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Continuous mode transition is an instance of the bypass route to boundary-layer
turbulence. The stages that precede breakdown are explained in terms of continuous
Orr–Sommerfeld and Squire spectra. In that context, the role of pressure gradient is
less evident than it is in natural transition. Its role is investigated using linear theory
and numerical simulations. Both approaches demonstrate that adverse pressure gradi-
ents enhance the coupling of low-frequency vortical disturbances to the boundary-
layer shear. The result is stronger boundary-layer perturbation jets – or Klebanoff
distortions. The correlation between the intensity of the perturbation jets and transi-
tion location is tested by direct numerical simulations of pairwise continuous mode
interactions; such interactions can reproduce the entire transition process. The results
confirm that stronger perturbation jets are more unstable, and hence provoke early
transition in adverse pressure gradient. This is also consistent with the experimental
observation that transition becomes independent of pressure gradient at high turbulent
intensities. Under such conditions, boundary-layer streaks are highly unstable and
transition is achieved swiftly, independent of the mean gradient in pressure.

1. Introduction
In what is called the orderly route to transition, Tollmien–Schlichting instability

waves develop and break down (Kleiser & Zang 1991). The growth rate of Tollmien–
Schlichting waves is very sensitive to pressure gradient. In zero and favourable pressure
gradients (ZPG and FPG), Tollmien–Schlichting waves are subject to a weak viscous
instability. In adverse pressure gradient (APG), the mean velocity profile has an
inflection point and inviscid instability takes over, with viscosity becoming stabilizing.
Consequently the growth rate increases greatly.

The alternative to the orderly route is called bypass transition (Morkovin 1969). By
definition, bypass transition is not caused by Tollmien–Schlichting waves. Any role
that pressure gradient plays in bypass transition cannot be attributed to inflectional
mean flow profiles. The perspective that bypass is the complement to orderly transition
suggests that it be studied by starting from the complement to Tollmien–Schlichting
waves. The latter are the discrete modes of the Orr–Sommerfeld operator; their
complement in Orr–Sommerfeld (O-S) theory is the continuous spectrum. Hence, in
this paper we discuss pressure gradients from the perspective of continuous mode
transition (Durbin & Zaki 2005). Our objective is to identify how pressure gradient
can play a role within that context.

The continuous Orr–Sommerfeld modes are vortical eigen-solutions of the linear
perturbation operator. They are oscillatory in the free stream, and damp with distance



358 T. A. Zaki and P. A. Durbin

into the boundary layer. Different modes penetrate the boundary layer to different
depths. Therefore, a study of mode shape is key to understanding the interaction of
free-stream vortical disturbances and the boundary-layer shear.

Grosch & Salwen (1978) provided plots of the continuous Orr–Sommerfeld mode
shapes. However, their numerical method was inadequate for solving the eigenvalue
problem in the frequency limit ω ∼ O(1). Jacobs & Durbin (1998) proposed an alter-
native algorithm that enables accurate computation of the continuous modes at all
frequencies. They also emphasized the importance of mode shape and of penetration
depth. Maslowe & Spiteri (2001) applied a similar approach and discussed the effect of
pressure gradient on mode shapes for the continuous spectrum of the Orr–Sommerfeld
operator. Maslowe & Spiteri (2001) focused on the effect that pressure gradients have
on the oscillation of the magnitude of the eigenfunction about a normalized value in
the free stream. They predicted an increase in the amplitude of oscillation of Orr–
Sommerfeld modes at the edge of the boundary layer for both adverse and favourable
pressure gradients.

In the present paper, the interest is shifted to the effect of mean pressure gradient
on modal penetration into the boundary layer. Penetrating three-dimensional Orr–
Sommerfeld modes tilt the boundary-layer mean shear and, as a result, generate
normal vorticity perturbations. This interaction is governed by the Squire equation
for normal vorticity disturbance. Mathematically, the Orr–Sommerfeld forcing term
in the Squire equation is the linearized tilting term in the three-dimensional vorticity
equation. In the low-frequency limit, these perturbations give rise to the high-intensity
elongated boundary-layer streaks. These streaks are jets in the perturbation field, in the
sense that they are streamwise elongated strips of predominantly u velocity perturba-
tion (Jacobs & Durbin 2000). The root mean squares of the instantaneous perturbation
jets are known as Klebanoff ‘modes’ (these are not modes in the mathematical sense:
Wu & Choudhari (2003) suggest the term Klebanoff distortions).

In bypass transition, the amplification of the low-frequency streaks is followed by
the inception of turbulent spots and, finally, breakdown. In addition to causing early
transition onset, adverse pressure gradient shortens the length of the transitional
region of the flow. Higher spot inception and spreading rates in retarded flows
are observed and well documented experimentally (Abu-Ghannam & Shaw 1980;
Gostelow, Blunden & Walker 1994). In order to study spot spreading, Bowles &
Smith (1995) solved the initial-value problem of an inviscid multi-scale disturbance
in an otherwise laminar flow. The model problem of a piecewise-linear mean flow
captures the correct spreading angle for spots in zero-pressure-gradient boundary
layers. The same approach was extended by Brown & Smith (2002) in order to
include the effect of pressure gradient. Their solution captures the wider spread angle
of disturbances in adverse pressure gradient.

Abu-Ghannam & Shaw (1980) provide a good summary of the experimental
findings regarding transition onset. Their figure 6 shows the dependence of transition
location on pressure gradient, at various levels of free-stream turbulence intensity, Tu.
In orderly transition, or the limit of zero turbulence intensity, the influence of APG
on transition location is pronounced. This is due to the inviscid instability of the
mean velocity profile, as well as the enhanced amplification of discrete mode triads
in decelerated flows (Goldstein & Lee 1992; Corke & Gruber 1996). The influence
of pressure gradient diminishes with increasing Tu. In the limit of high free-stream
turbulence, Tu > 3 %, transition location is much farther upstream and, when expressed
in terms of the momentum thickness Reynolds number Rθ , becomes independent of
the pressure gradient. Even under moderate free-stream turbulence intensities, the
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Figure 1. Schematic of continuous mode transition.

natural route to transition is completely bypassed (Hodson & Howell 2005). Therefore,
the influence of pressure gradient in the bypass regime is not due to the inflectional
mean velocity profile. Instead, the notion of coupling of the free-stream vortical
disturbances to the boundary-layer shear, and the intensity of the streaks generated
owing to that interaction, become important.

A coupling coefficient, Θ , was proposed by Zaki & Durbin (2005) in order to
quantify the propensity of Orr–Sommerfeld continuous modes in the free stream to
generate boundary-layer streaks. The definition of Θ is motivated by a resonance
between Orr–Sommerfeld forcing and Squire mode response. The coupling coefficient
is evaluated in the present paper for eigenfunctions of Falkner–Skan profiles. The
results are suggestive of the effect of pressure gradient on streak intensity and,
consequently, transition onset.

Linear theory is the starting point for our direct numerical simulations (DNS). A
single low-frequency continuous Orr–Sommerfeld mode is prescribed at the inflow,
and its spatial evolution computed in adverse, zero and favourable pressure gradients.
The intensity of the boundary-layer streaks is examined for the various levels of
mean pressure gradient. The trends observed in the DNS are also compared to those
predicted by linear theory.

Direct numerical simulations go beyond linear theory to provide a fuller picture
of transition. Jacobs & Durbin (2000) carried out DNS of bypass transition of a
zero-pressure-gradient boundary layer forced by a fully turbulent free stream. In their
simulations, it is seen that the low-frequency backward perturbation jets lift towards
the edge of the boundary layer. There, they are exposed to the high-frequency non-
penetrating disturbances in the free stream. This local interaction is destabilizing, and
initiates breakdown of the laminar jet, leading to the appearance of a turbulent spot.

In an effort to isolate the essential interaction that leads to breakdown, Zaki &
Durbin (2005) investigated continuous mode transition in zero pressure gradient
(figure 1). Their computer simulations showed that the entire transition process is
realizable through the interaction of only two Orr–Sommerfeld continuous mode
eigenfunctions: one low-frequency, strong coupling disturbance, and one high-
frequency mode. The former penetrates the boundary layer and induces the forward
and backward perturbation jets. The latter high-frequency disturbance is filtered by
the shear, and hence exists solely in the free stream. This mode interacts with the
lifted backward jets only near the top of the boundary layer, causing an inflectional
type of instability (which should not be confused with the inflection point of the mean
velocity profile in orderly transition). The instability intensifies downstream, leading
to breakdown into a turbulent spot.
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Similar DNSs of pairwise mode interactions are performed herein. First, in the
absence of pressure gradient, the simulations examine the dependence of transition
location on the amplitude of the low-frequency inflow disturbance or, equivalently,
the intensity of the boundary-layer streaks. The results verify whether higher-
intensity backward perturbation jets are more susceptible to instability once they
are exposed to high-frequency forcing at the upper edge of the boundary layer. This
bypass mechanism, which commences at the top of the boundary layer, is therefore
quite distinct from the near-wall inflection-point instability characteristic of natural
transition. The ZPG results are followed by DNS of continuous mode transition in
the presence of mean pressure gradient.

The next four sections of this paper address the influence of pressure gradient on the
early stages of bypass transition in the context of linear perturbation theory. Section 2
includes the formulation of the linear perturbation problem. Section 3 discusses the
effect of pressure gradient on the shape of the continuous Orr–Sommerfeld and Squire
modes. In § 4, the solution to the initial-value problem of normal-vorticity generation
due to Orr–Sommerfeld forcing is evaluated. Both the universality of the shape of
Klebanoff distortions and the influence of pressure gradients on the amplitude of
boundary-layer streaks are highlighted. Whether the coupling coefficient, Θ , captures
the dependence of the intensity of boundary-layer streaks on flow acceleration is
addressed in § 5. Linear theory is followed by a discussion of our direct numerical
simulations of single and pairwise continuous Orr–Sommerfeld mode interaction in
§ 6. A summary of the results is presented in the last section.

2. Linear theory: the Orr–Sommerfeld/Squire eigenvalue problem
Linear theory provides a starting point for studying the process of boundary-layer

instability and transition. The linear evolution of a small disturbance about a viscous
parallel mean flow U (y) is described by the Orr–Sommerfeld and Squire equations.
The pair corresponds to the normal velocity, v, and vorticity, η, equations (Drazin &
Reid 1995),

∂t

[
v

η

]
=

[
�−1

{
d2

yU∂x + (R−1� − U∂x)�
}

0

−dyU∂z R−1� − U∂x

] [
v

η

]
, (2.1)

where � is the Laplacian operator, and �−1 is its formal inverse. The boundary layer
99 % thickness, δ, and the free-stream velocity, U∞, are the characteristic length and
velocity scales. The Reynolds number is therefore defined as R = U∞δ/ν.

The Orr–Sommmerfeld/Squire eigenvalue problem can be derived by invoking
Fourier representation in the homogeneous spatial directions and in time:[

v(x, t)

η(x, t)

]
=

[
φ(y) exp(−iωost)

χ(y) exp(−iωsqt)

]
exp(i(kxx + kzz)).

Here, we consider the homogeneous Squire operator, and therefore the eigenvalue
problems for normal velocity and vorticity become independent, and are

−
[
iωosφ

iωsqχ

]
=

[
L 0

0 S

] [
φ

χ

]
, (2.2)

where

L = �−1{ikxU
′′ + [�(�)/R] − ikxU�},

S = [(�/R) − ikxU ].



Continuous mode transition in pressure gradient 361

In semi-bounded flows, y � 0, the Orr–Sommerfeld and Squire eigenvalue problems
possess a discrete spectrum, with eigenvalues ωn, n= 1, 2, 3, . . . , N , and a continuous
spectrum ωky

. The discrete eigenfunctions satisfy limy→∞ φn, χn(y) = 0; the continuous
eigenfunctions satisfy limy→∞ φky

, χky
(y) are bounded. The latter are oscillatory in the

free stream and provide an expansion basis for disturbances (Grosch & Salwen 1978).
Note that the coupling term, C = ikzU

′, from equation (2.1), does not appear in the
eigenvalue problem (2.2), and therefore does not cause non-normality of the eigen-
functions. Instead, this term is considered to force the homogeneous Squire operator,

(R−1� − U∂x)η − ∂tη = Cφ exp(i(kxx + kzz − ωost)). (2.3)

The forcing can be resonant with the normal vorticity operator. In the case of the
discrete Tollmien–Schlichting and Squire modes, direct resonance does not take
place because the discrete eigenvalues of the two operators do not coincide. Only
a ‘near-resonant’ behaviour is possible when the discrete eigenvalues of the two
operators become sufficiently similar (Benney & Gustavsson 1981). In the case of the
continuous spectrum, exact, or direct, resonance takes place between the continuous
Orr–Sommerfeld modal forcing and the Squire response. This resonance is a simple
consequence of them having exactly the same dispersion relation and, hence, the
same continuous eigenvalues (Zaki & Durbin 2005). The solution to the initial-value
problem, therefore, exhibits linear growth in time prior to its viscous decay.

3. Mode shape
Continuous Orr–Sommerfeld and Squire modes are oscillatory in the free stream,

and evanescent inside the boundary layer. Their mode shape provides a natural
basis for expanding a general free-stream vortical disturbance into its ‘Fourier’
components. The influence of each eigenfunction on the boundary layer can then
be evaluated independently. A study of mode shape, therefore, explains the process
by which particular frequency components of the free-stream disturbance penetrate
the boundary layer.

The extent to which the Orr–Sommerfeld and Squire continuous eigenfunctions pen-
etrate the boundary layer is dependent on the wall-normal wavenumber ky , frequency
ω, Reynolds number R, and the mean shear distribution (Jacobs & Durbin 1998). This
dependence is captured in the eigensolution for a piecewise-linear mean flow profile,

U (y) = U∞, y > 0,

U (y) = U∞ + τy, y < 0.

The shape of the eigenfunction in the region of shear, y < 0, is given by an Airy
function

ψ(y) = c1 Ai

[
(iωRτ )1/3

(
y +

ik2
y

Rωτ

)]
. (3.1)

For small distances into the shear region, |y| < k2
y/Rωτ , the eigenfunction is

oscillatory. However, for larger values of |y|, the solution decays exponentially.
Therefore, the quantity k2

y/Rωτ determines the extent of penetration of the
eigenfunction into the boundary layer.

Pressure gradients do not alter the dependence of penetration depth on R, ω or ky .
The effect of increasing R or ω remains enhanced sheltering, while higher ky enhances
penetration. These trends are demonstrated in figures 2 to 4, where the continuous
Orr–Sommerfeld modes are computed numerically. The mean flow is a Falkner–Skan



362 T. A. Zaki and P. A. Durbin

0.5 1.0 1.50

1

2

3(a) (b) (c)

|φ|

y
–
δ 

0.5 1.0 1.50

1

2

3

|φ|
0.5 1.0 1.50

1

2

3

|φ|

Figure 2. Effect of R on penetration depth (ω = π, kz = π, ky = π), , R = 10;
, R = 100; , R = 1000. (a) β = −0.18, (b) β = 0, (c) β = +0.5.
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Figure 3. Effect of ω on penetration depth (R = 1000, kz = π, ky = π), , ω = π/100;
, ω = π/10; , ω = π. (a) β = −0.18, (b) β = 0, (c) β = +0.5.
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Figure 4. Effect of ky on penetration depth (R = 100, ω = π, kz = π), , ky = π/2;
, ky = π; , ky = 4π. (a) β = −0.18, (b) β = 0, (c) β = +0.5.

similarity solution for the accelerating free stream, U∞(x) = Kxβ/(2−β). The dependence
of penetration depth on R, ω and ky is similar in retarded and accelerated flows, as
demonstrated in the figures.

Pressure gradients cause a variation in the mean shear distribution, τ , and as a
result alter the sheltering ability of the boundary layer. It is therefore expected that
the shape of continuous modes and the extent of their penetration into the boundary
layer are affected. Figure 5 shows the mean velocity profile for three pressure gradient
parameters. In APG, the shear is higher close to the edge of the boundary layer
than in FPG. As a result, it is expected that in APG the Orr–Sommerfeld modes
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Figure 5. Mean velocity profiles for different pressure gradient parameters. , β = −0.19;
, β = 0; , β = +0.2.
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Figure 6. Effect of pressure gradient parameter on penetration depth. , β = −0.19; ,
β = 0; , β = + 0.5 (a) R = 1000, ω = π/100, ky = π, kz = π, (b) R = 100, ω = π, ky = 4π,
kz = π.

penetrate less than in zero and favourable pressure gradients. This assertion is verified
in figure 6, although the effect is not large. In that figure, the Orr–Sommerfeld modes
in favourable pressure gradient are the most penetrating, while least penetrating in
adverse pressure gradient.

In figure 6, the amplitude of the Orr–Sommerfeld eigenfunction was normalized
to unity in the free stream. Figure 6(a) shows that both the adverse and favourable
pressure-gradient modes have increased amplitude of oscillation in the free stream,
consistent with the results of Maslowe & Spiteri (2001). However, at the edge of the
boundary layer, both have a smaller magnitude than the zero-pressure-gradient case.
Figure 6(b) shows the amplitude of the APG mode is highest, followed by ZPG, and
finally FPG at the edge of the boundary layer. The variation in amplitude is therefore
wavenumber and Reynolds-number dependent. A clear, general statement cannot be
made regarding the effect of pressure gradient on the oscillation in the magnitude of
the eigenfunctions.

However, the variation of sheltering or penetration depth with pressure gradient
is consistent. Adverse pressure gradient enhances shear sheltering and, as a result,
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reduces penetration. Conversely, accelerated flows exhibit reduced sheltering – that
is, enhanced penetration of continuous modes. This dependence is shown in figure 6:
the Orr–Sommerfeld modes penetrate to lower y/δ in FPG than in zero and adverse
pressure gradient.

It is important to note that the pressure gradient parameters considered here are
large. Nevertheless, their effect on penetration is limited (see figure 6). It can therefore
be concluded that the variation in sheltering due to pressure gradient is not a sub-
stantial effect. If this effect were significant, transition in retarded flows, where
sheltering is enhanced, would be delayed. Instead, it is generally accepted that retarded
flows experience earlier transition, while accelerated flows are more stable (Abu-
Ghannam & Shaw 1980).

Therefore, the experimentally established effect of pressure gradients on transition
onset is at odds with the variation in shear sheltering. In order to account for the dis-
crepancy, attention is shifted to the notion of coupling: the propensity of penetrating
Orr–Sommerfeld modes to force the normal vorticity equation, and generate
boundary-layer streaks. Enhanced coupling in retarded flows would offset the minor
improvement in sheltering, and explain early transition in adverse pressure gradients.
Similarly, weak coupling in accelerated flows would offset the mild enhancement in
penetration depth, and explain delayed transition in favourable pressure gradients. In
the next section, in order to investigate coupling, we turn to the initial-value problem
(IVP) of Squire response to Orr–Sommerfeld forcing.

Shifting the focus to coupling does not undermine the importance of the concept of
shear sheltering. This physical mechanism is perhaps the only one capable of explain-
ing the variation of mode shape within the boundary layer, and hence addressing the
question of boundary-layer receptivity to modal components of a general free-stream
vortical disturbance. Also, the boundary-layer response to forcing by a single Orr–
Sommerfeld mode is a packet of Squire modes with different ky (see next section, and
Zaki & Durbin 2005). The superposition of the Squire spectrum cancels in the free
stream, but not in the boundary layer, owing to the dependence of penetration on
wall-normal wavenumber. The incomplete cancellation gives rise to the well known
Klebanoff distortions.

A study of continuous spectrum mode shape is therefore relevant. However, it is not
sufficient to explain the experimentally observed trends in transition location under
flow acceleration. For this, we next consider the initial-value problem, and the notion
of coupling.

4. The initial-value problem
Penetrating three-dimensional, continuous Orr–Sommerfeld modes force the Squire

operator resonantly. The response, a superposition of Squire eigenfunctions, gives
rise to boundary-layer streaks (Zaki & Durbin 2005). The maximum intensity of the
streaks, reaching magnitudes of the order of 10 % of U∞, has been documented in the
experimental and numerical literature (Kendall 1991; Westin et al. 1994; Jacobs &
Durbin 2000). These elongated streamwise perturbations can be understood as normal
vorticity response to tilting of the mean vorticity by the forcing term ikzU

′φ(y) in
equation (2.3). Two factors are therefore important in determining the intensity of the
streaks: the penetration depth of the Orr–Sommerfeld mode φ(y), and the distribution
of the mean shear U ′. The former was addressed in the section on mode shape. Here,
we consider fully penetrating Orr–Sommerfeld modes. It remains for us to discuss the
variation in mean shear with pressure gradient, and the implications on the Squire
response to Orr–Sommerfeld forcing.
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In adverse pressure gradient, the shear distribution is in favour of generating
strong boundary-layer jets. The location of the maximum shear is away from the
wall (figure 5). This allows for stronger forcing of the normal vorticity equation, and
larger coupling is expected. Meanwhile, in zero and favourable pressure gradient, the
maximum shear is concentrated close to the wall. The forcing to the Squire equation
is therefore limited, especially since the weighting function, φ(y), satisfies the no-slip
condition, φ = 0, at the wall.

The solution to the initial-value problem of the Squire response to Orr–Sommerfeld
mode forcing is given in Zaki & Durbin (2005). A single Orr–Sommerfeld mode,
(̃ky; kx, kz), was considered; the tilde distinguishes the wall-normal wavenumber of
the forcing mode because the Squire response is a spectrum in ky . The vertical velocity
disturbance is given by

v(x, t) = a0φ(y) exp
(
i
(
kxx + kzz − ωos,̃ky

t
))

. (4.1)

The Squire response is expanded in terms of the discrete and continuous eigen-
functions of its homogeneous operator,

ηκ (y, t) =

NSQ∑
n=1

bn(t)χn(y) +

∫
ky

bky
(t)χky

(y) dky, (4.2)

where κ is the horizontal wavenumber vector (kx, kz), and

ηκ (y, t) =

∫
kx

∫
kz

η(x, t) exp(−ikxx) exp(−ikzz) dz dx.

Subscript n denotes the discrete eigensolutions, while ky refers to the continuous
spectrum. An expression for the coefficients bn and bky

can be obtained by making
use of the orthogonality properties of the adjoint problem, namely

〈χ†
m, χn〉 = δmn,

〈
χ

†
ky

, χk′
y

〉
= δ(ky − k′

y),

where the dagger marks the adjoint eigenfunctions, and the dot product is defined
according to 〈f, g〉 ≡

∫ ∞
0

f ∗ g dy. In evaluating bky
, it should be noted that exact

resonance indeed exists between the continuous Orr–Sommerfeld and Squire eigen-
solutions at ky = k̃y; that is ωSQ(ky = k̃y; kx, kz) = ωOS (̃ky; kx, kz). Taking resonance
into account, the spectral coefficients of the normal vorticity expansion are derived:
for discrete Squire modes,

bm(t) = bm(0) exp(−iωmt) − a0〈χ†
m, Cφ(y)〉

[
exp

(
−iωos,̃ky

t
)

− exp(−iωmt)

−i
(
ωos,̃ky

− ωm

)
]
; (4.3)

for continuous Squire modes (ky 
= k̃y),

bky
(t) = bky

(0) exp(−iωky
t) − a0

〈
χ

†
ky

, Cφ(y)
〉[exp

(
−iωos,̃ky

t
)

− exp
(
−iωky

t
)

−i
(
ωos,̃ky

− ωky

)
]
; (4.4)

and for the resonant mode (ky = k̃y),

bk̃y
(t) = bk̃y

(0) exp
(
−iωk̃y

t
)

− a0

〈
χ

†
k̃y

, Cφ(y)
〉
t
[
exp

(
−iωos,̃ky

t
)]

. (4.5)

In the absence of any initial vertical vorticity, ηκ (y, t = 0) = 0, the initial values of the
coefficients vanish, bm(0) = bky

(0) = 0.
The Squire response was evaluated numerically for forcing by a single Orr–

Sommerfeld mode kx = 10−2, ky = {π/2, π, 2π}, kz = π. The results at the time of
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Figure 7. Squire response to Orr–Sommerfeld forcing at R =103, kx = 10−2, kz = π, ky =
{π/2, π, 2π}. The solution is plotted at the time where η reaches its maximum amplitude,
prior to viscous decay. (i) The resonant term of Squire response, bκ ,̃ky

χκ ,̃ky
(y); (ii) the full

solution (4.2). , β = +0.5; , β = 0; , β = −0.18. (a) ky = π/2, (b) ky = π,
(c) ky = 2π.

maximum normal-vorticity response are shown in figure 7. The resonant term in
the expansion (4.2) is shown in figure 7(i). Clearly, it reaches higher amplitude for
the APG case, followed by the zero, and favourable pressure gradients. The same
trend is observed in the full solution, in figure 7(ii). The enhanced coupling, or
stronger perturbation jets in retarded flows, could be a cause of earlier transition
onset. Meanwhile, weak coupling in accelerated flows could delay transition.

The presence of pressure gradient has little effect on the vertical location of the
maximum normal vorticity perturbation. In the case of APG, the maximum is located
higher in the boundary layer. However, this effect is secondary. It is more interesting
to examine the effect of k̃y on the location of the peak in the response. While the
peak in the resonant response shifts with varying k̃y , the full superposition of Squire
modes peaks near the middle of the boundary layer. This is in agreement with
experimental observation, where the shape of Klebanoff distortion is found to have
little dependence on the free-stream turbulence characteristics (Westin et al. 1994).
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Figure 8. The coupling coefficient for R = 100, kx = π/10 in (a) adverse, (b) zero, and
(c) favourable pressure gradient; β = {−0.18, 0.0,+0.50}. Contour levels start at Θ =0.4 and
are incremented by 0.2.

5. Mode coupling
In order to characterize the ability of Orr–Sommerfeld modes to generate boundary-

layer streaks, Zaki & Durbin (2005) proposed a coupling coefficient,

Θ ≡
∣∣∣∣−i〈χ†, Cφ〉

ωi
os

∣∣∣∣ =

∣∣∣∣kz

〈χ†, U ′φ〉
ωi

os

∣∣∣∣ , (5.1)

where the eigenfunctions are normalized to unit maximum amplitude in the free
stream. The coupling coefficient is non-zero only for three-dimensional Orr–Sommer-
feld modes. It accounts for the variation of modal penetration depth and for the
distribution of mean shear in the boundary layer. Finally, since the streaks initially
intensify, but then decay viscously, the coefficient is scaled by the decay rate ωi . This
ensures that the coefficient disfavours quickly decaying modes, even if they penetrate
the boundary layer; such is the case of high ky disturbances.

Figures 8(a) to 8(c) show the coupling coefficient in adverse, zero and favourable
pressure gradients for kx = π/10, R = 102. In each of the figures, the maximum Θ is
achieved at ky ∼ O(π) and kz ∼ O(2π). This value of kz is similar to the spanwise scale
of boundary-layer streaks, λz ∼ O(δ), observed in experiments and DNS of bypass
transition (Kendall 1985; Jacobs & Durbin 2000). The preferred spanwise scale can
be explained by recognizing that increasing kz has the dual effect of enhancing the
forcing to the Squire operator, but also increasing the viscous decay rate. As a result,
in the presence of a spectrum of free-stream vortical disturbances, the preferred
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Figure 9. The optimal coupling coefficient, for , R =103, and , R = 102. Symbols
correspond to pressure gradient parameters, �, FPG β = 0.50; �, ZPG β = 0; �, APG
β = −0.18.

spanwise wavenumber, kz ∼ O(2π) is dominant: smaller scales viscously decay, and
larger scales are weaker forcing to the Squire equation.

The preferred wall-normal scale, λy ∼ O(2δ), has not been directly addressed in the
literature. The importance of documenting the anisotropy of the free stream has been
recognized (see for example Westin et al. 1994). However, a preferred wall-normal
wavenumber has not been identified. The preferred wall-normal scale predicted by the
maximum in the coupling coefficient is of the order of the boundary-layer thickness.
Larger λy eigenfunctions are expelled by the boundary-layer shear (recall from § 3
that penetration into the boundary layer is proportional to 1/λ2

y). Perturbations of
smaller vertical scale are subject to high viscous decay rates and, as a result, do not
persist at long times in the temporal problem, or far downstream of the leading edge
in the spatial equivalent.

The maximum Θ decreases from adverse (figure 8a) to zero (figure 8b), and finally
to favourable pressure gradient (figure 8c). This trend is consistent with the initial-
value problem. Also, the location of the maximum shifts in (ky, kz)-space. This shift
is due to the variation in shear sheltering of the mean profiles.

Figure 9 illustrates the value of Θ at the optimal (ky, kz) for a range of kxR. For
kxR > 10, the coupling coefficient is decreasing because of enhanced shear sheltering
of high-frequency modes, particularly at large Reynolds number. The increase in
sheltering limits penetration of the Orr–Sommerfeld modes into the boundary layer,
and hence reduces coupling to the boundary-layer shear. For kxR < 10, the Orr–
Sommerfeld modes are fully penetrating. As a result, the coupling coefficient is
maximum. The coefficient scales linearly with Reynolds number owing to the modal
decay rate, ωi ∝ 1/R, in the denominator of Θ . The linear dependence on R causes
the curves of Θ/R to collapse in figure 9(b).

The effect of pressure gradient on Θ is also demonstrated in figure 9. Adverse
pressure gradient improves coupling. This is consistent with the initial-value problem,
which motivates the definition of Θ . Orr–Sommerfeld modes with large coupling are
penetrating, and have low decay rates. As a result, they force strong boundary-layer
streaks which persist for long times (or far downstream in the spatial problem). The



Continuous mode transition in pressure gradient 369

propensity of the Orr–Sommerfeld mode to generate the perturbation jets is enhanced
in retarded flows; this is captured by the coupling coefficient.

6. Direct numerical simulations
This section describes direct numerical simulations (DNS) of boundary layers

perturbed by single or pairs of inflow Orr–Sommerfeld modes. The modal interaction
and coupling to the boundary-layer shear are investigated, with particular emphasis on
the effect of pressure gradients. The inflow perturbations used in the simulations are
based on the spatial eigenvalue problem. First, a single penetrating Orr–Sommerfeld
mode is simulated in order to verify the conclusions of linear theory. Then, pairwise
mode interactions are presented.

A schematic of the computational domain is shown in figure 1. The domain
boundaries are marked by the dashed line. The domain height is large enough to
ensure that the boundary layer on the lower plate is unaffected by the boundary
conditions at the top surface. The size of the domain, scaled by the inflow boundary-
layer thickness, δ0, is 400 × 20 × 16 in the streamwise, wall-normal and spanwise
directions, respectively. The grid resolution corresponds to that of Jacobs & Durbin
(2000), who performed extensive refinement studies. A total of 26 million mesh points
are used to capture the three-dimensional transition.

The computational algorithm is based on a staggered grid with a local volume
flux formulation in curvilinear coordinates (Rosenfeld, Kwak & Vinokur 1991; Wu
& Durbin 2001). Adams–Bashforth is implemented for the explicit time advancement
of convective terms. Pressure and diffusion are treated by implicit Euler and by
Crank–Nicolson, respectively.

The top boundary of the computational domain is a free-slip surface, which is
contoured in order to induce the desired streamwise pressure distribution. Here, it is
designed to produce a power-law acceleration of the free stream and, as a result, a
constant value of the Falkner–Skan parameter β , which can be directly related to the
pressure gradient parameter λθ ≡ (θ2/ν) dU∞/dx.

In all the simulations, independent of the streamwise pressure distribution, a Blasius
mean velocity profile is prescribed at the inflow. Inflow perturbations are also based
on the zero pressure gradient Blasius profile. This choice circumvents ambiguities
which would arise if a Falkner–Skan mean velocity and associated Orr–Sommerfeld
modes were imposed: First, for Falkner–Skan mean profiles, the origin of the flow is
fictitious and is a function of the pressure gradient parameter. As a result, even for
the same inlet Reynolds number R, the inflow location would seem to vary artificially
among simulations because it is measured with respect to a fictitious origin. Also,
the shape of the inflow Orr–Sommerfeld perturbation would vary among simulations
because it is a function of the inflow mean velocity profile. Particularly, modes with
the same amplitude in the free stream would be different at the edge of the boundary
layer.

In order to eliminate those ambiguities, the inflow is chosen to be the Blasius mean
profile, plus a disturbance corresponding to the ZPG mode. This approach allows for
direct comparison between the results in different pressure gradients. The effect of
the pressure gradient on mode shape is therefore a consequence of solving the full
Navier–Stokes equations within the computational domain, and not imposed as an
inflow boundary condition.

A convective outflow condition is used. We found no upstream contamination, so
this was deemed satisfactory for present purposes.
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Figure 10. The Falkner–Skan parameter, β evaluated from a laminar solution. Solid lines
show the computed β , and the dashed lines the design values.

A disturbance-free laminar solution is first obtained in order to verify the pressure
gradient level throughout the domain. The results are illustrated in figure 10. The
pressure gradient adjusts quickly to the design values β = {−0.14, 0, 0.25}. Those
levels are then maintained throughout the domain. The pressure gradient parameter
was also computed from the time-averaged results in all the following DNS. It
closely matched the design values throughout the domain in the non-transitional
computations. In simulations yielding transition, the desired pressure gradient was
maintained upstream of the turbulent boundary layer.

6.1. Effect of mean pressure gradient on mode coupling

The effect of pressure gradient on the intensity of Klebanoff distortions was discussed
previously from the perspective of the initial-value problem. Flow deceleration was
found to enhance coupling between the low-frequency vortical disturbances and the
boundary-layer shear. However, nonparallel effects and nonlinearity were ignored in
that analysis. Both aspects are important: the former is relevant in discussing the
behaviour of low-frequency perturbations; the latter is significant owing to the large
amplitude of the boundary-layer response.

In the simulations, a single penetrating Orr–Sommerfeld mode is prescribed at the
inflow of the computational domain. The spatial evolution of the disturbance and the
boundary-layer response are obtained by solving the full Navier–Stokes equations:
both non-parallel effects and nonlinearity are therefore fully represented.

The inflow mode ω = 10−2, ky = π, kz = π/2 is shown in figure 11. This low-frequency
disturbance clearly penetrates into the boundary layer. The root mean square of
the free-stream vertical velocity perturbation is prescribed at the inflow of the
computational domain, vrms =0.55 %. Three direct numerical simulations were carried
out, corresponding to pressure gradient parameters β = {−0.14, 0.0, +0.25}. The
coupling coefficients at these three values of β are, respectively, Θ = {56.7, 48.1, 41.6}.
Since the inflow is identical in all three simulations, the variation in coupling emerges
downstream owing to the applied pressure gradient, and is not due to the inflow mean
profile or perturbation.

The study of continuous Orr–Sommerfeld mode coupling bears on the intensity
of the boundary-layer perturbation jets. While the vertical and spanwise disturbance
velocities are of the same order as the free-stream perturbation, the streamwise velocity
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Figure 11. Orr–Sommerfeld inflow mode shape: R =103, ω = 10−2, ky = π, kz = π/2. The solid
line is the real part of the eigenfunction, and the dashed line the imaginary component.
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Figure 12. Instantaneous contours of streamwise velocity fluctuation (−0.3 � u � 0.3) eva-
luated at y/δ0 = 0.5. The streamwise extent shown is 0.4 × 105 � Rx � 3.5 × 105. The spanwise
coordinate 0 � z � 16 is enlarged by a factor of 3. Inlet mode: ω = 0.01, ky = π, kz = π/2.
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Figure 13. Vertical profiles of urms at various x-locations. The dashed line shows the edge of
the boundary layer.

reaches high amplitudes inside the boundary layer. Those elongated disturbances
initially intensify owing to tilting of the mean shear by the Orr–Sommerfeld mode.
Farther downstream, viscosity becomes dominant and the perturbation jets decay.

This behaviour is clear in the instantaneous field of figure 12 from the zero
pressure gradient simulation. The plan view shows contours of streamwise velocity
perturbation. The root mean square streamwise disturbance is shown in figure 13, at
different x-locations. The disturbance has the shape of a Klebanoff distortion, and is
similar in form to the solution of the initial-value problem. The mode amplification
and the subsequent viscous decay are captured in the figure.
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Figure 14. (a) The maximum urms versus downstream distance. (b) The perturbation profile at
the x-location where urms reaches its maximum value. , β = +0.25; , β = 0.0; ,
β = −0.14.
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Figure 15. (a) The maximum urms/U∞(x) versus downstream distance. (b) The perturbation
profile at the x-location where urms/U∞(x) reaches its maximum value. , β = +0.25;

, β = 0.0; , β = −0.14.

The maximum r.m.s. streamwise velocity disturbance can be obtained at every
x-location, and is shown in figure 14(a). The DNS confirm the prediction of linear
theory: penetrating Orr–Sommerfeld modes induce stronger boundary-layer perturba-
tion jets in APG owing to improved coupling. The location of the maximum is x � 80
in all cases.

Figure 14(b) shows the shape of the Klebanoff distortion at the location of maxi-
mum response, prior to the onset of viscous decay. The shape of the response is little
affected by the mean flow acceleration. Only the amplitude of the boundary-layer
streaks is enhanced by adverse pressure gradient. Qualitatively, the mode shape agrees
with the superposition of Squire eigenfunctions in the solution to the initial-value
problem. In particular, the location of the maxima, midway through the boundary
layer, is consistent with the prediction of linear theory. This observation is also in
agreement with Westin et al. (1994), where the location of the maximum in Klebanoff
modes was recorded midway in the boundary layer, independent of the streak intensity.

The r.m.s. disturbances presented in figure 14 are non-dimensionalized by the
inflow free-stream velocity, U∞(x0). The effect of pressure gradient on the intensity
of streaks is amplified when the local free-stream velocity, U∞(x) is used for scaling,
as in figure 15. Local scaling is relevant because, in the case of a fully turbulent
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Figure 16. Prediction of linear theory. All three curves are scaled by the same multiplicative
factor which is chosen such that the maximum amplitude of the ZPG case matches that of
DNS. (b) The mode shape at the time when urms reaches its maximum value. (c) y dU/dy,
also pre-multiplied by a scaling constant in order to match the DNS amplitude for the ZPG
simulation. , β = +0.25; , β = 0.0; , β = −0.14.

free stream, bypass transition of the streaky boundary layer is produced by localized
forcing from above. Instabilities are triggered locally, at the edge of the boundary
layer, where perturbation jets are exposed to the high-frequency non-penetrating
free-stream disturbances.

The solution to the initial-value problem presented earlier neglects both non-parallel
and nonlinear effects. Therefore, it cannot be expected that linear theory predicts the
correct amplitude of the boundary-layer response. However, whether linear theory can
capture the effect of pressure gradient on the solution is worth investigating. To this
end, the results of the IVP are rescaled in order to match the maximum amplitude of
the Klebanoff distortion from the DNS in zero pressure gradient. Figure 16 shows the
scaled prediction of linear theory. The figure demonstrates that linear theory captures
the dependence on pressure gradient, and the results based on the coupling coefficient
are reliable in assessing the effect of flow acceleration on coupling. Figure 16(c) shows
y dU/dy, also scaled in order to match the DNS in ZPG. The approximation gives a
good representation of the shape of Klebanoff modes. However, it does not carry any
information regarding the effect of the length scale of the inflow mode. The coupling
coefficient, based on the initial-value problem, includes such information.

The disturbance growth and decay in figures 14 and 15 are qualitatively similar to
the results of Lasseigne et al. (1999) for an inflow disturbance that attains maximum
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energy amplification. The resemblance is not surprising: the optimal disturbance of
Lasseigne et al. (1999), when expanded in terms of the Orr–Sommerfeld eigenbasis,
is composed of low-frequency modes, similar to the inflow mode in our DNS. Since
the Orr–Sommerfeld eigenfunctions form a complete basis, and are derived from the
linear perturbation equations (Grosch & Salwen 1978), they provide a natural basis
for expanding any general disturbance and evaluating the influence of its spectral
constituents on the boundary layer. In particular, the continuous modes, which
are oscillatory in the free stream, can unambiguously be applied in the spectral
decomposition of free-stream turbulence interacting with the boundary layer in
bypass transition (Jacobs & Durbin 2000).

In this section, the influence of pressure gradient on the intensity of boundary-
layer streaks was computed using DNS: APG enhances the intensity of Klebanoff
distortions, while FPG reduces coupling and, as a result, the intensity of streaks. All
of the non-linear simulations of low-frequency inflow modes predicted viscous decay
of Klebanoff distortions at large downstream distances. The viscous decay implies
that Klebanoff distortions, per se, are insufficient for transition to take place. A
breakdown mechanism is required in order to trigger the formation of turbulent spots
and transition to turbulence. This mechanism was suggested in Wu et al. (1999) and
Jacobs & Durbin (2000), and verified by Zaki & Durbin (2005) in the framework of
continuous mode transition due to bimodal interaction. In that framework, boundary-
layer streaks are generated owing to a single inflow low-frequency Orr–Sommerfeld
disturbance. A sheltered high-frequency Orr–Sommerfeld mode is also included at the
inlet. This mode triggers the instability and breakdown of the lifted streaks near the
free stream. In continuous mode transition, the streaks need not be induced by inflow
disturbances that cause maximum energy growth. A strongly coupled Orr–Sommerfeld
eigenfunction is sufficient.

Provided a breakdown mechanism is present, one important question must be
addressed: Does the intensity of the perturbation jets correlate with transition
location? Westin et al. (1994) argue that such correlation is weak. However, the
experiments they cited had different turbulent free streams, and different leading-
edge conditions. They recognized these caveats. In the next section, we show in the
framework of continuous mode transition that such correlation does exist. A minimal
level of streak intensity is demonstrated necessary for spot inception and transition.
Furthermore, higher-intensity boundary-layer perturbation jets are more susceptible
to instability when exposed to forcing by the free-stream high-frequency disturbances.
As a result, transition occurs earlier upstream for stronger Klebanoff modes. This
hypothesis is first verified in zero pressure gradient, and the results applied to explain
the effect of pressure gradients on transition onset.

6.2. Bimodal interaction, and continuous mode transition

The term ‘bypass transition’ refers to the process by which free-stream vortical
disturbances induce transition to turbulence in an underlying boundary layer, without
the intervention of Tollmien–Schlichting instability waves. Linear theory has provided
insight into the ability of low-frequency vortical disturbances to penetrate the bound-
ary layer and generate Klebanoff distortions. The next stage of the bypass process is
breakdown to turbulence, a complex phenomenon not amenable to linear analysis. In
fact, one interpretation of the terminology ‘bypass transition’ is that the mechanism
bypasses any theoretical explanation (Morkovin 1969). In the title to the present
paper, we use the term ‘continuous mode transition’ because the present simulations
study bypass transition by starting with continuous modes at the inlet. This provides
a natural complement to orderly transition, proceeding from discrete mode evolution.
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Zaki & Durbin (2005) demonstrated that the entire transition process can be realized
through the interaction of a pair of Orr–Sommerfeld continuous modes: one low-
frequency penetrating mode and one high-frequency sheltered eigenfunction. The
penetrating three-dimensional Orr–Sommerfeld mode resonantly forces the Squire
operator. The response, a superposition of Squire modes, results in boundary-layer
streaks. While this is a route into the boundary layer, transition subsequently involves
an interaction between low- and high-frequency modes. The backward jets, induced by
upward displacement of mean momentum, are lifted towards the edge of the boundary
layer. The streaky boundary-layer profile becomes susceptible to an inflectional type
instability when exposed to the high-frequency non-penetrating disturbance in the
free stream. The growing instabilities are the onset of breakdown, near the top of the
boundary layer. This process defines continuous mode transition – as an instance of
the bypass route to turbulence.

The role of pressure gradient in continuous mode transition must be, by definition,
independent of the Tollmien–Schlichting instabilities of the mean velocity profile,
which are characteristic of natural transition. Instead, the dependence of the lifted
streak intensity on mean pressure gradient becomes important. In adverse pressure
gradient, enhanced intensity of the perturbation jets, particularly based on local
scaling, could account for earlier transition. Similarly, weak Klebanoff distortions
in accelerated flows could contribute to the delayed transition onset. However,
before these assertions can be made regarding transition in accelerated flows, the
effect of streak intensity on transition location should be verified in zero pressure
gradient.

DNS were performed under zero-pressure-gradient conditions with only two modes
at the inflow: a low- and a high-frequency perturbation. The inflow boundary
condition is given according to

uinflow = UBlasius +

2∑
j=1

εj Re

⎧⎪⎨
⎪⎩

1

k2
x + k2

z

⎡
⎢⎣

ikx dφj/dy(
k2

x + k2
z

)
φj

ikz dφj/dy

⎤
⎥⎦ exp(i(±kzz − ωt))

⎫⎪⎬
⎪⎭ .

The modes are indexed by {j ; kz, ky, ω}. For the base case, the amplitude of each
inflow mode was normalized such that vrms = 3 % in the free stream. The amplitude of
the low-frequency mode was then changed while holding that of the high-frequency
inflow disturbance constant. If there exists an intensity at which perturbation jets
first become susceptible to high-frequency instability, this threshold might not be
reached in the case of lower amplitudes of the inflow. Transition will therefore be
suppressed. Meanwhile, for higher inflow amplitude, the magnitude of the Klebanoff
distortion is enhanced. If stronger perturbation jets are more susceptible to instability,
transition will be observed earlier upstream. It should also be noted that, at upstream
locations, the magnitude of the sheltered high-frequency disturbance has not decayed
substantially. Therefore, the high-frequency disturbance can strongly destabilize the
lifted boundary-layer streaks.

Figure 17 shows the time-averaged skin friction curves for three magnitudes of the
low-frequency inflow mode, vrms = {2 %, 3 %, 4 %}. The case of lowest inflow intensity
does not undergo transition within the computational domain. The other two cases
transition, with the highest inflow intensity case reaching a fully turbulent condition
at the earliest point upstream. Other simulations for different inflow mode pairs show
similar trends.

Figure 18 shows the maximum r.m.s. streamwise perturbation as a function of
downstream distance. The three curves correspond to the different inflow amplitudes
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Figure 17. Time-averaged skin friction profiles. Inlet modes: ω = π/100, ky = 2π/3.2, kz =
2π/3.2, Θ =19.3 and ω = π/10, ky = 2π/3, kz = 2.75, Θ = 1.34. Three amplitudes of the inlet
low-frequency disturbance are shown: , vrms = 2.0 %; , vrms = 3.0 %; , vrms =
4.0 %.
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Figure 18. The maximum urms versus downstream distance. Three amplitudes of the inlet
low-frequency disturbance are shown: , vrms = 2.0 %; , vrms = 3.0 %; ,
vrms =4.0 %.

of the low-frequency mode. As expected, the Klebanoff distortion is strongest for the
highest inflow amplitude; this simulation transitions at the earliest point upstream.
Meanwhile, for the lowest inflow amplitude, the boundary-layer streaks are weakest,
and transition is absent from the computational domain.

In bypass transition due to free-stream turbulence, the amplitude of Klebanoff
distortions scales linearly with the free-stream intensity (Kendall 1985). That linear
dependence is not observed in our simulations (see figure 18) because in continuous
mode transition, the dominant disturbance inside the boundary layer is the response
to a single low-frequency Orr–Sommerfeld eigenfunction, and not an entire spectrum
of disturbances. Therefore, a linear dependence of streak intensity on the single low-
frequency inflow mode is only possible for small perturbations, or in the linear limit.
The amplitudes of the disturbances considered here are, however, beyond the linear
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regime. This large amplitude is necessary in order to generate boundary-layer streaks
that are of similar intensities to those in bypass transition owing to fully turbulent
free streams, but using a single low-frequency inlet mode.

The controlled numerical experiments described here clearly identify a connection
between the intensity of perturbation jets in the laminar layer and the location of
transition (figures 17 and 18). These simulations are particularly important for two
reasons. First, only two inlet O-S modes are used to trigger the entire transition
process. Unlike a fully turbulent free stream, the small and large disturbance scales
become distinctly separated and their roles clearly discernible. Secondly, there is no
leading-edge effect. Therefore, the relation between the free-stream turbulence length
scale and leading-edge diameter does not ‘contaminate’ the findings. Both experiments
and computer simulations support our approach of starting downstream of the
leading edge: Kendall (1991) observed that the development of Klebanoff distortions
is insensitive to the aspect ratio of his elliptical leading edge. Meanwhile, he reported a
nonlinear increase in the amplitude of Tollmien–Schlichting instability waves with de-
creasing leading-edge aspect ratio. Nagarajan, Lele & Ferziger (2006) also investigated
the effect of the leading-edge geometry using large-eddy simulations (LES). In the case
of a blunt leading edge, they observed the generation of packets of instability waves,
which can alter the transition mechanism. These packets are sporadic, and their origin
remains unexplained. However, for a slender leading edge, bypass transition becomes
independent of the leading-edge geometry, and is due to breakdown of the lifted
boundary-layer streaks, or Klebanoff distortions. By eliminating the leading edge,
transition in our simulations is not affected by receptivity to Tollmien–Schlichting
waves: breakdown is solely due to continuous mode interaction. This breakdown
mechanism is dominant when the leading edge is fine, or slender, compared to the
free-stream turbulence length scale (Kendall 1991; Nagarajan et al. 2004).

The results from the zero-pressure-gradient simulations (figures 17 and 18) support
the view that a stability threshold exists for the amplitude of lifted perturbations
jets. This level is not reached in the case of low-amplitude inflow; the flow remains
laminar throughout the computational domain. The simulations also confirm that
stronger boundary-layer streaks are more susceptible to instability when exposed to
the high-frequency free-stream disturbance. Now, this knowledge can be applied to
the problem of continuous mode transition in pressure gradient.

Accelerated flows have weak coupling, and therefore low streak intensity. This
effect is stabilizing: transition is either delayed or suppressed. On the other hand,
retarded flows induce stronger perturbation jets and, as a result, are more susceptible
to instability than zero-pressure-gradient boundary layers.

Pairwise mode interactions were simulated for accelerated and retarded mean flows.
The inflow was identical among simulations. Only the top boundary condition was
altered in order to achieve the desired mean pressure gradient. The effect of pressure
gradient on continuous mode transition is shown in figure 19, where the time-averaged
skin-friction profiles are plotted versus the downstream Reynolds number. Both Cf

and Rx are defined using the free-stream velocity at the inflow plane. In the absence of
pressure gradient, the skin friction curve follows the Blasius predicted value prior to
transition, and the turbulent correlation downstream of the transitional region. The
skin friction curve for the pressure gradient cases starts at the Blasius value because
that is the inlet condition. Farther downstream, the skin friction curve shifts down for
adverse, and up for favourable pressure gradient. The onset of transition is earliest
upstream in adverse pressure gradient. Transition takes place farther downstream
in the absence of pressure gradient, and is not observed within the computational
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Figure 19. Time-averaged skin-friction profiles. Same inlet modes as in figure 17. Four values
of the pressure gradient parameter are shown: , β = +0.25; , β = 0.00; , β = −0.14;

, β = −0.16.
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Figure 20. The maximum urms/U∞(x) versus downstream distance. Three values of the
pressure gradient parameter are shown: , β = +0.25; , β =0.00; , β = −0.16.

domain in the case of accelerated flow. The results are in qualitative agreement with
the experimentally observed trend (Abu-Ghannam & Shaw 1980).

Figure 20 shows the maximum root mean square streamwise velocity perturbation
versus downstream distance. Here, urms is scaled by the local free-stream velocity. The
trend showing stronger coupling for the APG simulation also persists if the inflow
velocity is used for scaling. Enhanced streak intensity is clear for retarded flows. In
contrast, the accelerated mean flow exhibits weaker perturbation jets than ZPG.

The effect of APG in figures 19 and 20 should be compared to the effect of
increasing the amplitude of the low-frequency disturbance in figures 17 and 18. The
results suggest both conditions enhance the amplitude of the perturbation jets and,
as a result, cause early transition.

The transition length is shorter for both the APG cases than in ZPG. Shortening of
transition length is also observed in the ZPG case when the inflow disturbance is of
large amplitude. This, too, agrees qualitatively with Abu-Ghannam & Shaw (1980).
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Figure 21. Instantaneous contours of streamwise velocity fluctuation (−0.2 � u � 0.2) in ZPG.
The plane is located at y/δ0 = 0.74, and the frames translate in the flow direction at half the
free-stream velocity.

The shorter transition length can be attributed to either an enhancement in spot
formation rate, or faster spreading of the turbulent patches. The experimental literat-
ure supports the view that APG enhances both the inception and spreading rates of
turbulent spots (Gostelow et al. 1994). Here, we compare the spreading of the patches
in zero and adverse pressure gradient. A simple investigation of the time sequence
showing the inception and evolution of turbulent spots can provide some insight.

Figures 21 and 22 are a time sequence showing spot formation. The former is
the streamwise velocity fluctuation, and the latter the wall-normal component. The
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Figure 22. Instantaneous contours of wall-normal velocity fluctuation (−0.05 � v � 0.05) in
ZPG. The plane is located at y/δ0 = 0.74, and the frames correspond to the same time instants
as in figure 21.

frames translate to the right at half the free-stream velocity in order to keep the spot
in the middle of each frame. Qualitatively, the figures agree with the time sequences
reported by Jacobs & Durbin (2000). Three spots can be identified in the figures:
one in the middle of the two-dimensional plane and two spots downstream, towards
the edge of the periodic boundary and at mid-span, respectively. The spots are easily
identified in the third frame. A laminar region separates the ‘young’ spots. As the
turbulent patches convect downstream, they spread and finally coalesce into a fully
turbulent boundary layer.
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A few remarks are in order. First, in the absence of the high-frequency mode,
the streaks decay viscously, and transition is not observed within the computational
domain. The instability of the streaks occurs only if backward perturbation jets
are exposed to high-frequency forcing when they lift-up and reach the edge of the
boundary layer. Secondly, the spot inception is local, on single jets, as shown in
figures 21 and 22. Spots are not preceded by a collective interaction of neighbouring
streaks. However, once the instability of a particular streak grows, it contaminates
neighbouring regions of the flow, and the spot spreads.

The instantaneous contours of velocity perturbations (figures 21 and 22) show a
similarity to the images produced by Anthony, Jones & LaGraff (2005) with rapid
response, heat transfer gauges. Anthony et al. (2005) observed that turbulent spots
are initially composed of streamwise elongated structures, and noted that the patches
of turbulence grow in size owing to the emergence of neighbouring heat flux streaks.
Their observations are clearly in agreement with the time sequence presented here,
particularly the streamwise velocity perturbation field (figure 21).

Figure 23 is a plan view of the instantaneous vertical velocity fluctuations close
to the wall, at the same instants as in figure 22. The contour levels are an order of
magnitude lower. The disturbance that presages a spot is weak in the first two frames
of figure 23 and intensifies in the third. This can be contrasted to the behaviour
away from the wall in figure 22: the disturbance that will spawn a spot has already
reached high intensity in the second frame of the time sequence, twenty time units
earlier than the plane close to the wall. This comparison confirms that the instability
preceding spot inception occurs in the outer part of the boundary layer. Figure 24
provides further evidence in support of the location of spot inception. This figure is
a zoomed-in side view of the breakdown seen in figures 21(a) and 21(b). The side
view shows the wavy motion that leads to the occurrence of turbulent spots. The
instability of the elevated shear regions clearly originates at the edge of the boundary
layer. The near-wall region is insignificantly perturbed.

The instantaneous skin friction curves associated with transition are shown in
figure 25. The curves are along a line bisecting the backward jet where the spots ori-
ginates. The figure shows that the signature of the spot on the skin friction intensifies
as the turbulent patch convects downstream. The laminar region that separates the
young spot and the downstream turbulent boundary layer is also captured.

A good summary of all the above observations based on the ZPG simulation is
presented in figure 26, which shows the streamwise perturbation energy decomposed
into spanwise Fourier modes at various downstream Reynolds numbers. The
fifth spanwise Fourier mode corresponds to kz = 2π/3.2 of the penetrating inflow
disturbance. Meanwhile, the seventh spanwise Fourier mode corresponds to kz = 2.75
of the weakly coupled inflow disturbance. Figure 26(a) is a plane close to the wall,
y/δ =0.1, and figure 26(b) is higher in the boundary layer, y/δ =2/3. At y/δ =0.1, only
the fifth spanwise Fourier mode is observed to contain significant energy because only
this disturbance penetrates the shear and generates the amplifying streaks. The weakly
coupled perturbation does not penetrate and, hence, is absent from figure 26(a). In
contrast, figure 26(b) shows both disturbances are present at y/δ = 2/3, with the pen-
etrating disturbance containing more energy. The tenth spanwise wavenumber, which
corresponds to the first harmonic of the penetrating inflow mode, is also observed to
emerge downstream, but decays prior to transition onset. The sudden cascade of en-
ergy among spanwise wavenumbers indicates breakdown to turbulence. This exchange
clearly commences farther upstream in figure 26(b), away from the wall. This provides
further evidence that transition commences towards the top of the boundary layer.
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Figure 23. Instantaneous contours of wall-normal velocity fluctuation (−0.005 � v � 0.005)
in ZPG. The plane is located at y/δ0 = 0.11. The frames correspond to the same instants in
figure 22.

In the case of APG, a similar time sequence to figures 21 and 22 is recorded, and
is shown in figures 27 and 28. Two spots are observed; one in the middle of the
span, and the second immediately downstream at the periodic boundary. Both spots
spread quickly, merge, and fill the entire span at a much faster rate than the ZPG
simulation. The laminar, or quiet, region between the spots is therefore short-lived; it
is completely absent from figure 28(e), of the sequence. This should be contrasted with
figure 23 of the ZPG simulation, where the quiet region diminishes in size, but can
still be identified in the last two snapshots of the time sequence. The faster spreading
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Figure 24. Instantaneous contours of streamwise velocity fluctuation (−0.3 � u � 0.3) in ZPG,
at times corresponding to the instances in figure 21(a, b). The side view shown is a plane through
the spot inception location. Dashed contours indicate negative values.
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Figure 25. Instantaneous skin friction at different times. The times correspond to
figure 21(a–f ). The skin friction is calculated along a line bisecting the streak which hosts the
spot formation.

in APG is in accord with the experimental literature (Gostelow et al. 1993; Seifert &
Wygnanski 1995).

A side view of breakdown of a perturbation jet is shown in figure 29. The snapshots
of streamwise velocity fluctuations correspond to the first three instances of figure 27.
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Figure 26. Energy content in the streamwise velocity fluctuations versus spanwise mode and
Reynolds number. (a) y/δ =0.1; (b) y/δ = 2/3.
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Figure 27. Instantaneous contours of streamwise velocity fluctuation (−0.2 � u � 0.2) in APG,
β = −0.14. The plane is located at y/δ0 = 0.75, and the frames translate in the flow direction
at half the free-stream velocity.
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Figure 28. Instantaneous contours of wall-normal velocity fluctuation (−0.05 � v � 0.05) in
APG, β = −0.14. The plane is located at y/δ0 = 0.75, and the frames correspond to the same
time instants as in figure 27.

The instability, of inflection-point type, affecting the backward jets is captured well
in the figure, and clearly starts near the free stream.

A sequence of instantaneous skin friction curves through the turbulent spot are
shown in figure 30. The quiet region between the patch of turbulence and the
downstream fully turbulent boundary layer is smaller than in ZPG. The spots spread
quickly in APG and this quiet region disappears from the skin friction plots.

7. Conclusion
In orderly transition, the influence of pressure gradient on the stability of boundary

layers is well established in the literature. In zero and favourable pressure gradients,
Tollmien–Schlichting waves are subject to a weak viscous instability. In adverse
conditions, the velocity profile becomes inviscidly unstable, and transition is much
faster. However, in the presence of even moderate levels of free-stream turbulence,
the natural route to transition is bypassed: Tollmien–Schlichting wave precursors
are replaced by the interaction of continuous modes. Boundary-layer streaks become
important. These disturbances, which are jets in the perturbation field, reach intensities
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Figure 30. Instantaneous skin friction at different times. The times correspond to
figure 27(a–f ). The skin friction is calculated along a line bisecting the streak which hosts an
instability leading to a turbulent spot.
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of the order of 10 % of the free-stream velocity. The backward perturbation jets,
induced by upward displacement of mean momentum, lift towards the edge of the
boundary layer where they are exposed to the non-penetrating high-frequency forcing
from the free stream. The streaks become unstable, and turbulent patches emerge
(Jacobs & Durbin 2000).

The role of pressure gradient is no longer due to the Tollmien–Schlichting instabi-
lity of the mean velocity profile. Instead, the influence of pressure gradient on the
intensity of boundary-layer streaks, and consequently on transition, is studied. Linear
theory (§ 4) and direct numerical simulations (§ 6) confirm that retarded flows generate
stronger Klebanoff distortions than in ZPG. The correlation between streak intensity
and transition location was verified using DNS of pairwise mode interactions which
lead to transition. First, in ZPG, a fully turbulent boundary layer is realized earlier
upstream when the low-frequency mode, and as a result the streaks, are of higher
amplitude (figure 17). Pairwise mode interactions were also simulated in the presence
of mean pressure gradient. Transition onset was upstream and the transition length
shorter in APG (figure 19). The DNS results confirm the hypothesis that stronger
perturbation jets, or streaks, are more unstable. This is consistent with the experi-
mental observation that the bypass route to turbulence becomes independent of
pressure gradient at high turbulent intensities (Abu-Ghannam & Shaw 1980). Under
these conditions, the boundary-layer streaks are highly unstable, and adverse pressure
gradient has little contribution; transition takes place swiftly, independent of the
mean gradient in pressure.
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