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Control-volume representation of molecular dynamics
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A molecular dynamics (MD) parallel to the control volume (CV) formulation of fluid mechanics is developed
by integrating the formulas of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] over a finite cubic volume
of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which
yields an equivalent to Reynolds’ transport theorem for the discrete system. This approach casts the dynamics of
the molecular system into a form that can be readily compared to the continuum equations. The MD equations
of motion are reinterpreted in terms of a Lagrangian-to-control-volume (LCV) conversion function ϑi for each
molecule i. The LCV function and its spatial derivatives are used to express fluxes and relevant forces across the
control surfaces. The relationship between the local pressures computed using the volume average [Lutsko, J.
Appl. Phys. 64, 1152 (1988)] techniques and the method of planes [Todd et al., Phys. Rev. E 52, 1627 (1995)]
emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for
equilibrium and nonequilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of
the formulation. The CV formulation of the MD is shown to be exactly conservative and is, therefore, ideally
suited to obtain macroscopic properties from a discrete system.
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I. INTRODUCTION

The macroscopic and microscopic descriptions of mechan-
ics have traditionally been studied independently. The former
invokes a continuum assumption and aims to reproduce the
large-scale behavior of solids and fluids, without the need to
resolve the microscale details. On the other hand, molecular
simulation predicts the evolution of individual, but interacting,
molecules, which has application in nano- and microscale sys-
tems. Bridging these scales requires a mesoscopic description,
which represents the evolution of the average of many micro-
scopic trajectories through phase space. It is advantageous to
cast the fluid dynamics equations in a consistent form for the
molecular, mesoscale, and continuum approaches. The current
works seeks to achieve this objective by introducing a control
volume (CV) formulation for the molecular system.

The control volume approach is widely adopted in contin-
uum fluid mechanics, where the Reynolds transport theorem
[1] relates Newton’s laws of motion for macroscopic fluid
parcels to fluxes through a CV. In this form, fluid mechanics
has had great success in simulating both fundamental [2,3]
and practical [4–6] flows. However, when the continuum
assumption fails, or when macroscopic constitutive equa-
tions are lacking, a molecular-scale description is required.
Examples include nanoflows, moving contact lines, solid-
liquid boundaries, nonequilibrium fluids, and evaluation of
transport properties such as viscosity and heat conductivity [7].

Molecular dynamics (MD) involves solving Newton’s
equations of motion for an assembly of interacting discrete
molecules. Averaging is required in order to compute prop-
erties of interest, e.g., temperature, density, pressure, and
stress, which can vary on a local scale especially out of
equilibrium [7]. A rigorous link between mesoscopic and
continuum properties was established in the seminal work of
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Irving and Kirkwood [8], who related the mesoscopic Liouville
equation to the differential form of continuum fluid mechanics.
However, the resulting equations at a point were expressed
in terms of the Dirac δ function—a form which is difficult
to manipulate and cannot be applied directly in a molecular
simulation. Furthermore, a Taylor series expansion of the Dirac
δ functions was required to express the pressure tensor. The
final expression for pressure tensor is neither easy to interpret
nor to compute [9]. As a result, there have been numerous
attempts to develop an expression for the pressure tensor for
use in MD simulation [9–21]. Some of these expressions have
been shown to be equivalent in the appropriate limit. For
example, Heyes et al. [22]) demonstrated equivalence between
the method of planes (MOP) (Todd et al. [13]) and the volume
average (VA) (Lutsko [16]) at a surface.

In order to avoid use of the Dirac δ function, the current
work adopts a control volume representation of the MD
system, written in terms of fluxes and surface stresses. This
approach is in part motivated by the success of the control
volume formulation in continuum fluid mechanics. At a molec-
ular scale, control volume analyses of NEMD simulations can
facilitate evaluation of local fluid properties. Furthermore, the
CV method also lends itself to coupling schemes between the
continuum and molecular descriptions [23–34].

The equations of continuum fluid mechanics are presented
in Sec. II A, followed by a review of the Irving and Kirkwood
[8] procedure for linking continuum and mesoscopic proper-
ties in Sec. II B. In Sec. III, a Lagrangian-to-control-volume
(LCV) conversion function is used to express the mesoscopic
equations for mass and momentum fluxes. Section III C
focuses on the stress tensor and relates the current formulation
to established definitions within the literature [13,16,17]. In
Sec. IV, the CV equations are derived for a single microscopic
system and subsequently integrated in time in order to obtain
a form which can be applied in MD simulations. The conser-
vation properties of the CV formulation are demonstrated in
NEMD simulations of Couette flow in Sec. IV C.
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II. BACKGROUND

This section summarizes the theoretical background. First,
the macroscopic continuum equations are introduced, followed
by the mesoscopic equations which describe the evolution of
an ensemble average of systems of discrete molecules. The
link between the two descriptions is subsequently discussed.

A. Macroscopic continuum equations

The continuum conservation of mass and momentum
balance can be derived in a Eulerian frame by considering
the fluxes through a CV. The mass continuity equation can be
expressed as

∂

∂t

∫
V

ρdV = −
∮

S

ρu · dS, (1)

where ρ is the mass density and u is the fluid velocity. The
rate of change of momentum is determined by the balance of
forces on the CV,

∂

∂t

∫
V

ρudV = −
∮

S

ρuu · dS + Fsurface + Fbody. (2)

The forces are split into ones which act on the bounding
surfaces, Fsurface, and body forces, Fbody. Surface forces are
expressed in terms the pressure tensor, �, on the CV surfaces,

Fsurface = −
∮

S

� · dS. (3)

The rate of change of energy in a CV is expressed in terms of
fluxes, the pressure tensor, and a heat flux vector q,

∂

∂t

∫
V

ρEdV = −
∮

S

[ρEu + � · u + q] · dS, (4)

where the energy change due to body forces is not included.
The divergence theorem relates surface fluxes to the divergence
within the volume, for a variable A,∮

S

A · dS =
∫

V

∇ · AdV. (5)

In addition, the differential form of the flow equations can be
recovered in the limit of an infinitesimal control volume [35],

∇ · A = lim
V →0

1

V

∮
S

A · dS. (6)

B. Relationship between the continuum
and the mesoscopic descriptions

A mesoscopic description is a temporal and spatial average
of the molecular trajectories, expressed in terms of a proba-
bility function, f. Irving and Kirkwood [8] established the link
between the mesoscopic and continuum descriptions using the
Dirac δ function to define the macroscopic density at a point r
in space,

ρ(r,t) ≡
N∑

i=1

〈miδ(ri − r); f〉. (7)

The angled brackets 〈α; f 〉 denote the inner product of α with
f, which gives the expectation of α for an ensemble of systems.
The mass and position of a molecule i are denoted mi and ri ,

respectively, and N is the number of molecules in a single
system. The momentum density at a point in space is similarly
defined by

ρ(r,t)u(r,t) ≡
N∑

i=1

〈piδ(ri − r); f〉, (8)

where the molecular momentum, pi = mi ṙi . Note that pi is
the momentum in the laboratory frame and not the peculiar
value pi which excludes the macroscopic streaming term at
the location of molecule i, u(ri), Ref. [7],

pi ≡ mi

[
pi

mi

− u(ri)

]
. (9)

The present treatment uses pi in the laboratory frame. A
discussion of translating CV and its relationship to the peculiar
momentum is given in Appendix A.

Finally, the energy density at a point in space is defined by

ρ(r,t)E(r,t) ≡
N∑

i=1

〈eiδ(ri − r); f〉, (10)

where the energy of the ith molecule is defined as the sum of
the kinetic energy and the intermolecular interaction potential
φij ,

ei ≡ p2
i

2mi

+ 1

2

N∑
j �=i

φij . (11)

It is implicit in this definition that the potential energy of an
interatomic interaction, φij , is divided equally between the two
interacting molecules, i and j .

As phase space is bounded, the evolution of a property, α,
in time is governed by the equation,

∂

∂t
〈α; f〉 =

N∑
i=1

〈
Fi · ∂α

∂pi

+ pi

mi

· ∂α

∂ri

; f

〉
, (12)

where Fi is the force on molecule i, and α = α(ri(t),pi(t))
is an implicit function of time. Using Eq. (12), Irving and
Kirkwood [8] derived the time evolution of the mass [from
Eq. (7)], momentum density [from Eq. (8)], and energy density
[from Eq. (10)] for a mesoscopic system. A comparison
of the resulting equations to the continuum counterpart
provided a term-by-term equivalence. Both the mesoscopic
and continuum equations are valid at a point; the former
expressed in terms of Dirac δ and the latter in differential
form. In the current work, the mass and momentum densities
are recast within the CV framework, which avoids use of the
Dirac δ functions directly, and attendant problems with their
practical implementation.

III. THE CONTROL VOLUME FORMULATION

In order to cast the governing equations for a discrete system
in CV form, a “selection function” ϑi is introduced, which iso-
lates those molecules within the region of interest. This func-
tion is obtained by integrating the Dirac δ function, δ(r − ri),
over a cuboid in space, centered at r and of side length �r
as illustrated in Fig. 1(a) [37]. Using δ(ri − r) = δ(xi − x)
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FIG. 1. (Color online) The CV function and its derivative applied to a system of molecules. The figures were generated using the VMD
visualization package [36]. From left to right, (a) schematic of ϑi which selects only the molecules within a cube; (b) location of cube center r
and labels for cube surfaces; (c) schematic of ∂ϑi/∂x which selects only molecules crossing the x+ and x− surface planes.

δ(yi − y)δ(zi − z), the resulting triple integral is

ϑi ≡
∫ x+

x−

∫ y+

y−

∫ z+

z−
δ(xi − x)δ(yi − y)δ(zi − z)dxdydz

= [[[H (xi − x)H (yi − y)H (zi − z)]x
+

x−]y
+

y− ]z
+

z−

= [H (x+ − xi) − H (x− − xi)]

× [H (y+ − yi) − H (y− − yi)]

× [H (z+ − zi) − H (z− − zi)], (13)

where H is the Heaviside function, and the limits of integration
are defined as r− ≡ r − �r

2 and r+ ≡ r + �r
2 for each direction

[see Fig. 1(b)]. Note that ϑi can be interpreted as a Lagrangian-
to-control-volume conversion function (LCV) for molecule i.
It is unity when molecule i is inside the cuboid and equal to
zero otherwise, as illustrated in Fig. 1(a). Using L’Hôpital’s
rule and defining, �V ≡ �x�y�z, the LCV function for
molecule i reduces to the Dirac δ function in the limit of zero
volume,

δ(r − ri) = lim
�V →0

ϑi

�V
.

The spatial derivative in the x direction of the LCV function
for molecule i is

∂ϑi

∂x
= −∂ϑi

∂xi

= [δ(x+ − xi) − δ(x− − xi)]Sxi, (14)

where Sxi is

Sxi ≡ [H (y+ − yi) − H (y− − yi)]

× [H (z+ − zi) − H (z− − zi)]. (15)

Equation (14) isolates molecules on a 2D rectangular patch
in the yz plane. The derivative ∂ϑi/∂x is only nonzero when
molecule i is crossing the surfaces marked in Fig. 1(c), normal
to the x direction. The contribution of the ith molecule to the
net rate of mass flux through the control surface is expressed
in the form, pi · dSi . Defining for the right x surface,

dS+
xi ≡ δ(x+ − xi)Sxi, (16)

and similarly for the left surface, dS−
xi , the total flux Eq. (14)

in any direction r is, then,

∂ϑi

∂r
= dS+

i − dS−
i ≡ dSi . (17)

The LCV function is key to the derivation of a molecular-level
equivalent of the continuum CV equations, and it will be
used extensively in the following sections. The approach in
Secs. III A, III B, and III D shares some similarities with
the work of Serrano and Español [38] which considers the time
evolution of Voronoi characteristic functions. However, the
LCV function has precisely defined extents which allows
the development of conservation equations for a microscopic
system. In the following treatment, the CV is fixed in space
(i.e., r is not a function of time). The extension of this treatment
to an advecting CV is made in Appendix A.

A. Mass conservation for a molecular CV

In this section, a mesoscopic expression for the mass in a
cuboidal CV is derived. The time evolution of mass within a
CV is shown to be equal to the net mass flux of molecules
across its surfaces.

The mass inside an arbitrary CV at the molecular scale can
be expressed in terms of the LCV as follows:∫

V

ρ(r,t)dV =
∫

V

N∑
i=1

〈miδ(ri − r); f〉dV

=
N∑

i=1

∫ x+

x−

∫ y+

y−

∫ z+

z−
〈miδ(ri − r); f 〉dxdydz

=
N∑

i=1

〈miϑi ; f〉. (18)

Taking the time derivative of Eq. (18) and using Eq. (12),

∂

∂t

∫
V

ρ(r,t)dV = ∂

∂t

N∑
i=1

〈miϑi ; f 〉

=
N∑

i=1

〈
pi

mi

· ∂

∂ri

miϑi + Fi · ∂

∂pi

miϑi ; f

〉
.

(19)

The term ∂miϑi/∂pi = 0, as ϑi is not a function of pi .
Therefore,

∂

∂t

∫
V

ρdV = −
N∑

i=1

〈
pi · ∂ϑi

∂r
; f

〉
, (20)
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where the equality ∂ϑi/∂ri = −∂ϑi/∂r has been used. From
the continuum mass conservation given in Eq. (1), the
macroscopic and mesoscopic fluxes over the surfaces can be
equated,

6∑
faces

∫
Sf

ρu · dSf =
N∑

i=1

〈pi · dSi ; f 〉. (21)

The mesoscopic equation for evolution of mass in a control
volume is given by

∂

∂t

N∑
i=1

〈miϑi ; f 〉 = −
N∑

i=1

〈pi · dSi ; f 〉. (22)

Appendix A shows that the surface mass flux yields the Irving
and Kirkwood [8] expression for divergence as the CV tends
to a point (i.e., V → 0), in analogy to Eq. (6).

B. Momentum balance for a molecular CV

In this section, a mesoscopic expression for time evolution
of momentum within a CV is derived. The starting point is to
integrate the momentum at a point, given in Eq. (8), over the
CV, ∫

V

ρ(r,t)u(r,t)dV =
N∑

i=1

〈piϑi ; f 〉. (23)

Following a similar procedure to that in Sec. III A, the
formula (12) is used to obtain the time evolution of the
momentum within the CV,

∂

∂t

∫
V

ρ(r,t)u(r,t)dV = ∂

∂t

N∑
i=1

〈piϑi ; f 〉

=
N∑

i=1

〈
pi

mi

· ∂

∂ri

piϑi︸ ︷︷ ︸
KT

+ Fi · ∂

∂pi

piϑi︸ ︷︷ ︸
CT

; f

〉
,

(24)

where the terms KT and CT are the kinetic and configurational
components, respectively. The kinetic part is

KT =
N∑

i=1

〈
pi

mi

· ∂

∂ri

piϑi ; f

〉
=

N∑
i=1

〈
pipi

mi

· ∂ϑi

∂ri

; f

〉
, (25)

where pipi is the dyadic product. For any surface of the CV,
here x+, the molecular flux can be equated to the continuum
convection and pressure on that surface,∫

S+
x

ρ(x+,y,z,t)u(x+,y,z,t)ux(x+,y,z,t)dydz

+
∫

S+
x

K+
x dydz =

N∑
i=1

〈
pipix

mi

dS+
xi ; f

〉
,

where K+
x is the kinetic part of the pressure tensor due

to molecular transgressions across the x+ CV surface. The
average molecular flux across the surface is, then,

{ρuux}+ + K+
x = 1

�A+
x

N∑
i=1

〈
pipix

mi

dS+
xi ; f

〉
, (26)

where the continuum expression {ρuux}+ is the average flux
through a flat region in space with area �A+

x = �y�z. This
kinetic component of the pressure tensor is discussed further
in Sec. III C.

The configurational term of Eq. (24) is

CT =
N∑

i=1

〈
Fi · ∂

∂pi

piϑi ; f

〉
=

N∑
i=1

〈Fiϑi ; f 〉, (27)

where the total force Fi on particle i is the sum of pairwise-
additive interactions with potential φij , and from an external
potential ψi ,

ϑiFi = −ϑi

∂

∂ri

⎛
⎝ N∑

j �= i

φij + ψi

⎞
⎠ .

It is commonly assumed that the potential energy of an
interatomic interaction, φij , can be divided equally between
the two interacting molecules, i and j , such that

N∑
i,j

ϑi

∂φij

∂ri

= 1

2

N∑
i,j

[
ϑi

∂φij

∂ri

+ ϑj

∂φji

∂rj

]
, (28)

where the notation
∑N

i,j = ∑N
i=1

∑N
j �=i has been introduced

for conciseness. Therefore, the configurational term can be
expressed as

CT = 1

2

N∑
i,j

〈fijϑij ; f 〉 +
N∑

i=1

〈
fiextϑi ; f

〉
, (29)

where fij = −∂φij /∂ri = ∂φji/∂rj and fiext = −∂ψi/∂ri .
The notation, ϑij ≡ ϑi − ϑj , is introduced, which is nonzero
only when the force acts over the surface of the CV, as
illustrated in Fig. 2.

FIG. 2. (Color online) A section through the CV to illustrate the
role of ϑij in selecting only the i and j interactions that cross the
bounding surface of the control volume. Due to the limited range of
interactions, only the forces between the internal (red) molecules i

and external (blue) molecules j near the surfaces are included.
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Substituting the kinetic (KT ) and configurational (CT )
terms, from Eqs. (25) and (29) into Eq. (24), the time evolution
of momentum within the CV at the mesoscopic scale is

∂

∂t

N∑
i=1

〈piϑi ; f 〉 = −
N∑

i=1

〈
pipi

mi

· dSi ; f

〉

+ 1

2

N∑
i,j

〈fijϑij ; f 〉 +
N∑

i=1

〈
fiextϑi ; f

〉
. (30)

Equations (22) and (30) describe the evolution of mass
and momentum, respectively, within a CV averaged over an
ensemble of representative molecular systems. As proposed by
Evans and Morriss [7], it is possible to develop microscopic
evolution equations that do not require ensemble averaging.
Hence, the equivalents of Eqs. (22) and (30) are derived for a
single trajectory through phase space in Sec. IV A, integrated
in time in Sec. IV B and tested numerically using molecular
dynamics simulation in Sec. IV C.

The link between the macroscopic and mesoscopic treat-
ments is given by equating their respective momentum Eqs. (2)
and (30),

−
∮

S

ρuu · dS + Fsurface + Fbody

= −
N∑

i=1

〈
pipi

mi

· dSi ; f

〉
+ 1

2

N∑
i,j

〈fijϑij ; f 〉 +
N∑

i=1

〈
fiextϑi ; f

〉
.

(31)

As can be seen, each term in the continuum evolution
of momentum has an equivalent term in the mesoscopic
formulation.

The continuum momentum Eq. (2) can be expressed in
terms of the divergence of the pressure tensor, �, in the control
volume form,

∂

∂t

∫
V

ρudV = −
∮

S

[ρuu + �] · dS + Fbody (32a)

= −
∫

V

∂

∂r
· [ρuu + �]dV + Fbody. (32b)

In the following subsection, the right-hand side of Eq. (31)
is recast, first, in divergence form, as in Eq. (32b), and then in
terms of surface pressures, as in Eq. (32a).

C. The pressure tensor

The average molecular pressure tensor ascribed to a control
volume is conveniently expressed in terms of the LCV
function. This is shown inter alia to lead to a number of
literature definitions of the local stress tensor. In the first part of
this section, the techniques of Irving and Kirkwood [8] are used
to express the divergence of the stress [as with the right-hand
side of Eq. (32b)] in terms of the intermolecular force. Second,
the CV pressure tensor is related to the VA formula [16,17]
and, by consideration of the interactions across the surfaces, to
the MOP [13,14]. Finally, the molecular CV Eq. (30) is written
in analogous form to the macroscopic Eq. (32a).

The pressure tensor, �, can be decomposed into a kinetic
κ term and a configurational stress σ . In keeping with the

engineering literature, the stress and pressure tensors have
opposite signs,

� = κ − σ . (33)

The separation into kinetic and configurational parts is made
to accommodate the debate concerning the inclusion of kinetic
terms in the molecular stress [9,39,40].

In order to avoid confusion, the stress, σ , is herein defined
to be due to the forces only (surface tractions). This, combined
with the kinetic pressure term κ , yields the total pressure tensor
� first introduced in Eq. (3).

1. Irving-Kirkwood pressure tensor

The virial expression for the stress cannot be applied locally
as it is valid only for a homogeneous system [12]. The Irving
and Kirkwood [8] technique for evaluating the nonequilibrium,
locally defined stress resolves this issue and is herein extended
to a CV. To obtain the stress, σ , the intermolecular force term
of Eq. (31) is defined to be equal to the divergence of stress,

∫
V

∂

∂r
· σdV ≡ 1

2

N∑
i,j

〈fijϑij ; f 〉

= 1

2

N∑
i,j

∫
V

〈fij [δ(ri − r) − δ(rj − r)]; f 〉dV.

(34)

Irving and Kirkwood [8] used a Taylor expansion of the Dirac
δ functions to express the pair force contribution in the form
of a divergence,

fij [δ(ri − r) − δ(rj − r)] = − ∂

∂r
· fij rijOij δ(ri − r),

where rij = ri − rj , and Oij is an operator which acts on the
Dirac δ function,

Oij ≡
[

1 − 1

2
rij

∂

∂ri

+ · · · − 1

n!

(
rij

∂

∂ri

)n−1

+ · · ·
]
. (35)

Equation (34) therefore can be rewritten,

∫
V

∂

∂r
· σdV = −1

2

N∑
i,j

∫
V

〈
∂

∂r
· fij rij Oij δ(ri − r); f

〉
dV.

(36)

The Taylor expansion in Dirac δ functions is not straightfor-
ward to evaluate. This operation can be bypassed by integrating
the position of the molecule i over phase space [11] or by
replacing the Dirac δ with a similar but finite-valued function
of compact support [15,18,19,21]. In the current treatment, the
LCV function, ϑ , is used, which is advantageous because it
explicitly defines both the extent of the CV and its surface
fluxes. The pressure tensor can be written in terms of the LCV
function by exploiting the following identities (see Appendix
of Ref. [8]),

Oij δ(ri − r) =
∫ 1

0
δ(r − ri + srij )ds. (37)
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Equation (36) therefore can be written as∫
V

∂

∂r
· σdV

= −
∫

V

1

2

N∑
i,j

〈
∂

∂r
· fij rij

∫ 1

0
δ(r − ri + srij )ds; f

〉
dV.

(38)

Equation Eq. (38) leads to the VA and MOP definitions of the
pressure tensor.

2. VA pressure tensor

The VA definition of the stress tensor of Lutsko [16] and
Cormier et al. [17] can be obtained by rewriting Eq. (38) as

∂

∂r
·
∫

V

σdV

= − ∂

∂r
·
∫

V

1

2

N∑
i,j

〈
fij rij

∫ 1

0
δ(r − ri + srij )ds; f

〉
dV.

(39)

Equating the expressions inside the divergence on both sides
of Eq. (39) [41], and assuming the stress is constant within an
arbitrary local volume, �V , gives an expression for the VA
stress,

VA
σ = − 1

2�V

∫
V

N∑
i,j

〈
fij rij

∫ 1

0
δ(r − ri + srij )ds; f

〉
dV.

(40)

Swapping the order of integration and evaluating the integral
of the Dirac δ function over �V gives a different form of the
LCV function, ϑs ,

ϑs ≡
∫

V

δ(r − ri + srij )dV

= [H (x+ − xi + sxij ) − H (x− − xi + sxij )]

× [H (y+ − yi + syij ) − H (y− − yi + syij )]

× [H (z+ − zi + szij ) − H (z− − zi + szij )], (41)

which is nonzero if a point on the line between the two
molecules, ri − srij , is inside the cubic region (cf. ri with
ϑi). Substituting the definition, ϑs [Eq. (41)], into Eq. (40)
gives

VA
σ = − 1

2�V

N∑
i,j

〈fij rij lij ; f 〉, (42)

where lij is the integral from ri (s = 0) to rj (s = 1) of the ϑs

function,

lij ≡
∫ 1

0
ϑsds.

Therefore, lij is the fraction of the interaction length between
i and j which lies within the CV, as illustrated in Fig. 3.
The definition of the configurational stress in Eq. (42) is the
same as in the work of Lutsko [16] and Cormier et al. [17].
The microscopic divergence theorem given in Appendix A can

FIG. 3. (Color online) A plot of the interaction length given by
the integral of the selecting function ϑs defined in Eq. (41) along
the line between ri and rj . The cases shown are for two molecules
which are (a) both inside the volume (lij = 1) and (b) both outside
the volume with an interaction crossing the volume, where lij is the
fraction of the total length between i and j inside the volume. The
line is thin (blue) outside and thicker (red) inside the volume.

be applied to obtain the volume averaged kinetic component
of the pressure tensor, KT , in Eq. (25),

N∑
i=1

〈
pipi

mi

· dSi ; f

〉
= ∂

∂r
·

N∑
i=1

V A{ρuu}+V A
κ︷ ︸︸ ︷〈

pipi

mi

ϑi ; f

〉
.

Note that the expression inside the divergence includes both

the advection,
V A{ρuu}, and kinetic components of the pressure

tensor. The VA form [17] is obtained by combining the above

expression with the configurational stress
VA
σ ,

V A{ρuu} + V A
κ − VA

σ =
V A{ρuu} +

V A
�

= 1

�V

N∑
i=1

〈
pipi

mi

ϑi + 1

2

N∑
i,j

fij rij lij ; f

〉
.

(43)

In contrast to the work of Cormier et al. [17], the advection
term in the above expression is explicitly identified in order
to be compatible with the right-hand side of Eq. (32b) and the
definition of the pressure tensor, �.

3. MOP pressure tensor

The stress in the CV can also be related to the tractions over
each surface. In analogy to differentiation of the molecular
LCV function, ϑi , to evaluate the flux, the stress LCV
function, ϑs , can be differentiated to give the tractions over
each surface. These surface tractions are the ones used in
the formal definition of the continuum Cauchy stress tensor.
The surface traction (i.e., force per unit area) and the kinetic
pressure on a surface combined give the MOP expression for
the pressure tensor [13].
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In the context of the CV, the forces and fluxes on the six
bounding surfaces are required to obtain the pressure inside the
CV. It is herein shown that each face takes the form of the Han
and Lee [14] localization of the MOP pressure components.
The divergence theorem is used to express the left-hand side of
Eq. (38) in terms of stress across the six faces of the cube. The
mesoscopic right-hand side of Eq. (38) can also be expressed
as surface stresses by starting with the LCV function ϑs ,

6∑
faces

∫
Sf

σ · dSf = −1

2

N∑
i,j

〈
fij rij ·

∫ 1

0

∂ϑs

∂r
ds; f

〉
.

The procedure for taking the derivative of ϑs with respect to r
and integrating over the volume is given in Appendix C. The
result is an expression for the force on the CV rewritten as
the force over each surface of the CV. For the x+ face, for
example, this is∫

S+
x

σ · dSS+
x

= −1

4

N∑
i,j

〈fij [sgn(x+ − xj )

− sgn(x+ − xi)]S
+
xij ; f 〉.

The combination of the signum functions and the S+
xij term

specifies when the point of intersection of the line between i

and j is located on the x+ surface of the cube (see Appendix C).
Corresponding expressions for the y and z faces are defined
by S±

αij when α = {y,z}, respectively.
The full expression for the MOP pressure tensor, which

includes the kinetic part given by Eq. (26), is obtained by
assuming a uniform pressure over the x+ surface,∫

S+
x

� · dS+
x = [κ − σ ] · n+

x �A+
x

≡ [K+
x − T+

x ]�A+
x = P+

x �A+
x , (44)

where n+
x is a unit vector aligned along the x coordinate axis,

n+
x = [+1,0,0], T+

x is the configurational stress (traction), and
P+

x the total pressure tensor acting on a plane. Hence,

P+
x = 1

�A+
x

N∑
i=1

〈
pipix

mi

δ(xi − x+)S+
xi ; f

〉

+ 1

4�A+
x

N∑
i,j

〈fij [sgn(x+ − xj ) − sgn(x+ − xi)]S
+
xij ; f 〉,

(45)

where the peculiar momentum, pi has been used as in Todd
et al. [13]. If the x+ surface area covers the entire domain
[S+

xij = 1 in Eq. (45)], the MOP formulation of the pressure is
recovered [13].

The extent of the surface is defined through S+
xij , in Eq. (45)

which is the localized form of the pressure tensor considered
by Han and Lee [14] applied to the six cubic faces. For a
cube in space, each face has three components of stress, which
results in 18 independent components over the total control
surface. The quantity

dSαij ≡ 1
2 [sgn(r+

α − rαj ) − sgn(r+
α − rαi)]S

+
αij

− 1
2 [sgn(r−

α − rαj ) − sgn(r−
α − rαi)]S

−
αij ,

FIG. 4. (Color online) Representation of those molecules selected
through dSxij in Eq. (46) with molecules i on the side of the surface
inside the CV (red) and molecules j on the outside (blue). The CV is
the inner square on the figure.

selects the force contributions across the two opposite faces;
similar notation to the surface molecular flux, dSij = dS+

ij −
dS−

ij [cf. Eq. (17)], is used. The case of the two x planes located
on opposite sides of the cube is illustrated in Fig. 4.

Taking all surfaces of the cube into account yields the final
form,

6∑
faces

∫
Sf

σ · dSf = −1

2

N∑
i,j

〈
fij

3∑
α=1

dSαij ; f

〉

= −1

2

N∑
i,j

〈fij ñ · dSij ; f 〉

= 1

2

N∑
i,j

〈ς ij · dSij ; f 〉. (46)

The vector ñ, obtained in Appendix C, is unity in each
direction. The tensor ς ij is defined, for notational convenience,
to be the outer product of the intermolecular forces with ñ,

ς ij ≡ −fij ñ = −fij [1 1 1] = −
⎡
⎣fxij fxij fxij

fyij fyij fyij

fzij fzij fzij

⎤
⎦.

In this form, the ϑij function for all interactions over the cube’s
surface is expressed as the sum of six selection functions for
each of the six faces, i.e., ϑij = −∑3

α=1 dSαij .

4. Relationship to the continuum

The forces per unit area, or “tractions,” acting over each
face of the CV, are used in the definition of the Cauchy stress
tensor at the continuum level. For the x+ surface, the traction
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vector is the sum of all forces acting over the surface,

T+
x = − 1

4�A+
x

N∑
i,j

〈fij [sgn(x+ − xj ) − sgn(x+ − xi)]S
+
xij ; f 〉,

(47)

which satisfies the definition,

T±
x = σ · n±

x ,

of the Cauchy traction [42]. A similar relationship can be
written for both the kinetic and total pressures,

K±
x = κ · n±

x , P±
x = � · n±

x ,

where n±
x is a unit vector, n±

x = [±1 0 0]T .
The time evolution of the molecular momentum within a

CV [ Eq. (30)], can be expressed in a similar form to the Navier-
Stokes equations of continuum fluid mechanics. Dividing
both sides of Eq. (30) by the volume, the following form
can be obtained; note that this step requires Eqs. (26), (45),
and (47),

1

�V

∂

∂t

N∑
i=1

〈pαiϑi ; f 〉 + {ρuαuβ}+ − {ρuαuβ}−
�rβ

= −K+
αβ − K−

αβ

�rβ

+ T +
αβ − T −

αβ

�rβ

+ 1

�V

N∑
i=1

〈
fαiextϑi ; f

〉
,

(49)

where index notation has been used (e.g., T±
x = T ±

αx) with the
Einstein summation convention.

In the limit of zero volume, each expression would be
similar to a term in the differential continuum equations
(although the pressure term would be the divergence of a tensor
and not the gradient of a scalar field as is common in fluid
mechanics). The Cauchy stress tensor, σ , is defined in the limit
that the cube’s volume tends to zero, so T+ and T− are related
by an infinitesimal difference. This is used in continuum
mechanics to define the unique nine component Cauchy stress
tensor, dσ/dx ≡ lim�x→0[T+ + T−]/�x. This limit is shown
in Appendix B to yield the Irving and Kirkwood [8] stress in
terms of the Taylor expansion in Dirac δ functions.

Rather than defining the stress at a point, the tractions can be
compared to their continuum counterparts in a fluid mechanics
control volume or a solid mechanics finite elements (FE)
method. Computational fluid dynamics (CFD) is commonly
formulated using CV and in discrete simulations, finite
volume [4]. Surface forces are ideal for coupling schemes
between MD and CFD. Building on the pioneering work
of O’Connell and Thompson [23], there are many MD
to CFD coupling schemes—see e.g. the review paper by
Mohamed and Mohamad [43]. More recent developments
for coupling to fluctuating hydrodynamics are covered in a
review by Delgado-Buscalioni [44]. A discussion of coupling
schemes is outside the scope of this work; however, finite
volume algorithms have been used extensively in coupling
methods [31,32,45,46,51] together with equivalent control
volumes defined in the molecular region. An advantage of
the herein proposed molecular CV approach is that it ensures
conservation laws are satisfied when exchanging fluxes over

cell surfaces—an important requirement for accurate unsteady
coupled simulations as outlined in the finite volume coupling
of Delgado-Buscalioni and Coveney [45]. For solid coupling
schemes [30], the principle of virtual work can be used with
tractions on the element corners (the MD CV) to give the state
of stress in the element [47],∫

V

σ · ∇NadV =
∮

S

NaTdS, (50)

where Na is a shape function which allows stress to be
defined as a continuous function of position. It will be
demonstrated numerically in the next section (Sec. IV) that the
CV formulation is exactly conservative: The surface tractions
and fluxes entirely define the stress within the volume. The
tractions and stress in Eq. (50) are connected by the weak
formulation and the form of the stress tensor results from the
choice of shape function Na .

D. Energy balance for a molecular CV

In this section, a mesoscopic expression for the time
evolution of energy within a CV is derived. As for mass and
momentum, the starting point is to integrate the energy at a
point, given in Eq. (10), over the CV,

∫
V

ρ(r,t)E(r,t)dV =
N∑

i=1

〈eiϑi ; f 〉. (51)

The time evolution within the CV is given using formula (12),

∂

∂t

∫
V

ρ(r,t)E(r,t)dV = ∂

∂t

N∑
i=1

〈eiϑi ; f 〉

=
N∑

i=1

〈
pi

mi

· ∂

∂ri

eiϑi + Fi · ∂

∂pi

eiϑi ; f

〉
. (52)

Evaluating the derivatives of the energy and LCV function
results in

∂

∂t

N∑
i=1

〈eiϑi ; f 〉 = −1

2

N∑
i,j

〈 [
pi

mi

· fij + pj

mi

· fji

]
ϑi ; f

〉

−
N∑

i=1

〈
ei

pi

mi

· dSi − Fi · pi

mi

ϑi ; f

〉
.

Using the definition of Fi , Newton’s third law and relabelling
indices, the intermolecular force terms can be expressed in
terms of the interactions over the CV surface, ϑij ,

∂

∂t

N∑
i=1

〈eiϑi ; f〉=−
N∑

i=1

〈
ei

pi

mi

· dSi ; f

〉
+ 1

2

N∑
i,j

〈
pi

mi

· fijϑij ; f

〉

+
N∑

i=1

〈
pi

mi

· fiextϑi ; f

〉
.
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The right-hand side of this equation is equated to the right-hand
side of the continuum energy Eq. (4),

energy flux︷ ︸︸ ︷
−
∮

S

ρEu · dS −

heat flux︷ ︸︸ ︷∮
S

q · dS −

pressure heating︷ ︸︸ ︷∮
S

� · u · dS

= −
N∑

i=1

〈
ei

pi

mi

· dSi ; f

〉
+ 1

2

N∑
i,j

〈
pi

mi

· ς ij · dSij ; f

〉
, (53)

where the energy due to the external (body) forces is neglected.
The fijϑij has been re-expressed in terms of surface tractions,
ς ij · dSij , using the analysis of the previous section. In its
current form, the microscopic equation does not delineate
between the contribution due to energy flux, heat flux, and
pressure heating. To achieve this division, the notion of the
peculiar momentum at the molecular location, u(ri), is used
together with the velocity at the CV surfaces, u(r±), following
a process similar to that of Evans and Morriss [7].

IV. IMPLEMENTATION

In this section, the CV equation for mass, momentum, and
energy balance, Eqs. (22), (30), and (53), will be proved to
apply and demonstrated numerically for a microscopic system
undergoing a single trajectory through phase space.

A. The microscopic system

Consider a single trajectory of a set of molecules through
phase space, defined in terms of their time dependent coor-
dinates ri and momentum pi . The LCV function depends on
molecular coordinates, the location of the center of the cube,
r, and its side length, �r, i.e., ϑi ≡ ϑi(ri(t),r,�r). The time
evolution of the mass within the molecular control volume is
given by

d

dt

N∑
i=1

miϑi(ri(t),r,�r)

=
N∑

i=1

mi

∂ϑi

∂t
=

N∑
i=1

mi

dri

dt
· ∂ϑi

∂ri

= −
N∑

i=1

pi · dSi , (54)

using pi = midri/dt . The time evolution of momentum in the
molecular control volume is

∂

∂t

N∑
i=1

pi(t)ϑi(ri(t),r,�r) =
N∑

i=1

[
pi

∂ϑi

∂t
+ dpi

dt
ϑi

]

=
N∑

i=1

[
pi

dri

dt
· ∂ϑi

∂ri

+ dpi

dt
ϑi

]
.

As dpi/dt = Fi , then,

∂

∂t

N∑
i=1

piϑi =
N∑

i=1

[
−pipi

mi

· dSi + Fiϑi

]

= −
N∑

i=1

pipi

mi

· dSi + 1

2

N∑
i,j

fijϑij +
N∑

i=1

fiextϑi,

(55)

where the total force on molecule i has been decomposed into
surface and “external” or body terms. The time evolution of
energy in a molecular control volume is obtained by evaluating

∂

∂t

N∑
i=1

eiϑi =
N∑

i=1

[
ei

∂ϑi

∂t
+ ∂ei

∂t
ϑi

]

= −
N∑

i=1

ei

pi

mi

· dSi +
N∑

i=1

ṗi · pi

mi

ϑi

−1

2

N∑
i,j

[
pi

mi

· fij + pj

mj

· fji

]
ϑi

using dpi/dt = Fi and the decomposition of forces. The
manipulation proceeds as in the mesoscopic system to yield

∂

∂t

N∑
i=1

eiϑi = −
N∑

i=1

ei

pi

mi

· dSi

+ 1

2

N∑
i,j

pi

mi

· fijϑij +
N∑

i=1

pi

mi

· fiextϑi. (56)

The average of many such trajectories defined through
Eqs. (54)–(56) gives the mesoscopic expressions in
Eqs. (22), (30), and (53), respectively. In the next subsection,
the time integral of the single trajectory is considered.

B. Time integration of the microscopic CV equations

Integration of Eqs. (54)–(56) over the time interval [0,τ ]
enables these equations to be used in a molecular simulation.
For the conservation of mass term,

N∑
i=1

mi [ϑi(τ ) − ϑi(0)] = −
∫ τ

0

N∑
i=1

pi · dSidt. (57)

The surface crossing term, dSi , defined in Eq. (16), involves
a Dirac δ function and therefore cannot be evaluated directly.
Over the time interval [0,τ ], molecule i passes through a given
x position at times, txi,k , where k = 1,2, . . . ,Ntx [48]. The
positional Dirac δ can be expressed as

δ[xi(t) − x] =
Ntx∑
k=1

δ(t − txi,k)

|ẋi(txi,k)| , (58)

where |ẋi(txi,k)| is the magnitude of the velocity in the x

direction at time txi,k . Equation (58) is used to rewrite dSi

in Eq. (57) in the form

dSαi,k ≡ [sgn(t+αi,k − τ ) − sgn(t+αi,k − 0)]S+
αi,k(t+αi,k)

− [sgn(t−αi,k − τ ) − sgn(t−αi,k − 0)]S−
αi,k(t−αi,k), (59)

where α = {x,y,z} and the fluxes are evaluated at times
t+αi,k and t−αi,k for the right and left surfaces of the cube,
respectively. Using the above expression, the time integral in
Eq. (57) can be expressed as the sum of all molecule crossings,
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Nt = Ntx + Nty + Ntz , over the cube’s faces,

Accumulation︷ ︸︸ ︷
N∑

i=1

mi [ϑi(τ ) − ϑi(0)] = −
N∑

i=1

Nt∑
k=1

mi

3∑
α=1

pαi

|pαi |dSαi,k︸ ︷︷ ︸
Advection

. (60)

In other words, the mass in a CV at time t = τ minus its initial
value at t = 0 is the sum of all molecules that cross its surfaces
during the time interval.

The momentum balance equation, Eq. (55), can also be
written in time-integrated form,

N∑
i=1

[pi(τ )ϑi(τ ) − pi(0)ϑi(0)]

= −
∫ τ

0

⎡
⎣ N∑

i=1

pipi

mi

· dSi − 1

2

N∑
i,j

fijϑij −
N∑

i=1

fiextϑi

⎤
⎦ dt,

and using identity (59),

Accumulation︷ ︸︸ ︷
N∑

i=1

[pi(τ )ϑi(τ ) − pi(0)ϑi(0)] +

Advection︷ ︸︸ ︷
N∑

i=1

Nt∑
k=1

pi

3∑
α=1

pαi

|pαi |dSαi,k

=
N∑
i,j

∫ τ

0
fij (t)ϑij (t)dt +

N∑
i=1

∫ τ

0
fiext (t)ϑi(t)dt

︸ ︷︷ ︸
Forcing

. (61)

The integral of the forcing term can be rewritten as the sum∫ τ

0
fij (t)ϑij (t)dt ≈ �t

Nτ∑
n=1

fij (tn) ϑij (tn) ,

where Nτ is the number time steps. Equation (61) can be
rearranged as follows:

N∑
i=1

pαi(τ )ϑi(τ ) − pαi(0)ϑi(0)

τ�V
+ {ρuαuβ}+ − {ρuαuβ}−

�rβ

= −K
+
αβ − K

−
αβ

�rβ

+ T
+
αβ − T

−
αβ

�rβ

+ 1

Nτ�V

N∑
i=1

Nτ∑
n=1

fαiext (tn)ϑi(tn), (62)

where the overbar denotes the time average. The time-averaged
traction in Eq. (62) is given by

T
±
αβ = − 1

Nτ

1

4�Aβ

N∑
i,j

Nτ∑
n=1

fαij (tn)dS±
βij (tn).

The time-averaged kinetic surface pressure in Eq. (62) is

K
±
αβ = 1

τ

1

2�Aβ

N∑
i=1

Nt∑
k=1

pαi(tk)pβi(tk)

|pβi(tk)| dS±
βi,k(tk) − {ρuαuβ}±.

Equation (62) demonstrates that the time average of the fluxes,
stresses, and body forces on a CV during the interval 0 to τ

completely determines the change in momentum within the
CV for a single trajectory of the system through phase space
(i.e., an MD simulation). The time evolution of the microscopic
system, Eq. (62), can also be obtained directly by evaluating
the derivatives of the mesoscopic expression (49) and invoking
the ergodic hypothesis, hence, replacing 〈α; f 〉 with 1

τ

∫ τ

0 αdt .
The use of the ergodic hypothesis is justified provided that
the time interval, τ , is sufficient to ensure phase space is
adequately sampled.

Finally, there are no new techniques required to integrate
the energy Eq. (56),

N∑
i=1

[ei(τ )ϑi(τ ) − ei(0)ϑi(0)]

= −
∫ τ

0

⎡
⎣ N∑

i=1

ei

pi

mi

· dSi − 1

2

N∑
i,j

pi

mi

· fijϑij

⎤
⎦ dt (63)

which gives the final form, written without external forcing,

Accumulation︷ ︸︸ ︷
N∑

i=1

[ei(τ )ϑi(τ ) − ei(0)ϑi(0)] +

Advection︷ ︸︸ ︷
N∑

i=1

Nt∑
k=1

ei

3∑
α=1

pαi

|pαi |dSαi,k

= 1

2

N∑
i,j

∫ τ

0

pi(t)

mi

· fij (t)ϑij (t)dt

︸ ︷︷ ︸
Forcing

. (64)

As in the momentum balance equation, the integral of the
forcing term can be approximated by the sum

∫ τ

0

pi(t)

mi

· fij (t)ϑij (t)dt ≈ �t

Nτ∑
n=1

pi(tn)

mi

· fij (tn) ϑij (tn) ,

where Nτ is the number time steps.
In the next section, the elements Accumulation, Advection,

and Forcing in the above equations are computed individually
in an MD simulation to confirm Eqs. (60), (61), and (64)
numerically.

C. Results and discussion

Molecular dynamics (MD) simulations in 3D are used in
this section to validate numerically and explore the statistical
convergence of the CV formalism for three test cases. The
first investigation was to confirm numerically the conservation
properties of an arbitrary control volume. The second simula-
tion compares the value of the scalar pressure obtained from
the molecular CV formulation with that of the virial expression
for an equilibrium system in a periodic domain. The final test
is a nonequilibrium molecular dynamics (NEMD) simulation
of the start-up of Couette flow initiated by translating the
top wall in a slit channel geometry. The NEMD system is
analyzed using the CV expressions Eqs. (60), (61), and (64),
and the shear pressure was computed by the VA and CV
routes. Newton’s equations of motion were integrated using
the half-step leap-frog Verlet algorithm [49]. The repulsive
Lennard-Jones (LJ) or Weeks-Chandler-Anderson (WCA)
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potential [50],

Φ(rij ) = 4ε

[(
�

rij

)12

−
(

�

rij

)6]
+ ε, rij � rc, (65)

was used for the molecular interactions, which is the Lennard-
Jones potential shifted upward by ε and truncated at the
minimum in the potential, rij = rc ≡ 21/6�. The potential is
zero for rij > rc. The energy scale is set by ε, the length
scale by �, and molecular mass by m. The results reported
here are given in terms of �, ε, and m. A time step of 0.005
was used for all simulations. The domain size in the first two
simulations was 13.68, which contained N = 2048 molecules,
the density was ρ = 0.8, and the reduced temperature was set
to an initial value of T = 1.0. Test cases 1 and 2 described
below are for equilibrium systems and, therefore, did not
require thermostatting. Case 3 is for a nonequilibrium system
and required removal of generated heat, which was achieved
by thermostatting the wall atoms only.

1. Case 1

In case 1, the periodic domain simulates a constant
energy ensemble. The separate terms of the integrated mass,
momentum, and energy equations given in Eqs. (60), (61),
and (64) were evaluated numerically for several sizes of CV.
The mass conservation can readily be shown to be satisfied as
it simply requires tracking the number of molecules in the CV.
The momentum and energy balance equations are conveniently
checked for compliance at all times by evaluating the residual
quantity,

Residual = Accumulation − Forcing + Advection, (66)

which must be equal to zero at all times for the CV equations
to be satisfied. This was demonstrated to be the case, as may be
seen in Figs. 5(a) and 5(b), for a cubic CV of side length 1.52
in the absence of body forces. The evolution of momentum
inside the CV is shown numerically to be exactly equal to
the integral of the surface forces until a molecule crosses
the CV boundary. Such events give rise to a momentum flux
contribution which appears as a spike in the Advection and
Accumulation terms, as is evident in Fig. 5(a). The residual
nonetheless remains identically zero (to machine precision)
at all times. The energy conservation is also displayed in
Fig. 5(b). The average error over the period of the simulation
(100 MD time units) was less than 1%, where the average
error is defined as the ratio of the mean |Residual| to the mean
|Accumulation| over the simulation. The error is attributed
to the use of the leapfrog integration scheme, a conclusion
supported by the linear decrease in error as time step �t → 0.

2. Case 2

As in case 1, the same periodic domain is used in case 2
to simulate a constant energy ensemble. The objective of this
exercise is to show that the average of the virial formula for
the scalar pressure, �vir, applicable to an equilibrium periodic
system,

�vir = 1

3V

N∑
i=1

〈
pi · pi

mi

+ 1

2

N∑
i �=j

fij · rij ; f

〉
, (67)
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FIG. 5. The various components in Eq. (66), “Accumulation”
(—), the time integral of the surface force, “Forcing” (×), and the
momentum flux term, “Advection” (- - -), are shown. “Forcing”
symbols are shown every fourth time step for clarity and the insert
shows the full ordinate scale over the same time interval on the
abscissa. From top to bottom, (a) momentum control volume and
(b) energy control volume.

arises from the intermolecular interactions across the periodic
boundaries [12]. The CV formula for the scalar pressure is

�CV = 1
6 (P +

xx + P −
xx + P +

yy + P −
yy + P +

zz + P −
zz ), (68)

where the P ±
αα normal pressure is defined in Eq. (45) and

includes both the kinetic and configurational components on
each surface. Both routes involve the pair forces, fij . However,
the CV expression which uses MOP counts only those pair
forces which cross a plane while VA (virial) sums fij rij

over the whole volume. It is, therefore, expected that there
would be differences between the two methods at short times,
converging at long times. A control volume the same size as
the periodic box was taken. The time-averaged control volume,
(�CV) and virial (�vir) pressure values are shown in Fig. 6 to
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FIG. 6. �vir and �CV from Eqs. (67) and (68), respectively. The
configurational and kinetic pressures are separated with configura-
tional values typically having greater magnitudes (∼4.0) than kinetic
(∼0.6). Continuous lines are control volume pressures and dotted
lines are virial pressure.

converge toward the same value with increasing time. The
simulation was started from an FCC lattice with a short-range
potential (WCA) so the initial configurational stress was zero.
It is the evolution of the pressure from this initial state that is
compared in Fig. 6. The virial kinetic pressure makes use of
the instantaneous values of the domain molecule’s velocities
at every time step. In contrast, the CV kinetic part of the
pressure is due to molecular surface crossings only, which may
explain its slower convergence to the limiting value than the
kinetic part of the virial expression. To quantify this difference
in convergence for the two measures of the pressure, the
standard deviation, SD(x), is evaluated, ensuring decorrelation
[51] using block averaging [50]. For the kinetic virial,
SD(κvir) = 0.0056, and configurational, SD(σvir) = 0.0619.
For the kinetic CV pressure, SD(κCV) = 0.4549 and the
configurational SD(σCV) = 0.2901. The CV pressure, which
makes use of the MOP formula, would, therefore, require more
samples to converge to a steady-state value. However, the MOP
pressures are generally more efficient to calculate than the VA.
More usefully, from an evaluation of only the interactions over
the outer CV surface, the pressure in a volume of arbitrary size
can be determined.

Figure 7 is a log-log plot of the percentage discrepancy (PD)
between the two (PD = [100 × |�CV − �vir|/�vir]). After
10 million time steps or a reduced time of 5 × 104, the per-
centage discrepancy in the configurational part has decreased
to 0.01% and the kinetic part of the pressure matches the virial
(and kinetic theory) to within 0.1%. The total pressure value
agrees to within 0.1% at the end of this averaging period. The
simulation average temperature was 0.65, and the kinetic part
of the CV pressure was statistically the same as the kinetic
theory formula prediction, κCV = ρkBT = 0.52 [50]. The VA
formula for the pressure in a volume the size of the domain is,
by definition, formally the same as that of the virial pressure.
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FIG. 7. The percentage relative difference between the virial and
control volume time-accumulated scalar pressures (PD defined in the
text). Values for the kinetic, configurational, and total PD are shown.

The next test case compares the CV and VA formulas for the
shear stress in a system out of equilibrium.

3. Case 3

In this simulation study, Couette flow was simulated by
entraining a model liquid between two solid walls. The top
wall was set in translational motion parallel to the bottom
(stationary) wall and the evolution of the velocity profile
toward the steady-state Couette flow limit was followed. The
velocity profile, and the derived CV and VA shear stresses
are compared with the analytical solution of the unsteady
diffusion equation. Four layers of tethered molecules were
used to represent each wall, with the top wall given a sliding
velocity of, U0 = 1.0 at the start of the simulation, time t = 0.
The temperature of both walls was controlled by applying the
Nosé-Hoover (NH) thermostat to the wall atoms [52]. The
two walls were thermostatted separately, and the equations of
motion of the wall atoms were

ṙi = pi

mi

+ U0n+
x , (69a)

ṗi = Fi + fiext − ξpi , (69b)

fiext = ri0

(
4k4r

2
i0

+ 6k6r
4
i0

)
, (69c)

ξ̇ = 1

Qξ

[
N∑

n=1

pn · pn

mn

− 3T0

]
, (69d)

where n+
x is a unit vector in the x direction, mn ≡ m, and fiext

is the tethered atom force, using the formula of Petravic and
Harrowell [53] (k4 = 5 × 103 and k6 = 5 × 106). The vector,
ri0 = ri − r0, is the displacement of the tethered atom, i, from
its lattice site coordinate, r0. The Nosé-Hoover thermostat
dynamical variable is denoted by ξ , T0 = 1.0 is the target
temperature of the wall, and the effective time constant
or damping coefficient, in Eq. (69d), was given the value
Qξ = N�t . The simulation was carried out for a cubic domain
of sidelength 27.40, of which the fluid region extent was
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FIG. 8. (Color online) Schematic diagram of the NEMD simula-
tion geometry consisting of a sliding top wall and stationary bottom
wall, both composed of tethered atoms. The simulation domain
contained a lattice of contiguous CV used for pressure averaging
(shown by the small boxes) while the thicker line denotes a single
CV containing the entire liquid region.

20.52 in the y direction. Periodic boundaries were used in
the streamwise (x) and spanwise (z) directions. The results
presented are the average of eight simulation trajectories
starting with a different set of initial atom velocities. The
lattice contained 16 384 molecules and was at a density of
ρ = 0.8. The molecular simulation domain was subdivided
into 4096 (163) control volumes, and the average velocity and
shear stress was determined in each of them. A larger single
CV encompassing all of the liquid region of the domain, shown
bounded by the thick line in Fig. 8, was also considered.

The continuum solution for this configuration is considered
now. Between two plates, there are no body forces and the
flow eventually becomes fully developed, [54] so Eq. (2) can
be simplified, and after applying the divergence theorem from
Eq. (5) it becomes,

∂

∂t

∫
V

ρudV = −
∫

V

∇ · �dV,

which is valid for any arbitrary volume in the domain and must
be valid at any point for a continuum. The shear pressure in
the fluid, �xy(y), drives the time evolution of the flow,

∂ρux

∂t
= −∂�xy

∂y
.

For a Newtonian liquid with viscosity, μ, [54],

�xy = −μ
∂ux

∂y
, (70)

which gives the 1D diffusion equation,

∂ux

∂t
= μ

ρ

∂2ux

∂y2
, (71)

assuming the liquid to be incompressible. This can be solved
for the boundary conditions,

ux(0,t) = 0 ux(L,t) = U0 ux(y,0) = 0,
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FIG. 9. The y dependence of the streaming velocity profile at
times t = 2n for n = 0,2,3,4,5,6 from right to left. The squares are the
NEMD CV data values and the analytical solution to the continuum
equations of Eq. (72) is given at the same six times as continuous
curves.

where the bottom and top wall-liquid boundaries are at y = 0
and y = L, respectively. The Fourier series solution of these
equations with inhomogeneous boundary conditions [55] is

ux(y,t) =
⎧⎨
⎩

U0 y = L∑∞
n=1 un(t)sin

(
nπy

L

)
0 < y < L

0 y = 0

, (72)

where λn = (nπ/L)2 and un(t) is given by

un(t) = 2U0(−1)n

nπ

[
exp

(
−λnμt

ρ

)
− 1

]
.

The velocity profile resolved at the control volume level is
compared with the continuum solution in Fig. 9. There were
16 cubic NEMD CV of side length 1.72 spanning the system
in the y direction, with each data point on the figure being
derived from a local time average of 0.5 time units. The analytic
continuum solution was evaluated numerically from Eq. (72)
with n = 1000 and μ = 1.6, the latter a literature value for
the WCA fluid shear viscosity at ρ = 0.8 and T = 1.0 [56].
There is mostly very good agreement between the analytic
and NEMD velocity profiles at all times, although some effect
of the stacking of molecules near the two walls can be seen
in a slight blunting of the fluid velocity profile very close to
the tethered walls (located by the horizontal two squares on
the far left and right of the figure), which is an aspect of the
molecular system that the continuum treatment is not capable
of reproducing.

The VA and CV shear pressure, given by Eqs. (43) and (45),
are compared at time t = 10 in Fig. 10. The comparison is for
a single simulation trajectory resolved into 16 cubic volumes
of size 1.72 in the y direction, with averaging in the x and
z directions and over 0.5 in reduced time. The figure shows
the shear pressure on the faces of the CV. Inside the CV, the
pressure was assumed to vary linearly, and the value at the
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FIG. 10. The y dependence of the shear pressure at t = 10,
averaged over 100 time steps and for a single simulation trajectory.
The VA value from Eq. (43) are the squares. The CV surface traction
from Eq. (45) is indicated by × and ◦ for the top and bottom surfaces,
respectively. The solid gray line displays the resulting pressure field
using Eq. (50) with linear shape functions.

midpoint is shown to be comparable to the VA-determined
value. Figure 10 shows that there is good agreement between
the VA and CV approaches. Note that the CV pressure is
effectively the MOP formula applied to the faces of the cube
and, hence, this case study demonstrates a consistency between
MOP and VA. We have shown previously that this is true for
the special case of an infinitely thin bin or the limit of the
pressure at a plane [22]. Practically, the extent of agreement in
this exercise is limited by the inherent assumptions and spatial
resolution of the two methods; a single average over a volume
is required for VA, but a linear pressure relationship is assumed
for CV to obtain the pressure tensor value corresponding to
the center of the CV.

The continuum analytical xy pressure tensor component
can be derived analytically using the same Fourier series
approach for ∂ux/∂y [55],

�xy(y,t) = −μU0

L

[
1 + 2

∞∑
n=1

(−1)ne− λnμt

ρ cos

(
nπy

L

)]
,

(73)

which is valid for the entire domain 0 � y � L.
A statistically meaningful comparison among the CV, VA,

and continuum analytic shear pressure profiles requires more
averaging of the simulation data than for the streaming velocity
[57] and eight independent simulation trajectories over five
reduced time units were used. Figure 11 shows that the
three methods exhibit good agreement within the simulation
statistical uncertainty.

As a final demonstration of the use of the CV equations, the
control volume is now chosen to encompass the entire liquid
domain (see Fig. 8), and, therefore, the external forces arise
from interactions with the wall atoms only. The momentum
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FIG. 11. As Fig. 10, except that the NEMD results are averaged
over a set of eight independent simulations of 1000 time steps (five
reduced time units) each. The simulation-derived VA and CV shear
pressures are compared with the continuum analytical solution given
in Eq. (73) (solid black line). The jump in the profile on the right of
the figure is due to the presence of the tethered wall.

equation, Eq. (55), is written as

∂

∂t

N∑
i=1

piϑi = −
N∑

i=1

©1︷ ︸︸ ︷
pipi

mi

· dSi +
N∑

i=1

©3︷ ︸︸ ︷
fiextϑi

− 1

2

N∑
i,j

[
fij dSxij︸ ︷︷ ︸

©2

+ fij︸︷︷︸
©4

dSyij + fij dSzij︸ ︷︷ ︸
©2

]
,

which can be simplified as follows. For term ©1 in the
above equation, the fluxes across the CV boundaries in the
streamwise and spanwise directions cancel due to the periodic
boundary conditions. Fluxes across the xz boundary surface
are zero as the tethered wall atoms prevent such crossings.
The force term ©2 also vanishes because across the periodic
boundary, fij dS+

xij = −fij dS−
xij (similarly for z). The external

force term ©3 is zero because all the forces in the system
result from interatomic interactions. The sum of the fyij force
components across the horizontal boundaries will be equal and
opposite, and, by symmetry, the two fzij terms in ©4 will be
zero on average. The above equation therefore reduces to

∂

∂t

N∑
i=1

piϑi = −1

2

N∑
i,j

[fxij dS+
yij − fxij dS−

yij ]. (74)

As the simulation approaches steady state, the rate of change
of momentum in the control volume tends to zero because the
difference between the shear stresses acting across the top and
bottom walls vanishes. The forces on the xz plane boundary
and momentum inside the CV are plotted in Fig. 12 to confirm
Eq. (74) numerically. The time evolution of these molecular
momenta and surface stresses are compared to the analytical
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FIG. 12. The evolution of surface forces and momentum change
for a molecular CV from Eq. (74), (points) and analytical solution for
the continuum Eqs. (76)–(78), presented as lines on the figure. The
Residual, defined in Eq. (66), is also given. Each point represents the
average over an ensemble of eight independent systems and 40 time
steps.

continuum solution for the CV,

∂

∂t

∫
V

ρuxdV = −
[ ∫

S+
f

�xydS+
f −

∫
S−

f

�xydS−
f

]
. (75)

The normal components of the pressure tensor are nonzero
in the continuum, but exactly balance across opposite CV
faces, i.e., �+

xx = �−
xx . By appropriate choice of the gauge

pressure, �xx does not appear in the governing Eq. (75). The
left-hand side of the above equation is evaluated from the
analytic expression for ux ,

∂

∂t

∫
V

ρuxdV = 2�x�z
μU0

L

∞∑
n=1

[1 − (−1)n]e− λnμt

ρ . (76)

The right-hand side is obtained from the analytic continuum
expression for the shear stress, for the bottom surface at y = 0,∫

S+
f

�xydS+
f = −2�x�z

μU0

L

∞∑
n=1

e
− λnμt

ρ , (77)

and for the top y = L,∫
S−

f

�xydS−
f = −2�x�z

μU0

L

∞∑
n=1

(−1)ne− λnμt

ρ . (78)

In Fig. 12, the momentum evolution on the left-hand side of
Eq. (74) is compared to Eq. (76). Equations (77) and (78)
are also given for the shear stresses acting across the top and
bottom of the molecular control volume [right-hand side of
Eq. (74)]. The scatter seen in the MD data reflects the thermal
fluctuations in the forces and molecular crossings of the CV
boundaries. The average response nevertheless agrees well
with the analytic solution, bearing in mind the element of

uncertainty in the matching state parameter values. This ex-
ample demonstrates the potential of the CV approach applied
on the molecular scale, as it can be seen that computation of
the forces across the CV boundaries determines completely
the average molecular microhydrodynamic response of the
system contained in the CV. In fact, the force on only one of
the surfaces is all that was required, as the force terms for the
opposite surface could have been obtained from Eq. (74).

V. CONCLUSIONS

In analogy to continuum fluid mechanics, the evolution
equations for a molecular systems has been expressed within
a CV in terms of fluxes and stresses across the surfaces.
A key ingredient is the definition and manipulation of a
Lagrangian to control volume conversion function, ϑ , which
identifies molecules within the CV. The final appearance of the
equations has the same form as Reynolds’ transport theorem
applied to a discrete system. The equations presented follow
directly from Newton’s equation of motion for a system
of discrete particles, requiring no additional assumptions
and, therefore, sharing the same range of validity. Using
the LCV function, the relationship between VA [16,17] and
MOP pressure [13,14] has been established without Fourier
transformation. The two definitions of pressure are shown
numerically to give equivalent results away from equilibrium
and, for homogeneous systems, shown to equal the virial
pressure.

A Navier–Stokes-like equation was derived for the evo-
lution of momentum within the control volume, expressed
in terms of surface fluxes and stresses. This provides an
exact mathematical relationship between molecular fluxes and
pressures and the evolution of momentum and energy in a CV.
Numerical evaluations of the terms in the conservation of mass,
momentum, and energy equations demonstrated consistency
with theoretical predictions.

The CV formulation is general and can be applied to
derive conservation equations for any fluid dynamical property
localized to a region in space. It can also facilitate the derivation
of conservative numerical schemes for MD, and the evaluation
of the accuracy of numerical schemes. Finally, it allows for
accurate evaluation of macroscopic flow properties in a manner
consistent with the continuum conservation laws.

APPENDIX A: DISCRETE FORM OF REYNOLDS’
TRANSPORT THEOREM AND THE DIVERGENCE

THEOREM

In this Appendix, both Reynolds’ transport theorem and
the divergence theorem for a discrete system are derived. The
relationship between an advecting and fixed control volume is
shown using the concept of peculiar momentum.

The microscopic form of the continuous Reynolds’ trans-
port theorem [1] is derived for a property χ = χ(ri ,pi ,t) which
could be mass, momentum, or the pressure tensor. The LCV
function, ϑi , is dependent on the molecule’s coordinate; the
location of the cube center, r, and side length, �r, which
are all a function of time. The time evolution of the CV is,
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therefore,

d

dt

N∑
i=1

χ (t)ϑi[ri(t),r(t),�r(t)]

=
N∑

i=1

[
dχ

dt
ϑi +χ

dri

dt
· ∂ϑi

∂ri

+ χ
dr
dt

· ∂ϑi

∂r
+χ

d�r
dt

· ∂ϑi

∂�r

]
.

The velocity of the moving volume is defined as ũ = dr/dt ,
which can differ from the macroscopic velocity u. Surface
translation or deformation of the cube, ∂ϑi/∂�r, can be
included in the expression for velocity ũ. The above analysis
is for a microscopic system, although a similar process for a
mesoscopic system can be applied and includes terms for CV
movement in Eq. (12).

Hence, Reynolds treatment of a continuous medium [1] is
extended here to a discrete molecular system,

d

dt

N∑
i=1

χ (t)ϑi[ri(t),r(t),�r(t)]

=
N∑

i=1

[
dχ

dt
ϑi + χ

(
ũ − pi

mi

)
· dSi

]
. (A1)

The conservation equation for the mass, χ = mi , in a moving
reference frame is

d

dt

N∑
i=1

miϑi =
N∑

i=1

[
mi

(
ũ − pi

mi

)
· dSi

]
. (A2)

In a Lagrangian reference frame, the translational velocity of
CV surface must be equal to the molecular streaming velocity,
i.e., ũ(r±) = u(ri), so

N∑
i=1

[
mi

(
u − pi

mi

)
· dSi

]
= −

N∑
i=1

pi · dSi .

The evolution of the peculiar momentum, χ = pi , in a moving
reference frame is

d

dt

N∑
i=1

piϑi =
N∑

i=1

[
Fiϑi + pi

(
u − pi

mi

)
· dSi

]

=
N∑

i=1

[
Fiϑi − pipi

mi

· dSi

]
.

Here an inertial reference frame has been assumed so dpi/dt =
dpi/dt = Fi . For a simple case (e.g., one-dimensional flow)
it is possible to utilize a Lagrangian description by ensuring
ũ(r±) = u(ri) throughout the time evolution. In more com-
plicated cases, this is not always possible and the Eulerian
description is generally adopted.

Next, a microscopic analog to the macroscopic divergence
theorem is derived for the generalized function, χ ,∫

V

N∑
i=1

∂

∂r
· [χ(ri ,pi ,t)δ(ri − r)]dV

=
∫

V

N∑
i=1

χ(ri ,pi ,t) · ∂

∂r
δ(ri − r)dV.

The vector derivative of the Dirac δ followed by the integral
over volume results in∫

V

∂

∂r
δ(xi − x)δ(yi − y)δ(zi − z)dV

=

⎛
⎜⎝

[δ(xi − x)H (yi − y)H (zi − z)]V
[H (xi − x)δ(yi − y)H (zi − z)]V
[H (xi − x)H (yi − y)δ(zi − z)]V

⎞
⎟⎠

=

⎛
⎜⎝

[δ(xi − x+) − δ(xi − x−)]Sxi

[δ(yi − y+) − δ(yi − y−)]Syi

[δ(zi − z+) − δ(zi − z−)]Szi

⎞
⎟⎠ = dSi ,

where the limits of the cuboidal volume are r+ = r + �r
2 and

r− = r − �r
2 . The mesoscopic equivalent of the continuum

divergence theorem Eq. (5) is, therefore,∫
V

∂

∂r
·

N∑
i=1

χδ(ri − r)dV =
N∑

i=1

χ · dSi .

APPENDIX B: RELATION BETWEEN CONTROL
VOLUME AND DESCRIPTION AT A POINT

This appendix proves that the Irving and Kirkwood [8]
expression for the flux at a point is the zero volume limit of
the CV formulation. As in the continuum, the control volume
equations at a point are obtained using the gradient operator
in Eq. (6). The flux at a point can be shown by taking the zero
volume limit of the gradient operator of Eq. (6). Assuming the
three side lengths of the control volume, �x, �y, and �z, tend
to zero and, hence, the volume, �V , tends to zero,

∇ · ρu = lim
�x→0

lim
�y→0

lim
�z→0

1

�x�y�z

×
N∑

i=1

〈
pix

∂ϑi

∂x
+ piy

∂ϑi

∂y
+ piz

∂ϑi

∂z
; f

〉
, (B1)

from Eq. (21). For illustration, consider the x component
above, where

∂ϑi

∂x
=

xface︷ ︸︸ ︷
[δ(x+ − xi) − δ(x− − xi)] Sxi . (B2)

Using the definition of the Dirac δ function as the limit of two
slightly displaced Heaviside functions,

δ(ξ ) = lim
�ξ→0

H
(
ξ + �ξ

2

)− H
(
ξ − �ξ

2

)
�ξ

,

the limit of the Sxi term is

lim
�y→0

lim
�z→0

Sxi = δ(yi − y)δ(zi − z).

The �x → 0 limit for xface [defined in Eq. (B2)] can be
evaluated using L’Hôpital’s rule, combined with the property
of the δ function,

∂

∂(�ξ )
δ

(
ξ − �ξ

2

)
= −1

2

∂

∂ξ
δ

(
ξ − �ξ

2

)
,

so

lim
�x→0

xface = ∂

∂x
δ (x − xi) .
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Therefore, the limit of ∂ϑi/∂x as the volume approaches zero
is

lim
�x→0

lim
�y→0

lim
�z→0

∂ϑi

∂x
= ∂

∂x
δ (ri − r) .

Taking the limits for the x, y, and z terms in Eq. (B1) yields the
expected Irving and Kirkwood [8] definition of the divergence
at a point,

∇ · ρu =
N∑

i=1

〈
∂

∂r
· piδ(r i − r); f

〉
.

This zero volume limit of the CV surface fluxes shows that
the divergence of a Dirac δ function represents the flow of
molecules over a point in space. The advection and kinetic
pressure at a point is, from Eq. (25),

∇ · [ρuu + κ] =
N∑

i=1

〈
∂

∂r
· pipi

mi

δ(r i − r); f

〉
.

The same limit of zero volume for the surface tractions defines
the Cauchy stress. Using Eq. (6) and taking the limit of
Eq. (46), written in terms of tractions,

∇ · σ = lim
�V →0

1

�V

6∑
faces

∫
Sf

σ · dSf

= lim
�rx→0

lim
�ry→0

lim
�rz→0

[
T+

x − T−
x

�rx

+ T+
y − T−

y

�ry

+ T+
z − T−

z

�rz

]
.

For the r+
x surface, and taking the limits of �ry and �rz using

L’Hôpital’s rule,

lim
�V →0

T+
x

�rx

= − lim
�rx→0

1

2�rx

N∑
i,j

〈fαij�
+
xyz; f〉,

where � is

�
†
βκγ ≡ [H (r†β − rβj ) − H (r†β − rβi)]

× δ

[
rκ − rκi − rκij

rβij

(r†β − rβi)

]

× δ

[
rγ − rγ i − rγ ij

rβij

(r†β − rβi)

]
. (B3)

The indices β, κ , and γ can be x, y, or z and † denotes the
top surface (+ superscript), bottom surface (− superscript), or
CV center (no superscript). The � selecting function includes
only the contribution to the stress when the line of interaction
between i and j passes through the point r† in space. The
difference between T+

x and T−
x tends to zero on taking the

limit �rx → 0, so L’Hôpital’s rule can be applied. Using
the property

∂

∂(�ξ )
δ

(
ξ − 1

2
�ξ

)
H

(
ξ − 1

2
�ξ

)

= −1

2

∂

∂ξ
δ

(
ξ − 1

2
�ξ

)
H

(
ξ − 1

2
�ξ

)
,

then

lim
�V →0

T+
x − T−

x

�rx

= −1

2

N∑
i,j

〈
fαij

∂�xyz

∂rx

; f

〉
,

where r+ → r and r− → r . The �βκγ function is the integral
between two molecules introduced in Eq. (37),∫ 1

0
δ(r − ri + srij )ds

= sgn

(
1

rxij

)
1

|rxij | [H (rx − rxj ) − H (rx − rxi)]

× δ

[
ry − ryi − ryij

rxij

(rx − rxi)

]

× δ

[
rz − rzi − rzij

rxij

(rx − rxi)

]
.

where the sifting property of the Dirac δ function in the rx

direction has been used to express the integral between two
molecules in terms of the �xyz function. Hence,∫ 1

0
δ(r − ri + srij )ds = �xyz

rxij

.

As the choice of shifting direction is arbitrary, use of ry or
rz in the above treatment would result in �yzx and �zxy ,
respectively. Therefore, Eq. (38), without the volume integral,
can be expressed as

1

2

N∑
i,j

〈
fαij rβij

∂

∂rβ

∫ 1

0
δ(r − ri + srij )ds; f

〉

= 1

2

N∑
i,j

〈
fijα

[
∂�xyz

∂rx

+ ∂�yxz

∂ry

+ ∂�zxy

∂rz

]
; f

〉
.

As Eq. (38) is equivalent to the Irving and Kirkwood [8] stress
of Eq. (36), the Irving Kirkwood stress is recovered in the limit
that the CV tends to zero volume.

This Appendix has proved, therefore, that in the limit of
zero control volume, the molecular CV Eqs. (22) and (49)
recover the description at a point in the same limit that
the continuum CV Eqs. (1) and (2) tend to the differential
continuum equations. This demonstrates that the molecular CV
equations presented here are the molecular scale equivalent of
the continuum CV equations.

APPENDIX C: RELATIONSHIP BETWEEN
VOLUME AVERAGE AND MOP STRESS

This appendix gives further details of the derivation of the
MOP form of stress from the volume average form. Starting
from Eq. (38) and written in terms of the CV function for an
integrated volume,

−
6∑

faces

∫
Sf

σ · dSf = 1

2

N∑
i,j

〈
fij rij ·

∫ 1

0

∂ϑs

∂r
ds; f

〉

= 1

2

N∑
i,j

〈
fij

∫ 1

0

[
xij

∂ϑs

∂x
+ yij

∂ϑs

∂y
+ zij

∂ϑs

∂z

]
ds; f

〉
.

(C1)
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Taking only the x derivative above,

xij

∂ϑs

∂x
= xij [

x+
face︷ ︸︸ ︷

δ(x+ − xi + sxij ) − δ(x− − xi + sxij )]G(s),

(C2)

where G(s) is

G(s) ≡ [H (y+ − yi + syij ) − H (y− − yi + syij )]

× [H (z+ − zi + szij ) − H (z− − zi + szij )].

As δ(ax) = 1
|a|δ(x) the xij x

+
faceG(s) term in Eq. (C2) can be

expressed as

xij x
+
faceG(s) = xij

|xij |δ
(

x+ − xi

xij

+ s

)
G(s). (C3)

The integral can be evaluated using the sifting property of the
Dirac δ function [58] as follows:∫ 1

0
xij x

+
faceG(s)ds

= xij

|xij |
∫ 1

0
δ

(
x+ − xi

xij

+ s

)
G(s)ds

= sgn(xij )

[
H

(
x+ − xj

xij

)
− H

(
x+ − xi

xij

)]
S+

xij .

where the signum function, sgn(xij ) ≡ xij /|xij |. The S+
xij term

is the value of s on the cube surface, S+
xij = G(s = − x+−xi

xij
),

which is

S+
xij ≡

{
H

[
y+ − yi − yij

xij

(x+ − xi)

]

− H

[
y− − yi − yij

xij

(x+ − xi)

]}

×
{
H

[
z+ − zi − zij

xij

(x+ − xi)

]

− H

[
z− − zi − zij

xij

(x+ − xi)

]}
. (C4)

The definition S+
xij [analogously to Sxi in Eq. (15)] has

been introduced as it filters out those ij terms where the
point of intersection of line rij and plane x+ has y and z

components between the limits of the cube surfaces. The
corresponding terms, S±

ijα , are defined for α = {y,z}. Taking

H (0) = 1
2 , the Heaviside function can be rewritten as H (ax) =

1
2 [sgn(a)sgn(x) − 1] and

H

(
x+ − xj

xij

)
− H

(
x+ − xi

xij

)

= 1

2
sgn

(
1

xij

)
[sgn(x+ − xj ) − sgn(x+ − xi)],

so the expression, xij x
+
faceG(s) in Eq. (C2) becomes

xij

∫ 1

0
x+

faceG(s)ds

= 1

2
sgn(xij )sgn

(
1

xij

)
[sgn(x+ − xj ) − sgn(x+ − xi)]S

+
xij .

The signum function, sgn( 1
xij

), cancels the one obtained from

integration along s, sgn(xij ). The expression for the x+ face
is, therefore,

−
∫

S+
x

σ · dSS+
x

= 1

2

N∑
i,j

〈
fij xij

∫ 1

0
x+

faceG(s)ds; f

〉

= 1

4

N∑
i,j

〈fij [sgn(x+ − xj ) − sgn(x+ − xi)]S
+
xij ; f〉.

Repeating the same process for the other faces allows Eq. (C1)
to be expressed as

6∑
faces

∫
Sf

σ · dSf = −1

2

N∑
i,j

〈
fij rij ·

∫ 1

0

∂ϑs

∂r
ds; f

〉

= −1

4

N∑
i,j

〈
fij

3∑
α=1

ñα[dS+
αij − dS−

αij ]; f

〉
,

where dS±
αij ≡ 1

2 [sgn(r±
α − rαj ) − sgn(r±

α − rαi)]S
±
αij and

ñα ≡ sgn(rαij )sgn( 1
rαij

) = [1,1,1]. This is the force over the
CV surfaces, Eq. (46), in Sec. III C.

To verify the interpretation of S+
xij used in this work,

consider the vector equation for the point of intersection of a
line and a plane in space. The equation for a vector a between
ri and rj is defined as a = ri − s

rij

|rij | . The plane containing the

positive face of a cube is defined by (r+ − p) · n, where p is
any point on the plane and n is normal to that plane. By setting
a = p and on rearrangement of (r+ − ri + s

rij

|rij | ) · n, the value
of s at the point of intersection with the plane is

s = − (r+ − ri) · n
rij

|rij | · n
.

The point on line a located on the plane is

a+
p ≡ ri + rij

[
(r+ − ri) · n

rij · n

]
.

Taking n as the normal to the x surface, i.e., n → nx = [1,0,0],
then,

x+
αp =

⎛
⎜⎝

x+
xp

x+
yp

x+
zp

⎞
⎟⎠ =

⎡
⎢⎣

x+

yi + yij

xij
(x+ − xi)

zi + zij

xij
(x+ − xi)

⎤
⎥⎦,

written using index notation with α = {x,y,z}. The vector x+
p

is the point of intersection of line a with the x+ plane. A
function to check if the point x+

p on the plane is located on the
region between y± and z±, would use Heaviside functions and
is similar to the form of Eq. (15),

S+
xij = [H (y+ − x+

yp) − H (y− − x+
yp)]

× [H (z+ − x+
zp) − H (z− − x+

zp)],

which is the form obtained in the text by direct integration of
the expression for stress, i.e., Eq. (C4).
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