When: Nov 30 2023 @ 1:30 PM
Where: Gilman 132
3400 North Charles st
Baltimore, MD 21218

Location: Gilman 132

When: November 30th at 1:30 p.m.

Title: Probabilistic methods to identify multi-scale enrichment in genomic sequencing studies

 Abstract: A consistent theme of the work done in my lab group is to take modern computational approaches and develop theory that enable their interpretations to be related back to classical genomic principles. The central aim of this talk is to address variable selection questions in nonlinear and nonparametric regression. Motivated by statistical genetics, where nonlinear interactions and non-additive variation are of particular interest, we introduce a novel, interpretable, and computationally efficient way to summarize the relative importance of predictor variables. Methodologically, we present flexible and scalable classes of Bayesian models which provide interpretable probabilistic summaries such as posterior inclusion probabilities and credible sets for association mapping tasks in high-dimensional studies. We illustrate the benefits of our methods over state-of-the-art linear approaches using extensive simulations. We also demonstrate the ability of these methods to recover both novel and previously discovered genomic associations using real human complex traits from the Welcome Trust Case Control Consortium (WTCCC), the Framingham Heart Study, and the UK Biobank.

Zoom link: https://wse.zoom.us/j/94601022340