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“...an eerie type of chaos can lurk just behind a facade of order, and yet deep
inside the chaos lurks an even eerier type of order.” Douglas Hofstadter

Abstract Bypass transition to turbulence in boundary layers is examined using
linear theory and direct numerical simulations (DNS). First, the penetration of low-
frequency free-stream disturbances into the boundary layer is explained using a
model problem with two time scales, namely the shear and wall-normal diffusion.
The simple model provides a physical understanding of the phenomenon of shear
sheltering. The second stage in bypass transition is the amplification of streaks.
Streak detection and tracking algorithms were applied to examine the characteristics
of the streak population inside the boundary layer, beneath free-stream turbulence.
It is demonstrated that simple statistical averaging masks the wealth of streak
amplitudes in transitional flows, and in particular the high-amplitude, relatively rare
events that precede the onset of turbulence. The third stage of the transition process,
namely the secondary instability of streaks, is examined using secondary instability
analysis. It is demonstrated that two types of instability are possible: An outer
instability arises near the edge of the boundary layer on the lifted, low-speed streaks.
An inner instability also exists, and has the appearance of a near-wall wavepacket.
The stability theory is robust, and can predict the particular streaks which are likely
to undergo secondary instability and break down in transitional boundary layers
beneath free-stream turbulence. Beyond the secondary instability, turbulent spots
are tracked in DNS in order to examine their characteristics in the subsequent non-
linear stages of transition. At every stage, we compare the findings from linear theory
to the empirical observations from direct solutions of the Navier-Stokes equations.
The complementarity between the theoretical predictions and the computational
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experiments is highlighted, and it leads to a detailed view of the mechanics of
transition.

Keywords Boundary layers · Transition to turbulence · Bypass transition · Streaks ·
Turbulent spots

1 Introduction

Fluid dynamicists have long marvelled at the inception of turbulence and the
emergence of its whirls and eddies from orderly fluid motion. This keen interest in
transition to turbulence has inspired a wealth of research activities into its various
forms, in single- and two-phase flows and in simple and complex fluids. In addition to
the interest in its fundamental aspects, transition has important practical implications
due to the enhanced mixing of momentum, higher skin-friction drag and heat transfer
rates associated with the onset of turbulence.

The route to turbulence is not unique, even within a single flow configuration.
For instance, in boundary layers, transition can take place via Tollmien–Schlichting
instability waves [22], cross-flow instabilities [36], or Görtler instabilities [13, 38]
among a wealth of other mechanisms. In an engineering flow configuration, for
example a compressor or turbine passage (see Fig. 1), transition can be due to
leading-edge effects [30, 33], curvature [38], the pressure distribution along the blade
surface [44] or migrating disturbances from upstream stages [42, 46]. Efforts to
understand the relevance of various flow configurations have focussed on canonical
problems, in order to isolate a particular effect. However, a confluence of various
mechanisms is also possible, and can lead to new transition phenomena [25, 26].

We herein focus on zero-pressure-gradient boundary layers, where transition to
turbulence is usually classified as orderly or bypass. The orderly transition process
is well defined: It starts with the amplification of discrete Tollmien–Schlichting
instability waves, followed by their secondary instability and finally breakdown to

Fig. 1 Transition to turbulence in a compressor passage due to migrating free-stream turbulence
[47]. Gray contours show the tangential velocity perturbation, u′

t , near the blade surface, −0.12 <

u′
t < 0.12 The pressure surface boundary layer undergoes bypass transition. The suction surface

boundary layer undergoes laminar separation and turbulent reattachment
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turbulence. The term bypass, on the other hand, has been used to refer to all
other routes which lead to boundary layer turbulence, but deviate from the orderly
scenario. The simple terminology singled out the orderly transition process, which
reflects the focus of the original research efforts on that path. More recently, the term
bypass started to become synonymous with one breakdown scenario, when boundary
layers are exposed to free-stream vortical forcing. It is this form of breakdown that
is the focus of the current review.

1.1 Bypass transition

When laminar boundary layers are exposed to free-stream vortical disturbances, they
undergo transition to turbulence in an intriguing manner—see the pressure surface
of the blade in Fig. 1. Despite the broadband nature of the free-stream forcing, the
boundary layer is only distorted by low-frequency disturbances. This filtering process
is known as shear-sheltering, a term coined by Hunt and Durbin [19] in reference
to the ability of the shear to filter high-frequency vortical disturbances. Inside the
boundary layer, the elongated distortions reach high amplitude, which can be larger
than 10 % of the mean flow speed when the free-stream turbulence-intensity is only
3 %. These distortions are termed Klebanoff modes and have been studied using
linear theory [e.g. 18, 27, 43], experiments [e.g. 29, 41] and using direct numerical
simulations [2, 43]. The final stage is the secondary instability of particular streaks,
which precedes breakdown into turbulent spots. Secondary instability analyses were
invoked in order to explain the possible modes of breakdown [e.g. 2, 40]. Beyond
the secondary instability of streaks, turbulent spots are formed and spread as
they convect downstream. Their sporadic onset, growth and merging maintains the
downstream edge of the fully-turbulent boundary layer.

The development of Klebanoff modes has received great attention in the literature
on bypass transition. An explanation of the mechanism for the amplification of
streaks was provided by rapid distortion theory [34]. A physical interpretation in
terms of vertical displacement, or lift-up, of mean momentum was provided by
Landahl [23]. The details of their amplification beneath free-stream turbulence have
been studied experimentally [28, 29], using direct numerical simulations [21] and
theory [12, 24]. Some of the literature has focused on the linearly-optimal streaks,
which would arise due to an upstream optimal disturbance. While such a disturbance
might not be present in the flow, the analysis correctly predicts the width of the
streaks observed in experiments and their downstream amplification [1].

The connection between Klebanoff modes and breakdown to turbulence is less
clear, and has often been sought based on evidence from DNS [e.g. 21, 37] and
experiments [e.g. 31]. The DNS by Jacobs and Durbin [21] showed that the low-speed
streaks can become unstable when they are lifted towards the edge of the boundary
layer where they are exposed to free-stream forcing by high-frequency modes. Zaki
and Durbin [43] examined this transition mechanism using simulations of the inter-
action between only two free-stream vortical modes: A low-frequency disturbance
which penetrates the shear and generates amplifying streaks. The second, high-
frequency vortical mode remains in the free stream due to shear sheltering. However,
it forces the lifted low-speed streaks at the edge of the boundary layer, and causes
their secondary instability and bypass transition to turbulence. These simulations
provided an uncluttered view of the essential interaction that precedes breakdown.
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The same methodology was used to explore the effects of pressure gradients [44] and
the interaction between streaks and discrete instability waves [8, 25, 26].

The empirical observations from DNS and experiments motivated theoretical
studies of the instability of streaky boundary layers. In analogy to the work by
Swearingen and Blackwelder [39] on the secondary instability of Görtler flows,
Andersson et al. [2] performed secondary instability analyses of linearly-optimal
streaks. They found that streaks must reach a very high amplitude, on the order of
26 %, in order to develop the first unstable mode. This value is much higher than
expected from experiments and simulations. As will be demonstrated herein, streaks
with such high amplitude often host turbulent spots—an indication that the instability
is mature, and was initiated much earlier when the streaks were at lower amplitudes.

Another unanswered question regarding the stability of streaks was raised by
the work of Nagarajan et al. [30]. They showed that transition is not only initiated
near the edge of the boundary layer, but can also be initiated near the wall, in
the form of wave-packets. This was the case in their simulations of zero-pressure-
gradient boundary layers when the leading edge was blunt. The role of the Klebanoff
distortions in this case is less clear. The stability analysis by Vaughan and Zaki [40]
provided an explanation, and will be discussed herein.

Beyond streak instability, the formation of turbulent spots and their growth to
form the fully-turbulent boundary layer has also been of interest since the work of
Emmons [10]. It is difficult to study naturally occurring spots in experiments due
to their sporadic onset in space and time. Therefore, experiments have resorted to
artificially triggering turbulent spots, for example using a disturbance at the wall [7],
and studying their evolution. On the other hand, direct numerical simulations pro-
vide a unique facility to investigate in detail naturally occurring spots in simulations
of bypass transition beneath free-stream turbulence. By storing time-series of the
flow field and applying laminar–turbulent discrimination, it is possible to identify
these turbulent regions and to characterise their growth mechanism and rate.

The structure of this paper follows the proceedings of bypass transition. After
a brief description of the governing equations and the solution techniques, we
discuss the following three stages. First, the low-pass filtering ability of the shear
is discussed using a model problem, in order to explain shear-sheltering and the
penetration of low-frequency disturbances into the boundary layer. Second, we
characterise the population of streaks which grow inside the shear. Finally, we
address the secondary instability of streaks. Throughout the presentation, we refer
to our group’s recent research activity in each of these areas—an activity that relies
on direct numerical simulations (DNS) and linear theory. We draw on the results of
linear theory to interpret empirical observation from numerical simulations, and new
observations from DNS motivate more advanced theory. This complementarity has
proven essential in developing a clear understanding of the proceedings of bypass
transition.

2 Governing Equations

Throughout our discussion of bypass transition, we will refer to observations from
Direct Numerical Simulations (DNS) of the full Navier-Stokes equations and results
from linear theory. Both frameworks are introduced briefly in this section, and the
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focus is directed towards the deductions based on these methods, rather than the
details of their solution.

2.1 Direct numerical simulations

Direct numerical simulations of bypass transition are largely possible due to the
moderate Reynolds number, and therefore the ability to accurately resolve all flow
scales by solving the full Navier-Stokes equations. The governing equations are
therefore the incompressibility constraint, and the Navier-Stokes equations,

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ u j

∂ui

∂x j
= ∂p

∂xi
+ 1

R
∂2ui

∂x j∂x j
, (2)

where ui = {u, v, w} is the velocity vector, p is the pressure, and R is the Reynolds
number. In the following, uppercase variables and overline denote mean flow quanti-
ties (e.g. U which are obtained by spanwise and time-averaging, and primed variables
represent perturbation quantities (e.g. u′). The Navier-Stokes equations are solved
using a fractional-step procedure. The equations are discretised on a curvilinear,
staggered grid using local volume fluxes. The convective terms are treated explicitly
using Adams-Bashforth; the pressure and diffusive terms are advanced implicitly
using Euler and Crank-Nicolson schemes, respectively. Details of the numerical
method are given in the work of Rosenfeld et al. [35], and examples of its use
in transition prediction include simulations of transition in pressure gradients [44],
breakdown to turbulence due to Görtler instability [38], and transition in complex
geometries [47].

Results presented herein are from simulations of zero-pressure-gradient boundary
layers undergoing bypass transition beneath free-stream turbulence. The schematic
of the computational domain is shown in Fig. 2. The setup is similar to the original
work of Jacobs and Durbin [21], where the inlet to the computational domain is
downstream of the leading edge, and the inflow is a superposition of the Blasius
profile and free-stream turbulence. The turbulence is synthesised from Fourier
modes in the periodic spanwise direction and in time, and is a superposition of
eigenmodes of the linear perturbation equations in the wall-normal direction as first
introduced by Jacobs and Durbin [21]. The same approach has since been used by

Fig. 2 Schematic of streaky boundary layer response to free-stream forcing, secondary instability
and onset of turbulence
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Fig. 3 Boundary layer breakdown beneath free-stream turbulence. Contours of the streamwise
velocity perturbation, −0.15 < u′ < 0.15, at two planes: inside the boundary layer and in the free
stream. Turbulent spots and the fully-turbulent boundary layer downstream are shown

a number of researchers [e.g. 4, 32]. At the inlet to the domain, the turbulence
intensity is Tu = 3 %, and the Reynolds number is R ≡ U∞δ0/ν = 800 based on the
characteristic velocity, U∞, and 99 % boundary layer thickness δ0 = δ(x = x0). The
no-slip condition is applied at the wall, and the top boundary, which is a free-stream
surface, is contoured to ensure zero-pressure-gradient in the streamwise direction. A
convective boundary condition is applied at the exit plane.

Both statistics and time-series of the velocity field were extracted from the DNS
and will be used throughout the discussion. The database of the velocity fields
includes 4000 snapshots of the velocity vector, at every-other grid point of the field,
and separated by two time units, based on the convective timescale. An example
of the perturbation field is shown in Fig. 3. The two planes shown correspond
to a wall-normal location inside the shear and in the free stream. The snapshot
contrasts the perturbation fields at the two heights, and highlights the formation of
elongated, high-amplitude streaks inside the boundary layer, and the formation of
turbulent spots which ultimately spread and become the fully-turbulent boundary
layer downstream.

2.2 Linear theory: the Orr–Sommerfeld and Squire equations

The evolution of a small perturbation in a parallel shear flow is governed by the
Orr–Sommerfeld and Squire equations for wall-normal velocity, v′, and vorticity, η′,
respectively. Assuming a base state U(y), these equations are,

∂t
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where � is the Laplacian operator, and �−1 is its formal inverse. The initial-value-
problem (3) can be solved for the evolution of v′ and η′ [see e.g. 43].

The eigenvalue problem associated with Eq. 3 above can be obtained by assuming
a Fourier representation in the homogeneous streamwise and spanwise directions
and in time,

[
v′(x, t)
η′(x, t)

]
=

[
φ(y)

χ(y)

]
ei(kxx+kzz−ωt).

The resulting eigenvalue problem is,
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where
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] − ikxU�

}
,
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]
,

C = ikzU ′.

For semi-bounded domains, the eigenspectrum of the Orr–Sommerfeld and Squire
equations includes a discrete set of eigenvalues ωn, n = 1, 2, 3 . . . N, whose eigen-
functions vanish in the free stream, limy→∞ φn, χn(y) = 0. The eigenspectrum also
includes a continuous branch of modes with eigenvalues ωky where ky is a parameter.
Eigenmodes which belong to the continuous branch are bounded in the free stream,
limy→∞ φky , χky(y) bounded. Outside the boundary layer, these eigenfunctions re-
semble Fourier modes with wall-normal wavenumber ky. Inside the boundary layer,
they decay towards the wall [15].

3 Shear Sheltering

In bypass transition, the disturbance environment in the free stream and inside the
boundary layer are starkly different. The turbulence in the free stream is largely
defined by its upstream properties, e.g. with respect to homogeneity and isotropy,
and decays as it is convected downstream. Inside the boundary layer, the disturbance
field is dominated by low-frequency streaks, which are the boundary layer response
to the broadband forcing from the free stream. Figure 3 suggests a filtering process
whereby only the low-frequency components of the free-stream turbulence penetrate
the boundary-layer shear and lead to the formation of streaks. This phenomenon is
known as “shear sheltering” [19], and was investigated by Jacobs and Durbin [20]
and Zaki and Saha [45]. A physical interpretation of the sheltering behaviour of the
shear is given herein, after the work of Zaki and Saha [45].

The basic mechanism for sheltering is based on the relationship between two
timescales: the timescale associated with the convection of a wave relative to an
observer inside the shear, and the timescale of wall-normal diffusion into the
boundary layer. This relationship can be explained with the aid of the schematic in
Fig. 4, which elucidates the difference between low- and high-frequency disturbances,
and the propensity of the former to penetrate the shear.
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Fig. 4 Schematic of modal penetration for low- and high-frequency free-stream vortical
perturbations

Consider a free-stream disturbance which convects at the free-stream velocity,
U∞. An observer inside the shear is traveling at a lower speed, U∞ + τY where
τ is the mean shear and Y < 0 is inside the boundary layer. The relative speed is
therefore τ |Y|. The influence of the free-stream disturbance reaches the observer
over a diffusion timescale, Td ≡ 1/k2

yν, where ky is the wall-normal wavenumber of
the disturbance (not shown in the schematic).

During the characteristic diffusion time, the wave has convected a distance τ |Y|Td

relative to the observer. Therefore, the number of wavelength that have streamed
past the observer can be computed according to,

n = τ |Y|Td

1/kx
= τ |Y|/k2

yν

1/kx
= kxτ |Y|

k2
yν

. (5)

In the limit of weak shear or very long waves (small kx), the observer is subject to a
quasi-steady free-stream disturbance; this case is shown schematically at left in Fig. 4.
In the limit of very high shear or short disturbance wavelength (large kx), the number
of waves that stream past the observer is large. The net effect at the observer location
is vanishing since it is the “average” of many waves; this scenario is shown at right
in Fig. 4.

Based on the above model, the penetration of free-stream disturbances into the
shear is dependent on the ratio of two timescales: wall-normal diffusion Td ≡ 1/

(
k2

yν
)

and the shear Ts ≡ 1/ (kxτδBL). When the diffusion time is relatively short, an
observer can “resolve” the free-stream disturbance that is convected at a relatively
higher speed. Under strong shear, or when the diffusion time is relatively long, the
observer cannot “resolve” the free-stream disturbance.

Two observations are important to note as they have important implications on
potential control strategies: First, the disturbance that is most effective at penetrating
the boundary layer has a horizontal wavenumber vector (kx, kz) which is orthogonal
to the shear. Here, the horizontal wavenumber is (kx = 0, kz) and the shear vector
is (dU/dy, dW/dy) = (τ, 0). Second, the effect of the shear is cumulative: As the
distance from the edge of the boundary layer is increased, the value of n also
increases. As a result, only progressively lower-frequency waves can penetrate into
the boundary layer closer to the wall. Motivated by these observations, Hack and
Zaki [16] investigated a control strategy aimed at sheltering the boundary layer from
free-stream turbulence by introducing time-dependent shear via wall oscillation. The
introduction of a Stokes layer leads to a varying shear angle with wall-normal height.
As a result, the sub-spectrum that can permeate the shear changes with proximity
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to the wall, and the cumulative filtering effect reduces the fraction of free-stream
energy that can penetrate towards the wall.

4 Amplification of Streaks

Once low-frequency disturbances penetrate the boundary layer, they lead to the
amplified streaky structures inside the shear. The streaks have a high amplitude of
the streamwise velocity perturbation, while the cross-stream perturbations remain
relatively weak. Streaks have been the subject of a wealth of investigations: Their
elongated streamwise extent and high amplitude are well understood based on linear
theory. Rapid distortion theory demonstrates that low-frequency disturbances will
continue to amplify, without the action of restoring pressure [9, 34]. These distur-
bances are, therefore, the preferred boundary layer distortion which will dominate
at long time.

An alternative view is provided from the perturbation equations (3), which cover
the linear evolution of an initial disturbance in parallel boundary layer flow. Optimi-
sation over all possible initial conditions, in order to obtain the most amplifying linear
disturbance, has been performed by Butler and Farrell [6]. They demonstrated that
the optimal initial condition is a periodic arrangement of counter-rotating streamwise
vortices that lead to the amplification of streaks with wall-normal and spanwise sizes
on the order of the boundary layer thickness. Since the Orr–Sommerfeld equation is
homogeneous, a small amplitude vertical velocity perturbation, v′, will simply decay
due to viscous effects at sub-critical Reynolds number. The Squire equation, on the
other hand, is forced by the vertical velocity. The response to this Orr–Sommerfeld
forcing is an amplification in the normal vorticity, η′. Zaki and Durbin [43] demon-
strated that resonance exists between continuous Orr–Sommerfeld modes and the
Squire operator. As a result, the Squire response amplifies linearly in time prior to
the long-term viscous decay.

Since the streaks reach large amplitudes, linear theory is not sufficient, and
non-linear simulations are required in order to accurately predict the evolution of
streaks. In addition, beneath free-stream turbulence, a wide spectrum of streaks
is observed inside the boundary layer. Previous studies based on direct numerical
simulations have, however, reduced the rich spectrum of streaks to simple statistical
quantities, e.g. the root mean square velocity disturbance. Nolan and Zaki [32]
adopted a different view: They considered the distribution of streak amplitudes
within the transitional boundary layer, with the objective of identifying the particular
streaks which undergo secondary instability and breakdown to turbulence. First,
they applied laminar-turbulence discrimination in order to isolate the non-turbulent
region of the flow from DNS fields. Streak tracking was subsequently applied in order
to determine the characteristics of the streak population.

An example of laminar-turbulence discrimination is shown in Fig. 5. In order
to distinguish between the turbulent and non-turbulent flow, a detector function
is required. Here, the disturbance velocity in the cross-flow plane is used, namely
D ≡ |v′| + |w′|. In the streaky, pre-transitional region, the value of D is small and
increases sharply with the onset of turbulent spots. The detector function is first low-
pass filtered, and subsequently thresholded to yield an indicator function, �, which is
a logical indicator of turbulent (� = 1) versus non-turbulent (� = 0) flow.
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Fig. 5 Side (top) and plan (bottom) views showing laminar-turbulent discrimination. The black line
denotes the boundary between the turbulent and non-turbulent flows. Contours are the streamwise
velocity perturbation, u′, with high- and low- speed streaks marked in red and blue, respectively

Once the non-turbulent region of the flow is identified, streak detection is
performed. Since the streaks are characterised by large u′ perturbations, a local
maxima identification technique is effective at isolating the core of the streaks at each
streamwise location. These maxima are correlated in successive cross-flow planes
in order to establish the connectivity of the streaks. An example of the result for
streak detection is shown in Fig. 5. The cores of the high- and low-speed streaks are
identified in the figure by the blue and red lines, respectively.

The streaks from successive snapshots are cross-correlated in order to construct
a time-history of streak evolution. An example of streak evolution in space-time is
shown in Fig. 6. The streak is treated as a Lagrangian object, denoted s, in space and

Fig. 6 Top frame Side view showing the evolution of a low-speed streak in space and time, as it
convects and amplifies downstream. The time interval between two streak instances is twenty time
units. Contours are the streak amplitude, As

u. Bottom frame The wall-normal location, ys, of the
maximum amplitude As

u during the streak evolution. The mean (solid line) and laminar-conditioned
(dashed line) boundary-layer edges are also shown
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time. The coordinates of its core are therefore a function of time, and are denoted
xs(t), and the amplitude is defined by,

As
u(x

s, t) ≡ u′(x = xs, t). (6)

At every streamwise location, the maximum streak amplitude over its history can be
extracted,

As
u(x) = max

t,y,z

(
As

u(x
s, t)

)
, (7)

as well as the wall-normal height of the occurrence of this maximum,

ys(x) = y
(

As
u(x)

)
. (8)

The above procedure is performed for all the streaks identified during the DNS of
bypass transition beneath free-stream turbulence. The probability density function
(PDF) of streak amplitudes is shown in Fig. 7, where it is contrasted to transitional
averaging techniques, e.g. root mean square values. At left, the distribution of Au is
plotted at a particular downstream location from the leading edge. The figure also
includes the distribution of u′ perturbations in grey, and the root mean square value,
urms, is indicated by the vertical dashed line. It is evident from the figure that the often
reported urms underpredicts the average streak amplitude and, more importantly,
the high intensity streaks at the tails of the distribution. The latter are the rare
events which lead to the onset of turbulent spots and full non-linear breakdown to
turbulence. The right hand pane shows the evolution of the PDF with downstream
distance. In addition, the circles on the figure identify the streaks which hosted the
inception of turbulent spots. As evident from the figure, streaks with amplitudes,
Au ≥ 0.2, are the most likely events to initiate breakdown to turbulence. This result
would be masked by conventional statistical averaging techniques.

The above discussion has thus far addressed (a) the penetration of low-frequency
free-stream disturbances into the boundary layer and (b) the amplification of streaks.
The notion of streak breakdown was only mentioned in connection with a critical
streak amplitude. However, the secondary instability which causes the streaks to

Fig. 7 Left frame Probability density function of u′ (grey shading) and of the streak amplitude. The
vertical line denotes urms obtained from time and spanwise averaging of the DNS data. Right frame
The downstream evolution of the PDF of streak amplitude. Marked circles identify the onset of
turbulent spots
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breakdown to turbulence has not been addressed, and is the subject of the next
section.

5 Breakdown to Turbulence

5.1 Secondary instability of idealised streaks

In order to accurately assess the stability of streaky boundary layers, Vaughan and
Zaki [40] constructed a database of idealised streaks. These streaks were obtained by
forcing the boundary layer with a single inflow continuous Orr–Sommerfeld mode,
and computing the emergent streaky flow using DNS. Therefore, the streaks in their
analysis take into account non-parallel and non-linear effects. The boundary layer
profile was extracted at a target location (see Fig. 2), and secondary instability analy-
sis was performed using Floquet theory. The base flow is therefore a superposition
of a boundary layer profile, U0(y), and a saturated streak u1(y, z, t),

u2(y, z, t) = U0(y) + u1(y, z, t). (9)

Since the streaks are periodic in the span and in time, a doubly-periodic Floquet
expansion is required. It should also be noted that, while the prescribed free-
stream mode is monochromatic in the span and in time, the resulting streaks include
harmonics in both dimensions due to non-linear effects. As a result, the Floquet
expansion must take into account the various harmonics in the base flow,

u1 (y, z, t) =
M∑

m=0

N∑
n=0

�{
ûm,n

1 (y)ei(mωt+nkzz)
}
. (10)

The velocity profile for a sample streak is shown in Fig. 8. A small mean flow
distortion, relative to Blasius, can be seen in the figure and is due to the high-
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Fig. 8 Wall-normal profile of an example streaky base flow at Reynolds number R = 360, streak
amplitude Au = 20 % and streak frequency F = 60. a The distorted mean flow due to the
presence of streaks ( ) and the Blasius profile ( ); b the fundamental; c the spanwise
harmonic components (see Eq. 10). In (b,c), solid and dashed lines are the real and imaginary parts
of ûm,n
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amplitude non-linear streaks. The effect of this distortion is stabilizing, and therefore
the streaks must be sufficiently destabilising to lead to overall instability of the
base flow.

The linear perturbation equations which govern the evolution of the secondary
instability are derived by assuming a total velocity of the form,

v(x, y, z, t) = {U0(y) + u1(y, z, t)}ex + Bv3(x, y, z, t), (11)

where B is sufficiently small for linearization. Substituting Eq. 11 in the Navier-
Stokes equations, the secondary linear instability problem can be expressed in terms
of ∇2v3 and η3, the Laplacian of the wall-normal velocity and the wall-normal
vorticity. The continuity equation is also required in order to complete the system,
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∂u3

∂x
+ ∂v3

∂y
+ ∂w3

∂z
= 0. (14)

The secondary instability v3 is expressed in terms of a Fourier expansion in t
and z,

v3 = e(iαx+σr t)
∞∑

m=−∞

∞∑
n=−∞

vm,n(y)ei([nkz+γ ]z+[mω+σi]t), (15)

where in the temporal problem both α and γ are real parameters, and σ is the
complex eigenvalue. The eigenvalue problem governing the secondary instability is
obtained by substituting Eq. 15 into Eqs. 12–14.

The growth rates of the two most unstable modes of the boundary layer, when
the Klebanoff streaks are steady, are shown in Fig. 9. The results demonstrate the
presence of mode competition: Low amplitude streaks render the flow unstable to
one type of disturbance; As the streak amplitude is increased, the growth rate of
another type of instability becomes dominant. These two modes are referred to as the
“inner” and “outer” instabilities, due to the wall-normal location of their respective
critical layers. The wall-normal profiles of these two modes are shown in Fig. 10.

In bypass transition under free-stream turbulence, the effect of streak unsteadi-
ness can be important. Therefore, the growth rates of the inner and outer instabilities
were evaluated for a range of base-streak frequencies, F = [0, 60]. The results are
shown in Fig. 11 and demonstrate that, in general, streak unsteadiness increases
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Fig. 9 The growth rate of the
two most unstable modes for a
boundary layer distorted by
steady streaks. The light line
(——) is the growth rate of the
inner mode; the dark line
( ) is the outer mode
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the growth rate of both modes. For the inner mode (Fig. 11a), Vaughan and Zaki
[40] showed that the near-wall inflection points in the unsteady base flow play
an important role in enhancing instability. They also observed a small stabilizing
effect of the inner mode under two conditions: (i) increasing amplitude of steady
streaks (F = 0), and (ii) increasing frequency at low streak amplitude (A = 5 %).
These conditions can be related to the literature on steady boundary layer streaks
[11, 25, 26] and time-dependent shear flows [14], respectively. Apart from this small
stabilizing effect, Fig. 11 establishes that unsteadiness in the base streaks significantly
enhances flow instability, be it in terms of the inner or the outer mode.

In order to develop a physical interpretation of these modes, Vaughan and Zaki
[40] performed DNS of streaky boundary layers perturbed by an outer or inner
instability. The resulting secondary instability of the streaks was computed from
the initial linear stages and up to breakdown to turbulence. A top view of the
inner instability is shown in Fig. 12 and is contrasted to the wave packets observed
by Nagarajan et al. [30]. The spanwise perturbation pattern shows a distinctive
checkered pattern near the wall, and which evolves into turbulent spots downstream.

The events which lead to the formation of the turbulent spots are presented in the
time sequence in Fig. 13. The inner instability is shown to be most amplified in the
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Fig. 10 Wall-normal profiles of a the inner and b the outer modes. The absolute value of the
u−disturbance is plotted for ( ) the most energetic and ( ) the second most energetic
components of the Floquet expansion



Flow Turbulence Combust (2013) 91:451–473 465

  0 10  20  30  40  50  60  
−0.01

  0

0.01

0.02

0.03

0.04

0.05

F

σr

Au = 20%

Au = 15%

Au = 10%

Au =  5%

0 10 20 30 40 50 60
−0.01

  0

0.01

0.02

0.03

0.04

0.05

F

σr

Au = 20%

Au = 15%

Au = 10%

Au =  5%

(a) (b)

Fig. 11 The influence of streak amplitude and frequency on the a inner and b outer modes

overlap region between the low- and high-speed streaks. This region has previously
been identified as a site of inception of turbulent spots based on empirical evidence
only, for example in DNS [5] and experiments [31]. As the inner mode evolves
downstream, at later time, the instability intensifies and lifts away from the wall.
Ultimately, the secondary instability leads to the formation of turbulent patches and
full breakdown to turbulence. It should be noted that the phase speed and growth
rate of the inner instability were commensurate with the observations by Nagarajan
et al. [30] and much higher than conventional Tollmien–Schlichting waves.

Direct simulations of the outer instability were also performed by Vaughan and
Zaki [40]. An overview of the resulting breakdown is shown in Fig. 14. The side view
captures the initial laminar streaks, the formation of a turbulent patch and the fully
turbulent flow downstream.

The time series which precedes Fig. 14 is shown in Fig. 15. The side views show
that the onset of the outer instability is hosted by the lifted, low-speed streaks.
These observations are consistent with the breakdown mechanism observed by
Jacobs and Durbin [21] in their simulations of bypass transition due to free-stream
turbulence. The lifted low-speed streaks are exposed to free-stream turbulence in
their simulations, and develop localised instability which lead to breakdown to
turbulence. However, the forcing in their simulations was broadband, and the nature
of the outer instability was not studied in detail. Here, we have explained the origin
on this breakdown in terms of secondary instability analysis and DNS of breakdown
due to forcing by the most unstable mode of the base streaks.
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0.05

0.10

0.15

0.20

z

x
0.7 0.8 0.9 1.0

Fig. 12 Top view of the boundary layer. Contours of w′ are shown from (left) the simulations by
Nagarajan et al. [30] and (right) the DNS of the inner instability by Vaughan and Zaki [40]
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Fig. 13 Time-series showing a side view of the streaky boundary layer response to forcing by an
inner instability mode. The contours show streamwise velocity perturbation, u′. The region of the
flow-field shown in successive frames is translated downstream in time in order to retain the inner
instability in the middle of the viewing window

The existence of an outer and and an inner instability was hypothesized based on
empirical observations from the DNS by Jacobs and Durbin [21] and Nagarajan et al.
[30], respectively. These observations motivated the Floquet analysis by Vaughan
and Zaki [40] which lead to the above findings. Whether an inner or outer instability

Streamwise distance, x

y/δ

Fig. 14 Side view of the boundary layer when forced by a low-frequency vortical mode to generate
streaks and an outer instability wave. The entire domain is shown, contoured with streamwise
velocity perturbations, u′
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Fig. 15 Time-sequence of the streaky boundary layer in response to inflow forcing by the outer
mode. The side view shows the events which precede breakdown to turbulence shown in Fig. 14. The
region of the flow-field shown in successive frames is translated downstream in time to maintain the
instability in the middle of the viewing window

is observed in a given configuration remains a function of the flow conditions, for
example the pressure gradient history and the leading edge geometry.

The study of the secondary instability of idealized streaks presented a significant
advance in our understanding of bypass transition. However, a challenging question
remained: Can linear stability predict the localised instability of particular streaks in
realistic bypass transition under broadband free-stream forcing? These instabilities
are localized in space, appear on particular streaks within the boundary layer, and
can be of the inner or outer type.

5.2 Secondary instability of realistic streaks

With the encouraging success of linear theory to explain the secondary instability of
idealised streaks, Hack and Zaki [17] recently attempted to capture streak instability
when the boundary layer is exposed to broadband free-stream turbulence. In this
configuration, the flow is laden with streaks, with various spectral content and
amplitudes. Examples are shown in Figs. 3, 5 and 16. The challenge is to predict
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Fig. 16 The secondary instability of streaks beneath free-stream turbulence. Top pane Plan view of
the streamwise velocity perturbation, u′, in the boundary layer. Bottom pane At left, a zoomed-in end
view at x − x0 = 178, focusing on the region where the secondary instability is observed. Contours
of the real (black) and imaginary (white) components of the instability eigenfunction are shown. The
grey line is the critical layer. At right, the growth rate of the instability mode is plotted as the plane
of analysis is advanced downstream

which streak, as it evolves downstream, is most unstable and breaks down into a
turbulent spot.

Hack and Zaki [17] performed secondary instability analyses for spanwise planes,
or two-dimensional base states, which were extracted from the DNS fields. The
analysis follows the methodology described in the work of Barkley et al. [3]. The most
unstable mode was computed, and its eigenfunction, growth rate and phase speed
were recorded. Based on the phase speed, the plane of the analysis was translated
downstream at a later time, and the stability analysis was repeated. This procedure
was used to track the most unstable mode as it progressed downstream.

The results of the above procedure are presented in Fig. 16 for one streak
instability. The top panel shows a plan view of the boundary layer at a time where the
low-speed streak has developed a secondary instability near z = 22.5. The end view
(lower left panel) is a zoomed-in view of the low-speed streak and the secondary
instability mode computed from the linear analysis. The magnitude of the instability
eigenfunction is marked by the black contour lines, and the critical layer is shown by
the dashed line. It is important to remark that the instability eigenfunction is localised
on the low-speed streak which subsequently breaks down into a turbulent spot at
a later stage. Therefore, the analysis can indeed identify the most unstable streak
among the spectrum of Klebanoff distortions, and predict the localised secondary
instability of that particular streaks.

The mode shape suggests that this instability is of the outer type. In addition,
the wavelength of the instability, as predicted from the linear analysis, compares
favourably with the wavelength of the meandering of the streak as observed in the
top view. Finally, the growth rate of the instability is also shown at right. The history
of the growth rate is plotted from the initial tracking position near x = 110 to the
final tracking location x = 180. It is clear that the growth rate of the mode is much
higher than the conventional Tollmien-Schlinchting wave.
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In order to determine the statistical relevance of the outer and inner instabilities
to the breakdown of boundary layers beneath free-stream turbulence, the above
analysis must be repeated for a very long time series. Such effort is currently
underway for zero- and adverse-pressure gradient boundary layers. The initial results
confirm that the stability analysis is a robust approach to predicting localized streak
instability.

5.3 Turbulent spots

Beyond the amplification of streaks and their secondary instability, the formation
and growth of turbulent spots was also examined using the laminar-turbulent dis-
crimination techniques presented earlier [32]. An example of spot tracking is shown
in Fig. 17. The spot shape is extracted at various downstream locations, from a
transitional, adverse-pressure-gradient boundary layer. The silhouette of the spot
is coloured by progressively lighter shades to indicate later time instances in the
evolution of the turbulent patch. The spread angle is marked in the top view. It is
known from previous work that the spread angle depends on pressure gradient, and
increases with adverse pressure conditions.

Fig. 17 The history of the growth of a single spot in APG boundary layer. The spot outline is
shown every 20 convective time units. The top pane shows a side view with the laminar-conditioned
boundary-layer thickness indicated by a dashed line. The middle and bottom panes show a plan and
end view of the spot history
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Fig. 18 Spot volume as a
function of time extracted
from simulations of transition
in favourable, zero and
adverse pressure gradient
boundary layers. Also shown is
a power-law fit with an
exponent of 2.42

The procedure of spot detection can be repeated for various spots and pressure
gradient conditions. Spot characteristics, such as their spreading angle, extent, area
and volume can be computed during the evolution of the turbulent patches. The
time-dependence of the spot volume for various pressure gradient conditions was
evaluated by Nolan and Zaki [32], and is shown in Fig. 18. The volume is independent
of the flow conditions, unlike the spreading angle which was the focus of various
previous studies. This can be explained in terms of the convective speed of the spots.
In adverse pressure gradient, the spots convect at a relatively lower speed, and hence
the spread angle increases relative to fast moving spots, for example in favourable
pressure gradient. The spot volume, on the other hand, is insensitive to pressure
gradient, which could be advantageous for transition modelling.

6 Discussion

Throughout our efforts to explain bypass transition, we have relied on the com-
plementarity between theory and experiments. The theory has often motivated our
numerical simulations, and the latter uncovered new phenomena that required the
development of more advanced theory. The outcome has been an unprecedented
view of the proceedings of transition to turbulence in boundary layers, beneath free-
stream vortical forcing.

High-frequency free-stream perturbations are blocked by the boundary-layer
shear. In contrast, the ability of low-frequency disturbances to penetrate the shear
is evident in experimental and numerical studies of bypass transition. Linear theory
of a model problem shed light on the balance between the shear and diffusive time
scales, and explained the sheltering effect of the shear.

The propensity of low-frequency distortions to amplify in shear flows is well
understood. Therefore, we focused on characterising these streaks in terms of the
distributions of their amplitude, when the boundary layer is forced by a broadband
spectrum of free-stream vortical modes. The results demonstrate the wealth of streak
amplitudes which cannot be inferred by only reporting urms. The importance of the
high-amplitude events, which induce breakdown to turbulence, is demonstrated.
These high-amplitude streaks are masked by conventional methods of statistical
averaging in the homogeneous flow directions.
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The observation of localised breakdown, and its correlation with streak amplitude,
motivated a study of the secondary instability of streaks. Doubly periodic Floquet
analysis was performed in order to explain the modes of streak instability. Using
idealised base streaks, we were able to identify two types of secondary instability:
an outer and an inner instability. Both modes can lead to breakdown, and have
been used to explain the observations from the numerical experiments by Jacobs and
Durbin [21] and Nagarajan et al. [30], respectively. Beyond the stability of idealised
streaks, we also demonstrated that linear theory can isolate the most unstable
streak, when the boundary layer is exposed to broadband free-stream forcing and
is laden with various streaks with different amplitudes. Such predictive capability
is unprecedented and is currently being exploited to explore the effects of pressure
gradients on boundary layer stability in realistic flow configurations.

The complementarity between theory and simulations has advanced our under-
standing of every stage of bypass transition to turbulence. This understanding is
essential for modelling transitional flows and in the longer term for flow control,
for example transition delay. Attempts to target the initial, linear stages of the
transition process have aimed at reducing the penetration of vortical disturbances
into the shear, and weakening the amplitude of the streak distortions that result.
Further efforts in this area will continue to rely on complementarity of theory and
experiments, be the latter physical or numerical.
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