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The secondary instability of a zero-pressure-gradient boundary layer, distorted by
unsteady Klebanoff streaks, is investigated. The base profiles for the analysis are
computed using direct numerical simulation (DNS) of the boundary-layer response
to forcing by individual free-stream modes, which are low frequency and dominated
by streamwise vorticity. Therefore, the base profiles take into account the nonlinear
development of the streaks and mean flow distortion, upstream of the location chosen
for the stability analyses. The two most unstable modes were classified as an inner
and an outer instability, with reference to the position of their respective critical layers
inside the boundary layer. Their growth rates were reported for a range of frequencies
and amplitudes of the base streaks. The inner mode has a connection to the Tollmien–
Schlichting (T–S) wave in the limit of vanishing streak amplitude. It is stabilized by
the mean flow distortion, but its growth rate is enhanced with increasing amplitude
and frequency of the base streaks. The outer mode only exists in the presence of
finite amplitude streaks. The analysis of the outer instability extends the results of
Andersson et al. (J. Fluid Mech. vol. 428, 2001, p. 29) to unsteady base streaks. It
is shown that base-flow unsteadiness promotes instability and, as a result, leads to
a lower critical streak amplitude. The results of linear theory are complemented by
DNS of the evolution of the inner and outer instabilities in a zero-pressure-gradient
boundary layer. Both instabilities lead to breakdown to turbulence and, in the case
of the inner mode, transition proceeds via the formation of wave packets with similar
structure and wave speeds to those reported by Nagarajan, Lele & Ferziger (J. Fluid
Mech., vol. 572, 2007, p. 471).
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1. Introduction
Transition to turbulence in boundary layers is often classified as orderly or bypass.

The early stages of orderly transition are characterized by the amplification of two-
dimensional Tollmien–Schlichting (T–S) instability waves. The primary T–S waves
develop a three-dimensional secondary instability, and subsequently break down to
turbulence (Kleiser & Zang 1991). When the proceedings of transition deviate from
this description, the breakdown mechanism is termed bypass transition (Morkovin
1969). This terminology is general, and encompasses a variety of scenarios where
T–S waves are absent or play a less prominent role (Morkovin, Reshotko & Herbert
1994), for example due to surface roughness or free-stream vortical or acoustic forcing
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(Reshotko 1976; Saric, Reed & Kerschen 2002). The term bypass has, however, often
been used in reference to transition in boundary layers exposed to free-stream vortical
disturbances.

Bypass transition also involves the amplification of a primary disturbance, a
secondary instability and nonlinear breakdown. In response to forcing by free-
stream turbulence, a laminar boundary layer develops high-amplitude, low-frequency
perturbations which are known as streaks, or Klebanoff modes (Klebanoff 1971;
Kendall 1991). Their spanwise size is of the order of the boundary-layer thickness, they
are elongated in the flow direction and are dominated by their streamwise component,
u. The streaky boundary layer subsequently undergoes a secondary instability that
intensifies and leads to the formation of turbulent spots, which lead to turbulence.

The amplification of Klebanoff streaks is well understood, and has been the
subject of a wealth of analytical, experimental and numerical studies (e.g. Hultgren
& Gustavsson 1981; Westin et al. 1994; Jacobs & Durbin 2001). Their elongated
appearance is explained by the rapid distortion theory (Phillips 1969), and their
spanwise scale can be predicted using transient growth analysis (Butler & Farrell 1992).
The physical mechanism for their amplification is displacement of mean momentum,
or lift-up (Landahl 1980).

On the other hand, the influence of Klebanoff streaks on boundary-layer stability
remains the subject of active research. Two main effects have been identified. (a) In
bypass transition, streaks above a critical amplitude develop a secondary instability
(e.g. Andersson et al. 2001). (b) Klebanoff streaks can also alter the growth rate of
instabilities of the Tollmien–Schlichting type. Both a stabilizing and a destabilizing
influence have been suggested in the literature (e.g. Cossu & Brandt 2002; Liu, Zaki
& Durbin 2008b). These two issues are addressed herein using secondary instability
analysis.

1.1. The instability due to Klebanoff streaks in bypass transition

The notion that a secondary instability due to Klebanoff streaks plays a role
in the inception of spots in bypass transition can be traced back to work on
Görtler vortices. Swearingen & Blackwelder (1987) identified two types of secondary
instability of Görtler flow, which were distinguished by their symmetry with respect
to the underlying streak: The varicose instability has a symmetric wall-normal and
streamwise velocity pattern with respect to the streak. The sinuous mode is anti-
symmetric with respect to the base flow, with transversely oscillating perturbation
streamlines. The sinuous mode was more rapidly growing, and was related to spanwise
shear, whereas the varicose mode was associated with wall-normal shear (Saric 1994;
Asai, Minagawa & Nishioka 2002).

In flat-plate boundary layers, streaks can also cause the flow to become prone to
secondary instabilities. Matsubara & Alfredsson (2001) experimentally observed that
streaks undergo a high-frequency oscillation prior to breakdown into turbulent spots.
In direct numerical simulation (DNS), Jacobs & Durbin (2001) showed that turbulent
spots are preceded by an interaction of the lifted low-speed streaks with free-stream
eddies. They did not describe the interaction as a streak instability, but the results
presented herein support such a view. The same mechanism, originating near the edge
of the boundary layer, was documented by Hernon, Walsh & McEligot (2007b) in
their experimental investigation of bypass transition.

Linear theory has been applied to the study of secondary instability of boundary
layers distorted by Klebanoff streaks. Andersson et al. (2001) carried out the first
inviscid, secondary instability analysis of the so-called ‘optimal’ boundary-layer
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streaks. They reported critical streak amplitudes of 26% and 37% for the sinuous and
varicose instability modes, respectively. These modes were subsequently prescribed
as inlet perturbations in the DNS of Brandt & Henningson (2002). The simulations
affirmed the amplification of the secondary instability modes, which resulted in
breakdown to turbulence.

The sinuous and varicose instabilities were also identified, albeit empirically, in
experiments (Mans et al. 2005; Mans, de Lange & van Steenhoven 2007) and
simulations (Brandt, Sclatter & Henningson 2004) of bypass transition. However,
a discrepancy remains between the critical streak amplitude based on stability theory
and experimental observations. While the former predicts a threshold amplitude of
26%, Arnal & Juillen (1978) showed that modest streak intensities with urms ∼ 5–7%
were sufficient for transition; Mandal, Venkatakrishnan & DEY (2010) report
urms = 9% before transition.

Two explanations address the disagreement between the theoretical and measured
thresholds for instability, and are both important in mitigating this discord. (i) The first
points to the deviation of instantaneous streak amplitudes from the root-mean-square
values often reported upstream of transition (Hernon et al. 2007b; Nolan, Walsh
& McEligot 2010). (ii) The second explanation, which is the focus of the current
work, is motivated by empirical evidence of the importance of streak unsteadiness.
For example, based on their simulations, Brandt et al. (2004) asserted that varicose
breakdown is initiated where the streamwise velocity perturbation changes direction
between passing streaks. Also, Mans et al. (2007) studied the sinuous instability
mechanism experimentally, and identified its origin near the upstream terminus of the
low-speed streak. This location corresponds to the maximum rate of change of the
streaky velocity perturbation.

The current work applies Floquet analysis in order to examine the stability
of boundary-layer streaks. Unlike the analysis of Andersson et al. (2001), which
considered the linearly optimal, steady streaks, our base flow is obtained by simulating
the boundary-layer response to free-stream vortical disturbances. Therefore, our streak
ansatz represents the flow in the simulations of Jacobs & Durbin (2001) and Zaki &
Durbin (2005) more faithfully. In addition, our free-stream disturbance is unsteady
in order to assess the role of streak frequency on boundary-layer stability. It is well
known that free-stream turbulence forces a spectrum of streak frequencies inside
the boundary layer. The lowest frequency streaks amplify most, and dominate the
disturbance field inside the shear. Whether these streaks are most unstable is not
known, and will be addressed herein.

1.2. The influence of streaks on Tollmien–Schlichting-type instabilities

Previous studies have provided evidence that streaks can modify the growth rate
of instability modes that belong to the classical boundary-layer eigenspectrum, for
example T–S waves. However, experimental, numerical and theoretical efforts have
not yielded a unified view as to whether this modification is stabilizing or destabilizing.

Boiko et al. (1994) experimentally observed that boundary layers subject to free-
stream turbulence (FST) levels of 1.5% can support growing T–S waves. Their growth
rate, however, was lower than in an undisturbed Blasius flow. Further evidence is
provided from numerical simulations (Fasel 2002; Cossu & Brandt 2002; Liu, Zaki &
Durbin 2008a). In these studies, moderate streak amplitudes were reported to reduce
the growth rate of primary T–S waves – although a secondary instability can be
promoted. The stabilization effect was attributed to nonlinear modification of the
mean velocity profile, which became fuller than the Blasius solution and resembled
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a favourable pressure gradient boundary layer. In addition, the spanwise Reynolds
stress associated with the streak profile made a stabilizing contribution to the energy
balance of Tollmien–Schlichting-type waves (Cossu & Brandt 2004).

Contrary to the above literature, some studies have reported that T–S waves become
more unstable in the presence of streaks. For instance, Kendall (1990) showed that
the growth of T–S waves depends on the level of FST and, in turn, on the amplitude
of the Klebanoff streaks inside the boundary layer. Noise levels around 0.2% brought
about instabilities which resembled T–S waves, but grew more rapidly than in the
absence of free-stream turbulence.

In addition to the influence on viscous T–S waves, theoretical analyses have
predicted that streaks can destabilize oblique Rayleigh waves. For example, Goldstein
& Wundrow (1995) studied boundary-layer stability in the presence of weak
streamwise vortices, which generate a streamwise velocity distortion. They showed that
this flow supports three-dimensional, Rayleigh-type instabilities which can far exceed
the growth rates of classical Tollmien–Schlichting waves. Their analysis assumed that
the streaks were much wider in the span than the boundary-layer thickness. More
recently, Wu & Choudhari (2003) proposed that streak unsteadiness can play an
important destabilizing role.

An interesting case of transition in the presence of streaks and instability wave
packets was reported by Nagarajan et al. (2007). They simulated transition due to
FST in boundary layers over flat plates with slender and blunt leading edges. At
moderate free-stream turbulence intensity, the slender leading edge did not play
a significant role: Breakdown of the low-speed streaks was consistent with the
mechanism illustrated by Jacobs & Durbin (2001). However, downstream of their
blunt leading edge, Nagarajan et al. (2007) observed the amplification of wave packets
near the wall, which caused breakdown to turbulence. The appearance of these wave
packets followed the interaction of strong free-stream vortices with the blunt leading
edge. This mechanism was therefore absent from the simulations by Jacobs & Durbin
(2001), which excluded the leading-edge region. The origin of the wave packet was
investigated by Goldstein & Sescu (2008), and was attributed to an inviscid instability
of the velocity profile. The near-wall inflectional profile was caused by low-frequency
unsteadiness introduced near the leading edge. Their findings therefore affirm that
streak unsteadiness can have a significant effect. However, they adopted a high-
Reynolds-number asymptotic approach and, as indicated by Goldstein & Sescu
(2008), the asymptotic approach ‘may not apply at the more moderate Reynolds
numbers’.

Near-wall boundary-layer instability will be examined herein, when the streaks
are caused by free-stream vortical disturbances, at moderate Reynolds number.
The viscous analysis will address the influence of the base streak unsteadiness and
amplitude, and the connection to classical Tollmien–Schlichting waves in the limit of
vanishing streak amplitude.

The preceding discussion summarizes two potential instabilities of streaky boundary
layers: (i) an outer mechanism which acts on the base streaks and (ii) an inner
mechanism which was manifested as near-wall instability wave packets in the
simulations by Nagarajan et al. (2007). In this paper, we apply viscous stability theory
to zero-pressure-gradient boundary layers distorted by Klebanoff streaks. Each streak
distortion is induced by a free-stream vortical mode with prescribed frequency and
amplitude, in order to emulate the influence of free-stream turbulence. The base
flow is computed using DNS, and therefore non-parallelism and nonlinear effects are
taken into account. The velocity profile is extracted at the location where the streak
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amplitude is maximum, and the analysis is repeated for a range of streak amplitudes
and frequencies. A description of the base flow and the stability analysis is provided
in § 2. Two types of instability modes are identified, and their dependence on the
amplitude and frequency of Klebanoff streaks is discussed in § 3. Direct numerical
simulations of the boundary-layer response to these instabilities are reported in § 4,
and concluding remarks are presented in § 5.

2. Theoretical formulation
2.1. The base flow

The influence of streaks on the stability of the boundary layer can be formulated
as a secondary instability problem. In such an approach, the base flow at the target
location for the analysis is a superposition of a boundary-layer profile, U0(y), and a
saturated streak u1(y, z, t),

u2(y, z, t) = U0(y) + u1(y, z, t). (2.1)

Various base flow ansätze are possible, and the appropriate choice can be motivated
by a discussion of previous work. Liu et al. (2008a ,b) used a Blasius profile and a
linear streak obtained from the solution to the Squire equation. We have carried out
our initial analyses using a similar ansatz. However, we subsequently adopted a more
‘realistic’ profile due to the reasons discussed below.

Boundary-layer streaks are elongated in the streamwise direction and therefore
non-parallel effects become significant in determining their amplitude. The spanwise
size of the streaks is of the order of the boundary-layer thickness and, as a result, both
wall-normal and cross-flow ellipticity must be taken into account in predicting their
evolution. In order to account for these effects, the boundary region equations can be
used (Goldstein & Leib 1993; Leib, Wundrow & Goldstein 1999). However, the linear
formulation is not sufficient because the streaks reach a high amplitude. Nonlinear
effects become important and can, for example, cause a deviation of the mean flow
profile from the Blasius solution. This zero-frequency distortion of the base flow can,
in turn, alter the growth rates of Tollmien–Schlichting waves (see e.g. Cossu & Brandt
2002). In addition, Andersson et al. (2001) demonstrated that it is not sufficient to
describe the streaks by their fundamental spanwise components alone. Instead, higher
spanwise harmonics, i.e. the full nonlinear streaks, are required in the representation
of the base state in order to correctly predict the dominant instability mode.

The base flow for the current analysis is obtained using direct numerical simulations
of the Navier–Stokes equations for a zero-pressure-gradient boundary layer. A
schematic of the computational domain is shown in figure 1, and the details of
the computational algorithm are described in § 4. The inflow to the DNS domain,
at x = x0, is a superposition of the Blasius profile vB , and an unsteady, free-stream
vortical disturbance with amplitude Av ,

v0(x = x0, y, z, t) = vB(x0, y) + AvRe{û1(x0, y) cos(kzz)e
i(−ωt)}ex

+ AvRe{v̂1(x0, y) cos(kzz)e
i(−ωt)}ey

− AvIm{ŵ1(x0, y) sin(kzz)e
i(−ωt)}ez. (2.2)

An example of the inflow mode and the boundary-layer response is shown in figure 2.
The inlet mode belongs to the continuous branch of the boundary-layer eigen-
spectrum, and is monochromatic with frequency ω and spanwise wavenumber, kz.
The inflow plane is upstream of the zone of the boundary region equations denoted
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Figure 1. Schematic of the generation of streaks due to free-stream vortical forcing, their
secondary instability, and breakdown to turbulence. The domain used in the DNS is marked
by the dashed line.
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Figure 2. The boundary-layer response to forcing by a single, unsteady free-stream vortical
mode, F =60. (a) v component of the free-stream forcing mode; (b) side view of the
u-perturbation field, −0.20 <u1 < 0.20. Light and dark contours mark positive and negative
velocity perturbations, respectively. The y-coordinate is normalized by the Blasius length scale
at the target Reynolds number, Re = 360, where the stability analyses are carried out. This
location is marked by the dashed line.

III in Leib et al. (1999). Since our flow is computed using DNS, both non-parallel
and nonlinear effects are fully captured, and the streak profiles downstream include
higher harmonics of the inlet ω and kz. In this and the following section, all variables
are made non-dimensional using the free-stream speed U∞ and the Blasius length
scale. The Reynolds number is therefore Re ≡

√
U∞x/ν.

The parameters for our stability analyses are motivated by the DNS of bypass
transition at Tu = 3% by Jacobs & Durbin (2001). The Reynolds number at the
inlet to our computational domain is the same as in their simulation, Re = 163.
Every unsteady, free-stream vortical mode of interest was simulated independently.
Their frequencies, F ≡ 106ω/Re < 60, and spanwise wavenumber, kz = 0.71, are
representative of the streaks with the highest energy content in the DNS of
Jacobs & Durbin (2001). Each inlet mode caused the downstream amplification
of streaks, followed by viscous decay. Figure 3 shows an example of streak amplitude,
Au ≡ max |u1|, versus Reynolds number. The peak streak amplitude is reached
near Re = 360, and this location is selected for our stability analyses (see marked
location in figures 2 and 3). This target Reynolds number also lies within the range
350 < Re < 400, where Jacobs & Durbin (2001) observed the initial stages of streak
interactions that lead to breakdown to turbulence.

Since the streaks reach high amplitude, nonlinear terms in the DNS are appreciable.
As a result, a simple linear relationship between the inlet condition and the
downstream streak amplitude is not possible. Instead, the amplitude of the inlet
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Figure 3. The evolution of the streak amplitude Au is plotted versus the Reynolds number,
for streak frequencies – – –, F = 0; , F = 20; · · · ·, F =40; – · – , F = 60. Two maximum
streak amplitudes, Au = {5, 20}%, at the target location Re = 360 are shown.

free-stream disturbance was iteratively varied, and the computations were repeated
in order to achieve the desired streak amplitudes, Au = {5, 10, 15, 20}%, at the target
Reynolds number. These values of Au span the range of interest, based on both
computer and physical experiments (Westin et al. 1994; Matsubara & Alfredsson
2001; Jacobs & Durbin 2001).

The boundary-layer profile is computed at the target Reynolds number using
spanwise- and time-averaging, U0 = 〈u2〉. The streak profile is also evaluated at the
target location, and is decomposed into its Fourier modes which are harmonics of
the inlet forcing ω and kz,

u1 (y, z, t) =

M∑
m=0

N∑
n=0

Re{ûm,n
1 (y) ei(mωt+nkzz)}. (2.3)

Note that the (0, 0) component is already included in the mean flow U0 and, as a
result, u0,0

1 is zero. In the stability analysis, the representation of the streaks includes
sufficient Fourier components in order to ensure that at least 98% of its kinetic
energy is captured. Most of the energy is in the fundamental mode, and therefore it is
sufficient to truncate the Fourier series at M = 2, N = 2; this is verified in Appendix A.

An example of the boundary-layer profile and the Fourier components of the
streak is shown in figure 4. These profiles are extracted at the marked location in
figures 2 and 3. The mean velocity exceeds the Blasius profile near the wall, and
shows a deficit towards the edge of the boundary layer. The same trend was observed
in experiments of bypass transition (e.g. Mandal et al. 2010). The deviation of U0

from Blasius increases with the amplitude of the base streaks. Here, the maximum
base-flow modification is less than 4.35% when the base streaks are unsteady, and
less than 5.24% in case of steady base streaks. This level of distortion can cause
significant changes to the near-wall curvature of the velocity profile, which, in turn,
can affect the boundary-layer stability (Wu & Choudhari 2003). Results from our
stability analyses will compare the effects of using the mean flow from the DNS and
the Blasius profile, in order to quantify the influence of the base-flow modification.
The fundamental mode in the Fourier expansion of the base streak, û1,1

1 , is shown
in figure 4(b), and resembles a Klebanoff mode. The first harmonic in the spanwise
direction, û1,2

1 , is plotted in figure 4(c), and is significantly less energetic.
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Figure 4. The wall-normal profile of the streamwise velocity at the target Reynolds number,
Re = 360. The streak amplitude is Au =20% and the frequency is F = 60. (a) The mean
flow computed using time-averaging of the DNS ( ) is plotted along with the Blasius
solution (– – –). (b) The fundamental and (c) the spanwise harmonic components in the
Fourier representation of the base streak (2.3). The solid and dashed lines correspond to the
real and imaginary parts of û

m,n
1 .

2.2. Secondary instability

The secondary stability equations are derived by considering linear perturbations to
the base state, described in § 2.1. Evidence from previous DNS and experiments
indicate that the secondary instability has a short streamwise wavelength and,
therefore, non-parallel effects can be ignored. A local velocity profile is extracted
at the target Reynolds number, and the perturbed state is expressed as a summation
of the streamwise base flow and a three-dimensional disturbance

v(x, y, z, t) = {U0(y) + u1(y, z, t)}ex + Bv3(x, y, z, t), (2.4)

where B is sufficiently small for linearization. The secondary perturbation problem is
derived by substituting (2.4) in the Navier–Stokes equations, subtracting the equations
for the base state u2 and neglecting terms of order B2. By taking the curl of the velocity
perturbation equations, the secondary instability problem is expressed in terms of the
vorticity perturbation(

1

Re
∇2 − ∂

∂t

)
ω3 − (v2 · ∇)ω3 − (v3 · ∇)ω2 + (ω2 · ∇)v3 + (ω3 · ∇)v2 = 0. (2.5)

where ω ≡ (ξ, η, ζ )T is the vorticity vector.
In analogy to the Orr–Sommerfeld and Squire primary perturbation equations, a

pair of equations is derived for the secondary disturbance in terms of ∇2v3 and η3.
Since w3 cannot be eliminated from the secondary instability problem, the continuity
equation is required in order to complete the system

∂2U0

∂y2

∂v3

∂x
+

(
1

Re
∇2 − ∂

∂t
− U0

∂

∂x
− u1

∂

∂x

)
∇2v3 +

(
−

[
∂2u1

∂y∂z
+

∂u1

∂z

∂

∂y

]
η3

+

[
∂ξ3

∂x
− ∂ζ3

∂z

]
∂u1

∂z
+

∂v3

∂x

[
∂2u1

∂y2
− ∂2u1

∂z2

]
+

[
∂u3

∂z
+

∂w3

∂x

]
∂2u1

∂y∂z

)
= 0, (2.6)
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1

Re
∇2 − ∂

∂t

)
η3 − ∂η3

∂x
U0 − ∂v3

∂z

∂U0

∂y

−
(

∂η3

∂x
u1 + v3

∂2u1

∂y∂z
+ w3

∂2u1

∂z2
− ∂v3

∂y

∂u1

∂z
+

∂v3

∂z

∂u1

∂y

)
= 0, (2.7)

∂u3

∂x
+

∂v3

∂y
+

∂w3

∂z
= 0. (2.8)

Homogeneous boundary conditions are enforced on u3, v3, w3, and on ∂v3/∂y at the
wall and in the free stream.

The coefficients of the secondary instability problem (2.6)–(2.8) are homogeneous in
x. As a result, a normal mode assumption can be invoked in that dimension. Further
simplifications are possible, and depend on the form of the base flow, u2(y, z, t).
Since the streaks are periodic in the spanwise direction, the Floquet theory must be
invoked for the z-dimension. As regards the time dependence of the base state, two
classes of analyses will be considered. The first approach will invoke a quasi-steady
assumption where the stability analysis is repeated for each phase of the unsteady
streak, u1 = u1(y, z; t). In this case, a normal mode assumption is also possible in
time. In the second class, the temporal periodicity of u1(y, z, t) is retained in the
definition of the base flow, and a Floquet expansion is therefore required in time as
well.

The quasi-steady assumption has been invoked in previous stability analyses of
streaky base flows. For example, Wu & Choudhari (2003) adopted such an approach.
However, in their discussion, they have also acknowledged that the ‘intermittent
instabilities’ predicted by the quasi-steady assumption cannot be directly related to
a global Floquet instability of the time-periodic base flow. The limitations of the
quasi-steady assumption were discussed by Kerczek & Davis (1974), who studied
the linear stability of oscillatory Stokes layers. They reasoned that the quasi-steady
approximation becomes inappropriate around the critical conditions for instability,
where the time scale of amplification is very long and unstable base profiles might
propagate away before instabilities could grow locally. Therefore, a Floquet expansion
in time is required in order to accurately determine the stability of the time-periodic
base flow. For example, Blennerhassett & Bassom (2006) studied the instability of
an oscillatory Stokes layer with a Floquet expansion in time, and Luo & Wu (2010)
compared the results to their direct numerical simulations of the same base flow at
different Reynolds numbers. At subcritical Reynolds numbers, some phases of the
base flow were instantaneously unstable, but others were stable. However, the neutral
curve calculated from the Floquet analysis correctly predicted the critical conditions
calculated by the DNS.

The Floquet analysis in time can be motivated further by comparing the frequency
of the base streaks and that of the classical boundary-layer instability. It is known that
the most energetic streaks lie in the frequency range 0<F < 100 (Jacobs & Durbin
2001). Also, in the absence of streaks, the Blasius profile at the target Reynolds
number can sustain viscous instability waves in the frequency range 137 < F < 240.
Although these modes have a weak growth rate, parametric excitation by the streaks
is possible, and must be taken into account since it can lead to enhanced growth
rates. Figure 5 shows this relationship between the neutral curve of the Blasius flow,
and the energy spectrum inside the boundary layer from DNS of bypass transition at
the same conditions as the work of Jacobs & Durbin (2001).
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Figure 5. The neutral curve for a Blasius boundary layer is overlaid on the energy spectrum
inside the boundary layer from DNS of bypass transition at the same conditions as the work
of Jacobs & Durbin (2001). The target Reynolds number is marked by the dashed vertical
line.

The secondary instability v3 can be expressed in the general form,

v3(x, y, z, t) = ṽ3(y, z, t)ei(αx+γ z)+σ t . (2.9)

In the temporal stability problem, both α and γ are real parameters, and σ is the
complex eigenvalue. For the unsteady base flow, ṽ3(y, z, t) is periodic in both z and t ,

ṽ3(y, z, t) = ṽ3 (y, z + 2π/kz, t) = ṽ3 (y, z, t + 2π/ω) .

The perturbation can therefore be replaced by its Fourier expansion in t and z, and
v3 has the form

v3 = e(iαx+σr t)

∞∑
m=−∞

∞∑
n=−∞

vm,n(y) ei([nkz+γ ]z+[mω+σi ]t), (2.10)

where γ and σi have been absorbed in the summation. The eigenvalue problem is
formulated by substituting (2.10) into the governing equations (2.6)–(2.8). The growth
rate of the instability is given by the real part of the eigenvalue σr , and the imaginary
part σi determines the frequency offset which is added to each Fourier component in
the expansion. Note that when the base flow is assumed to be quasi-steady, ω =0 and
the frequency of the instability is determined by σi solely.

In the spanwise direction, γ is the detune factor which need only be considered
over the range |γ | � (1/2)kz. Larger values of γ can be recast within the range, given a
renumbering of the Fourier modes in the expansion. Fundamental and subharmonic
resonance in the spanwise direction correspond to γ =0 and γ = (1/2)kz, respectively.
Other values of γ correspond to detuned modes.

Due to the spanwise symmetry of the base flow, the eigenvalue problems associated
with the sinuous and varicose components of the expansion (2.10) are decoupled,
and each is solved independently in order to reduce the overall computational cost.
The terminology sinuous and varicose refers to the appearance of the perturbation
streamlines in the horizontal (x–z ) plane. Here, symmetry is with respect to the low-
speed streak, in keeping with the convention of Andersson et al. (2001). The sinuous
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Figure 6. On the left, the spanwise variation of the streak amplitude is shown at two instances
in time, which are exactly out of phase. The four sub-plots show streamlines of the perturbation
field in the (x–z ) plane for (a) the spanwise fundamental, sinuous mode; (b) the spanwise
fundamental, varicose mode; (c) the spanwise subharmonic, sinuous mode; (d) the spanwise
subharmonic, varicose mode. Only the first component of the spanwise Floquet expansion is
shown.

and varicose symmetries are illustrated schematically in figure 6 for the spanwise
fundamental (figure 6a,b) and subharmonic (figure 6c,d ) modes.

When the base streaks are steady, all perturbation patterns in the figure exhibit
a well-defined and unchanging symmetry. Consider, for example, a steady u1 profile,
indicated by the solid line on the left. The perturbation streamlines in figures 6(a)
and 6(c) meander in a sinuous motion relative to the low-speed streak at z = 0. On
the other hand, the perturbation patterns in figures 6(b) and 6(d) are varicose: they
have the appearance of a sausage instability relative to the low-speed streak at z =0.
Since the u1 profile was assumed to be steady, these symmetries are preserved at all
times.

The case of unsteady base streaks is depicted schematically by the solid and
dashed u1 profiles, which are separated in time by an interval 
t = π/ω. The
solid profile has the low-speed streak centred at z = 0, and the dashed profile
around z = ±1. Independent of the streak unsteadiness, the fundamental modes
(figure 6a,b) remain distinct. However, the subharmonic disturbances (figure 6c,d )
become indistinguishable: a sinuous mode relative to the solid u1 profile (z = 0)
becomes varicose at a later time, t = t0 + π/ω, relative to the dashed u1 streak
(z = ±1), and vice versa. Since the Floquet problem is formally an integration over all
phases of the base flow, the spanwise subharmonic eigenmodes from the sinuous and
varicose expansions collapse in the unsteady case. This property served as one of the
validation criteria for the numerical solution of the eigenvalue problem.



Stability of ZPG boundary layer distorted by Klebanoff streaks 127

2.3. Numerical solution of the eigenvalue problem

The doubly periodic Floquet problem defined in this section bears a similarity to
the work of Liu et al. (2008b), but also introduces additional complexity in the
construction of the discrete stability operator. In the work of Liu et al. (2008b), the
base flow was a superposition of the Blasius profile and two primary distortions,
each periodic in only one dimension: their saturated T–S wave was periodic in the
x-direction and the steady streaks were periodic in the z -direction. Therefore, the
convolution terms in the secondary stability equations coupled wavenumbers either
in x or in z, but not in both directions. In the current formulation, the base streaks are
periodic in both t and z, and therefore convolution terms can couple wavenumbers
in both directions. As a result, the numerical algorithm used to solve the eigenvalue
problem extends the work of Liu et al. (2008b). A validation of the algorithm is
presented in Appendix B, with reference to the literature on stability calculations for
time-dependent and spanwise-dependent base flows.

The algorithm is based on a Chebyshev representation of the instability modes in
the wall-normal direction. The semi-infinite physical domain is truncated at y = y∞,
which was typically 10 boundary-layer thicknesses. The mapping of the Gauss–
Lobatto points from the interval [−1, 1] to the physical domain [0, y∞] clustered the
collocation points inside the boundary layer. In order to ensure convergence of the
numerical solution, at least 50 Gauss–Lobatto points are required. In addition, at least
four Floquet modes are required in the expansion in each of the periodic dimensions.
This yielded a system size of the order of 41 million elements. The implicitly restarted
Arnoldi iteration method, described by Lehoucq, Sorensen & Yang (1998), was used
for the solution of the eigenvalue problem. The computational cost was reduced by
evaluating a subset of the eigenspectrum, which captured the modes with the largest
growth rates, σr . The two most unstable modes are of particular interest in the current
study, and are discussed in detail in the following section.

3. Linear instability modes of the streaky boundary layer
In this section, the results of the linear stability analyses are presented for the

range of streak parameters discussed in § 2.1. The Reynolds number is Re = 360,
and the streak frequencies and amplitudes span the range, F ∈ [0, 60] and Au ∈
[0, 20]%, respectively. The streak width is approximately 1.8δ99, at the target Reynolds
number. These parameters of the base flow are typical of the streaky boundary layer
upstream of the inception of turbulent spots in experiments and simulations of bypass
transition (Westin et al. 1994; Matsubara & Alfredsson 2001; Jacobs & Durbin
2001). The experiments reported root-mean-square streak amplitudes reaching nearly
10%, upstream of transition. It is possible that some instantaneous streaks in the
experiments exceeded Au = 20%, as noted by Nolan et al. (2010), which would further
promote instability.

First, the stability of boundary layers in the presence of steady streaks, F = 0,
is investigated over a range of streak amplitudes. This problem has been analysed
before, for example, by Andersson et al. (2001) in the inviscid limit, and by Cossu
& Brandt (2004). In those papers, the streaks were the boundary-layer response to
an optimal primary disturbance, which is a streamwise vortex. Here, the streaks are
forced by the free-stream vortical disturbance described in § 2.1.

The growth rate of the most unstable mode is plotted in figure 7 versus streak
amplitude. The results show two different modes of instability, and each becomes
most unstable at a different streak amplitude. In the absence of streaks, Au = 0,
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Figure 7. The influence of the amplitude of steady streaks (F = 0) on growth rate. Three
types of modes are plotted. The grey line ( ) is the growth rate of the inner mode; the
black line ( ) is the outer mode. Both the sinuous and varicose outer modes are shown.
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Figure 8. Wall-normal profiles of (a) the inner and (b) the outer modes. The absolute value of
the u-disturbance is plotted for ( ) the most energetic and (– – –) the second most energetic
components of the Floquet expansion. The location of the critical layer, ycrit , is marked by an
arrow. The amplitudes of the base streaks are selected to yield unstable modes: Au = 5% for
the inner mode, and Au = 20% for the outer mode.

the Tollmien–Schlichting wave is the only unstable wave. As Au is increased, the
Tollmien–Schlichting wave is slightly destabilized, before the stabilizing influence of
the streaks, which was previously described by Cossu & Brandt (2004) and by Liu
et al. (2008b), takes hold. The mode shape for this instability wave is plotted in
figure 8(a). It is normalized such that the most energetic Floquet component has unit
amplitude; the same normalization is adopted for all the eigenfunctions presented
herein. The mode shape closely resembles the classical Tollmien–Schlichting wave
from Orr–Sommerfeld theory. Its critical layer is near the wall, and therefore will be
designated the inner mode.

As the streak amplitude is increased further, the flow becomes unstable to a
different type of mode with a high phase speed. Andersson et al. (2001) predicted
that a subharmonic, sinuous instability would emerge first, at a streak amplitude of
26%. Indeed, our analysis also predicts that the sinuous mode is the most unstable,
however, at a much lower streak amplitude than Andersson et al. (2001). The growth
rate of the varicose counterpart is also reported in the figure, and becomes unstable
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Figure 9. The growth rate of the inner mode as a function of streak amplitude for steady
streaks (– – –). The growth rates are also shown for ( ) the most stabilizing and ( )
most destabilizing phases of the streak with F = 20.

at a higher Au. The mode shape of the sinuous instability is plotted in figure 8(b).
Due to its higher phase speed, it is designated the outer mode.

In bypass transition due to free-stream vortical disturbances, boundary-layer streaks
are not steady. Therefore, the influence of unsteadiness in u1 on the inner and outer
instabilities will be investigated in the following two subsections, respectively. For each
mode, the results of two classes of analyses will be considered. First, a quasi-steady
approximation of the streaks will be adopted, and the growth rates of the instability
will be reported maximized over all possible phases of the base streak. This will be
followed by the stability results which take into account the temporal periodicity of
u1 in the formulation of the eigenvalue problem.

3.1. The inner mode

The inner mode exhibits varicose symmetry with respect to the base flow, and
is fundamental to the spanwise wavenumber of the base streak. Its Floquet
representation is therefore in terms of βn = nkz, where kz is the streak spanwise
wavenumber, and n is an integer multiple. First, a quasi-steady approximation of the
base flow is considered, and hence the inner mode has the following form:

u3 = e(iαx+σ t)

∞∑
n=0

un,cosz cos(nkzz),

v3 = e(iαx+σ t)

∞∑
n=0

vn,cosz cos(nkzz),

w3 = e(iαx+σ t)

∞∑
n=1

wn,sinz
sin(nkzz).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

The spanwise independent wavenumber, βn = 0, is part of the above expression,
and is composed of only the u and v perturbations; the w component vanishes due
to anti-symmetry with respect to the base streak. As the amplitude of the streaks is
decreased, Au → 0, only this two-dimensional component persists and the inner mode
reduces to the conventional Tollmien–Schlichting wave of the Blasius boundary layer.

The origin of the inner mode in the classical Tollmien–Schlichting wave is made
clear by tracking the growth rate as the amplitude of streaks is smoothly increased
from zero. Three curves are contrasted in figure 9: the first is the growth rate for
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Figure 10. The effect of streak amplitude and frequency on the inner mode. The most unstable
phase of the unsteady streaks is used in a steady analysis. In (a), the mean flow is modified
from Blasius due to nonlinear effects of the streak; in (b) the Blasius profile is used. – · – ,
Au = 5%; – – –, Au = 10%; · · · · , Au =15%; , Au = 20%. The growth rate for the most
stabilizing phase of the base streaks is also shown (– · – ) for Au =5%.

the steady base streak (adopted from figure 7), and the other two curves are for the
unsteady base streak with F = 20. The analysis assumed a quasi-steady base flow,
which amounts to ‘freezing’ a particular phase of the unsteady streak and computing
the growth rate. The two curves for F = 20 represent the most stable and the most
unstable phases of the streak profile. In the limit Au = 0, the streaks vanish and
the growth rate of the inner mode exactly matches the Tollmien–Schlichting wave.
However, as Au is increased, the behaviour of the inner mode is sensitive to the
base flow. In the case of steady streaks, the growth rate initially increases, although
inappreciably, followed by a stabilizing effect at higher streak amplitudes, Au ∼ 16%.
When one considers the unsteady streak, the growth rate of the most unstable
phase steadily increases with Au, indicating a significant destabilization of the inner
mode. This trend emphasizes the potential importance of streak unsteadiness, where
particular phases of the streak profile can lead to enhanced amplification rates of
the inner instability. The results are also consistent with the ‘intermittent instability’
proposed by Wu & Choudhari (2003). It should be noted, however, that some phases
of the base streak have a stabilizing influence. The growth rate at the most stabilized
phase is also plotted in figure 9. Whether the ‘intermittent instability’ or ‘intermittent
enhanced stability’ dominates cannot be inferred from the analysis of frozen base
states. However, the analysis highlights the importance of considering the unsteadiness
of the base flow in determining the stability of the boundary layer with respect to the
inner mode.

The analysis using the quasi-steady base-flow assumption was carried out over a
range of streak frequencies, F ∈ [0, 60] and the results are reported in figure 10(a).
The inner instability is enhanced with increasing Au, and this dependence is more
pronounced at higher frequencies of the base streak. The influence of the streak
unsteadiness only enters through the phase of the base-flow profile, yet causes an
appreciable increase in the growth rate of the inner mode. The significant increase
in σr is due to the presence of wall-normal inflection points in the base-flow profile,
u2(y; x, z, t). In the steady streak limit, F = 0, the base flow is not inflectional in y

and, as a result, the T–S waves preserve their weak viscous growth rates. However, in
the presence of unsteady streaks, wall-normal inflection points were introduced in the
base-flow profile. For example, at F =20 and Au = 20%, the most unstable temporal
phase of the base flow, u2(y; x, z, t), was inspected for wall-normal inflection points.
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Figure 11. (a) Mean flow U0 ( ) plotted for the case of steady base streaks at amplitude
Au = 20%. Also shown is the Blasius solution (– – –), and the difference between the two
profiles premultiplied by 10 (– · – ). (b) Maximum deviation of the mean flow from Blasius,
maxy |
U0| plotted versus streak amplitude at F = 0.

This exercise was repeated for different z-locations, and approximately 60% of the
profiles were inflectional in y. This level was increased to 90% for the higher-frequency
base flow, F = 60. Inflectional wall-normal velocity profiles were also reported by
Mandal et al. (2010), based on a PIV study of bypass transition. They argued that
the inflectional profiles were important for varicose instabilities, such as the present
inner mode.

In order to investigate the significance of the mean flow modification, which is
caused by the nonlinear nature of the base streaks, the stability analysis is repeated
using a Blasius profile, U0 =UBlasius. The growth rates are plotted in figure 10(b),
and are generally increased relative to the results in figure 10(a). Also note that
the stabilization at F = 0 is no longer observed, and must therefore be linked to
the U0 profile. The deviation of the mean flow from Blasius is shown in figure 11,
when the base streaks are steady, F = 0. The maximum deviation is 5.24% when the
streak amplitude is highest, Au = 20%. The stabilizing influence of the base flow is
in agreement with the work of Cossu & Brandt (2002). They studied the stability of
boundary layers with steady streaks, and found that the stabilizing influence was not
preserved if the Blasius flow was used instead of the distorted mean profile.

The above results establish that the inner instability is dependent on the frequency
of the Klebanoff streaks. However, the analyses invoked a quasi-steady base-flow
assumption, by using particular phases of u1. While the growth rates were reported
for the most unstable phase, other phases of the base streaks are stabilizing and must
be accounted for in determining the overall stability characteristic of the boundary
layer. For example, figures 10(a) and 10(b) include the growth rates of the inner mode
for the most stabilizing phase of the base flow, at Au =5%. In the following section,
the stability analysis is performed for the time-dependent base flow, thus fully taking
into account the unsteady nature of the streaks.

3.1.1. The influence of unsteady base flow on the inner mode

The quasi-steady base-flow assumption was relaxed, and the secondary instability
problem was re-evaluated for the time-periodic u2. Therefore, the disturbance was
expressed in terms of a Fourier expansion in time, as well as in the fundamental
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Figure 12. (a) The two-dimensional component in the Floquet expansion of the inner mode.
The wall-normal profile of the |u| velocity is plotted for various streak amplitudes, the streak
frequency F = 20: , Au =0.0%; – · – , Au = 5.0%; , Au = 7.5%; – – –, Au = 10.0%. (b)
The root-mean-square of u3 is plotted in the cross-flow plane, for Au = 10.0%. The spanwise
domain size is twice the wavelength of the base streak.

spanwise wavenumber of the streaks,

u3 = Re

[
e(iαx+σ t)

∞∑
m=0

∞∑
n=0

(um,n,cost ,cosz cos(mωt) + um,n,sint ,cosz sin(mωt))

]
cos(nkzz),

v3 = Re

[
e(iαx+σ t)

∞∑
m=0

∞∑
n=0

(vm,n,cost ,cosz cos(mωt) + vm,n,sint ,cosz sin(mωt))

]
cos(nkzz),

w3 = Re

[
e(iαx+σ t)

∞∑
m=0

∞∑
n=0

(wm,n,cost ,sinz
cos(mωt) + wm,n,sint ,sinz

sin(mωt))

]
sin(nkzz).

(3.2)

As with the previous steady analyses, the inner mode includes a two-dimensional, or
spanwise-independent, Floquet component. The |u|-profile for this term is plotted in
figure 12(a), for base streak frequency F =20. As Au vanishes, this mode collapses
onto the classical Tollmien–Schlichting wave. In the presence of streaks, however, the
inner mode takes on a three-dimensional form. This is shown in figure 12(b), where
u3 is plotted in the cross-flow plane. The domain includes two spanwise wavelengths
of the streak.

The effect of base-flow unsteadiness on the inner instability is shown in figure 13,
where the growth rate is plotted versus streak frequency, at different streak amplitudes.
The results account for all phases of the base streak, both stabilizing and destabilizing.
The inner mode is generally destabilized by high-amplitude, unsteady streaks, and its
growth rate significantly surpasses the viscous Tollmien–Schlichting wave.

A comparison of the present results to the previous quasi-steady calculations in
figure 10 illustrates the importance of accounting for all phases of the unsteady base
streak. Consider, for example, the high-frequency streak, F = 60. At high amplitude,
both analyses predict a destabilization of the inner mode. The temporal Floquet
expansion, however, predicts a larger growth rate than the most unstable phase in the
quasi-steady results. Furthermore, at low amplitude, the temporal Floquet expansion
predicts a net stabilizing effect, which could not be inferred from the quasi-steady
computations.
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Figure 14. Effect of Au on (a) the frequency of the most energetic component, and (b) the
streamwise wavenumber of the inner mode. The base streak frequencies are: – – –, F =0; ,
F = 20; – · – , F = 60.

According to the results of figure 13, the inner mode can be stabilized, albeit
inappreciably, in two regimes: (i) steady, high-amplitude streaks which cause a
stabilizing modification to the mean flow, and (ii) low-amplitude, higher-frequency
streaks. The enhanced stability for high-frequency, low-amplitude streaks can be
compared to the work of Grosch & Salwen (1968). They studied the stability of time-
dependent plane Poiseuille flow. Their base flow included a steady and an unsteady
component – akin to the present mean flow with unsteady streaks. They found that
modest amplitudes of the unsteady component of the base flow tended to stabilize the
flow, whereas the higher amplitudes made the flow unstable. Similar observation can
be made in the current context. The stabilization effect is, however, not significant in
comparison to the substantial increase in growth rates due to unsteady streaks with
amplitude Au > 10%.

The most energetic component of the Floquet expansion (3.2) was identified, and
its frequency ωm = mω + σi and streamwise wavenumber α are shown in figures 14(a)
and 14(b) as a function of Au. Both quantities are insensitive to the amplitude of the
steady base streaks. However, unsteady streaks with amplitude Au > 6% cause both
the frequency and wavenumber of the inner mode to increase, and the effect increases
with streak frequency. The results of the linear theory are in agreement with Kendall
(1991) who observed instabilities similar to the Tollmien–Schlichting waves, except
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Figure 15. (a) The dependence of streak amplitude Au on F , when Av = 4.5 × 10−3 is held
constant. (b) Growth rate of the inner mode versus the streak frequency at constant Av . The
growth rate of the T–S wave for the Blasius boundary layer is marked by the horizontal line.

that their frequency and growth rate were higher in the presence of Klebanoff streaks.
According to the current results, the phase speed of the inner mode also exceeds that
of the Tollmien–Schlichting waves, cr = 0.38. The maximum computed phase speed
was cr = 0.54, over the range Au and F considered.

The discussion of the inner instability has thus far overlooked the propensity of
lower-frequency streaks to reach higher amplitudes, Au. In particular, for the same
level of free-stream forcing, lower-frequency vortical disturbances penetrate deeper
into the boundary layer, and cause amplification of the Klebanoff streaks to higher
Au levels (Zaki & Durbin 2005). It is therefore more appropriate to consider constant
values of Av or Aw of the free-stream vortical mode which causes the generation
of streaks. The strength of the streak response, Au, is frequency-dependent, and is
determined from DNS.

The value of Av was selected such that the induced streaks reached amplitudes Au

of the order of 15% in the low-frequency limit. The dependence of Au on frequency
is shown in figure 15(a). In figure 15(b), the growth rate of the inner instability is
plotted versus streak frequency, here at constant Av . In the steady streak limit, F =0,
the inner mode is only slightly unstable due to the modification to the Blasius profile,
despite the high value of Au. The growth rate increases rapidly as the streaks become
unsteady, especially in the lower frequency range where they reach high amplitude.
While higher levels of unsteadiness are destabilizing, the streak amplitude Au decreases
with frequency and reduces the instability growth rate. Therefore, an optimal range
of streak frequencies emerges. Lower-frequency streaks do not introduce sufficient
unsteadiness, and higher-frequency Klebanoff modes occur at weaker, more stable
amplitudes.

In the context of bypass transition, a spectrum of streak amplitudes and frequencies
is generated in response to forcing by free-stream turbulence. The low-frequency
components of this forcing, not F = 0, play the most significant role as regards
enhancing the inner instability. The high-frequency components are less significant
due to their low propensity to generate high-amplitude streaks.

3.2. The outer mode

The existence of the outer mode is due entirely to streaks. Unlike the inner instability
which reduces to a Tollmien–Schlichting wave, the outer mode ceases to exist when the
amplitude of the streak Au is set to zero. Its phase speed is approximately cr ∼ 0.75U∞,
which is in agreement with previous experimental and numerical studies of streak
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Figure 16. Contours of the streamwise velocity u2(y, z) = U0(y) + u1(y, z) for steady streaks
at amplitude Au =20%. The contour levels correspond to 0 < u2 < 1 with an increment of
0.1. (a) The base flow profile kindly provided by Dr L. Brandt. It is obtained from DNS of
the linearly optimal streaks, at the location of maximum streak amplitude (Andersson et al.
2001). (b) The streaks are due to free-stream vortical forcing, and are extracted at Re = 360,
ky = 0.677, kz = 0.71, based on the local Blasius length scale.
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Figure 17. (a) Contours of the spanwise shear for the velocity fields in figure 16. The left
half of the contour plot corresponds to the streaks by Andersson et al. (2001). The right half
corresponds to the streaks forced by free-stream vortical modes. The horizontal line marks the
critical layer of the outer mode. (b) The spanwise shear at the critical layer. – – –, streaks by
Andersson et al. (2001); , streaks forced by free-stream vortical modes.

instability. For example, the experiments of Mans et al. (2007) and Swearingen &
Blackwelder (1987), as well as the DNS of Jacobs & Durbin (2001), all reported
an instability phase speed which was closer to the free-stream velocity than the
conventional Tollmien–Schlichting wave.

Given the origin of the outer instability in the streaks, it is natural to seek
a comparison to the findings of Andersson et al. (2001). Their inviscid analysis
predicts that the subharmonic, sinuous instability emerges first, at a critical streak
amplitude of 26%, followed by the varicose mode at 37%. Our results for the steady
streak F = 0 were shown in figure 7. Indeed the subharmonic, sinuous mode is
most unstable. However, its critical amplitude, Au =15.2%, is much lower than the
threshold predicted by Andersson et al. (2001).

While our predicted threshold for instability is closer to the experimentally observed
level, it remains important to explain the disagreement with Andersson et al. (2001).
In that paper, the streaks were computed using DNS, as is the case herein. The main
difference arises in the model of the base flow. Andersson et al. (2001) studied the
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Figure 18. The effect of streak amplitude and frequency on the outer mode. The most unstable
phase of the unsteady streaks is used in a steady analysis. In (a), the mean flow is modified
from Blasius due to nonlinear effects of the streak; in (b) the Blasius profile is used. ,
Au = 20%; · · · · , Au = 15%; – – –, Au = 10%. The growth rate for the most stabilizing phase of
the base streaks is also shown (– – –) for Au = 10%.

stability of the ‘optimal’ streak which was generated by a streamwise vortex within the
boundary layer. Our streaks, however, are forced by free-stream vortical disturbances
representative of the influence of far-field turbulence on boundary layers in bypass
transition. The base flow used in the stability analysis of Andersson et al. (2001) was
kindly provided by Dr L. Brandt. Contours of their u2 are plotted in figure 16(a) for
the case where the streak amplitude is A= 20.2%. The corresponding base flow from
the current analysis, for a steady streak with amplitude Au = 20%, is shown in figure
16(b). Despite the similarity, the spanwise variation in the base flow is less pronounced
in the case of optimal streaks. As a result, the spanwise shear associated with the
base streaks considered herein is noticeably higher, for the same streak amplitude
(see figure 17). Since the secondary instability is related to the spanwise shear, it is
natural that the critical amplitude in the current work is lower than that obtained by
Andersson et al. (2001).

Similar to the discussion of the inner instability, the outer mode will be first
investigated in the context of a quasi-steady base flow. This approximation is
subsequently relaxed, and the time periodicity of the base flow is incorporated in
the analysis.

The outer instability is subharmonic in the spanwise wavenumber of the streaks,
and exhibits sinuous symmetry in that dimension. Therefore, for a frozen base flow,
the outer mode can be expressed according to

u3 = e(iαx+σ t)

∞∑
n=0

un,cosz cos

([
2n + 1

2

]
kzz

)
,

v3 = e(iαx+σ t)

∞∑
n=0

vn,cosz cos

([
2n + 1

2

]
kzz

)
,

w3 = e(iαx+σ t)
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n=0

wn,sinz
sin

([
2n + 1

2

]
kzz

)
.
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⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

The above expansion is substituted in the stability equations, (2.6)–(2.8), and the
eigenvalue problem is solved for the growth rate σr . All phases of the base streaks
were considered, over a range of streak frequencies and amplitudes. The growth rate
of the outer instability is reported, for the most unstable phase, in figure 18(a). The
outer mode becomes increasingly more unstable in the presence of high-amplitude
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streaks. Also, increasing the frequency of the base streak has a destabilizing effect.
Results for the most stable phase of the base flow are also plotted for streak amplitude,
Au = 10%. The analysis was also repeated using the Blasius profile, in place of the
distorted mean flow, and the results are shown in figure 18(b). A comparison of figures
18(a) and 18(b) indicates that the effect of the modification to the Blasius profile by
the nonlinear streaks is small. This is in agreement with the view that streak instability
is due to spanwise shear between adjacent streaks (see, for example, Swearingen &
Blackwelder 1987), and is therefore insensitive to the modification of the mean flow.

The preceding results confirm that some phases of unsteady boundary-layer streaks
can be destabilizing, and lead to the amplification of the outer mode. However,
the quasi-steady approximation of the base flow does not account for other phases
of the streak, which can have a stabilizing effect. In the following subsection, the
time-periodicity of the unsteady streaks is retained in the stability analysis.

3.2.1. The influence of unsteady base flow on the outer mode

Since the outer mode is subharmonic relative to the spanwise wavenumber of the
streak, a classification into sinuous and varicose is not required; both the sinuous and
varicose eigenmodes coalesce as explained in § 2.2. The Fourier representation of the
outer mode is given below. When substituted in the stability equations (2.6)–(2.8), it
yields the eigenvalue problem for the complex frequency, σ ,

u3 = e(iαx+σ t)

∞∑
m=0

∞∑
n=0
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+ um,n,sint ,cosz sin(mωt)) cos

([
2n + 1

2

]
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)
,
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(3.4)

The two most energetic components of the above expansion are plotted in
figure 19(a) for representative streak parameters. Figure 19(b) shows contours of
u3 in the cross-stream plane. The size of the spanwise region shown is twice the
wavelength of the base streak. Therefore, the figure contains only one wavelength of
the subharmonic, outer mode. Compared to the inner mode, much of the energy is
removed from the wall, and the critical layer is in the outer region, close to the free
stream. The most unstable streamwise wavenumber was around α =0.3, which agrees
closely with the instability predicted by Andersson et al. (2001). The corresponding
wavelength is of the same order as the streak instabilities observed in the DNS of
Brandt et al. (2004), where λx ∼ 5δ∗.

The growth rate of the outer mode is plotted versus the frequency of the base streak,
at various levels of Au in figure 20(a). The analysis, which takes into account all phases
of the base-flow unsteadiness, demonstrates that the outer mode is destabilized by
high-amplitude, unsteady streaks. When the streaks are weak, Au = 5%, a stabilizing
effect is observed at higher frequencies, similar to the inner mode.
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Figure 19. (a) The wall-normal profile for the outer mode in the presence of unsteady streaks.
The absolute value of the u-disturbance is plotted for ( ) the most energetic (ωm = 0.2754,
βn = 1.0635), and (– – –) second most energetic (ωm =0.2682, βn = 1.0635) components of
the Floquet expansion. The parameters of the base streak are Au = 10%, F = 20. (b) The
root-mean-square of u3 is plotted in the cross-flow plane. The spanwise domain size is twice
the wavelength of the base streak.
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Figure 20. The effect of streak frequency on the growth rate of the outer mode. The streak
amplitudes, Au, are kept constant in (a), and (b) shows results at constant Av .

As indicated in the discussion of the inner mode, it is not sufficient to evaluate the
growth rate of the outer instability at constant Au. Instead, the propensity of low-
frequency streaks to reach higher amplitude must be taken into account. Therefore,
the amplitude Av of the primary disturbance was held fixed (the corresponding
Au(F ; Av) was reported in figure 15a), and the growth rate of the outer instability
was re-evaluated. The results, shown in figure 20(b), indicate the presence of an
optimal range of streak frequencies. Streaks with lower wavenumbers can reach high
amplitudes, but do not introduce sufficient unsteadiness to enhance the growth rate
of the outer instability. Streaks with higher wavenumbers provide that unsteadiness,
but do not amplify considerably; their small Au is therefore insufficient to trigger
the outer instability. As a result, the most unstable streak frequency, or the ‘optimal’
streak in the sense of promoting secondary instabilities, emerges near F ∼ 10.

The critical streak amplitude, Ac
u, for the onset of outer instability is reported

in figure 21. The results show that Ac
u initially decreases as the streak frequency

is increased. The predicted critical amplitude compares more favourably with
the previously cited experimental observations than the steady, inviscid results of
Andersson et al. (2001). For example, even the highest-amplitude streaks in the
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Figure 21. Dependence of the critical streak amplitude for the outer instability on F . The
cross marks the critical value from the work of Andersson et al. (2001).

experiments by Hernon et al. (2007b; see their figure 3, Tu = 1.3%) are stable according
to the stability criterion by Andersson et al. (2001), but are unstable according to the
current results. Therefore, the high instantaneous streak amplitudes relative to r.m.s.
values (Hernon, Walsh & McEligot 2007a; Hernon et al. 2007b), together with the
lower stability threshold demonstrated herein, can explain breakdown of streaks in
bypass transition, even at moderate free-stream turbulence intensities.

Another notable observation relates to the dominance of sinuous versus varicose
instability. Both our steady analyses and the work of Andersson et al. (2001) predict
a dominant sinuous mode. On the other hand, Brandt & Henningson (2002) asserted
that the boundary layer had nearly equal propensity to undergo sinuous or varicose
instability based on their DNS of bypass transition. This difference can be explained
by the results of the unsteady analysis. Due to the spanwise subharmonic nature of
the outer mode, it encompasses perturbation patterns that can appear either sinuous
or varicose, depending on the local phase of the base streak.

3.3. Mode competition between the inner and outer instabilities

In the preceding subsections, the effect of unsteady streaks was discussed with respect
to the inner and outer modes independently. It is of interest to compare the growth
rates of these two instabilities. Such comparison was presented for the steady base
streaks, F = 0, in figure 7: the inner mode was the only instability at low streak
amplitudes, but the outer mode became dominant at higher levels of Au. A similar
trend is observed when the base streak is of low frequency, for example, at F = 10,

which is shown in figure 22(a). The change in the dominant instability hints at the
bypass mechanism in boundary-layer transition. The inner instability (grey curve),
which has its origin in the viscous Tollmien–Schlichting wave, is initially the only
instability mode but is weakly amplifying. However, as the Klebanoff streaks exceed
Au ∼ 7.5%, the inner mode is bypassed by the strongly amplifying outer instability
(black curve), whose exponential growth rate σr continues to increase with streak
intensity.

The inner–outer mode competition is further examined over a range of frequencies
of the base streak in figure 22(b), which provides a good summary. The thin horizontal
line in the figure corresponds to the growth rate of the classical Tollmien–Schlichting
wave in the two-dimensional Blasius flow. Therefore, the boundary-layer instability
is clearly promoted by the presence of high-amplitude, unsteady streaks. In the
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Figure 22. The influence of unsteady streaks on the growth rate of the most unstable mode.
(a) The growth rate is plotted versus Au for a base streak with F = 10. (grey line), inner
mode; (black line), outer mode. (b) The growth rate is plotted versus streak frequency,
at streak amplitudes Au = {0, 5, 10, 15, 20}%.

low-frequency regime, the dominance of the outer mode is seen beyond Au � 10%.
It is also interesting to note the dominance of the inner instability at relatively high
frequencies of the base streak. This can be due to (i) enhanced parametric resonance
between the higher-frequency unsteady streaks and the classical instability waves of
the Blasius profile (137< F < 240) at the target Reynolds number or (ii) an increase
in the number of inflectional profiles of the base flow at higher frequencies of streak
modulation.

Based on the above results, the dominant mode is determined by both the streak
amplitude and streamwise wavenumber. In bypass transition, the boundary layer
contains a spectrum of streaks with various amplitudes and frequencies. It is therefore
difficult to predict which secondary instability will dominate. Breakdown can be
initiated due to the inner or outer instability, dependent on the flow conditions.
Indeed, previous simulations have described secondary instabilities that can be related
to the inner and outer types.

4. Direct numerical simulations
This section reports on DNS of the inner and outer instabilities in a streaky, zero-

pressure-gradient boundary layer. The objective is to provide an empirical view of
the evolution of these instabilities and their breakdown to turbulence, in a canonical
setting. The three-dimensional, incompressible Navier–Stokes equations are solved
using the numerical algorithm described in Rosenfeld, Kwak & Vinokur (1991).
The method is a fractional step formulation where the convective terms are treated
explicitly using Adams–Bashforth time advancement; the diffusion and pressure terms
are advanced by Crank–Nicolson and implicit Euler schemes, respectively. The spatial
discretization is based on local volume fluxes on a staggered computational grid.

The inlet boundary layer 99% thickness, δ0
99 = δ99(x0), is used as the characteristic

length scale in this section, because the Blasius length scale is only meaningful in the
laminar region and the DNS domain extends beyond transition into the turbulent
region. Using this scaling, the size of the computational domain is 460 × 20 × 24,
in the streamwise, wall-normal and spanwise directions, respectively. In terms of
Reynolds number, the computational domain spans 163 � Re � 628. The inflow plane
is therefore at the same location as the simulations in Jacobs & Durbin (2001). It is
upstream of the critical Reynolds number for the first unstable Tollmien–Schlichting



Stability of ZPG boundary layer distorted by Klebanoff streaks 141

wave. While the exit plane is downstream of the critical Re, it is well upstream of the
location where the orderly transition process would be complete, Re ≈ 1730.

The number of grid points in the streamwise, wall-normal and spanwise directions
are 2049 × 129 × 129. The grid is uniform in the streamwise and spanwise coordinates,
but is stretched in the wall-normal direction. The resolution is similar to the DNS by
Jacobs & Durbin (2001), who performed an extensive grid refinement study. Based
on wall units, the maximum grid spacings are 
x+ = 8.1, 
y+

w = 0.4 and 
z+ = 6.8,

where 
y+
w is at the wall.

A free-slip condition is applied on the top boundary of the computational domain.
The shape of this boundary is determined based on the downstream development of
the boundary-layer displacement thickness, in order to ensure zero-pressure-gradient
flow. A no-slip boundary condition is enforced at the bottom wall, and a convective
outflow condition is applied at the exit plane. At the inlet to the simulation domain,
in addition to the Blasius profile, two perturbations are prescribed. The first is
the same disturbance as in § 2.1, i.e. a low-frequency, free-stream vortical mode
which, downstream of the inlet, leads to the generation of a high-amplitude streaky
response inside the boundary layer. Therefore, the boundary-layer streaks in the
current simulations are the same as those adopted in our stability analyses. The
second disturbance is an inner or outer instability mode obtained from the Floquet
analysis of § 3.

The inflow condition is therefore

v0(y, z, t) = vB(y) + AvRe{u1(y, x0) cos(kzz)e
i(−ωt)}ex

+ AvRe{v1(y, x0) cos(kzz)e
i(−ωt)}ey

− AvIm{w1(y, x0) sin(kzz)e
i(−ωt)}ez

+ As

∑
n

∑
m

Re
{
vn,m(y)ei([nkz+γ ]z+[mω+σi ]t)

}
. (4.1)

Based on the results of linear theory (§ 3.3, figure 22), the outer mode dominates
for relatively low streak frequencies, and the inner instability is most pronounced
at the higher frequencies. Therefore, streaks with frequency F = 30 were used in
the simulations of the outer mode, and F = 60 for the inner mode. The spanwise
wavenumber of the streaks remained unchanged, kz = 0.71, based on the Blasius
length scale at the target Reynolds number (kzδ

0
99 = 1.57). The value of Av was

adjusted such that the root-mean-square streak disturbance was 10% at the target
Reynolds number.

The current simulations of modal interactions bear a similarity to the DNS of Zaki
& Durbin (2005, 2006). They simulated pairs of continuous Orr–Sommerfeld modes:
a low-frequency and a high-frequency pair. The low-frequency disturbance leads to
the generation of streaks. The high-frequency pair did not penetrate the boundary
layer due to shear sheltering. Instead, it was in the free stream and interacted with
the lifted streaks to cause breakdown to turbulence. It is therefore possible that the
instability mechanism in those simulations is related to an ‘outer’ mode. However, the
high-frequency component in that work was not, formally, an instability of the base
flow in the sense of linear stability analysis.

4.1. The inner mode

The interaction of the inner instability mode with the streaky boundary layer leads
to transition to turbulence in our simulations. A top view of the u-perturbation field
inside the boundary layer is shown in figure 23. The figure shows the upstream laminar
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Figure 23. Contours of the u-perturbation velocity (−0.10 � u � 0.10) inside the boundary
layer. The plane is y = 0.6 based on the boundary-layer thickness at the inlet plane. Further
downstream, y/δ99 = 0.1, where δ99 is the boundary-layer thickness at x = 360.

flow, a turbulent patch in the transition region and the fully turbulent boundary layer
near the end of the domain. Turbulent spots first appear near x ≈ 150 (Re = 383),
which is slightly downstream of the target Reynolds number for our stability analyses.
This suggests that the secondary instability of the streaks took place upstream, near
the target Reynolds number, followed by spot inception and breakdown.

Unlike the random forcing of the streaks by free-stream turbulence in bypass
transition, the inlet forcing in our controlled simulations is via the inner mode. The
inner instability is fundamental to the spanwise wavenumber of the streaks βn = nkz

(see (3.2)). Therefore, the amplification of the secondary instability initially takes on
a repeated pattern in the spanwise direction. As a result, breakdown can be repeated
across the span, as seen near x = 160 in figure 23. However, irregular patterns of
breakdown are also observed due to the nonlinear nature of transition to turbulence,
which can disrupt the spanwise homogeneity of the flow as seen near x =200.

The events which precede the flow field in figure 23 are presented in figures 24
and 25. Each sequence spans the time period T − 100 < t <T − 20, where T is the
time of the final field in figure 23. The top views show contours of the u- and
w -perturbation velocities, respectively. They capture the amplification of the inner-
mode instability and nonlinear breakdown to turbulence. Near the inlet (not shown),
the inner instability wave is traversed by many streaks due to their relative phase
speeds. However, when the instability reaches high amplitude, it is seen to amplify in
the region near the overlap of the forward and backward streaks. The subdomains
plotted in figures 24 and 25 translate in the downstream direction at 0.625U∞. The
inner instability retains the same relative position in the viewing window. Therefore,
the phase speed of the inner instability at this stage of breakdown is in reasonable
agreement with our Floquet results in § 3.1, but slightly exceeds the propagation
speed of the wave packets observed by Nagarajan et al. (2007), cr =0.52 − 0.60U∞.
The analysis of Goldstein & Sescu (2008) under-predicted this quantity, and the
discrepancy was attributed to the two-dimensionality of their result. The current
DNS supports their explanation: the three-dimensionality of the inner instability is
evident in the third and fourth frames of figure 25, in the contours of w-perturbations.
The inclined checkered pattern resembles the spanwise velocity contours reported by
Nagarajan et al. (2007), in their figure 13(c).

Iso-surfaces of the λ2 vortex identification criterion are shown at t = T − 60, in the
middle frames of figures 24 and 25. Near x = 120, Λ-shaped structures are observed
at the intersection of the high- and low-speed streaks. They are narrow in the span
and short in the streamwise direction, in comparison to the secondary instability of
classical T–S waves (Herbert 1988). The Λs are also distinct from those which emerge
when two-dimensional T–S waves are modulated by streaks (Liu et al. 2008a). It
was shown in § 3.1 that the inner mode reduces to the T–S wave when u1 vanishes.
However, when u1 is finite and unsteady, the Floquet analysis predicts that the inner
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Figure 24. The u-perturbation velocity in the plane y/δ99 = 0.25, where δ99 is the
boundary-layer thickness at x = 125. Contour levels are −0.10 � u � 0.10. The sequence
spans the period T − 100 < t <T − 20, where T is the time instance in figure 23. The viewing
window is translated at 0.625U∞ in order to follow the development of the instability.

eigenmode deviates significantly from the classical boundary-layer instability. It is
no longer two-dimensional and, more importantly, is not monochromatic in time.
Instead, it has finite energy over a range of frequencies, 200 < F < 600. The higher
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Figure 25. The u-perturbation velocity in the plane y/δ99 = 0.25, where δ99 is the
boundary-layer thickness at x = 125. Contour levels are −0.05 � w � 0.05. The sequence
spans the period T − 100 < t < T − 20, where T is the time instance in figure 23. The viewing
window is translated at 0.625U∞ in order to follow the development of the instability.

frequencies are similar to the properties of the wave packets reported by Nagarajan
et al. (2007; see their table 6).

A side view of the boundary layer at time t = T −60 is given in figure 26. The plane
bisects the region where breakdown is initiated, and shows that the instability is near
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Figure 26. Contours of the u-perturbation velocity in the (x,y) plane (−0.1 � u � 0.1). Light
and dark contours mark positive and negative velocity perturbations, respectively. The side
view is extracted along the dashed line in figures 24 and 25.
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Figure 27. Contours of the perturbation velocities in the case of the outer mode: (a)
−0.10 � u � 0.10; (b) −0.01 � v � 0.01; (c) a zoomed-in view of the region near the inlet of the
computational domain, −0.005 � v � 0.005. The plane is y = 1.0 based on the boundary-layer
thickness at the inlet plane. Further downstream, y/δ99 = 0.16, where δ99 is the boundary-layer
thickness at x = 360.

the wall, at the intersection of the low- and high-speed streaks. The importance of this
region was suggested by Brandt et al. (2004) based on their DNS. It was also noted
by Zaki et al. (2010) in simulations of transition in compressor passages, where the
overall pressure gradient is adverse and the interaction of streak and instability waves
leads to breakdown to turbulence. However, a formal explanation of the instability
mechanism was not provided.

4.2. The outer mode

Direct numerical simulations of streaks perturbed by the outer instability were also
carried out. An overview of the downstream evolution of the flow, as computed from
the DNS, is shown in figure 27. Transition to turbulence took place in the DNS at
streak amplitudes of the order of 10%–15%. This amplitude is significantly lower
than the threshold for instability predicted by the steady analysis of Andersson et al.
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Figure 28. The u-perturbation velocity in the plane y/δ99 = 0.38, where δ99 is the
boundary-layer thickness at x = 140. Contour levels are −0.10 � u � 0.10. The sequence
spans the period T − 80 < t <T − 20, where T is the time instance in figure 27. The viewing
window is translated at 0.75U∞ in order to follow the development of the instability.

(2001). The u-contours in the top pane of figure 27 clearly illustrate the streaks
upstream of transition to turbulence. However, it is difficult to infer the presence
of the outer mode. Therefore, the figure also shows a zoomed-in view of the region
near the inlet of the domain, where v -contours are used to illustrate the spanwise
subharmonic nature of the outer instability mode.

A time sequence of the amplification of the outer mode and breakdown of the
streaky boundary layer is shown in figure 28. The sequence spans T −80 < t < T −20,
where T is the time instance in figure 27. The region shown translates downstream
at 0.75U∞ in order to maintain the instability in the middle of the frame. The plane
view of the perturbation field does not clearly demonstrate the outer nature of the
instability. Also, using vortex identification criteria, such as λ2, did not yield any
distinctive vortical structures during the breakdown of the streaks.

Figure 29 shows a side view of the disturbance field at t = T − 60. The plane
corresponds to z = 8 in figure 28. The contours of u-perturbation show that the
low-speed streak becomes unstable near the edge of the boundary layer, due to
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Figure 29. Contours of the u-perturbation velocity in the (x,y) plane (−0.1 � u � 0.1). Light
and dark contours mark positive and negative velocity perturbations, respectively. The side
view is extracted at z = 8, and corresponds to time t = T − 60, in figure 28.

forcing by the outer mode. The instability very closely resembles the flow patterns
reported by Zaki & Durbin (2005), where their streak was perturbed by a high-
frequency free-stream mode. It also bears a clear similarity to the flow patterns which
preceded boundary-layer breakdown in previous simulations of bypass transition due
to free-stream turbulence, in the absence of a leading edge (Jacobs & Durbin 2001;
Brandt et al. 2004). The mechanism was described by Jacobs & Durbin (2001) as
an irregularity which resembles a Kelvin–Helmholtz instability. Due to the localized
appearance of the perturbation atop the streak, those authors could not qualify their
observation as a streak instability. However, the results from the current DNS indicate
that such a mechanism can be related to the outer mode, which is an instability mode
of the streaky boundary layer.

5. Conclusion
The secondary instability of zero-pressure-gradient boundary layer, distorted by

Klebanoff streaks, was investigated. The two most unstable modes were identified,
and their growth rates were reported for a range of frequencies and amplitudes of the
base streaks. The modes were classified as an ‘inner’ and an ‘outer’ instability, with
reference to the position of their respective critical layers inside the boundary layer.
The inner mode was related to the T–S wave in the limit Au → 0, whereas the outer
mode is a streak instability.

For moderate- and high-amplitude steady streaks, the nonlinear distortion of the
mean velocity profile, U0, stabilized the inner mode relative to the growth rate of T–S
waves. However, as the frequency of the streaks was increased, the wall-normal u2

profile became locally inflectional, and the growth rate of the inner instability increased
appreciably. This trend was most pronounced at higher levels of Au (figure 13).
The growth rate of the inner mode was also reported at constant Av , in order to
account for the dependence of the base-streak amplitude on frequency, F . The results
demonstrated that lower frequency, but not steady streaks, are the most destabilizing
with respect to the inner mode (figure 15).

Given the location of the critical layer deep inside the shear, excitation of the
inner instability is likely to depend on receptivity at the leading edge (Schrader et al.
2010). This view is supported by comparing our DNS of the inner instability to the
simulations of Nagarajan et al. (2007). They investigated the influence of leading-
edge bluntness and free-stream turbulence intensity on bypass transition. For high
turbulence intensities and blunt leading edge, they observed the formation of near-
wall wave packets which lead to breakdown to turbulence. Patterns similar to their
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w-perturbation contours, travelling at phase speed cr ≈ 0.625U∞, were observed in the
current DNS of boundary-layer breakdown due to the inner instability.

Based on the current results, the outer mode of instability emerged at a critical
streak amplitude, Ac

u = 8.5%. This threshold is commensurate with the levels reported
in the literature on bypass transition due to free-stream turbulence. A comparison to
the work of Andersson et al. (2001) was carried out by considering a steady base state,
u2(y, z), and the influence of the streak ansatz on the stability threshold was discussed.
In the case of a steady base flow, the outer mode is a sinuous and spanwise sub-
harmonic instability. However, when the base streaks are unsteady, the sinuous and
varicose modes coalesce. Nonlinear simulations of the outer instability were presented.
Snapshots of the developing instability showed its origin near the free stream, prior
to breakdown into a turbulent spot. Similar observations of secondary instability of
streaks were reported based on previous simulations and physical experiments of
bypass transition (Jacobs & Durbin 2001; Hernon et al. 2007b).

In bypass transition, upstream of breakdown, the boundary layer contains a
spectrum of low-frequency streaks, and is continually being perturbed by eddies
from the free stream. Whether an inner or an outer instability emerges is dependent
on the flow conditions. Relating the outer mode to previous observations of bypass
transition, the turbulence in the free stream provides an effective forcing which can
excite the high-frequency outer instability of the lifted streaks. This transition scenario
was dominant in the DNS by Jacobs & Durbin (2001), and the inner instability was
not observed. Since the inner mode has a relatively low phase speed, and resides close
to the wall, it is shielded from the high-frequency noise in the free stream by shear
sheltering (Hunt 1977; Zaki & Saha 2009). Instead, the inner instability can be excited
more effectively due to receptivity at the leading edge, which was excluded from the
simulation setup of Jacobs & Durbin (2001). The effectiveness of this mechanism is
dependent on the geometry and, in the presence of a blunt leading edge, the inner
mode can provide an alternate bypass route to boundary-layer turbulence.

This work was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC).

Appendix A. Fourier representation of the base streaks
In the stability calculations, the base flow u2 = U0 + u1 was represented by a

truncated Fourier expansion,

u1 (y, z, t) =

M∑
m=0

N∑
n=0

Re{ûm,n
1 (y)ei(mωt+nkzz)}. (A 1)

Only Fourier modes up to the second harmonic in time and in the span were retained,
M = N = 2. This was justified by comparing the energy captured by the truncated
series to the total energy of the streaks in the DNS. The comparison was carried out
at the target Reynolds number, and the y-location where the peak urms of the streak
was recorded. The relative error in the energy was evaluated according to

E = 1 −
2∑

m=0

2∑
n=0

En,m/Etotal , (A 2)

where En,m is the energy content in the (n, m) mode. Figure 30 shows the relative
error for all streak frequencies and amplitudes. As the amplitude, and hence energy,
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Figure 30. Relative error due to truncation of the Fourier series expansion of the base streak.
The error is plotted for the range of streak frequencies and amplitudes considered in the
stability analysis.

of the streak is increased, stronger nonlinear interactions emerge. As a result, higher
harmonics are excited and the error in the truncation increases. However, the energy
of the omitted modes remains approximately two orders of magnitude smaller than
the total energy of the streak.

Appendix B. Validation of the linear stability algorithm
The secondary stability problem is derived by substituting the Floquet expansion

(2.10) into the perturbation equations (2.6)–(2.8). This yields an eigenvalue problem,
which is discretized using an expansion in Chebyshev polynomials (Orszag 1971). In
operator form, the secondary instability modes are eigensolutions of

Ax = σBx,

where the eigenvalue is the frequency σ . The most unstable eigenvalues and the
corresponding eigenvectors were computed using the implicitly restarted Arnoldi
iteration method described by Lehoucq et al. (1998).

The base flows considered in this work can exhibit periodicity in time, in the
spanwise direction, or in both coordinates simultaneously. Due to the linearity of the
problem, periodicity in each coordinate direction can be validated independently.

B.1. Time-periodic base flow: the oscillating plates problem

The validation of the Floquet expansion in time was performed by comparing with
the results of Blennerhassett & Bassom (2006), who studied the linear stability of
the time-periodic flow between two oscillating plates. In their work, the streamwise
flow was driven by viscosity only, and therefore there is no pressure gradient. The
analytic form for the time-dependent base flow provided by Blennerhassett & Bassom
(2006) was implemented in our Floquet solution algorithm. Stability calculations
were performed at a plate separation of 32 units, where the wall-normal coordinate is
scaled by

√
2ν/ω, and ω is the frequency of wall oscillation. Three different Reynolds

numbers were considered, Re = {570, 700, 750}. The spanwise wavenumber of the
instability is a parameter; the value a = 0.3 was selected for the validation tests.

Our results indicate that the flow is stable under these conditions. The decay rates of
the least stable modes are compared to the results of Blennerhassett & Bassom (2006)
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Mode Re Blennerhassett & Bassom (2006) Current results

Even 570 −0.06572 −0.06572
Odd 570 −0.11620 −0.11620
Even 700 −0.06676 −0.06678
Odd 750 −0.11951 −0.12045

Table 1. The growth rate of the least stable eigenvalue for oscillatory flow between two
plates.
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Figure 31. The normal velocity eigenfunction for the even mode at Re = 700. , current
results; × , Blennerhassett & Bassom (2006).

in table 1. The maximum relative error is below 1%. In addition, figure 31 shows a
comparison of our normal velocity eigenfunction and the results by Blennerhassett
& Bassom (2006) for the even mode at Re = 700. Excellent agreement is observed.
Only four Floquet modes in the time expansion were sufficient. In the wall-normal
expansion, 50 Chebyshev modes were used.

B.2. Spanwise periodic base flow: boundary layer with steady streaks

The validation of the spanwise Floquet expansion was previously carried out by Liu
et al. (2008b). They computed the growth rates of Tollmien–Schlichting waves when
the boundary layer is distorted by steady streaks, and compared their prediction to
Cossu & Brandt (2004). While the validation by Liu et al. (2008b) is sufficient, we
herein present a further comparison against the work of Andersson et al. (2001) for
steady streaks.

Andersson et al. (2001) studied the stability of zero-pressure-gradient boundary
layer distorted by steady, spanwise periodic streaks. Their base flow streaks were
obtained from the nonlinear evolution of the linearly optimal perturbation to the
Blasius profile. Unlike the focus of Cossu & Brandt (2004) on low-amplitude streaks
and Tollmien–Schlichting waves, the work of Andersson et al. (2001) considered high-
amplitude Klebanoff modes which lead to an inflectional instability. Their base flow
profile was also kindly provided by Dr L. Brandt for the purpose of this validation.

The amplification of the optimal streaks leads to appreciable mean flow distortion,
as well as significant energy transfer to higher spanwise harmonics of the base streak.
Therefore, 10 modes were required in the spanwise Floquet expansion for convergence
of the stability results. Here, we focus on the growth rate of the most unstable
modes, namely the subharmonic sinuous instability. Unlike the inviscid analysis by
Andersson et al. (2001), our secondary stability equations (2.6)–(2.7) include viscous
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Re σr cr

100 0.01186 0.8693
200 0.01412 0.8633
300 0.01484 0.8619
Inviscid 0.01496 0.8450

Table 2. The effect of Reynolds number on the growth rate and wave speed of the subharmonic
sinuous instability. The base flow used corresponds to A = 37.3 in Andersson et al. (2001), and
for comparison, the inviscid result comes from that paper.
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Figure 32. Contours of streamwise velocity perturbation in the subharmonic sinuous mode.
The mode is normalized by its maximum absolute value, and levels of |u| =[0.5, 1.0] are
plotted with a spacing of 0.1. The base flow corresponds to the streak with A = 37.3% in
Andersson et al. (2001). The dashed line denotes the distorted critical layer.

effects. Therefore, the Reynolds number in our analysis was gradually increased, and
our predicted growth rates were compared to that of Andersson et al. (2001).

Table 2 compares our predicted growth rates and phase speeds at different Reynolds
numbers to the inviscid results from Andersson et al. (2001). As the Reynolds number
is increased, our results converge towards the inviscid value.

Streamwise velocity eigenfunctions were presented in Andersson et al. (2001,
figure 12b), and demonstrated the distortion of the critical layer, particularly on
the flanks of the low-speed streak. A similar plot is shown in figure 32 for the
instability reported in table 2, at Re = 300. Although the contour levels were not
specified in Andersson et al. (2001, figure 12b), and the streak amplitude for their
figure is slightly lower than the value considered for this validation test, there is a
strong qualitative agreement in the instability mode shape.
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