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Studies of vortical interactions in boundary layers have often invoked the continuous
spectrum of the Orr–Sommerfeld (O-S) equation. These vortical eigenmodes provide
a link between free-stream disturbances and the boundary-layer shear – a link which
is absent in the inviscid limit due to shear sheltering. In the presence of viscosity,
however, a shift in the dominant balance in the operator determines the structure
of these eigenfunctions inside the mean shear. In order to explain the mechanics
of shear sheltering and the structure of the continuous modes, both numerical and
asymptotic solutions of the linear perturbation equation are presented in single- and
two-fluid boundary layers. The asymptotic analysis identifies three limits: a convective
shear-sheltering regime, a convective–diffusive regime and a diffusive regime. In the
shear-dominated limit, the vorticity eigenfunction possesses a three-layer structure,
the topmost being a region of exponential decay. The role of viscosity is most
pronounced in the diffusive regime, where the boundary layer becomes ‘transparent’
to the oscillatory eigenfunctions. Finally, the convective–diffusive regime demonstrates
the interplay between the the accumulative effect of the shear and the role of
viscosity. The analyses are complemented by a physical interpretation of shear-
sheltering mechanism. The influence of a wallfilm, in particular viscosity and density
stratification, and surface tension are also evaluated. It is shown that a modified
wavenumber emerges across the interface and influences the penetration of vortical
disturbances into the two-fluid shear flow.

1. Introduction
The ability of free-stream vortical disturbances to penetrate boundary layers is

curtailed by the mean shear – an inviscid phenomenon known as shear sheltering.
At finite Reynolds numbers, however, the sheltering mechanism is less effective,
and vortical disturbances permeate the shear. The implications are significant
in many engineering and environmental flows. For instance, laminar boundary
layers become prone to bypass transition even at moderate levels of free-stream
turbulence (Morkovin 1969). In atmospheric flows, vortical disturbances due to
thermal convection in clouds can penetrate the lower boundary layer and induce
high-speed gusts (Nakamura, Kershaw & Grait 1996). In two-fluid shear flows,
free-stream disturbances which reach the two-fluid interface appreciably affect the
amplification of interfacial modes (Belcher & Hunt 1998). Our objective is therefore
to explain vortical-mode penetration into single- and two-fluid boundary layers and
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to provide a physical understanding of the mechanics of shear sheltering. The starting
point of our study is the continuous-spectrum eigenmodes of the Orr–Sommerfeld
(O-S) equation and their dependence on the wavenumber, mean shear and viscosity
and density stratification.

1.1. The continuous spectrum

The presence of a continuous spectrum was conjectured by Jordinson (1971). He
computed the eigenspectrum of the O-S equation for a Blasius boundary layer
and commented that the decaying modes form a ‘gently curving line’. Mack
(1976) computed the temporal eigenvalues over a range of Reynolds numbers and
wavenumbers and affirmed the existence of the continuous spectrum by reporting the
phase speed and growth rate associated with these modes. These initial investigations
were numerical. Formal mathematical characterization of the continuous spectrum,
and the analytical expression of its dispersion relation, were later presented by Grosch
& Salwen (1978).

Unlike the discrete eigenfunctions which decay away from the mean shear, the
continuous eigenfunctions remain oscillatory in the free stream and resemble Fourier
modes. Inside the shear, they decay with increasing depth. These modes, therefore,
establish a link between free-stream vortical disturbances and the boundary layer –
a matter of disconcertion in earlier literature in which only a remarkably weak link
could be established (Berger & Aroesty 1977).

Since the work of Grosch & Salwen (1978) the continuous-spectrum modes
have been widely applied in studies of boundary-layer stability. The idea that
decaying eigenmodes of the O-S equation would play such a significant role in
our understanding of flow instability, for instance bypass transition, would have left
many researchers incredulous in the era of Tollmien (1929) and Schlichting (1933),
where the focus of linear stability research was exponentially unstable solutions.

Together with the discrete waves the continuous modes form a complete basis
(Salwen & Grosch 1981). Therefore an arbitrary disturbance can be expressed as a
superposition of O-S eigenfunctions. The completeness of O-S spectrum has been
applied in studies of the evolution of linear disturbances in boundary layers (Salwen
& Grosch 1981), perturbation synthesis (Jacobs & Durbin 2001) and disturbance
analysis (Tumin 2003).

The influence of a particular component of the continuous spectrum on boundary-
layer stability is largely affected by the structure of the eigenfunction and its extent of
penetration into the shear. This penetration is wavenumber-dependent and is limited
by shear sheltering.

1.2. Shear sheltering

The ability of shear to filter high-frequency vortical perturbations is relevant to both
laminar and turbulent flows. In the former, the shear shelters the laminar flow from
external vortical forcing. A similar filtering influences the interaction of small- and
large-scale eddies in turbulent motion (Hunt & Durbin 1999). A scale disparity is,
however, required for shear sheltering to be effective. These conditions were satisfied
in the work of Grosch & Salwen (1978), where the computed eigenfunctions were
high-frequency and, hence, filtered by the mean shear. Their eigenfunctions decayed
exponentially at the edge of the boundary layer. Craik (1991) arrived at a similar
conclusion by carrying out inviscid analysis of mode shapes, using a piecewise linear
mean flow. Despite the difference in Reynolds numbers, both Grosch & Salwen (1978)



Shear sheltering and the structure of vortical modes 113

and Craik (1991) considered the same asymptotic limit in which the shear dominates
the remaining terms in the O-S equation.

Jacobs & Durbin (1998) studied shear sheltering of the continuous O-S modes for a
piecewise linear and infinitely deep boundary layer. Their analysis demonstrated that
penetration is inversely proportional to the Reynolds number Re and the disturbance
frequency ω. Further investigations of mode shapes were primarily numerical and
include Maslowe & Spiteri (2001) and Zaki & Durbin (2006) who examined the
effect of pressure gradient on the continuous modes. The importance of shear
sheltering is also documented experimentally. Hernon, Walsh & McEligot (2007)
have demonstrated that the penetration of free-stream vortical disturbances into a
transitional boundary layer indeed agrees with the theoretical prediction of Jacobs &
Durbin (1998).

Recent studies of stability of two-fluid shear flows, for instance mixing layers
(Yecko & Zaleski 2005), highlight the dependence of transient amplification on modal
penetration and, in turn, on the frequency dependence of shear sheltering. However,
the shape of the continuous-spectrum modes in two-fluid flows and the influence of
viscosity and density stratification on shear sheltering have never been addressed in
the literature. Instead, the majority of previous research has focused on the discrete
Tollmien–Schlichting and interfacial instability waves (Yih 1967; Hooper & Boyd
1983; Hooper & Boyd 1987). In that context, the work of Charru & Hinch (2000)
perhaps bears most relevance to the current investigation. They aimed to classify the
various interfacial waves based on their extent of penetration into the surrounding
fluids. A ‘phase diagram’ of penetration regimes was developed based on the model
problem of Couette flow over a wavy wall. Their analysis, however, only considered
two-dimensional, neutral waves due to an infinitesimal displacement of the solid–fluid
or fluid–fluid boundary. Since their base flow is bounded, only discrete modes were
relevant. The behaviour of free-stream vortical modes, or the continuous-spectrum
eigenfunctions, and their ability to penetrate two-fluid shear flows was not discussed.
This issue will be addressed herein, and a quantitative measure of penetration and its
dependence on modal and flow parameters will be presented. Our analysis takes into
account the decay rate of the free-stream vortical disturbance. This is shown to have
a significant effect on both modal penetration and the structure of the eigenfunction
across the interface.

Due to the importance of the continuous spectrum in studies of single- and two-fluid
boundary layers, it is essential to understand the physical mechanisms that determine
the structure of these eigenmodes. Shear sheltering is one contributing element.
While the literature includes interesting observations related to shear sheltering,
questions regarding its physical interpretation and effectiveness remain unanswered.
For instance, previous studies suggest that shear sheltering is most pronounced in
relation to small-scale, or high-frequency, disturbances particularly at high Reynolds
number. This view is however inconsistent with the observation that perturbations
with high wall-normal wavenumbers can effectively penetrate boundary layers (Zaki
& Durbin 2005). Therefore, in this paper, a clear physical explanation of the mechanics
of shear sheltering is sought. We also provide a detailed description of the structure
of the continuous modes of the O-S equation, which are classified in terms of
their ability to penetrate and perturb the boundary layer. Our approach relies on
asymptotic analysis of the governing equation for a piecewise linear profile, in both
single- and two-fluid boundary layers. These asymptotic solutions are then compared
to the numerical solution of the O-S equation for smoothly varying mean flow profiles
to demonstrate the validity of the piecewise linear approximation.
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This paper is divided into seven sections. The formulation of the single-fluid problem
and the closed-form eigensolution for the piecewise linear mean flow are presented
in § 2. The relevant asymptotic regimes are examined in § 3 and are followed by
a discussion of the physical mechanism of shear sheltering. The formulation of
the two-fluid problem is given in § 4. The associated asymptotic regimes in case of
viscosity stratification are derived in § 5. The role of density stratification and surface
tension are evaluated numerically in § 6, followed by concluding remarks in the last
section.

2. The single-fluid theoretical formulation
The study of penetration of vortical modes into shear regions has as a starting

point the linear perturbation equations. The O-S equation for the normal-velocity
perturbation v is given according to

[(
∂

∂t
+ U

∂

∂x

)
▽2 −d2U

dy2

∂

∂x
− ν▽4

]
v = 0, (2.1)

where U (y) is the mean velocity profile. The perturbation-velocity vector is denoted
u = {u, v, w}, and ν is the fluid viscosity. Lengths are non-dimensionalized by the
boundary-layer thickness and velocities by the free-stream speed U∞, so that ν is
effectively 1/Re.

Since the problem of interest is homogeneous in the streamwise and spanwise
directions and in time, the normal-mode assumption can be invoked for the
perturbation velocities and pressure, for example

v(x, y, z, t) = φ(y)ei(kxx+kzz−ωt),

where kx and kz are the streamwise and spanwise wavenumber; ω is the frequency;
and φ(y) is the normal-velocity eigenfunction. This reduces the O-S equation (2.1) to
the following form:

[
(Ukx − ω)

(
d2

dy2
− k2

)
− d2U

dy2
kx + iν

(
d2

dy2
− k2

)2
]

φ = 0, (2.2)

where k2 ≡ k2
x + k2

z .

2.1. The continuous spectrum

The eigenvalue problem (2.2) requires four boundary conditions. At solid surfaces,
the perturbation and its gradient must vanish:

φwall = 0;

(
dφ

dy

)
wall = 0.

In semi-bounded flows, the O-S equation possesses a finite number of discrete modes
and a spectrum of continuous eigenvalues. The discrete modes are obtained by
requiring that the perturbation decays in the free stream, φ∞ → 0. Grosch & Salwen
(1978) introduced the continuous spectrum by relaxing this free-stream condition.
Instead they only required that the perturbation remain bounded:

|φ| < ∞; |dyφ| < ∞,
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Figure 1. Example of continuous-mode shapes for Blasius boundary layer in three different
regimes. (a) The sheltered regime kxRe = 800π, ky = 2π, kz = 4π; (b) the intermediate regime
kxRe = 50π, ky = 2π, kz = π; (c) the diffusive regime kxRe = π/100, ky = 2π, kz = π; , real
component; , imaginary component.

where dy ≡ d/dy . The continuous spectrum is obtained from the free-stream behaviour
of the O-S equation. In that limit, dyU = d2

yU =0, and the O-S equation reduces to
[
(U∞kx − ω)

(
d2

dy2
− k2

x − k2
z

)
+ iν

(
d2

dy2
− k2

x − k2
z

)2
]

φ∞ = 0, (2.3)

The constant coefficient equation admits solutions of the form φ∞ ∼ eλy . Substituting
eλy in (2.3) and solving for λ yields the following roots:

λ2
1,2 = k2

x + k2
z + i

kx

ν
(U∞ − ω/kx) ,

λ2
3,4 = k2

x + k2
z .

The oscillatory free-stream solution is obtained by setting λ2
1,2 = −k2

y and, hence,

φ∞ ∼ e±ikyy . The dispersion relation is therefore

−k2
y = k2

x + k2
z + i

kx

ν
(U∞ − ω/kx) ,

which can be solved for the eigenvalues. In the temporal problem,

ω = kxU∞ − iν
(
k2

x + k2
z + k2

y

)
. (2.4)

Assuming the dispersion relation (2.4), the continuous modes are obtained by
numerical solution of (2.2). The solution algorithm is an extension of the spectral
collocation method of Orszag (1971): Chebyshev polynomials were used to expand
the eigenfunctions in the wall-normal direction. Since the polynomials are valid in
the domain [−1, 1], nonlinear mapping was incorporated to extend the method to
semi-infinite domains. The boundedness condition in the free stream was enforced
using the method proposed by Jacobs & Durbin (1998).

The numerical and analytical results presented herein are for three-dimensional
disturbances. This choice is motivated by the importance of oblique waves in the
transient growth phenomenon in shear flows. Since waves with spanwise wavelengths
of the order of the shear thickness are often the most amplified (e.g. Butler & Farrell
1992), the value of kz ∼ π is selected for the numerical evaluations of solutions and
discussion.

The shapes of three continuous modes for a Blasius base flow are shown in figure 1.
The mode shapes suggest that penetration of the vortical mode into the boundary
layer is dependent on parameters of the mean flow and of the eigenmode considered.
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Figure 2. Schematic of the single-fluid piecewise linear mean velocity profile. At right, the
mean velocity profile is shown in a frame translating at U∞.

The three modes epitomize three regimes: a sheltered regime in which the free-
stream vorticity does not penetrate the boundary layer (figure 1a); an intermediate
regime in which the vortical perturbation penetrates the boundary layer but not
sufficiently to influence the near-wall region (figure 1b); and a diffusive regime in
which the oscillatory free-stream behaviour of the perturbation persists deep inside
the boundary layer in the vicinity of the wall (figure 1c). In order to investigate those
asymptotic regimes, a piecewise linear base flow is considered in the analyses.

2.2. Analytical solution for piecewise linear profile

The numerical solution of the fourth-order O-S equation demonstrates the dependence
of the shape of continuous modes on frequency, wavenumber and Reynolds number.
However, the mechanisms that determine the structure of the eigenfunction are not
evident. Therefore, in order to derive the relevant asymptotic regimes, a piecewise
linear mean flow profile is assumed, and the O-S equation is thus reduced to
a second-order vorticity equation. This simplification enables us to identify the
parameters which determine the structure of the continuous modes. A similar
approach was adopted by Craik (1991) in order to explain the results of Grosch
& Salwen (1978) for a Blasius profile. First, we present closed-form solutions of
the vorticity equation, followed by a discussion of the dominant balances of the
equation.

A transformed wall-normal coordinate Y = y − δBL is adopted, and the analysis is
carried out in a frame translating with the free-stream velocity, U (Y ) = U (Y ) − U∞
as shown in figure 2. The mean flow is therefore

U (Y ) = 0, Y > 0,
(2.5)

U (Y ) = τY, 0 ! Y ! −δBL,

where δBL is the single-fluid boundary-layer thickness and τ = U∞/δBL.
Using the piecewise linear profile and the dispersion relation (2.4), the final linear

stability equations have the form

d2
Y ψ + k2

yψ = 0, Y > 0, (2.6)

d2
Y ψ + k2

yψ − ikxτ

ν
Yψ = 0, 0 ! Y ! −δBL, (2.7)

where ψ ≡ (d2
Y − k2)φ. For two-dimensional disturbances, ψ = (∂/∂x)(∂v/∂x − ∂u/∂y)

is a measure of the spanwise vorticity of a two-dimensional eigenmode. It should
be noted that the O-S equation (2.7) in terms of ψ is identical to the homogeneous
Squire equation for normal vorticity. Therefore, the shape of the continuous O-S and
Squire modes are similar. In addition, asymptotic analyses performed in subsequent
sections using (2.7) are also valid for the Squire equation.
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Figure 3. Example of continuous-mode shapes for piecewise linear profile in three different
regimes: (a) convective shear-sheltering regime kxRe = 800π, ky = 2π, kz = 4π; (b) convective–
diffusive regime kxRe = 50π, ky = 2π, kz = π; (c) diffusive regime kxRe = π/100, ky = 2π, kz = π;

, real component; , imaginary component.

For the piecewise linear profile, apart from the free-stream and wall boundary
conditions, four interface conditions are required in order to match the solutions
across the edge of the boundary layer. These conditions are derived from continuity
of velocity and stresses,

φ(0+) − φ(0−) = 0; dY φ(0+) − dY φ(0−) =
kxτφ(0)

kxU (0) − ω

d2
Y φ(0+) − d2

Y φ(0−) = 0; d3
Y φ(0+) − d3

Y φ(0−) = 3k2 kxτφ(0)

kxU (0) − ω
.

⎫
⎪⎬

⎪⎭
(2.8)

In the free stream, (2.6) is solved for ψFS and in turn φFS ,

ψFS = C
′

1exp(−ikyY ) + C
′

2exp(ikyY ), (2.9)

φFS = C1exp(−ikyY ) + C2exp(ikyY ) + C3exp(−kY ) + C4exp(kY ) (2.10)

(Note that throughout this paper, the subscripts m =1, 2, 3, 4 will be reserved for
the integration constants in the free stream, while m ! 5 will be used for the solution
inside the boundary layer.) In order to maintain boundedness of the eigenfunction in
the free stream, C4 = 0. Inside the boundary layer, the solution to (2.7) yields

ψ = C5Ai[Z (Y )] + C6Bi[Z (Y )], (2.11)

φ = exp(−kY )

∫ Y

−δBL

exp(ks)(C5Ai[Z (s)] + C6Bi[Z (s)]) ds

+ exp(kY )

∫ 0

Y

exp(−ks)(C5Ai[Z (s)] + C6Bi[Z (s)]) ds

+ C7exp(−kY ) + C8exp(kY ), (2.12)

where Z (Y ) = exp(i5π/6)(kxτ/ν)1/3(Y + ik2
yν/kxτ ). The constants of integration Cm

are given in the § A.1 of Appendix A.
Three continuous O-S eigenfunctions evaluated using the above analytic solution

are shown in figure 3. Similar to the Blasius eigenfunctions of figure 1, three degrees
of modal penetration are observed. These are not, however, evident in the exact
analytical expressions (2.11) and (2.12) in which the solution is in terms of integrals
of the Airy functions. In the following section, the O-S equation (2.7) inside the
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boundary layer is revisited,

d2
Y ψ + k2

yψ − ikxτ

ν
Yψ = 0, (2.13)

and asymptotic solutions are derived based on the relative magnitude of the convective
term ikxτY and diffusive term νk2

y . The objective is to explain the different mechanisms
governing vortical-mode penetration inside the boundary layer. Three limits are
considered and will be referred to as

(a) the convective, shear-sheltered regime, kxτδBL/νk2
y ≫ 1;

(b) the diffusive regime, kxτδBL/νk2
y ≪ 1; and

(c) the convective–diffusive regime, kxτδBL/νk2
y ∼ O(1).

3. Asymptotic solutions in the single-fluid boundary layer
3.1. The convective shear-sheltered regime

Hunt (1977) and co-workers investigated the interaction of vortical disturbances with
shear flows. Their inviscid rapid distortion theory (RDT) solution demonstrated that
all free-stream vortical disturbances are simply convected and do not penetrate the
shear. The result was disconcerting because it did not allow any interaction of the
free-stream disturbances with the boundary-layer shear. The inability of the shear
region to sustain a vortical solution is due to the inviscid assumption. When ν = 0, the
vorticity equation (2.7) reduces to, ikx(c − U (Y ))ψ = 0. A non-trivial solution requires
that the phase speed of the vortical disturbance equals that of the base flow. For
the continuous-spectrum modes, c = U∞, and therefore these disturbances can only be
sustained in the free stream.

Jacobs & Durbin (1998) incorporated the effect of viscosity in their analysis of
the continuous modes. They demonstrated that viscous theory allows for vortical
penetration into the shear and that the penetration depth is proportional to (ν/ωτ )1/3.
Zaki & Durbin (2005) extended this analysis in order to incorporate the modal decay
rate.

All the above analyses only considered high-frequency disturbances in an infinitely
deep boundary layer. The effect of the wall on modal penetration was not included.
Here, a finite-thickness boundary layer is considered in order to demonstrate
both shear sheltering and the blocking effect of the wall. A small parameter
ϵs ≡ νk2

y/kxτδBL ≪ 1 is defined; the subscript s denotes the shear-sheltered regime.
Equation (2.7) can be expressed in terms of the small parameter,

ϵsd
2
Y ψ + ϵsk

2
yψ − k2

y

iY

δBL

ψ = 0.

A series expansion ψ = ϵ0
s ψ0+ϵ1

s ψ1+ϵ2
s ψ2+· · · yields trivial solutions for all powers of

ϵs . This solution, while possibly valid in the bulk of the shear, cannot match the free-
stream vorticity, nor can it satisfy the wall boundary conditions; indeed ψ =0 in the
near-wall region violates both the no-penetration and no-slip boundary conditions.
Therefore, an edge and a wall layer develop in these regions of the shear in order to
satisfy the free-stream matching and wall boundary conditions, respectively.

In the edge layer, a scaled coordinate Ye ≡ Y/δe, and ψe ≡ ψ(Y ) are introduced, and
the governing equation becomes

ϵs

δ2
e

d2ψe

dY 2
e

+ ϵsk
2
yψe − ik2

y

δe

δBL

Yeψe = 0. (3.1)
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Balance of the dominant terms implies that δe ∼ O(ν/kxτ )1/3. To leading order, this
scaling yields

d2ψe

dY 2
e

− iYeψe = 0,

and hence the solution is given by

ψe = Ce1
Ai[exp(i5π/6)Ye] + Ce2

Bi[exp(i5π/6)Ye]. (3.2)

In the limit Ye → −∞, the edge-layer solution ψe must asymptotically match the trivial
solution in the bulk of the shear, which leads to Ce2

= 0.
In the wall layer, the scaled coordinate Yw ≡ (δBL + Y )/δw and ψw ≡ ψ(Y ) are

introduced. The governing equation rewritten in terms of wall coordinates is therefore

1

δ2
w

d2ψw

dY 2
w

+
ikxτ

ν
(δBL(1 − iϵs) − δwYw)ψw = 0. (3.3)

Expanding ψw in powers of ϵs and balancing the leading-order terms gives

δw ∼ O(
√

ν
kxτδBL

). To the leading order, the governing equation is

d2ψw

dY 2
w

+ iψw = 0. (3.4)

The leading order solution is therefore

ψw(Yw) = Cw1
exp

(
1√
2
(1 − i)Yw

)
+ Cw2

exp

(
− 1√

2
(1 − i)Yw

)
. (3.5)

The above expression must asymptotically match the trivial solution in the bulk of
the shear, limYw→∞ ψw(Yw) = 0, and therefore Cw1

= 0.
A uniformly valid vorticity eigenfunction can be expressed in terms of the bulk,

edge and wall-layer solutions. To the leading order, in the shear region Y ∈ [−δBL, 0],
the continuous mode is given by

ψ = Ce1
Ai[ς(Y )] + Cw2

exp(−ζ (δBL + Y )), (3.6)

where ς(Y ) = exp(i5π/6)(kxτ/ν)1/3Y and ζ = (1 − i)/
√

2δw . The normal-velocity
eigenfunction inside the boundary layer is therefore

φ = C5exp(−kY ) + C6exp(kY ) + Cw2
exp(−ζ (δBL + Y ))

+ Ce1

[
exp(−kY )

∫ Y

−δBL

exp(ks)Ai[ς(s)] ds

+ exp(kY )

∫ 0

Y

exp(−ks)Ai[ς(s)] ds

]
. (3.7)

The constants of integration can be evaluated using the boundary and matching
conditions and are given in § A.2 of Appendix A. The eigenfunction (3.7) is composed
of an exponentially decaying component and an integral of the airy function which
is decaying for Y < 0. The coefficient of the exponentially growing component is very
small according to (A 2), and therefore its contribution is negligible.

A comparison of the mode shapes from the shear-sheltered asymptotic limit and
the exact eigenfunction (2.12) is not included because the two solutions coincide
nearly identically in this regime. Instead, figures 4 and 5 compare the eigenfunctions
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Figure 4. Continuous-mode shape in convective shear-sheltered regime for (a) piecewise linear
profile and (b) Blasius boundary layer: , real component; , imaginary component;
kxRe =1000, ky = π, kz = π/3.
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Figure 5. Spanwise vorticity in the convective shear-sheltered regime. (a), (c) Eigenfunction
for piecewise linear profile; (b), (d ) eigenfunction for Blasius boundary layer; (c), (d ) The
eigenfunction ψ inside the boundary layer; , real component; , imaginary component;
kxRe =1000, ky = π, kz = π/3.

φ and ψ for a piecewise linear profile to those obtained for a Blasius mean flow.
The eigenfunction φ is oscillatory in the free stream and decays rapidly inside the
boundary layer, indicating the strong influence of shear, ϵs ≡ νk2

y/kxτδBL ≪ 1. The
decay in the eigenfunction of the piecewise linear profile is more rapid near the edge
of the boundary layer due to the higher level of shear in comparison to the Blasius
mean flow.

More insight into the structure of these vortical modes can be gathered from figure 5.
In the free stream the vorticity ψ is oscillatory. Inside the boundary layer, shown in
the bottom pane of figure 5, three regions can be clearly identified:

(a) the outer layer near the edge of the boundary layer;
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Figure 6. Streamlines of a continuous mode with kxRe = 1000π, ky = π, kz = 0.
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Figure 7. Effect of Reynolds number on spanwise vorticity for (a) piecewise linear profile and
(b) Blasius boundary layer; kx = π, ky = π, kz = π; , Re = 100; , Re = 200; ,
Re = 1000.

(b) the bulk, or central region, which is devoid of any significant vortical
disturbance; and

(c) the wall layer in which vorticity is again non-zero.
The scaling of these layers is captured by the above-derived asymptotic solutions.

The outer layer is a measure of the extent of penetration of the free-stream vorticity
into the shear. Its thickness is δe ∝ (ν/kxτ )1/3. Beyond δe, the shear prevents further
penetration of the free-stream mode. The vortical disturbance in the outer layer
is convected downstream and imposes a normal-velocity ‘boundary condition’ on
the bulk of the shear. As a result, an exponentially small, irrotational perturbation
field is set up in that region. While this inviscid mechanism is relevant to the other
asymptotic regimes discussed in this work, it is most discernible in the shear-sheltered
eigenfunctions. In this limit, viscous penetration of the free-stream disturbance
is inhibited, and as a result, the contribution of the inviscid mechanism to the
eigenfunction inside the shear is more evident. An example of the streamlines is
shown in figure 6. In the vicinity of the wall, vorticity is generated in order to satisfy
the no-slip and no-penetration boundary conditions. The wall layer is in fact a Stokes
layer whose length scale is δw ∼

√
ν/Ω , where Ω ≡ kxU∞ is the frequency of oscillation

of the free stream.
The effect of viscosity on the edge- and wall-layer thicknesses is shown in figure 7.

This behaviour is captured by the expressions for the length scales δw and δe. It is
instructive to consider two sources of vorticity: the first in the free stream and the
second at the wall. At low viscosity, scaling δBL by the edge layer δe ∝ (ν/kxτ )1/3,
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the boundary layer appears deeper, and hence, there is no overlap between the free
stream and wall-generated vorticity. Lowering the viscosity causes the sources to move
further apart, thus widening the inner core. In the limit ν → 0, the influence of the
wall becomes insignificant.

It is important to note that the decay of the eigenfunction inside the boundary layer
is due to the sheltering effect of the shear and is not a wall-blocking phenomenon.
This can be further verified by considering the limit of infinite shear, δBL → ∞. In this
limit, the eigenfunction (3.7) reduces to

φ = C5exp(kY ) + Ce1

[
exp(−kY )

∫ Y

−∞
exp(ks)Ai[ς(s)] ds

+ exp(kY )

∫ 0

Y

exp(−ks)Ai[ς(s)] ds

]
(3.8)

or equivalently ψ =Ce1
Ai[ς(Y )]. A similar expression for ψ was obtained by

Jacobs & Durbin (1998) for the infinitely deep boundary layer. The normal-velocity
eigenfunction (3.8) is composed of an exponentially decaying component and the
integral of first airy function which is also decaying. Therefore, in the absence of a
solid boundary, the normal velocity is exponentially small but not exactly zero. A
solid boundary at finite Y forces φ to be zero, and therefore, spanwise vorticity, ψ ,
must be generated at the wall in order to satisfy the boundary conditions. The extent
of diffusion of this wall vorticity into the shear is the thickness of the wall layer δw .

3.2. The diffusive regime

The reciprocal of the shear-sheltered limit is the diffusive regime. In this regime,
the filtering effect of the shear is ineffective, and the oscillatory free-stream vortical
disturbances persist deep into the boundary layer (figure 3c). As the name suggests,
the viscosity dominates the convective term in the continuous-mode vorticity equation
(2.7). A small parameter ϵd ≡ kxτδBL/νk2

y ≪ 1 can be defined. The vorticity equation
(2.7) can therefore be expressed in terms of ϵd ,

1

k2
y

d2
Y ψ + ψ − ϵd

iY

δBL

ψ = 0.

Assuming a power series solution, ψ ∼ ψ0 +ϵdψ1 +ϵ2
dψ2 + · · · , the governing equation

to leading order has the form

1

k2
y

d2
Y ψ + ψ = 0. (3.9)

The above equation resembles the governing equation for Stokes second problem.
However, unlike the real frequency of oscillation in the Stokes problem, the oscillatory
behaviour of the continuous modes is in the wall-normal direction due to ky

dependence in the free stream.
The solution to the leading-order vorticity equation and the corresponding wall-

normal-velocity perturbation φ are, respectively,

ψ = C
′

5exp(−ikyY ) + C
′

6exp(ikyY ),

φ = C5exp(−ikyY ) + C6exp(ikyY ) + C7exp(−kY ) + C8exp(kY ).

}
(3.10)

The constant C5 through C8 are obtained by satisfying the wall boundary conditions
and matching conditions at the edge of the boundary layer, and are provided in § A.3
of Appendix A. For kx =0, the similarity between the above expression for φ and the
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Figure 8. Continuous-mode shapes in the diffusive regime. (a) Eigenfunctions for piecewise
linear profile and (b) eigenfunctions for Blasius boundary layer; , real component; ,
imaginary component; kxRe = π/10, ky = π, kz = π.

free-stream eigenfunction (2.10) can be exploited in order to derive a uniformly valid
solution for Y ∈ [−δBL, ∞),

φ = Cexp(−kδBL)

[
exp(−kY ) − 1

2

(
1 +

k

iky

)
exp(kδBL − iky(δBL + Y ))

− 1

2

(
1 − k

iky

)
exp(kδBL + iky(δBL + Y ))

]
, (3.11)

where C is the arbitrary amplitude of the free-stream vortical mode.
The most conspicuous attribute of the modes is their ability to preserve the free-

stream oscillatory nature throughout the boundary-layer shear, to the wall. This
behaviour is characteristic of streamwise-elongated, or low-kx , vortical modes, as
suggested by the scaling parameter ϵd ≡ kxτδBL/νk2

y . The expression for ϵd also
suggests that high ky belong to the diffusive regime and can therefore penetrate
the boundary layer. This observation is consistent with Zaki & Durbin (2005).

Figure 8 compares the mode shapes obtained from the asymptotic solution (3.10)
for a piecewise linear profile to that obtained for a Blasius boundary layer. In addition
to the similarity in the mode shape, good quantitative agreement is also observed.
This agreement can be explained by noting that the terms associated with the mean
flow in the O-S equation (the convective and mean curvature terms) are an order
of magnitude smaller than the viscous and transient terms. The leading-order O-S
equation therefore is independent of the mean flow chosen, and as a result, we observe
good quantitative agreement between the eigenfunctions shown in figure 8.

3.3. The convective–diffusive regime

Free-stream vortical modes which partially penetrate the boundary-layer shear (figure
3b) do not fall within the premise of the fully sheltered convected disturbances or of
the fully penetrating viscous regime. Instead, in the convective–diffusive regime, both
the convective and viscous terms in the vorticity equation (2.7) are of comparable
magnitude throughout the bulk of the shear, kxτδBL ∼ νk2

y . The structure of the
eigenfunctions is examined by considering solutions of the vorticity equation in the
outer region of the boundary layer and in the vicinity of the wall.

Near the edge of the boundary layer, Y → 0, the vorticity equation (2.7) is
approximated to the lowest order in Y by the diffusion dominated limit,

d2ψ0
e

dY 2
+ k2

yψ
0
e = 0,
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whose solution is given according to

ψ0
e = Ce1

exp(ikyY )
︸ ︷︷ ︸

ψ0
e1

+ Ce2
exp(−ikyY )

︸ ︷︷ ︸
ψ0

e2

. (3.12)

This oscillatory solution mimics the free-stream eigenfunction exactly, and shear
sheltering is negligible near the edge of the boundary layer. The influence of the
uniform shear is therefore not local but, as suggested by the convective term kxτY ,
cumulative with increased depth within the boundary layer.

In order to demonstrate the influence of the shear on the wall-normal decay of the
eigenfunction, a correction is sought for each of the two independent solutions ψ0

e1
and

ψ0
e2

(the procedure is outlined for ψ0
e1

only). The corrected solution ψe1
=ψ0

e1
+ ψ1

e1
,

where ψ1
e1

≪ ψ0
e1
, is substituted in the vorticity equation (2.7), and the following

equation for ψ1
e1

is obtained:

d2ψ1
e1

dY 2
+ k2

yψ
1
e1

− ikxτY

ν
Ce1

e+ikyY = 0,

with the homogeneous boundary conditions ψ1
e1

= dY ψ1
e1

= 0 at Y = 0. The correction
term is therefore

ψ1
e1

= Ce1
eikyY

[
kxτ

2kyν

(
Y 2

2
− Y

2iky

− 1 − e−2ikyY

4k2
y

)]
.

A similar procedure yields the correction ψ1
e2
, and finally the asymptotic behaviour

of the vorticity eigenfunction near Y =0 can be expressed as

ψe(Y ) = Ce1e
ikyY

︸ ︷︷ ︸
ψ0

e1

+ Ce1
eikyY

[
kxτ

2kyν

(
Y 2

2
− Y

2iky

− 1 − e−2ikyY

4k2
y

)]

︸ ︷︷ ︸
ψ1

e1

+ Ce2e
−ikyY

︸ ︷︷ ︸
ψ0

e2

+ Ce2
e−ikyY

[
− kxτ

2kyν

(
Y 2

2
+

Y

2iky

− 1 − e2ikyY

4k2
y

)]

︸ ︷︷ ︸
ψ1

e2

. (3.13)

The constants Ce1 and Ce2 are obtained by matching the vorticity and its gradient
at the edge of the boundary layer. These constants have been provided in § A.4 of
Appendix A.

In the approximate solution (3.13), both ψ0
e1

and ψ0
e2

are oscillatory and only
account for the diffusive term. The decay of the eigenfunction inside the boundary
layer is due to an incomplete cancellation by the increasing amplitudes of ψ1

e1
and

ψ1
e2

inside the shear, Y < 0. The decay of the solution inside the boundary layer
is captured in figure 9. The figure compares the exact and asymptotically derived
vorticity eigenfunctions. The two solutions are in good quantitative agreement in
the region 0.6 <y/δBL < 1. The oscillation of the eigenfunction near the edge of the
boundary layer and the gradual decay in the amplitude of oscillation due to the
cumulative effect of the shear are captured by (3.13).
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Figure 9. Spanwise vorticity in the convective–diffusive regime. (a), (c) Re(ψ) for a piecewise
linear profile and (b), (d ) Re(ψ) for a Blasius boundary layer; , exact analytical solution;

, oscillatory solution; , exponential wall solution; kxRe = 50π, ky = 4π, kz = π.

The near-wall behaviour of the eigenfunction is derived by considering the limit
Y → −δBL of the vorticity equation (2.7),

d2ψ0
w

dY 2
+

(
k2

y + i
kxτδBL

ν

)
ψ0

w = 0.

The lowest order approximation of the vorticity eigenfunction is therefore composed
of a growing and a decaying exponential,

ψ0
w = Cw1

exp(iκw(Y + δBL))︸ ︷︷ ︸
ψ0

w1

+ Cw2
exp(−iκw(Y + δBL))︸ ︷︷ ︸

ψ0
w2

, (3.14)

where κw =
√

k2
y + i(kxτδBL/ν). The cumulative effect of the shear over the boundary

layer ikxτδBL/ν determines the deviation of the solution from a purely oscillatory
form. In a manner similar to the solution in edge layer, a corrected eigenfunction
ψw = ψ0

w + ψ1
w is obtained in the wall region:

ψw(Y ) = Cw1e
ikw(Y+δBL) + Cw2e

−ikw(Y+δBL)

+ Cw1e
ikw(Y+δBL)

[
kxτ

2kwν

(
(Y + δBL)2

2
− (Y + δBL)

2ikw

− 1 − e−2ikw(Y+δBL)

4k2
w

)]

+ Cw2e
−ikw(Y+δBL)

[
−kxτ

2kwν

(
(Y + δBL)2

2
+

(Y + δBL)

2ikw

− 1 − e2ikw(Y+δBL)

4k2
w

)]
.

The constants Cw1
and Cw2

are given in § A.4 of Appendix A and are obtained by
imposing continuity of vorticity and its gradient at the wall. Agreement between the
asymptotic wall-layer solution ψw and the exact eigenfunction is shown in figure 9.
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Figure 10. Schematic of modal penetration for low- and high-frequency free-stream vortical
perturbations.

3.4. Discussion

The propensity of a vortical free-stream mode to penetrate the boundary layer is
enhanced by the viscosity and limited by the shear. The filtering effect of the shear is,
however, wavenumber-dependent. In the limit ϵs ≡ νk2

y/kxτδBL ≪ 1, shear sheltering
is most effective. Therefore, high-kx , or short streamwise-wavelength, vortical modes
cannot penetrate the boundary layer. In the reciprocal limit of long streamwise-
wavelength, ϵd ≡ kxτδBL/νk2

y ≪ 1, the eigenfunction preserves its free-stream oscillatory
nature and amplitude deep into the boundary layer.

A physical interpretation of shear sheltering is proposed by considering the relative
motion of a free-stream vortical mode and a point P within the shear (figure 10).
The vortical mode at the edge of the boundary layer convects downstream at c = U∞,
and point P has speed U (p) = U∞ + τY . The influence of the free-stream disturbance
reaches P by wall-normal diffusion only. Within the diffusion time scale Td ≡ 1/k2

yν,
the free-stream boundary condition which affects P varies due to the relative motion
of the wave and the shear flow. As a result, point P is exposed to n wavelengths of
the free-stream disturbance, where n is given by

n =
(c − U (p))Td

1/kx

=
kxτ |Y |
k2

yν
.

The definition of n is a ratio of two time scales: the numerator defines the relative
streamwise convection, or shear, time scale according to Ts ≡ 1/kxτδBL, and the
denominator defines the wall-normal diffusion time scale Td ≡ 1/k2

yν. For low-kx , or
streamwise-elongated, waves, n → 0, and the perturbation at the edge of the boundary
layer is seemingly steady relative to point P over the diffusion time scale Td . As a
result, a free-stream vortical mode diffuses effectively into the boundary-layer shear
in this limit. On the other hand, for short waves, n tends to ∞, and the edge condition
appears to be changing very rapidly with respect to point P . The net effect over
the time scale Td is a near-zero edge condition relative to point P . As a result, the
penetration of high-kx vortical modes is limited. The filtering effect of high frequencies
is enhanced by the shear n ∝ kxτY , and hence the terminology ‘shear sheltering’. The
precise mechanism is due to the difference in convective speeds between the free-stream
perturbation and the flow inside the boundary layer. Therefore, shear sheltering is
cumulative, and n increases with depth.

When the convection and diffusion terms are approximately equal, n ∼ O(1), and
the perturbation is able to partially penetrate the boundary layer but decays due to
the cumulative influence of the shear. Therefore, the vorticity eigenfunctions in this
regime are oscillatory near the edge of the boundary layer and exponentially decaying
in the near-wall region.
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Figure 11. Variation in penetration depth with (a) kxRe and (b) kxRe/k2
y; , ky = 4π;

, ky = 3π; , ky = 2π; , ky = π.

The exact analytical expression (2.11) for ψ(y) captures the change in the
eigenfunction from oscillatory to exponential decay:

ψ = C5Ai [Z (Y )] + C6Bi [Z (Y )] . (2.11)

The ratio of the convective and diffusive time scales Ts/Td appears in the argument
of the Airy function,

Z (Y ) = exp (i5π/6)

(
Y

δe

+ i
TsδBL

Tdδe

)
.

The ratio Ts/Td determines the phase of Z (Y ) and in turn the behaviour of the
Airy solution. In the viscous regime, the diffusive time scale is much shorter than the
convective time scale, Td ≪ Ts . As a result, |phase(Z )| > π/3, and the first and second
Airy functions are both oscillatory. In the shear-sheltered regime, Td ≫ Ts . Therefore,
iTsδBL/Tdδe → 0 and (|phase(Z )| ∼ π/6) < π/3. In this region of the complex plane,
Ai(Z ) is monotonically decreasing, and Bi(Z ) is increasing. The coefficient of the
latter, C6, is negligible in the sheltered regime, and the overall behaviour of the
vorticity eigenfunction is captured by the decaying Ai(Z ).

The shear-sheltered solution is also recovered in the limit of vanishing kinematic
viscosity. In this limit, Td → ∞ and δe → 0. Since Td ∝ 1/ν and δe ∝ ν1/3, their product
tends to infinity. As a result, the same limit (|phase(Z )| ∼ π/6) < π/3 is obtained and
the eigenfunction is exponentially decaying.

3.5. Penetration depth

In order to quantify the propensity of a continuous mode to permeate the boundary
layer, a penetration depth norm is defined:

d ≡
∫ δBL

0

|φ|
|φ|∞

dy,

where |φ|∞ is the free-stream amplitude of the eigenfunction. Figure 11 shows the
variation of d with kxRe for various ky . In the limit kxRe → ∞ penetration depth tends
to zero. The same behaviour is observed whether kx → ∞ and Re remains finite or the
opposite. In the first case, the boundary layer appears infinitely deep when scaled by
the disturbance wavelength, and hence penetration is negligible. When Re → ∞ and
kx is finite, viscous effects can be ignored, and no means of vortical mode penetration
in the boundary layer is present. As kxRe is reduced, penetration increases due to the
increase in Ts compared to Td . The change in the behaviour of the penetration depth



128 T. A. Zaki and S. Saha

curve near kxRe ∼ O(102) marks the convective–diffusive regime in which both time
scales become comparable. At lower kxRe, the diffusive regime is reached and d does
not change significantly; the oscillatory solution prevails deep inside the boundary
layer. Penetration increases with ky due to the reduction of the diffusive time scale.
In the viscous regime, however, d is maximum and saturates independent of the
wall-normal wavenumber.

Motivated by the discussion of the convective and diffusive time scales, the
penetration curves are plotted against n=Td/Ts in figure 11(b). Residual dependence
of penetration on n is observed in the sheltered regime in which penetration is
negligible. However, the penetration curves collapse in the diffusive (Td/Ts < 1) and
the convective–diffusive (Td/Ts ∼ O(1)) regimes.

4. The two-fluid theoretical formulation
The shape of the continuous-spectrum modes and their ability to penetrate a

single-fluid boundary layer depend on the disturbance wavenumber, the intensity of
the mean shear and the kinematic viscosity of the fluid. In two-fluid boundary layers,
both the mean shear and viscosity are discontinuous across the two-fluid interface.
In addition, the density discontinuity and surface tension appear in the interfacial
stress conditions and can, therefore, affect the ability of free-stream disturbances to
penetrate the lower film. In order to investigate the dependence of mode shape on
these parameter, analyses similar to those carried out in the context of single-fluid
boundary layers are presented for the two-fluid problem. First, an exact analytical
expression of the eigenfunction is derived assuming a piecewise linear mean flow. The
exact solution is subsequently explained by considering possible asymptotic limits.

The O-S equation for immiscible two-fluid flows and the interfacial boundary
conditions were given by Yih (1967). Since then the equations have been extended
in order to account for the influence of surface tension and density stratification
in the interface conditions, as well as to consider three-dimensional perturbations
(e.g. Yecko & Zaleski 2005). In the absence of appreciable gravitational effects, the
normal-velocity eigenfunction in each fluid φj is governed by

[
(Ujkx − ω)

(
d2

dy2
− k2

x − k2
z

)
− d2Uj

dy2
kx + iνj

(
d2

dy2
− k2

x − k2
z

)2
]

φj = 0, (4.1)

where j = {T , B} denotes the top and bottom fluids respectively. At the interface
of the two fluids, all three velocity and stress components must be continuous. The
interface conditions are, therefore,

−iωf + ikxUf = φT ,

φT = φB,
(4.2)

kx(φdyU )T − (kxU − ω)dyφT = kx(φdyU )B − (kxU − ω)dyφB,(
d2

y + k2
)
(µT φT − µBφB) = ikx

(
µT d2

yUT − µBd2
yUB

)
f,

ρT

(
−ωdyφ + kx(Udyφ − φdyU ) + iν

(
d3

yφ − 3k2dyφ
))

T

−ρB

(
−ωdyφ + kx(Udyφ − φdyU ) + iν

(
d3

yφ − 3k2dyφ
))

B
= −iσk4f,

(4.3)

where σ is the surface tension and f is the interface deformation.
Similar to the single-fluid problem, the continuous spectrum is obtained from the

free-stream behaviour of the O-S equation. Therefore, the dispersion relation retains
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Figure 12. Schematic of the two-fluid mean velocity profile.

the same form,

−k2
y = k2

x + k2
z + i

kx

νT

(U∞ − ω/kx) .

Note, however, that the temporal decay rate of the eigenvalue is determined solely by
the viscosity of the top fluid νT :

ω = kxU∞ − iνT

(
k2

x + k2
z + k2

y

)
, (4.4)

4.1. The mean flow

A schematic of the two-fluid boundary-layer profiles used in this study is shown
in figure 12. The Blasius-like mean flow profile is obtained by solving the two-fluid
boundary-layer equations in an approach similar to that of Nelson, Alving & Joseph
(1995). In boundary-layer coordinates, the mean-flow satisfies

F ∂2
ηF + νj∂

3
ηF − ξ

(
∂ηF

∂∂ηF

∂ξ
− ∂2

ηF
∂F

∂ξ

)
= 0, (4.5)

where ξ = (U∞x/2νT )1/2; η = y(U∞/2νT x)1/2; and F =Ψ/(2νT xU∞)1/2 with Ψ as the
streamfunction. The interface height η∗ is governed by the standard kinematic
condition

∂η∗

∂ξ
=

1

ξ

(
V

U
− η∗

)
, (4.6)

where U and V are the mean streamwise and wall-normal velocities at the interface
respectively. Velocity and stress continuity are enforced at η = η∗, according to

[F ] = 0; [∂ηF ] = 0;
[
µ∂2

ηF
]

= 0,

where [.] denotes the change across the interface, (.)T − (.)B . In addition, F (ξ, η) must
satisfy the boundary conditions

F (ξ, 0) = 0, ∂ηF (ξ, 0) = 0, lim
η → ∞

∂ηF (ξ, η) = 1.

Equation (4.5) and the associated boundary and interface conditions are solved
according to the approach described in Schlichting (1987, pp. 187–191). The iterative
procedure ensures convergence of the interface height and velocity profiles at every
downstream location, ξ . The solution at large ξ agrees with the asymptotic behaviour
described in Nelson et al. (1995) and provides the mean profile for the numerical
evaluation of the continuous-spectrum modes.
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The piecewise linear approximation to the mean profile, which is used in the
analytical derivations, is defined according to

U (y) = τBy, 0 < y < δB,
U (y) = τBδB + τT (y − δB), δB < y < δBL,
U (y) = U∞, y > δBL,

⎫
⎬

⎭ (4.7)

where

δBL = δSF + δB

(
1 − µT

µB

)
,

τT =
U∞

δT +
µT

µB

δB

=
U∞

δSF

,

τB =
µT τT

µB

.

The single-fluid boundary-layer thickness δSF is the unit length scale, and the film
thickness δB is a parameter. As the viscosity ratio µBT ≡ µB/µT → ∞, the shear in
the bottom fluid vanishes, τB → 0. Therefore the shear predominantly resides in the
top fluid, and the lower film mimics a solid wall. Conversely, as the viscosity ratio is
reduced, the shear increases in the lower layer. For µBT < δB/δSF , the shear is entirely
limited to the wall film (δT = 0, τT = 0 and τB = U∞/δB).

4.2. Analytical solution for piecewise linear profile

An exact expression for the eigenfunction of the piecewise linear mean profile is
sought. Similar to the single-fluid problem, an equation for ψ is derived for each layer
of the mean flow:

d2
Y ψFS + k2

yψFS = 0, Y ! 0,

d2
Y ψT + k2

yψT − ikxτT

νT

YψT = 0, 0 ! Y ! −δT ,

νBd2
Y ψB +

[
νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)]
ψB

+ ikx (τT δT − τB (Y + δT )) ψB = 0, −δT ! Y ! −δBL.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4.8)

It is important to note that the viscosity of the top fluid, νT , appears in the vorticity
equation of the bottom fluid because the temporal decay rate of the continuous
mode is determined by the free-stream behaviour. As a result, the mode shape in
the bottom fluid is expected to depend on the viscosity ratio, even in the absence of
density stratification and surface tension, which only appear in the interface stress
conditions.

The eigenmodes in the free stream, Y > 0, and in the outer boundary layer,
−δT <Y < 0, retain the same functional form as in the single-fluid problem (2.9)–(2.12).
In the lower film, −δT ! Y ! −δBL, the solution for ψB and φB are, respectively,

ψB = C9Ai[X (Y )] + C10Bi[X (Y )], (4.9)

φB =
exp(−kY )

2k

∫ Y

−δBL

exp(ks)(C9Ai[X (s)] + C10Bi[X (s)]) ds

+
exp(kY )

2k

∫ −δT

Y

exp(ks)(C9Ai[X (s)] + C10Bi[X (s)]) ds

+ C11exp(−kY ) + C12exp(kY ), (4.10)
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Figure 13. Example of continuous-mode shape for two-fluid boundary layer (top figures) and
piecewise linear profile (bottom figures) in three different regimes: (a), (d ) convective shear-shel-
tering regime kxReT = 4000π, ky =2π, kz = π, δB = 0.3, µBT = 0.1; (b), (e) convective–
diffusive regime kxReT =50π, ky = 2π, kz = π, δB = 0.3, µBT = 0.3; (c), (f ) diffusive regime
kxReT = π/100, ky = 2π, kz = π, δB =0.3, µBT =0.75; , real component; , imaginary
component.

where

X (Y ) = exp (i5π/6)

(
kxτB

νB

)1/3 (
Y +

iγ νB

kxτB

)

and

γ =
νT k2

y

νB

+

(
νT

νB

− 1

) (
k2

x + k2
z

)
+

ikxδT

νB

(τT − τB) .

The constants C1 through C12 are selected such that the solution satisfies the
boundedness condition in the free stream, no slip at the wall and the interface
conditions (4.3). Analytical expressions for the constants are too complex and are not
provided. Instead, the constants are evaluated by numerical solution of the system of
equations representing the boundary conditions.

An example of the two-fluid eigenfunctions, for both piecewise linear and two-fluid
boundary-layer mean flow profiles, is shown in figure 13. Properties of the top fluid
were chosen to ensure that the disturbance penetrates the outer shear and reaches the
interface. Based on the outer flow, the eigenfunctions therefore belong to the diffusive
regime, kxτT δSF ≪ νT k2

y . The three viscosity ratios shown in figure 13 reflect three
asymptotic limits of the eigenfunction in the wall film. These limits bear resemblance
to the asymptotic regimes of single-fluid boundary layers and can be determined from
the ratio of convective and diffusive terms in (4.8):

(a) the convective, shear-sheltered regime, kxτBδB ≫ νT k2
y + (νT − νB)(k2

x + k2
z );

(b) the diffusive regime, kx(τT δT + τBδB) ≪ νT k2
y + (νT − νB)(k2

x + k2
z ); and

(c) the convective–diffusive regime, kxτBδB ≈ νT k2
y + (νT − νB)(k2

x + k2
z ).

In order to realize conditions (a) and (c) for the shear-sheltered and convective–
diffusive regimes, respectively, the viscosity of the bottom fluid must be much smaller
than that of the top fluid, νB ≪ νT . As a result, the shear can be assumed to be
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restricted to the bottom layer. In the shear-sheltered regime, where viscosity is not
significant, the two-fluid eigenfunctions are expected to bear resemblance to the single-
fluid problem. However, in the other two limits, where viscous effects are appreciable,
the behaviour of the two-fluid eigenfunctions is likely to be affected. Indeed, it is
shown that eigenfunctions become dependent on the viscosity ratio and not the
viscosity of the bottom fluid per se.

5. Asymptotic solutions in the two-fluid boundary layer
5.1. The convective shear-sheltered regime

Our investigation of the convective–sheltered regime assumes an oscillatory solution
in the top fluid, and the shear is restricted to the bottom layer. Therefore, the following
simplifications are adopted: τT =0, δT = 0, δB = δBL and τB = U∞/δBL. In this limit,
the vorticity equation (4.8) reduces to

ϵsνBd2
yψB +

(
νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)) (
ϵs − iY

δB

)
ψB = 0,

where

ϵs ≡
νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)

kxτBδBL

≪ 1.

A series expansion, ψB = ϵ0
s ψB0 + ϵ1

s ψB1 + ϵ2
s ψB2 + · · · , yields trivial solutions for all

powers of ϵs . This solution is only valid in the bulk of the lower fluid.
Similar to the single-fluid boundary layer, an edge layer exists, but is near the

two-fluid interface. The solution in the edge layer satisfies the interfacial conditions
and asymptotically matches the trivial solution in the bulk of the lower fluid. The
vorticity equation is expressed in terms of the edge coordinate, Ye ≡ Y/δe, and the
dominant balance yields an edge-layer thickness, δe ∼ O (νB/kxτB)1/3. The leading-
order behaviour of the eigenfunction, ψBe

, is given according to:

ψBe
= Ce1

Ai[exp(i5π/6)Ye] + Ce2
Bi[exp(i5π/6)Ye]. (5.1)

Since ψBe
must match the trivial solution in the limit Ye → ∞, the constant Ce2

must
be identically zero and, as a result, ψBe

= Ce1
Ai[exp(i5π/6)Ye].

A wall layer also exists in the vicinity of the solid boundary in order to satisfy the
no-slip and no-penetration conditions. The vorticity equation is expressed in terms
of the wall coordinate, Yw ≡ (δBL + Y )/δw . The dominant balance yields a wall-layer
thickness δw ∼ O

(√
νB/kxτBδBL

)
, and the following leading-order solution for ψBw

is
obtained:

ψBw(Yw) = C
′

w1
exp

(
1√
2
(1 − i)Yw

)
+ C

′

w2
exp

(
− 1√

2
(1 − i)Yw

)
. (5.2)

Since the solution in the wall layer must match the trivial solution in the bulk of the
bottom fluid, ψBw

(Yw → ∞) = 0, and therefore C
′

w1
= 0.

A uniformly valid approximation of the eigenfunction is sought in the bottom fluid,
Y ∈ [−δBL, 0]. The solution combines the edge, bulk and wall-layer solutions. To the
leading order, the vorticity eigenfunctions is given according to:

ψB = Ce1
Ai[z(Y )] + C ′

w2
exp(−ζ (δBL + Y )), (5.3)

where z(Y ) = exp(i5π/6)(kxτB/νB)1/3Y and ζ = (1 − i)/
√

2δw . The corresponding
vertical-velocity eigenfunction in the bottom fluid is therefore
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Figure 14. Continuous-mode shape in convective shear-sheltering regime. (a) Eigenfunction
for a piecewise linear profile and (b) eigenfunction for a two-fluid boundary layer; , real
component; , imaginary component; kxReT = 500π, ky = π, kz = π, δB =0.3, µBT =0.1.
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Figure 15. Spanwise vorticity in convective shear-sheltering regime with three-layered
structure. (a), (c) Eigenfunction for a piecewise linear profile and (b), (d ) eigenfunction
for a two-fluid boundary layer; , real component; , imaginary component; kxReT =
500π, ky = π, kz = π, δB = 0.3, µBT = 0.1.

φB =
Ce1

2k

[
exp(−kY )

∫ Y

−δBL

exp(ks)Ai[z(s)] ds + exp(kY )

∫ 0

Y

exp(ks)Ai[z(s)] ds

]

+ Cw2
exp(−ζ (δBL + Y )) + C9exp(−kY ) + C10exp(kY ). (5.4)

An example of a vertical-velocity eigenfunction, φ, which penetrates the top fluid,
but is sheltered by the shear in the bottom layer is shown in figure 14. The behaviour
is consistent among the piecewise linear and two-fluid boundary-layer eigenfunctions.
Figure 15 shows the vorticity of the same mode, ψ . In the lower fluid, there exists a
three-layer structure similar to that observed in the single-fluid boundary layer.

A noticeable difference between the two-fluid and the previously derived single-
fluid eigenfunctions is the sharp discontinuity in ψ at the interface. This discontinuity
arises due to the interface conditions, even when both fluids have equal densities
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and surface tension is ignored. The normal-velocity eigenfunction shows that φ → 0
at the interface, which implies that the interface displacement is negligible. The
interface, therefore, resembles a rigid membrane which prevents free-stream vortical
disturbances from entering the bottom fluid.

5.2. The diffusive regime

In the diffusive regime, viscous effects dominate the convective term in the vorticity
equation (4.8) of the bottom fluid. Therefore, the small parameter ϵd is defined as the
ratio of the convective to viscous terms,

ϵd ≡ kx(τT δT + τBδB)

νT k2
y + (νT − νB)(k2

x + k2
z )

≪ 1.

In terms of ϵd , the vorticity equation (4.8) can be expressed as

νB

νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)d2
Y ψB + ψB + iϵd

τT δT − τB(Y + δT )

τT δT + τBδB

ψB = 0.

A series solution of ψ in powers of ϵd is assumed. The leading-order term in the
expansion is governed by the following equation:

νB

νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)d2
Y ψB + ψB = 0,

and the leading-order solution is therefore

ψB = C
′

9exp(−iκdY ) + C
′

10exp(iκdY ),

φB = C9exp(−iκdY ) + C10exp(iκdY ) + C11exp(−kY ) + C12exp(kY ),

where κd =
√

(νT /νB)(k2
x + k2

y + k2
z ) − (k2

x + k2
z ). The constants C1 through C12 are

obtained by constructing a system of equations representing the wall, free-stream
and interface conditions (4.3) and solving it numerically.

In contrast to the single-fluid eigenfunctions, the two-fluid solution predicts an
effective wall-normal wavenumber κd , which differs from the free-stream value
ky . The definition of κd indicates that the solution changes from oscillatory to
exponential behaviour at a critical viscosity ratio, (νB/νT )c =(k2

x + k2
y + k2

z )/(k
2
x + k2

z ).
For a viscosity ratio νB/νT lower than the critical value, an oscillatory solution is
obtained; for νB/νT greater than the critical ratio, the solution is exponential. This
change in the character of the solution is demonstrated in figure 16, where ψ is
plotted at subcritical and supercritical viscosity ratios.

The change in the wall-normal wavenumber, κd ̸= ky , is due to a mismatch in
dissipation and diffusion in the streamwise and spanwise directions: The continuous
mode temporal decay rate is determined by the free-stream viscosity and is
proportional to νT (k2

x + k2
z ). In the lower fluid, however, diffusion is proportional

to νB(k2
x + k2

z ). The mismatch between the modal decay rate and diffusion in the
bottom fluid causes the distortion of the wall-normal wavenumber; this distortion
ensures that the diffusion term in the bottom fluid O-S equation maintains the correct
modal decay rate, set by the free stream.

For instance, consider a bottom fluid with lower viscosity than the free stream.
The streamwise and spanwise diffusions in this layer will therefore be smaller than
the free-stream values. As a result, the effective wall-normal wavenumber κd in the
bottom fluid must be greater than ky , in order to match the free-stream prescribed
modal decay rate.
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Figure 16. Change in nature of spanwise vorticity from oscillatory to exponential in the film
at different ratios of νB/νT ; , real component; , imaginary component; kxReT =
π/10, ky = 4π, kz = π, δB =0.3. (a) νB/νT =0.2. (b) νB/νT =5.
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Figure 17. Effect of νBT on penetration of continuous modes for (a) piecewise linear profile
and (b) two-fluid boundary layer; kxReT = π/10, ky = π, kz = π, δB = 0.2; , µBT = 0.5;

, µBT =1; , µBT = 2(νr crit ); , µBT =10.

The change in the wall-normal wavenumber is significant in correctly explaining
penetration of vortical disturbances in two-fluid boundary layer. In the single-fluid
problem, it was shown that modal penetration into the shear is proportional to
k2

yν/kxτδ, where k2
y is a parameter, and low viscosity implies weak penetration, while

higher viscosity enhances penetration. This dependence is not, however, preserved in
the two-fluid problem. Instead, the expression for penetration must be updated to
account for the modified wavenumber, κ2

dνB/kxτδ. A reduction of νB , alone, would
reduce penetration. However, the associated increase in κd causes a net increase in
penetration at lower νB . Conversely, an increase in νB and the associated reduction
in κd cause an overall reduction in penetration, opposite to the prediction for a
single-fluid shear flow. These observations are confirmed in figure 17 in which the
eigenfunction is plotted at various viscosity ratios; higher νB is shown to reduce
modal penetration.

5.3. The convective–diffusive regime

In this regime, both the viscous and convective terms in the vorticity equation (4.8)
of the bottom fluid are of the same order:

νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

)
≈ kxτBδBL.
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If a fully penetrating solution is assumed in the outer fluid, the above condition
necessitates that τB is sufficiently large; here the shear is assumed to be restricted to
the near-wall region, and as a result, the interface is located at Y = 0.

The asymptotic behaviour of the solution near the interface is derived by considering
the limit Y → 0 of the vorticity equation (4.8), which yields

νB

d2ψ0
Be

dY 2
+

(
νT

(
k2

x + k2
y + k2

z

)
− νB

(
k2

x + k2
z

))
ψ0

Be = 0,

The solution near the interface is therefore

ψ0
Be = Ce1

exp(iκeY )︸ ︷︷ ︸
ψ0

Be1

+ Ce2
exp(−iκeY )︸ ︷︷ ︸

ψ0
Be2

, (5.5)

where κe =
√

(νT /νB)(k2
x + k2

y + k2
z ) − (k2

x + k2
z ). The effect of the shear on the wall-

normal decay of the eigenfunction is not captured in this expression. Therefore, similar
to the analysis of the single-fluid problem, corrections to the two linearly independent
solutions ψ0

Be{1,2}
are sought, and the final expression for the eigenfunction near the

interface is given according to

ψBe = Ce1e
iκeY

︸ ︷︷ ︸
ψ0

Be1

+ Ce1e
ikeY

[
kxτB

2keνB

(
Y 2

2
− Y

2iκe

− 1 − e−2iκeY

4κ2
e

)]

︸ ︷︷ ︸
ψ1

Be1

+ Ce2e
−iκeY

︸ ︷︷ ︸
ψ0

Be2

+ Ce2e
−ikeY

[
− kxτB

2keνB

(
Y 2

2
+

Y

2iκe

− 1 − e2iκeY

4k2
e

)]

︸ ︷︷ ︸
ψ1

Be2

. (5.6)

The constants Ce1 and Ce2 are calculated by enforcing continuity of ψ , and its
gradient at Y = 0 and are provided in § B.1 of Appendix B. The above solution in
the edge layer is compared to the exact analytical expression (4.9) in figure 18, and
good quantitative agreement is observed. The wall-normal oscillation due to ψ0

Be{1,2}

is similar to that in the diffusive regime, at the modified wall-normal wavenumber,
κe = κd . The decay of the solution inside the bottom fluid, away from the interface, is
due to the cancellation by ψ1

Be{1,2}
, where the influence of the shear is cumulative and

increases with distance from the interface.
In the vicinity of the wall, the behaviour of ψ is described by the limit Y → −δBL of

(4.8) for the bottom fluid. To the lowest order in Y , the governing equation becomes

νB

d2ψ0
Bw

dY 2
+

(
νT

(
k2

x + k2
y + k2

z

)
− νB(k2

x + k2
z ) + ikxτBδBL

)
ψ0

Bw
= 0

and has the solution

ψ0
Bw = Cw1

exp(iκw(Y + δBL))︸ ︷︷ ︸
ψ0

Bw1

+ Cw2
exp(−iκw(Y + δBL))︸ ︷︷ ︸

ψ0
Bw2

, (5.7)

where

κw =

√
νT

νB

(
k2

x + k2
y + k2

z

)
−

(
k2

x + k2
z

)
+ i

kxτBδBL

νB

.
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Figure 18. Structure of spanwise vorticity in the convective–diffusive regime, showing the
edge- and wall-layer solutions for piecewise linear profile. The real part of the exact analytical
solution ( ), the asymptotic solution in the edge layer ( ) and the asymptotic solution
in the wall layer ( ) are compared; kxReT = 50π, ky = 4π, kz = π, δB = 0.3, µBT = 0.3.

Correction terms to ψ0
Bw are derived using a similar procedure to the edge layer, and

the following near-wall solution is obtained:

ψBw = Cw1e
ikw(Y+δBL) + Cw2e

−ikw(Y+δBL)

+ Cw1e
ikw(Y+δBL)

[
kxτB

2kwνB

(
(Y + δBL)2

2
− (Y + δBL)

2ikw

− 1 − e−2ikw(Y+δBL)

4k2
w

)]

+ Cw2e
−ikw(Y+δBL)

[
−kxτB

2kwνB

(
(Y + δBL)2

2
+

(Y + δBL)

2ikw

− 1 − e2ikw(Y+δBL)

4k2
w

)]
.

The constants Cw1 and Cw2 are evaluated by imposing wall-boundary conditions on
ψ and its gradient (§ B.1 of Appendix B). The wall solution accurately captures the
exact solution in the near-wall region as shown in figure 18.

The complex κw implies that the solution is oscillatory and also decaying. The
deviation of the solution from the purely oscillatory form is characteristic of the
convective–diffusive regime. This deviation is due to the term kxτBδBL/νB , which is
the cumulative effect of shear sheltering over the depth of the boundary layer as
discussed in the single-fluid problem and shown in figure 18.

It was demonstrated in the viscous regime that penetration is enhanced at low νB

due to the modified wavenumber, κd > ky . A similar effect can be observed in the
convective–diffusive regime: The definition of κw indicates that for low νB modal
penetration is enhanced by the modified wavenumber, Re(κw) > ky . However, the
wall-normal decay I (κw) is also increased for small νB . Therefore, it is not clear
whether a lower viscosity film enhances or reduces the penetration of the vortical
disturbance into the bottom fluid. Further discussion of the dependence of penetration
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Figure 19. Variation of penetration depth with viscosity ratio in which
kxReT = 1/100, ky = π/4, kz = π; ◦, δB = 0.3; △, δB =0.2.

on viscosity ratio, density ratio and surface tension is therefore presented in the next
section and is explained in light of the above-derived asymptotic solutions.

6. Discussion
In this paper, asymptotic solutions have been derived for the continuous-spectrum

modes of single- and two-fluid boundary layers. The competition between the
convective and diffusive terms in the O-S equations delineated the various possible
asymptotic regimes, and a physical interpretation of shear sheltering was provided. In
the single-fluid problem, it was shown that penetration of the vortical disturbance into
the boundary layer was enhanced by viscosity and limited by the shear. The influence
of introducing a fluid of different viscosity near the wall is complex. For instance,
a low-viscosity film enhances shear sheltering and, as a result, can suppress the
eigenfunction in the bottom fluid. However, another competing mechanism emerges
due to viscosity stratification: an increase in the apparent wall-normal wavenumber
can result in enhanced penetration of the vortical mode at low viscosity. This
competition suggests an optimal viscosity ratio exists, whereby penetration of the
disturbances in the two-fluid boundary layer is maximum.

The effect of viscosity ratio on penetration depth, d , for the continuous modes of
the two-fluid boundary layer is shown in figure 19. Indeed an optimal viscosity
ratio ν⋆

BT ≡ (νB/νT )⋆ exists where d is maximum. The optimal viscosity ratio is
less than unity, indicating maximum modal penetration into the shear takes place
when the lower fluid is less viscous, contrary to the results from the single-fluid
analysis.

In the limit νBT ≫ 1, the bottom fluid simulates the influence of a solid wall.
As a result, the penetration d asymptotes to the single-fluid limit. A reduction in
the viscosity of the lower fluid, ν⋆

BT < νBT < 1, is observed to increase penetration.
Despite an expected reduction in d for lower νB , penetration in fact increases due the
modified wavenumber, κd > ky , as discussed in the diffusive regime (§ 5.2). Upon further
reduction of νB , the convective term becomes appreciable, and the eigenfunction falls
within the convective–diffusive regime (§ 5.3). Due to shear sheltering, d decays for
νBT < ν⋆

BT . The influence of the shear continues to amplify for smaller νBT ratios, and
the eigenfunctions transitions into the shear-sheltered regime (§ 5.1). In this limit, the
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Figure 20. Variation of penetration depth with density ratio in which
kxReT = 1/100, ky = π/4, kz = π, µBT =1, We−1 = 0; ◦, δB = 0.3; △, δB = 0.2.

vortical modes are unable to significantly perturb the interface, which resembles a
stiff membrane.

6.1. Density stratification

In the eigenvalue problem, the density ratio appears in the normal-stress interface
condition and implicitly in the O-S equation via the kinematic viscosity. In order to
isolate the effect of density, it is assumed that the dynamic viscosities of the two fluids
are identical, µB = µT , and surface tension is ignored. The dependence of penetration
d on density ratio, ρBT ≡ ρB/ρT , is shown in figure 20. An optimal ratio exists and
directly corresponds to the optimal ν⋆

BT .
The first asymptotic limit in figure 20 is ρBT ≪ 1. This regime corresponds to the

previously considered limit of νBT ≫ 1 in figure 19. In that regime, it was shown that
the bottom fluid acts as a highly viscous or solid surface, and as a result penetration
is limited to the single-fluid behaviour.

In the limit of large density ratio, figure 20 shows that penetration d is negligible,
even for low-kx eigenfunctions which can effectively penetrate single-fluid boundary
layers. Intuitively, this is not surprising, since the density of the bottom fluid is
very large and expels external perturbations. An example of an eigenfunction from
this limit is shown in figure 21. The amplitudes of both ψ and φ are significantly
reduced across the interface. It is curious, however, that their wall-normal wavenumber
increases.

An explanation can be provided from the O-S equation and the normal-stress
condition across the interface. In order to simplify the analysis, we consider low-kx

disturbances in which shear sheltering is ineffective; any decay in the eigenfunction
cannot therefore be attributed to the shear. In addition, we assume 1/ρBT = ϵR , and
therefore the equation for ψ reduces to

ϵR

δ2
R

d2ψB

dY 2
R

+
((

k2
x + k2

y + k2
z

)
− ϵR

(
k2

x + k2
z

))
ψB = 0,

where YR =Y/δR . From the balance of the dominant terms, δR ∼ O(ϵR/k2
x + k2

y + k2
z )

1/2,
and the solution to the governing equation is therefore

ψB = C1exp(−iκRY ) + C2exp(iκRY ), (6.1)
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Figure 21. High-frequency oscillations in mode shape for an extremely dense film; ,
real component; , imaginary component; kxReT = 1/100, ky = π/4, kz = π, δB = 0.3, ρBT =
1000. Note φ is plotted on separate scales in the top and bottom fluids.

where κR =
√

(1/ϵR)(k2
x + k2

y + k2
z ). The solution exhibits an oscillation at the modified

wavenumber, κR ≫ ky , consistent with figure 21. This solution, per se, does not explain
the reduction of the amplitude of the eigenfunction across the interface — an issue
addressed by considering the normal-stress condition.

In the limit of 1/ρBT = ϵR , the interface stress condition (4.3) is expressed in the
form

(
k2

x + k2
y + k2

z

)
dY φT + ϵR

(
d3

Y φT − d3
Y φB

)
= 0.

A comparison of the free-stream behaviour of the eigenfunction and the solution
in the bottom fluid (6.1) shows that (d3

Y φT ∼ k3
yφT ) ≪ (d3

Y φB ∼ κ3
RφB). Therefore, the

normal-stress condition can be simplified:
(
k2

x + k2
y + k2

z

)
dY φT = ϵRd3

Y φB.

Assuming oscillatory solution in both the top and bottom fluids, the interface
condition indicates that

φB ∼
√

ϵRk2
y

k2
x + k2

y + k2
z

φT ,

which explains the reduction in the amplitude of the eigenfunction observed in
figure 21.

6.2. Surface tension

Surface tension appears in the normal-stress interface condition only. In order to
isolate its effect, it is assumed that the density and viscosity of the two fluid are
identical. Therefore, the normal-stress boundary condition reduces to

d3
Y φT − d3

Y φB = −
(

σ

νT

)
k4f . (6.2)

The stress condition hints at the dependence of mode shapes on surface tension; the
eigenfunction is fully defined by the solution to the O-S equation. For low surface
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Figure 22. Variation of penetration depth with surface tension in which
kxReT = 1/100, ky = π/4, kz = π, µBT = 1, ρBT = 1; ◦, δB = 0.3; △, δB = 0.2.

tension, σ ∼ ϵσ , the stress condition recovers the single-fluid behaviour in which d3
yφ

is continuous across a ‘virtual’ interface. In the opposite limit of large σ → ∞, the
interface deformation must tend to zero, f → 0, in order to maintain boundedness
in the normal-stress condition. Since the interface displacement is trivial, the normal
velocity at the interface also tends to zero. This is consistent with physical intuition:
at high surface tension, the interface is expected to resemble a rigid membrane which
prevents any perturbation from the upper layer to penetrate into the lower fluid and
vice versa.

The limits of low and high surface tensions are observed in figure 22, where
penetration d is plotted as a function of inverse Weber number. At low surface
tension, the single-fluid limit is recovered and is common among the two curves
which correspond to two different film thicknesses. In the opposite limit, We−1 ≫ 1,
penetration is reduced below the single-fluid limit. In this regime, the bottom fluid is
shielded from the external vortical perturbation, and therefore, the asymptotic value of
d is dependent on the film thickness. For the intermediate values of We−1, a maximum
is observed in the penetration depth. This observation suggests that elasticity of the
interface due to surface tension constructively enforces the penetration of the free-
stream vortical disturbance into the shear.

7. Conclusion
The penetration of free-stream vortical disturbances into single- and two-fluid

boundary layers was examined using analytical and asymptotic solutions of the O-S
equation. Three asymptotic regimes were identified, which are determined by the
ratio of the diffusive to the convective terms in the vorticity equation. In the shear-
sheltered regime, the oscillatory free-stream disturbances are simply convected by the
outer flow and are exponentially decaying at the edge of the boundary layer. In the
viscous regime, the oscillatory solution persists towards the wall. In the intermediate
regime, both wall-normal diffusion and the accumulative effect of shear sheltering with
increased depth causes a gradual decay of the oscillatory eigenfunction. The analytical
solutions were complemented by a physical interpretation of shear sheltering, which
contrasts low- and high-frequency modes and their ability to penetrate the shear.

The analysis of the two-fluid O-S equation was guided by the findings of the single-
fluid problem. The extent of penetration of vortical modes into the lower film was
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shown to depend not on the viscosity of the film per se but on the viscosity ratio for
the following reason: The decay rate of the continuous modes is determined by the
free-stream viscosity which does not match that of the lower fluid. A modified wall-
normal wavenumber, which is proportional to the viscosity ratio, therefore emerges
and ensures that diffusion in the bottom layer matches the dissipation rate set by the
free stream. Lower viscosity films caused the modified wavenumber, κd , to increase
which in turn led to deeper penetration. This is contrary to the single-fluid boundary
layer in which lower viscosities enhance shear sheltering and hence reduce penetration
of the continuous modes.

Appendix A. Coefficient of the single-fluid eigenfunctions

A.1. Analytical solution

The exact analytical solution for φ is

φ = C1exp(−ikyY ) + C2exp(ikyY ) + C3exp(−kY ), Y > 0,

φ = C7exp(−kY ) + C8exp(kY ) + exp(−kY )

×
∫ Y

−δBL

exp(ks)(C5Ai[Z (s)] + C6Bi[Z (s)]) ds + exp(kY )

×
∫ 0

Y

exp(−ks)(C5Ai[Z (s)] + C6Bi[Z (s)]) ds, −δBL < Y < 0,

and the coefficients are

C5 =
C3

Ai[Z (0)]

k2 + k2
y

+ A− − A+ − λ

(
Bi[Z (0)]

k2 + k2
y

+ B− − B+

) ,

C6 = λC5

C1 =
1

2

[
k

iky

(C5(A
− + A+) + C6(B

− + B+)) +
kxτ (C5Ai[Z (0)] + C6Bi[Z (0)])

νky

(
k2 + k2

y

)2

− C5Ai[Z (0)] + C6Bi[Z (0)]

k2 + k2
y

− C3

(
k

iky

+
kxτ

νky

(
k2 + k2

y

)
)]

,

C2 =
−1

2

[
k

iky

(C5(A
− + A+) + C6(B

− + B+)) +
kxτ (C5Ai[Z (0)] + C6Bi[Z (0)])

νky

(
k2 + k2

y

)2

+
C5Ai[Z (0)] + C6Bi[Z (0)]

k2 + k2
y

− C3

(
k

iky

+
kxτ

νky

(
k2 + k2

y

)
)]

,

C7 = 0,

C8 = −(C5A
+ + C6B

+),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)
where

A± =
1

2k

∫ 0

−δBL

exp(±ks)Ai[Z (s)]ds, B± =
1

2k

∫ 0

−δBL

exp(±ks)Bi[Z (s)] ds,
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λ =

−2kA+ +
kAi[Z (0)] − Ai′[Z (0)]Z ′(0)

k2 + k2
y

−
(
3k2 + k2

y

)
kxτ

iν
(
k2 + k2

y

)2
(A− − A+)

2kB+ +
−kBi[Z (0)] − Bi′[Z (0)]Z ′(0)

k2 + k2
y

+

(
3k2 + k2

y

)
kxτ

iν
(
k2 + k2

y

)2
(B− − B+)

and Z (Y ) = exp(i5π/6)(kxτ/ν)1/3(Y − ik2
yν/kxτ ).

A.2. The convective shear-sheltered regime

The solution for φ is

φ = C1exp(−ikyY ) + C2exp(ikyY ) + C3exp(−kY ), Y > 0,

φ = C5exp(−kY ) + C6exp(kY ) + Cw2
(−ζ (δBL + Y ))

+ Ce1

[
exp(−kY )

∫ Y

−δBL

exp(−ks)Ai[ς(s)]ds + exp(kY )

∫ 0

Y

exp(−ks)Ai[ς(s)] ds

]
,

− δBL < Y < 0,

and the coefficients are

Ce1
= C1

[
Ai[0]

k2 + k2
y

+ A− − A+ + λ

(
−

k2
y + ζ 2

k2 + k2
y

exp(ζ δBL) +
k − ζ

2k
exp(−kδBL)

− k + ζ

2k
exp(kδBL)

)]−1

,

Cw2
= λCe1

,

C1 =
1

2

(
−Ce1

Ai[ς(0)] + Ai′[ς(0)]
ς ′

iky

k2 + k2
y

+ Cw2

(
1 +

ζ

iky

)
k2 − ζ 2

k2 + ζ 2
exp(ζ δBL),

− 2k2kxτ

νky

(
k2 + k2

y

)2

(
Cw2

k2 − ζ 2

k2 + ζ 2
exp(ζ δBL) − Ce1

Ai[0]

k2 + k2
y

+ C3

))
,

C2 =
1

2

(
−Ce1

Ai[ς(0)] − Ai′[ς(0)]
ς ′

iky

k2 + k2
y

+ Cw2

(
1 +

ζ

iky

)
k2 − ζ 2

k2 + ζ 2
exp(ζ δBL)

+
2k2kxτ

νky

(
k2 + k2

y

)2

(
Cw2

k2 − ζ 2

k2 + ζ 2
exp(ζ δBL) − Ce1

Ai[0]

k2 + k2
y

+ C3

))
,

C5 = −k + ζ

2k
Cw2

exp(kδBL),

C6 = −Ce1
A+ − k − ζ

2k
Cw2

exp(−kδBL),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

where

A± =
1

2k

∫ 0

−δBL

exp (±ks)Ai[ς(s)] ds,
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λ=

1

k2 + k2
y

(kAi[0] − Ai′[ς(0)]ς ′[0]) − 2kA+ +
kxτ (k2

y + 3k2)

iν(k2 + k2
y)

2
(A− − A+)

(k − ζ )

(
exp(−kδBL) −

k2
y + ζ 2

k2 + k2
y

exp(ζ δBL)

)
−

kxτ (k2
y + 3k2)

iν(k2 + k2
y)

2

(
exp(ζ δBL) − k − ζ

2k
exp(−kδBL)

) ,

ς(Y ) = exp(i5π/6)(kxτ/ν)1/3(Y ) and ζ =(1 − i)/
√

2δw .

A.3. The diffusive regime

The solution for φ is

φ = C1exp(−ikyY ) + C2exp(ikyY ) + C3exp(−kY ), Y > 0,

φ = C5exp(−ikyY ) + C6exp(ikyY ) + C7exp(−kY ) + C8exp(kY ), −δBL < Y < 0.

and the coefficients are

C5 = 2
C3exp(−ikyδBL)((

−1 +
iky

k

)
+ λ

(
1 +

iky

k

))
exp(kδBL) +

(
−

(
1 +

iky

k

)
+ λ

(
1 − iky

k

))
exp(−kδBL)

,

C6 = −λC5exp(i2kyδBL),

C1 = C5 +
k2kxτ

νky

(
k2 + k2

y

)2
(C5 + C6 + C3),

C2 = C6 − k2kxτ

νky

(
k2 + k2

y

)2
(C5 + C6 + C3),

C7 = −exp(−kδBL)

2

((
1 +

iky

k

)
C5exp(ikyδBL) +

(
1 − iky

k

)
C6exp(−ikyδBL)

)
,

C8 = −exp(kδBL)

2

((
−1 +

iky

k

)
C5exp(ikyδBL) −

(
1 − iky

k

)
C6exp

(
−ikyδBL

))
,

where

λ =

(2k + α)

(
−1 +

iky

k

)
exp(kδBL) + α

(−2k + α)

(
1 +

iky

k

)
exp(kδBL) + α

,

α =
ikxτ

(
3k2 + k2

y

)

ν
(
k2 + k2

y

)2
.

A.4. The convective–diffusive regime

The oscillatory solution near the edge of the boundary layer is

ψe = Ce1e
ikyY

[
1 +

kxτ

2kyν

(
Y 2

2
− Y

2iky

− 1 − e−2ikyY

4k2
y

)]

+ Ce2e
−ikyY

[
1 − kxτ

2kyν

(
Y 2

2
+

Y

2iky

− 1 − e2ikyY

4k2
y

)]
, (A 3)

and the coefficients are

Ce1 =
1

2

(
ψ(0) +

1

iky

dψ

dY
(0)

)
,
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Ce2 =
1

2

(
ψ(0) − 1

iky

dψ

dY
(0)

)
,

where ψ(0) = C5Ai[Z (0)] + C6Bi[Z (0)] and (dψ/dY )(0) = (C5Ai′[Z (0)] +
C6Bi′[Z (0)])Z ′. The constants C5 and C6 remain the same as in the exact analytical
solution (A 1).

The wall solution is

ψw(Y ) = Cw1e
ikw(Y+δBL) + Cw2e

−ikw(Y+δBL)

+ Cw1e
ikw(Y+δBL)

[
kxτ

2kwν

(
(Y + δBL)2

2
− (Y + δBL)

2ikw

− 1 − e−2ikw(Y+δBL)

4k2
w

)]

+ Cw2e
−ikw(Y+δBL)

[
− kxτ

2kwν

(
(Y + δBL)2

2
+

(Y + δBL)

2ikw

− 1 − e2ikw(Y+δBL)

4k2
w

)]
,

and the coefficients are

Cw1 =
1

2

(
ψ(−δBL) +

1

ikw

dψ

dy
(−δBL)

)
,

Cw2 =
1

2

(
ψ(−δBL) − 1

ikw

dψ

dy
(−δBL)

)
,

where ψ(−δBL) = C5Ai[Z (−δBL)] + C6Bi[Z (−δBL)] and (dψ/dY )(−δBL) =
(C5Ai′[Z (−δBL)] + C6Bi′[Z (−δBL)])Z ′.

Appendix B. Coefficient of the two-fluid eigenfunctions
B.1. The convective–diffusive regime

The oscillatory solution near the interface is

ψBe = Ce1e
ikeY

[
1 +

kxτB

2kyνB

(
Y 2

2
− Y

2ike

− 1 − e−2ikeY

4k2
e

)]

+ Ce2e
−ikeY

[
1 − kxτB

2keνB

(
Y 2

2
+

Y

2ike

− 1 − e2ikeY

4k2
e

)]
, (B 1)

and the coefficients are

Ce1 =
1

2

(
ψ(0) +

1

iky

dψ

dY
(0)

)
,

Ce2 =
1

2

(
ψ(0) − 1

iky

dψ

dY
(0)

)
,

where ψ(0) = C9Ai[X (0)] + C10Bi[X (0)] and (dψ/dY )(0) = (C9Ai′[X (0)] +
C10Bi′[X (0)])X ′. The constants C9 and C10 remain the same as in the exact analytical

solution (4.9). Here ke =
√

(νT /νB)(k2
x + k2

y + k2
z ) − (k2

x + k2
z ).

The wall solution is

ψBw = Cw1e
ikw(Y+δBL) + Cw2e

−ikw(Y+δBL)

+ Cw1e
ikw(Y+δBL)

[
kxτB

2kwνB

(
(Y + δBL)2

2
− (Y + δBL)

2ikw

− 1 − e−2ikw(Y+δBL)

4k2
w

)]

+ Cw2e
−ikw(Y+δBL)

[
− kxτB

2kwνB

(
(Y + δBL)2

2
+

(Y + δBL)

2ikw

− 1 − e2ikw(Y+δBL)

4k2
w

)]
,
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and the coefficients are

Cw1 =
1

2

(
ψ(−δBL) +

1

ikw

dψ

dy
(−δBL)

)
,

Cw2 =
1

2

(
ψ(−δBL) − 1

ikw

dψ

dy
(−δBL)

)
,

where ψ(−δBL) = C9Ai[X (−δBL)] + C10Bi[X (−δBL)] and (dψ/dY )(−δBL) = (C9Ai′

[X (−δBL)] + C10Bi′[X (−δBL)])X ′. Here

kw =
√

(νT /νB)
(
k2

x + k2
y + k2

z

)
−

(
k2

x + k2
z

)
+ i(kxτBδBL/νBL).
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