges according to the current-flow betweenness measure does not reveal
interconnected communities. For example, despite removing 80% of the edges in
the rightmost figure, the overall number of nodes is fairly similar to the original
network. Hence, we cannot identify a natural stopping point for the algorithm.

Neurosynth Results: The polar plot in Fig. 8 illustrates the top nine meta-
analytic constructs implied by the regions in each community, as inferred by
our generative model. These mental states expose a clear functional distinction
between the two networks. The hyper-active network maps onto visual percep-
tion and pattern recognition domains; individuals with ASD tend to outperform
their neurotypical peers in such tasks. The hypo-active network implicates areas
of clear deficit in ASD, such as emotion regulation and social communication,
perception and reward. One hypothesis for these results is that ASD children
are more stimulated by the point-light animations but do not interpret them.

4 Conclusion

We have demonstrated that a unified Bayesian framework for abnormal com-
munity detection retrieves key networks associated with ASD. Specifically, we
observe heightened synchrony between visual processing areas of the brain, which
corresponds to a relative strength in autistic individuals. Concurrently, we de-
tect reduced synchrony within social information processing and social motiva-
tion networks; this finding relates to the hallmark socioemotional impairments of
ASD [1]. Unlike prior methods, we explicitly model differences in the global func-
tional organization of the brain, from latent region properties to the observed
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fMRI measures. We use bootstrapping to verify the robustness of our region
assignments. Subsequent decoding via the Neurosynth meta-analytic database
confirms the clinical validity of our results within the neuroimaging literature.
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