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Receptivity, disturbance growth and breakdown to turbulence in Görtler flow
are studied by spatial direct numerical simulation (DNS). The boundary layer is
exposed to free-stream vortical modes and localized wall roughness. We propose a
normalization of the roughness-induced receptivity coefficient by the square root of the
Görtler number. This scaling removes the dependence of the receptivity coefficient on
wall curvature. It is found that vortical modes are more efficient at generating Görtler
vortices than localized roughness. The boundary layer is most receptive to zero-
and low-frequency free-stream vortices, exciting steady and slowly travelling Görtler
modes. The associated receptivity mechanism is linear and involves the generation
of boundary-layer streaks, which soon evolve into unstable Görtler vortices. This
connection between transient and exponential amplification is absent on flat plates
and promotes transition to turbulence on curved walls. We demonstrate that the
Görtler boundary layer is also receptive to high-frequency free-stream vorticity, which
triggers steady Görtler rolls via a nonlinear receptivity mechanism. In addition to
the receptivity study, we have carried out DNS of boundary-layer transition due to
broadband free-stream turbulence with different intensities and frequency spectra. It
is found that nonlinear receptivity dominates over the linear mechanism unless the
free-stream fluctuations are concentrated in the low-frequency range. In the latter
case, transition is accelerated due to the presence of travelling Görtler modes.
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1. Introduction
Flow over walls with concave curvature is studied using direct numerical simulation

(DNS). As compared with flow over a flat plate, the wall-normal balance of forces
on the fluid is modified by the presence of a centrifugal force, which increases away
from the wall and is balanced mainly by the pressure force. A sudden wall-normal
displacement of fluid inside the boundary layer, e.g. due to surface roughness, may
destroy this balance and destabilize the shear layer. This instability mechanism may
cause laminar boundary layers to transition to turbulence and is relevant e.g. on the
lower side of a turbine blade.

† Email address for correspondence: t.zaki@imperial.ac.uk
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1.1. Linear instability

The pioneering work for boundary layers on constant-curvature concave walls was
carried out by Görtler (1941), whose name became associated with this type of
flow, the instability and the governing stability parameter. Floryan (1991) and Saric
(1994) provided comprehensive reviews of the experimental, theoretical and numerical
studies reported since Görtler’s work. Experimental evidence (e.g. Ito 1980) suggests
that the boundary-layer instability appears as streamwise-aligned counter-rotating
steady vortices with constant spanwise wavelength, referred to as Görtler rolls. These
rolls are accompanied by energetic longitudinal high- and low-momentum streaks
caused by the vertical displacement of fluid by the vortices. The streamwise length
scale of the disturbance mode is thus of the same order as that of the underlying basic
state. Therefore, the concepts of parallel flow and local normal modes do not apply
in Görtler boundary layers. This is reflected by the linearized stability equations
given by Floryan & Saric (1982), where terms involving the wall-normal velocity
and the streamwise derivatives of the basic state are retained. Indeed, attempts to
determine a neutral-stability curve by classic stability theory were not successful. The
reason for this failure was for the first time explained by Hall (1983), who instead
suggested a streamwise-marching numerical procedure to solve the parabolic stability
equations. However, Hall (1983) was likewise unable to locate the first point of neutral
stability, realizing that the evolution of the Görtler rolls depends on the shape and the
streamwise location of the spatial initial conditions. He concluded that the concept
of neutral stability is not meaningful in Görtler boundary layers except in the small-
wavelength asymptotic limit (Hall 1982). Lee & Liu (1992) later revised this view,
pointing out that the initial disturbances of Hall (1983) were not consistent with the
governing hydrodynamic equations and thus underwent some transient adjustment
before developing into a Görtler mode. Bottaro & Luchini (1999) resurrected local
stability theory in Görtler flows, comparing modal amplification rates from local
analysis of different complexity with those from marching solutions. They found that
even the simplest local model – the original analysis by Görtler (1941) – is satisfactory
above a local Görtler number of seven (based on the Blasius length). Below this value
(farther upstream), the evolution of the Görtler modes is dependent on their excitation
(receptivity), which hampers the identification of a unique critical Görtler number.

1.2. Receptivity

Receptivity initiates the process of laminar–turbulent boundary-layer transition.
External perturbations may intrude into the shear layer via its boundaries – the
wall and the boundary-layer edge. Sources of such perturbations are e.g. wall
roughness and free-stream turbulence. Energy is transferred from these sources to
the boundary layer, where Görtler instability modes may be excited via different
mechanisms. A review of the receptivity problem is given by Bassom & Seddougui
(1995). Denier, Hall & Seddougui (1991) reported that the excitation of instability
modes by wall roughness is most efficient for roughnesses with a spanwise length scale
comparable to the boundary-layer thickness. Streamwise-distributed roughness was
found to be more relevant than localized roughness. Bertolotti (1993) demonstrated
that streamwise-aligned riblets efficiently excite Görtler rolls. Receptivity to free-
stream vortical disturbances at the leading edge was discussed in the review by Hall
(1990). Bippes & Deyhle (1992) observed in wind-tunnel experiments that Görtler
rolls can easily be excited by free-stream disturbances originating from the screens
in the settling chamber. Luchini & Bottaro (1998) computed for different external
perturbations Green’s functions based on the eigenmodes of the adjoint parabolic
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stability equations. Multiplying these Green’s functions with the external disturbances
yielded the downstream amplitude of the centrifugal instability. Roughness receptivity
was found to be most efficient at the leading edge for disturbances with zero
streamwise wavenumber and O(1) spanwise wavenumber. Maximum receptivity to
free-stream vorticity was observed for the spanwise wavenumber of the most unstable
Görtler mode. Based on the linear stability operator (‘spatial propagator’), Cossu
et al. (2000) computed optimal inflow perturbations in curved boundary layers. The
propagator was reconstructed from different sets of inlet conditions and streamwise-
marching solutions. The wall-normal profiles of the optimal inflow conditions were
found to reach from the shear region far out into the free stream, suggesting efficient
boundary-layer receptivity to free-stream disturbances.

1.3. Secondary instability and breakdown

Peerhossaini & Wesfreid (1988) studied the flow through a curved straight water
channel. Their dye visualizations show that low- and high-momentum streaks
generated by Görtler vortices distort the flow profiles such that the low-momentum
regions take characteristic, mushroom-like shapes. At this stage the primary vortex-
streak system starts to oscillate, indicating the onset of secondary instability.
The paper by Swearingen & Blackwelder (1987) is often considered the most
important contribution to the clarification of secondary instability and breakdown
of longitudinal vortices. Swearingen & Blackwelder (1987) observed in a wind-tunnel
experiment with a large-radius concave test section that the Görtler rolls and streaks
become wavy before they break down individually (see also Bippes 1972). Two forms
of waviness with different symmetries about the primary vortex axis were identified.
These modes, nowadays known as sinuous and varicose secondary instabilities, appear
near the spanwise and wall-normal inflection points of the distorted streamwise mean
profiles, respectively. The sinuous type was found to occur more frequently than the
varicose type. Liu & Domaradzki (1993) reproduced these results by temporal DNS
with a pseudo-spectral method. Yu & Liu (1994) analysed the kinetic energy balance
of secondary instability and demonstrated for the configuration of Swearingen &
Blackwelder (1987) that the growth rate of the sinuous mode is larger than that of
the varicose mode. Park & Huerre (1995) confirmed in a curved asymptotic-suction
boundary layer the earlier amplification of sinuous instabilities. However, according to
Li & Malik (1995) the competition between sinuous and varicose modes depends on
the spanwise wavenumber of the underlying Görtler vortex. It turned out that long-
wavelength vortices tend to develop varicose horseshoe structures rather than sinuous
oscillations. Lee & Liu (1992) computed the nonlinear development of Görtler vortices
and the spatial variations of skin friction. Girgis & Liu (2006) reported that the skin-
friction coefficient in transitional and turbulent Görtler boundary layers rises well
beyond the level of turbulent flat-plate boundary layers. They attributed this behaviour
to a nonlinear modification of the primary steady flow by wavy secondary instabilities.
The strong rise in skin friction was also observed in experiments (Schultz & Volino
2003; Tandiono, Winoto & Shah 2009).

DNS studies of Görtler flow have so far considered the temporal framework of the
physical problem, whereas spatial DNS of streamwise developing Görtler boundary
layers (the most appropriate approach) is lacking to our knowledge. This motivates
the present paper. We report spatial DNS of the flow over concave walls with three
different radii of curvature, of which one matches the wall curvature in the experiments
by Tandiono, Winoto & Shah (2008) and Tandiono et al. (2009). The simulations
presented herein are the first spatial DNS of the receptivity to free-stream turbulence
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Figure 1. Concave plate, radius of curvature R∗ = 1 m. (a) Computational domain (grid
A, table 1). (b) Numerical grid near the inflow plane. Spectral elements (black) and
Gauss–Lobatto–Legendre nodes (grey dots).

and the subsequent laminar–turbulent transition of the Görtler boundary layer. Such
spatial DNS have so far only been reported for flat-plate flow (Jacobs & Durbin
2001; Brandt, Schlatter & Henningson 2004), but not for Görtler boundary layers.
We demonstrate that the receptivity to vortical free-stream disturbances can be linear
or nonlinear, considering both single vortical modes (§ 2) and free-stream turbulence
(§ 3). An alternative source of receptivity – localized wall roughness – is also studied
in § 2. The importance of roughness as a Görtler vortex generator is compared with
that of free-stream vorticity.

2. Receptivity and growth
2.1. Spectral element code and domain

The spectral element method (SEM; Patera 1984) provides spectral accuracy in space
for geometries beyond the scope of global spectral methods using Fourier series.
The SEM is thus ideally suited for meshing curved surfaces with wall roughness.
The simulation code used was developed by Fischer et al. (2008). It allows solving
both the full nonlinear and the linearized Navier–Stokes equations. The physical
domain is decomposed into spectral elements. The solution to the governing equations
is approximated locally on these elements as a sum of orthogonal basis functions
(Legendre polynomials). The expansion of the flow variables, the spatial discretization
and the time-integration scheme are briefly summarized in Schrader et al. (2010),
where additional references to the SEM implementation are given. The convergence
of the spatial approximation is ∝ e−N , where the spectral accuracy is determined by
the highest-order Legendre polynomial (N =7 here). Figure 1(b) depicts the Gauss–
Lobatto–Legendre grid used for the computation of the velocity field. The pressure
is computed on a staggered grid with spectral order N − 2 (Gauss–Legendre grid).
Table 1 lists the SEM grids used. The domain size is given in cylindrical coordinates,
with R∗ determining the radius of curvature, Φ the arc length and L∗

z the span of
the plate (cf. figure 1a). When presenting the results we will follow convention and
use the tangential, normal and spanwise plate coordinates ξ , η and z instead. The
computational domain shown in figure 1(a) covers about 60 % of the wind-tunnel
test section of Tandiono et al. (2008) with a radius of wall curvature of 1 m. The
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Grid (R∗, R∗
i ) (m) Φ(deg.) L∗

z(×10−2) (m) nξ × nη × nz N Ntot (×106)

A (1.0,0.9) 58.5 0.74–4.46 65 × 15 × 3 7 1.063
B (1.0,0.9) 67.5 0.74–4.46 75 × 15 × 3 7 1.227
C (1.0,0.9) 67.5 2.55 75 × 15 × 5 7 2.007
D (2.0,1.9) 29.3 1.27 65 × 15 × 3 7 1.063
E (2.0,1.9) 33.8 1.27 75 × 15 × 3 7 1.227
F (4.0,3.9) 14.6 1.27 65 × 15 × 3 7 1.063
G (4.0,3.9) 16.9 1.27 75 × 15 × 3 7 1.227

Table 1. Parameters of the SEM grids. R∗, R∗
i and Φ as in figure 1(a); the star denotes

dimensional quantities. nξ , nη and nz are the numbers of elements in the tangential, wall-normal
and spanwise directions; N is the highest order of the polynomial basis functions and
Ntot = (nξN + 1)(nηN + 1)(nzN + 1) is the total number of Gauss–Lobatto–Legendre points.

meshes denoted by A, B and C are used for this configuration, while grids D–G
denote simulations of flow over plates with larger radii.

2.2. Base flow

The velocity field U = Ub +u is decomposed into a steady, spanwise-independent base
flow Ub and a disturbance u, where u can be unsteady or steady three-dimensional.
Since the base flow is invariant in the spanwise direction, it has been computed on
two-dimensional SEM meshes. The tangential and normal grid resolutions of these
meshes are identical to those of the three-dimensional grids in table 1. The base-
flow fields serve both as initial conditions for nonlinear Navier–Stokes computations
and as basic states for solutions to the linearized disturbance equations. Zero-slip
conditions are prescribed at the wall, and Blasius profiles are specified at the inlet and
the top boundary. The inflow is at Reynolds number Reδ�

0
≡ U∞δ�

0/ν = 198.36, where
U∞ is the free-stream velocity, δ�

0 is the displacement thickness of the inflow profile
and ν is the kinematic viscosity. Zero-stress conditions along with a constant pressure
are applied at the outlet. This outflow is inconsistent with the upstream flow field,
where the pressure varies in the wall-normal direction owing to the centrifugal force.
Therefore, the outlet is located far downstream (Φ2D = 135◦, nξ2D = 150 elements) to
avoid any influence of the outflow conditions on the region of interest. The reference
velocity is given by U∞ and the reference length by δ�

0. Görtler flows also feature a
large characteristic length scale, the radius of wall curvature R. Here, three values of
R are considered. These correspond to dimensional radii (marked by a star) of R∗ =1,
2 and 4 m based on the experimental parameters of Tandiono et al. (2008; ‘case 1’,
U ∗

∞ =2.85 m s−1). In the reference system adopted, these values become R = 957.85,
1915.71 and 3831.42, respectively. When presenting the results we shall call the three
cases as R∗ = 1 m, R∗ = 2 m and R∗ = 4 m for brevity. The radius R also enters the
stability parameter of Görtler boundary layers, the Görtler number

Gθ ≡ U∞θ

ν

√
θ

R
= Reθ

√
θ

R
. (2.1)

Note that Gθ is usually based on the boundary-layer momentum-loss thickness θ . It
represents a combination of the Reynolds number and a curvature parameter, thus
relating the destabilizing inertial and centrifugal forces to the stabilizing viscous force.
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60(a)

50y

z
x

ξ
40

5
0

280
290

300
310

–5

60(b)

50

z
x

ξ
40

5
0

280
290

300
310

–5

Figure 2. (Colour online available at journals.cambridge.org/FLM) (a) Surface-roughness
function h(ξ, z) with β = 0.546 (Λ= 250), ξr = 300.9 and ξrise = ξfall =15.05. The height,
εr =0.01δ�

r , is enlarged by a factor of 500 in the figure. (b) Inhomogeneous boundary
conditions for the streamwise disturbance velocity u as a model for the roughness shown
in (a); white/black: u = ±6 × 10−3.

2.3. Perturbation

Nonlinear and linear Navier–Stokes computations were performed. The
computational grids for the nonlinear simulations (B, C, E and G) accommodate
a sponge region at the downstream end of the domain, where the base-flow profiles
are enforced by a volume force F = λ(ξ )(Ub − U). The function λ(ξ ) varies smoothly
between zero and λmax = 0.8 inside the sponge while vanishing everywhere else (see also
Chevalier et al. 2007). This ensures a disturbance-free outflow without affecting the
upstream flow field. It turned out that no sponge was needed for the linear simulations;
therefore, the corresponding meshes (A, D and F) are about 15 % shorter. On the
upper boundary, zero-disturbance conditions are prescribed, justified as long as the
top boundary is far enough away from the wall (nearly eight outflow boundary-layer
thicknesses here). Periodic conditions are enforced in the spanwise direction. Thus, the
domain width sets the fundamental spanwise disturbance wavelength λz, normalized
here as

Λ ≡ U∞λz

ν

√
λz

R
. (2.2)

Note that Λ assumes a similar form as the Görtler number in (2.1). The perturbations
are generated as inflow conditions or wall boundary conditions, as discussed next.

2.3.1. Surface roughness

Streamwise-localized, spanwise-sinusoidal roughness elements of the form

h(ξ, z) = εr

[
S

(
ξ − ξstart

�ξrise

)
− S

(
ξ − ξend

�ξfall

+ 1

)]
sin (2πz/λz) (2.3)

are considered (figure 2a). The roughness bump is characterized by its height εr ,
spanwise width λz and streamwise extent ξ ∈ [ξstart , ξend ], where ξstart and ξend define
the bump length �ξr ≡ ξend − ξstart and the nominal location ξr ≡ 0.5(ξstart + ξend ). The
streamwise shape is given by the smooth step function S with rising and falling flanks
�ξrise and �ξfall . The function S is

S(ξ ) =

⎧⎨
⎩

0, ξ � 0,

1/(1 + e(1/(ξ−1)+1/ξ )), 0 < ξ < 1,

1, ξ � 1.

(2.4)

The height, width, location and shape of the roughness element all influence the
amplitude A of the triggered instability. Normalizing A by the roughness amplitude
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defines the receptivity coefficient Cr for wall roughness,

Cr (λz; ξr , εr ) ≡ Ars (λz; ξr , εr )

εr

, (2.5)

where Ars denotes the amplitude of the excited Görtler mode at the receptivity site
(the roughness station ξr ) and is referred to as receptivity amplitude. For linear
receptivity mechanisms, Cr is constant upon varying the bump height εr . In that
case, the disturbance velocity enforced by the roughness is proportional to the local
roughness height. This motivates a widely used roughness model: instead of meshing
the bump h(ξ, z), the effect of the roughness is imposed as an inhomogeneous
boundary condition for the perturbation velocity u (‘domain perturbation method’;
cf. Cabal, Szumbarski & Floryan 2001), using a first-order Taylor series expansion
around the smooth wall (subscript 0),

u0 = −h(ξ, z)

(
∂Ub

∂η

)
0

. (2.6)

The roughness model translates via the wall gradient of the base flow the zero-slip
condition at the rough wall to a local slip at the smooth wall (figure 2b). The present
model is by construction valid only for linear receptivity, i.e. for small-amplitude
roughness. Schrader, Brandt & Henningson (2009) found in swept-plate flow that the
model fails for εr � 5 % of the local boundary-layer displacement thickness. Here, we
shall compare for Görtler flow the linear roughness model with the meshed roughness.

2.3.2. Vortical modes

The free-stream vortical disturbances are modelled by Orr–Sommerfeld continuous-
spectrum modes for the Blasius inflow (Grosch & Salwen 1978). In the free stream, the
Orr–Sommerfeld and Squire equations simplify to constant-coefficient homogeneous
ordinary differential equations in the wall-normal coordinate η and are decoupled
from each other. The Orr–Sommerfeld equation can therefore be solved alone to
obtain the wall-normal velocity, while the wall-normal vorticity, solution to the
Squire equation, is set to zero. In Fourier space the Orr–Sommerfeld equation reads(

d2

dη2
− α2 − β2

)(
d2

dη2
+ γ 2

)
v̂ = 0,

v̂ =
dv̂

dη
= 0 for η = 0,

v̂ bounded for η → ∞,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

where v̂ is the shape function of the wall-normal disturbance velocity and α and
β are the streamwise and spanwise wavenumbers, respectively. The quantity γ 2 ≡
− iReδ�(αU∞ − ω) − α2 − β2 plays the role of a wall-normal wavenumber, where ω is
the angular frequency of the mode. The expression for γ also constitutes the dispersion
relation of the free-stream waves and is used to calculate the complex streamwise
wavenumber α for given values of Reδ� , ω, β and γ . Once the wavevector is known,
(2.7) is solved numerically employing a boundedness condition for v̂ (Jacobs &
Durbin 1998). The streamwise and spanwise components û and ŵ of the free-stream
modes are calculated using the continuity equation and the definition of wall-normal
vorticity (zero here). This yields û= iα/(α2 + β2) dv̂/dη and ŵ = iβ/(α2 + β2) dv̂/dη.
Figure 3(a) displays the wall-normal profile û = (û, v̂, ŵ) of an Orr–Sommerfeld free-
stream mode. The disturbance oscillates in the free stream and is damped towards
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Figure 3. (Colour online) (a) Complex wall-normal profile of the Orr–Sommerfeld
continuous-spectrum mode with F =0, β = 0.147 (Λ= 1790) and γ = 0.262; only the non-zero
real (Re) and imaginary (Im) parts of the streamwise, wall-normal and spanwise disturbances
u, v and w (denoted by placeholder ui) are shown. (b) Inflow disturbance constructed from
the free-stream vortical mode in (a); white/black: ui = ±2.5; u multiplied by 100.

the wall. The detailed structure of the continuous-spectrum modes was explained by
Zaki & Saha (2009). Here, the real part (Re) of these modes is specified at the inflow
plane ξin ,

uin = Re{û(γ η) ei(αξin+βz−ωt)}, (2.8)

as shown in figure 3(b). Normalizing ω gives the frequency parameter

F =
ω

U 2
∞/ν

× 106. (2.9)

The frequency, amplitude and wavevector of the free-stream disturbance all influence
the amplitude A of the triggered instability, which hence is conveniently normalized
as

Cv(F, β; γ, εv) ≡ Ars (F, β; γ, εv)

εv

. (2.10)

This defines the receptivity coefficient Cv for free-stream vortical modes. The
receptivity amplitude Ars of the excited Görtler mode is evaluated at the inflow
plane, and εv is the inflow amplitude of the modes,

εv =

√
1

3
u2

in . (2.11)

The bar denotes averaging in the spanwise direction and over one wall-normal
wavelength in the free stream. For linear receptivity mechanisms, Cv is constant upon
varying the disturbance amplitude εv .

2.4. Results

2.4.1. Base flow

Figures 4(a) and 4(b) depict the pressure distribution in the flow field over the
plate with radius R∗ =1 m. The radial gradient of the centrifugal force enforces a
wall-normal pressure gradient in the free stream, which relaxes towards ∂p/∂η ≈ 0
inside the boundary layer (inset of figure 4a). In the streamwise direction, the pressure
decreases slowly at the wall while being nearly constant in the free stream (figure 4b).
The Görtler boundary layer grows in thickness at nearly the same rate as the Blasius
boundary layer (figure 4c). Floryan & Saric (1982) demonstrate that the basic state
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number for R∗ =1, 2 and 4 m.

is not affected by surface curvature if Re → ∞. Thus, in the large-Re limit, a Görtler
boundary layer can be approximated by Blasius profiles (see also Boiko et al. 2010,
figure 4a), which justifies our choice of inflow and free-stream boundary conditions.
Figure 4(d) shows the streamwise evolution of the local Görtler number on the plates
with radius R∗ = 1, 2 and 4 m.

2.4.2. Görtler instability

Figure 5 displays the Görtler boundary-layer response (R∗ = 1m) to upstream
localized surface roughness. Longitudinal structures of amplifying positive and
negative streamwise disturbance velocities develop, the spanwise wavelength of
which is constant in the streamwise direction (figure 5a). The cross-stream
velocity components establish a counter-rotating motion of longitudinal vortex
pairs, accompanied by positive and negative streamwise-velocity disturbances in the
downwash and upwash regions between two adjacent vortices (figure 5b). Centrifugal
instability modes are thus made up of pairs of counter-rotating longitudinal vortices
(Görtler rolls) and a pattern of low- and high-speed streamwise disturbances. Farther
downstream, the vortex axes are lifted away from the wall, and the low-speed region
exhibits a highly distorted mushroom-like shape due to strong nonlinear interactions
(figure 5c).

Figure 6(a) depicts the linear spatial evolution of the steady Görtler mode with
wavelength Λ = 250. This mode amplifies the most within our computational domain
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and is referred to as ‘the most unstable mode’ in the following (although other
modes may become more energetic farther downstream). The modal evolution has
been obtained from linearized Navier–Stokes computations with an inflow condition
containing the Görtler mode. The shape of this inflow mode was extracted from a
preliminary simulation of a fully developed Görtler mode and re-scaled in size and
amplitude to match the inflow conditions of the main simulation. This approach was
verified by an additional simulation with a smaller inlet Reynolds number (Reδ�

0
= 74.8

instead of 198.36) in order to clarify the sensitivity of the upstream disturbance
evolution to the inflow conditions. The evolution curves from the auxiliary and
the main simulation are hardly distinguishable in the region of overlap (figure 6a,
inset). Such evolution curves will later be used to extract the receptivity coefficients.
Figure 6(b) shows the streamwise development of steady Görtler modes on three plates
with radius R∗ = 1, 2 and 4 m. When plotted versus Gθ , the evolution curves collapse,
which highlights the role of the Görtler number as the relevant instability parameter.
Figure 6(c) depicts the local growth rates of Görtler modes with various spanwise
wavelengths, calculated by linearized simulations. Except for the largest-wavelength
mode (Λ = 1790) all modes are unstable already at Gθ =3. Far downstream, the
fastest-growing Görtler mode is that with Λ =250 (see Mitsudharmadi, Winoto &
Shah 2004). The modes in the range 160 � Λ � 273 feature similar growth rates,
i.e. there is no pronounced wavelength selection in Görtler boundary layers in this
Λ-regime. For this reason, variations of the upstream conditions in wind-tunnel
experiments led to Görtler modes with different spanwise scales (Swearingen &
Blackwelder 1983). Figure 6(d) shows the local growth rates of Görtler modes with
various frequencies, indicating that Görtler boundary layers are also unstable to
travelling Görtler vortices. In fact, the low-frequency Görtler mode (F =16) amplifies
at nearly the same rate as the most unstable steady Görtler roll.

2.4.3. Receptivity to surface roughness

Figure 7(a) shows the boundary-layer response to a meshed roughness element
placed at ξr = 30.1. The spanwise wavenumber of the roughness is β = 0.546 (Λ = 250)
and the bump height is εr = 0.01δ�

r , where δ�
r is the displacement thickness at ξr .

The roughness-induced perturbation is concentrated in the streamwise component
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Figure 6. Görtler instability. (a) Streamwise evolution of urms , vrms and wrms (wall-normal
maximum of spanwise root-mean-square (r.m.s.) of streamwise, wall-normal and spanwise
velocity) of the most unstable steady mode (β = 0.546; Λ= 250) on a plate with R∗ = 1 m.
(b) Evolution of the most unstable steady mode on plates with R∗ = 1, 2 and 4 m. (c) Local
growth rates of steady Görtler modes versus spanwise wavenumber (symbols from left to right:
Λ= 1790, 975, 453, 273, 250, 210, 160, 122) at three streamwise locations. (d) Local growth
rates of Görtler modes (Λ= 250) versus frequency.

and – after some initial decay – soon evolves into a mode with exponential
amplification. Farther downstream, nonlinear processes cause the saturation of this
mode and the emergence of higher harmonics (figure 7b). Moreover, a spanwise-
independent mean-flow distortion is seen, obtained after a subtraction of the laminar
reference state. This suggests that the original laminar flow is modified due to the
presence of the roughness element.

Variation of roughness width. Figure 8(a) shows the influence of the spanwise roughness
scale on the receptivity coefficient Cr (cf. (2.5)). The receptivity amplitude Ars of the
Görtler mode, defined here as urms , is obtained by matching the evolution of the
mode (e.g. figure 6a) with the response to the roughness element (e.g. figure 7a).
The contribution of the Görtler mode to the total disturbance can then be traced
back to the receptivity site, i.e. the roughness station. We find maximum receptivity for
a spanwise wavenumber of β =0.368 (Λ = 453), which differs from the most unstable
wavenumber (β = 0.546; Λ =250). Farther downstream (Gθ = 5, figure 8b), modes
with smaller scales become dominant owing to their larger growth rates. The largest
amplitude is attained by the Görtler mode with β = 0.614 (Λ = 210), while the most
unstable mode is still somewhat weaker.



Receptivity, instability and breakdown of Görtler flow 373
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nonlinear (nonlin.) computations with meshed roughness (roughn.) and those from linear
simulations (sim.) with the model roughness. (a) Receptivity coefficient versus spanwise
wavenumber. Symbols (from left to right) mark Λ= 1790, 975, 453, 273, 250, 210, 160 and
122. (b) Downstream amplitudes (normalized by εr ) of the Görtler modes at the local Görtler
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Variation of roughness height. Figure 9(a) shows the boundary-layer response to
roughness elements with various heights in the range 0.01δ�

r � εr � 0.4δ�
r . The spanwise

scale and streamwise location of the bumps are Λ =250 and ξr = 30.1, respectively.
In figure 9(b), the receptivity coefficient for meshed roughness is seen to be nearly
constant over the range of roughness heights considered. This indicates that the
receptivity of the Görtler boundary layer is linear in the roughness amplitude even
for high bumps (εr = 40 % δ�

r ). In contrast, Schrader et al. (2009) found in swept-plate
flow that roughness receptivity becomes nonlinear already for bumps with much lower
amplitudes ( ≈ 5 % of δ�

r ).

Linear roughness model. So far, we have only considered the flow response to meshed
wall-roughness elements. Figures 8 and 9 also show results obtained when using
the linear roughness model (see § 2.3.1). This model offers numerical simplicity
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and was therefore used in numerous receptivity studies (e.g. Ng & Crouch 1999;
Schrader et al. 2009). However, figure 8(a) shows that the receptivity coefficients
predicted by linearized Navier–Stokes computations with the linear roughness model
are about 10 % lower than those from nonlinear Navier–Stokes simulations with
meshed roughness. This leads to underprediction of the downstream amplitude of
the Görtler rolls in the linear framework (figure 8b). Figure 9(a) shows that the
failure of the linear roughness model is mainly due to a discrepancy in the transient
region near the bump. In particular, the transient decay at the modelled roughness
is larger than that at the meshed bump. It is remarkable that the difference between
the receptivity coefficients from the nonlinear and the linear calculations does not
increase for higher bumps (figure 9b). The prediction of roughness receptivity can be
improved if the roughness model is combined with nonlinear instead of linearized
Navier–Stokes computations. For bump heights up to 20 % of δ�

r , this leads to a
significantly better prediction of the downstream amplitude of the Görtler mode
(figure 9a) and the receptivity coefficients (figure 9b). We summarize that studies of
Görtler boundary-layer receptivity to wall roughness should use meshed roughness
rather than bump models based on velocity boundary conditions. The limitation of
such models was also pointed out by Cabal et al. (2001) for a study of channel flow
with corrugated walls.

Variation of roughness location. Figure 10(a) shows the evolution of the boundary-
layer disturbance (radius R∗ = 1 m) for roughness elements at four different streamwise
stations. The roughness amplitude is kept constant with respect to the local
displacement thickness (εr = 1 % δ�

r ). We note that the Görtler mode does not
emerge faster when triggered farther downstream, although the flow conditions
become more unstable. This is reflected by a downstream decreasing receptivity
coefficient. Moreover, roughness receptivity decreases when the wall radius is increased
(figure 10b). We demonstrate in figure 10(c) that radius-independent results can be
obtained when scaling the receptivity coefficient by the square root of the local Görtler
number and plotting it versus the local Reynolds number. This finding suggests that
receptivity to localized wall roughness scales as Cr ∝

√
Gθ .
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Variation of roughness shape. Three different roughness elements are considered,
differing in their streamwise length and the steepness of the flanks of the step function
(table 2). The streamwise location and the height of the roughness are kept constant.
Figure 11 shows that the longest (least localized) bump excites Görtler rolls with higher
amplitude than the two shorter bumps. The Görtler boundary layer hence becomes
more receptive when the roughness is less localized in the streamwise direction (cf.
Cr values in table 2). Similarly, Denier et al. (1991) found that streamwise-distributed
wall roughness is more important than isolated roughness elements. It is known that
roughness shape-independent results can be obtained, if the receptivity coefficients are
normalized by the Fourier amplitude of the streamwise roughness shape pertaining
to the unstable mode. An example is given in Schrader et al. (2009) for swept-plate
boundary layers, where the receptivity coefficient is defined as

Cr,alt =
Ars

εrH (αmode)
. (2.12)

The quantity αmode is the streamwise wavenumber of the triggered boundary-layer
mode, and H (αmode) is the Fourier coefficient of the normalized streamwise roughness
contour pertaining to αmode . We tested the validity of (2.12) in Görtler flow, where
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Thick lines show flow response (R∗ = 1 m) to meshed, localized wall roughness with the three
shapes compiled in table 2. Thin lines show evolution of the Görtler mode with Λ= 250.

Bump 1 2 3

ξr 30.1 30.1 30.1
�ξr 18.1 30.1 42.1
�ξrise 9.05 15.05 10.05
�ξf all 9.05 15.05 10.05

Cr (× 10−2) 1.52 2.57 5.51

Table 2. Receptivity coefficients for three bumps (εr = 0.01δ�
r , Λ= 250) with different

streamwise shapes.

the steady Görtler vortices have αmode = 0. It turned out that no shape-independent
value of Cr,alt could be obtained, i.e. the normalization by H (0) is inappropriate
for the present configuration. The inset in figure 11 gives a possible explanation,
showing that the transient disturbances near the roughness are fairly different for
the three bumps considered. These transients are built up by a wide range of modes
with different streamwise scales excited by the roughness elements and play a key
role in the receptivity of Görtler flow to wall roughness. In contrast, Schrader et al.
(2009) showed that ‘wavenumber resonance’ at αmode between the roughness element
and the boundary-layer instability is key of the receptivity mechanism in swept-plate
boundary layers.

2.5. Receptivity to vortical modes

Free-stream vortical modes prescribed at the inflow plane are also able to excite
amplifying boundary-layer disturbances (figure 12a). Rapid non-modal growth of the
streamwise disturbance is seen near the inflow plane, whereas the wall-normal and
spanwise disturbance components initially attain their wall-normal maxima outside
the boundary layer. This type of disturbance, referred to as streak or Klebanoff
mode, also exists in flat-plate boundary layers exposed to free-stream perturbations.
Farther downstream, the three components of the boundary-layer disturbance amplify
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exponentially, indicating the emergence of a modal instability. This mode saturates as
shown in figure 12(b), where a substantial mean-flow modification (β = 0) is also seen.

Comparing figures 12 and 7 yields that the Görtler rolls excited by the steady free-
stream vortical mode attain similar amplitudes as those due to surface roughness
with height εr = 0.01δ�

r , despite the low intensity of the free-stream disturbance
(εv =1.67 × 10−5). This suggests that Görtler boundary layers are highly receptive
to steady free-stream vorticity. The associated receptivity mechanism is linear in the
amplitude of the free-stream forcing (verified by considering different values of εv). It
is evident in figure 12 that the initial transient growth of boundary-layer streaks plays
a crucial role for the initiation of the centrifugal instability. The Görtler mode emerges
from the upstream streaks and becomes dominant farther downstream. The potential
of free-stream disturbances as triggers of centrifugal instability was also pointed out
by Cossu et al. (2000), whose optimal inflow perturbations reached outside the edge
of the boundary layer, hence coupling efficiently to free-stream disturbances.

Variation of wave vector. Receptivity coefficients for free-stream vortices with various
spanwise wavenumbers β are plotted in figure 13(a). The Görtler boundary layer is
most receptive to vortical modes with small values of β . However, because Görtler
rolls with larger β amplify at higher rates (cf. figure 6c), these become dominant
over the small-β modes farther downstream (figure 13b). The dependence of the
receptivity coefficient on the wall-normal wavenumber γ is opposite to that on β ,
where maximum receptivity is obtained for large-γ free-stream modes (figure 13c).
These modes penetrate more deeply into the boundary layer than the small-γ vortical
modes (figure 13d; see also Zaki & Durbin 2005, figure 5); moreover, the coupling
between the Orr–Sommerfeld mode and the associated set of Squire modes is stronger.
This is indicated by |v|U ′

b (figure 13e), where U ′
b is the wall-normal derivative of

the Blasius streamwise-velocity profile. The forcing of Squire modes by the Orr–
Sommerfeld mode is crucial for the amplification of boundary-layer streaks (Zaki &
Durbin 2005), and thus of the Görtler modes. The large-γ free-stream mode also
introduces larger streamwise vorticity into the boundary layer than the small-γ mode
(figure 13f). Streamwise vorticity is key to the lift-up mechanism of streak generation.

It is interesting to compare the receptivity to free-stream vortical modes (figure 13a)
with that to surface roughness (figure 8a). For Görtler rolls with β = 0.546 (Λ = 250),
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Figure 13. Response of the Görtler flow (R∗ = 1 m) to steady free-stream vortical modes
with different wavevectors. (a) Receptivity coefficient versus spanwise wavenumber of the
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b shown in (e) is a measure for
the coupling between the Orr–Sommerfeld mode and the associated set of Squire modes.

for instance, the height of bump 1 (2, 3) must be 2.15 (1.27, 0.59) × 10−2δ∗
r in order to

generate the same amplitude Görtler instability as the steady free-stream mode with
amplitude 1.67 × 10−5U∞. For a meaningful comparison with the free-stream modal
amplitude, the roughness height must be translated into a disturbance velocity. We
use the linear roughness model (2.6) for this purpose and write the roughness-induced

velocity disturbance amplitude as ε̃r =

√
u2

0(ξr )/3 in analogy with (2.11), where u0(ξr )

is obtained from (2.6), ξr is the roughness station and the bar denotes spanwise
averaging. This yields ε̃r = 4.16 (2.46, 1.14) × 10−3U∞ for bump 1 (2, 3), i.e. two
orders-of-magnitude larger values than the free-stream modal amplitude. Steady free-
stream vortical disturbances hence appear to be more likely and efficient triggers of
Görtler rolls than localized wall roughness; in particular, they give rise to significantly
stronger transient growth of steady streaks evolving into the Görtler rolls.

Variation of frequency. Görtler boundary layers are also receptive to unsteady free-
stream vorticity (figure 14a). In that case, the upstream non-modal disturbances
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develop into travelling Görtler modes. The receptivity coefficient is, however, smaller
than that for the steady Görtler mode and drops with increasing frequency, which
explains the downstream dominance of the steady Görtler rolls over the travelling
Görtler vortices (figure 14b). Because the travelling Görtler mode of lowest frequency
(F = 16) is only about 10 % weaker than the steady mode, it may become important
under certain disturbance conditions (see Schultz & Volino 2003 for instance).
Unsteady Görtler vortices have been largely overlooked in the literature, which is
almost entirely devoted to the steady rolls. An exception is the recent experimental
work by Boiko et al. (2010), who considered both quasi-steady and unsteady Görtler
instabilities.

Nonlinear receptivity. In flat-plate boundary layers, there exists a nonlinear receptivity
mechanism to high-frequency free-stream disturbances (Berlin & Henningson
1999). This mechanism consists of two steps, first the nonlinear generation of
streamwise-vorticity modes with zero frequency and doubled spanwise wavenumber
and subsequently the linear formation of streamwise-velocity streaks (Brandt,
Henningson & Ponziani 2002). Here, we investigate by nonlinear DNS whether
nonlinear receptivity is also available in Görtler boundary layers. The inflow
disturbance consists of a pair of continuous-spectrum Orr–Sommerfeld modes with
frequency F and spanwise wavenumbers ±β , thus representing two free-stream waves
with opposite angles of incidence (‘oblique modes’). The wavenumber β chosen
is approximately half the value of the most unstable steady Görtler mode. Two
different forcing frequencies and amplitudes are considered. At the lower frequency
(F = 64), the boundary-layer disturbance is dominated by the fundamental travelling
Görtler vortex due to linear receptivity (figure 15a). A steady Görtler mode with
twice the fundamental spanwise wavenumber and a mean-flow modification (β = 0)
are also seen, but these nonlinear contributions are weaker than the fundamental
mode. The opposite holds if the forcing frequency is doubled (F = 128, figure 15b).
The steady Görtler mode due to nonlinear effects is now dominant, whereas no
unsteady mode emerges. When multiplying the amplitude of the inflow perturbation
by 10 (figure 15c), the steady Görtler vortex attains a 100 times larger amplitude,
indicating a quadratic receptivity mechanism. It is concluded that two competing
unsteady receptivity mechanisms can be at play simultaneously in Görtler boundary
layers (depending on F ): a linear mechanism, exciting a travelling Görtler mode, and
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(Λ=273) versus frequency of the forcing oblique modes.

a nonlinear mechanism, triggering steady Görtler rolls. A threshold of the forcing
amplitude εv can be determined, beyond which the steady Görtler mode attains a
larger amplitude at a fixed streamwise position than the fundamental travelling mode.
For F = 64 and Gθ =9 (ξ = 641), this threshold is εv,thres =2 × 10−3.

Figure 15(d) depicts the receptivity coefficient for the steady Görtler mode (0, 2β0).
Since the receptivity of this mode is quadratic in εv , the correct normalization is

Cnl
v (F, β; γ, εv) =

Ars (F, β; γ, εv)

ε2
v

, (2.13)

where Cnl
v is the coefficient for nonlinear receptivity. Here, Ars is the amplitude

of the (0, 2β0)-mode. The nonlinear receptivity mechanism is most efficient for the
lowest frequency (F = 64), and the coefficient decreases nearly linearly with increasing
frequency. At F = 64, there is also a strong linear receptivity mechanism at work,
producing unsteady Görtler modes (figure 15a). In contrast, linear receptivity is
irrelevant for F � 128 as there exist no unstable travelling Görtler modes. Therefore,
the nonlinear mechanism is expected to be particularly relevant at high frequencies.
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Grid R∗ (m) Φ(deg.) L∗
z(×10−2) (m)

H 1.0 90.0 8.92
I 4.0 22.5 8.92
J Flat plate 8.92

Table 3. Parameters of the FV meshes. R∗ and Φ according to figure 1(a). The number of
grid points in the tangential, wall-normal and spanwise directions is 1025 × 129 × 129 for
all meshes; the total number of points is about 17 million. This corresponds to tangential,
wall-normal and spanwise resolutions of �ξ+ × �η+

w × �z+ = 15.7 × 0.7 × 7.1 in viscous units
at the inflow where �η+

w is the normal spacing at the wall.

We have demonstrated that steady Görtler rolls can be triggered by free-stream
vortical modes both via a linear and a nonlinear receptivity mechanism. Here, we aim
to determine a threshold, above which the steady modes are most likely excited by
the nonlinear mechanism. This threshold is found by evaluating

Cnl
v ε2

v,thres |F = Cvεv,thres , (2.14)

Cv and Cnl
v – the linear and nonlinear receptivity coefficients of the (0, 2β0)-mode –

are extracted from figures 13(a) and 15(d), respectively. Note that the threshold
depends on the frequency of the oblique-mode forcing. Considering F = 64 (128, 256,
384) and steady Görtler rolls with wavelength Λ = 273, we find εv,thres = 7.9 × 10−2

(8.2 × 10−2, 8.8 × 10−2, 9.5 × 10−2). These values are fairly large, suggesting that steady
Görtler rolls are more efficiently excited by linear receptivity to steady vortical inflow
disturbances than by nonlinear receptivity to pairs of unsteady free-stream modes.
However, as discussed above, the linear mechanism is at work only at zero and
low frequencies of the free-stream disturbance, whereas the receptivity in the high-
frequency range is exclusively due to the nonlinear mechanism. Which of the two
receptivity mechanisms would then dominate in a perturbation environment with a
broad frequency spectrum such as free-stream turbulence? This issue will be addressed
in § 3.3.4.

3. Transition due to free-stream turbulence
3.1. Finite volume code and domain

Direct numerical simulations of laminar–turbulent transition in Görtler flow with
free-stream turbulence were performed using a finite volume (FV) algorithm. The
incompressible Navier–Stokes equations are discretized using a local volume flux
formulation on a staggered grid (Rosenfeld, Kwak & Vinokur 1991). The convective
terms are advanced in time by a second-order Adams–Bashforth method. The pressure
and diffusion terms are treated implicitly, using the Euler and the Crank–Nicolson
schemes, respectively. The numerical method was validated and verified in previous
simulations of transition to turbulence in boundary layers, where the amplification
of streaks and their secondary instability must be accurately predicted (e.g. Zaki &
Durbin 2005, 2006). It was also applied in transition studies in turbo-machinery
geometries where curvature effects can be important (Wu & Durbin 2001; Zaki et al.
2010). Table 3 lists the computational meshes used. The physical domain is resolved by
1025 × 129 × 129 grid points in the tangential, wall-normal and spanwise directions,
respectively, which amounts to 17 million points in total. The streamwise resolution
and the wall-normal stretching of the grid are based on the recommendations by
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Jacobs & Durbin (2001) for simulations of bypass transition on flat plates. We
verified the spanwise size and resolution by doubling the span and the number of
spanwise points and found converged results for the values given in table 3. The
grids denoted by H and I are employed for simulations with concave plates of radius
R∗ = 1 and 4 m, respectively. Case J is a comparative simulation with a flat wall,
included here to highlight the effect of wall curvature on the transition location. The
wall-normal size of the inflow plane of the FV meshes corresponds to that of the
SEM grids. The spanwise width and resolution are significantly larger in order to
capture a wide range of disturbance length scales within the computational domain.

3.2. Initial flow field and free-stream turbulence

The initial conditions were obtained by interpolating the base flows from the SEM
simulations onto the meshes for the FV code. The boundary conditions partly differ
from those described in § 2.2. The top boundary is shaped so as to include the Blasius
displacement thickness δ�(ξ ), and a zero-stress condition is prescribed. Convective
outflow conditions are used in order to cope with a fully turbulent outflow.

The oncoming free-stream turbulence is prescribed as an inflow condition
fluctuating in space and time. It is synthesized by a sum of modes,

uin(η, z, t) =
∑

γ

∑
β

∑
ω

û(η; γ, β, ω) ei(βz−ωt), (3.1)

where ω is the angular frequency and γ and β are the wall-normal and spanwise
wavenumbers, respectively. The streamwise dependence αξ , with α being the
streamwise wavenumber, has been replaced via Taylor’s hypothesis by the time
dependence −ωt , assuming a phase speed c = U∞ = 1 of the free-stream waves. The
modal coefficients û ≡ (û, v̂, ŵ) consist of the streamwise, wall-normal and spanwise
components,

û = − 1√
ω2 + β2

(
iω

κ
AΦ ′

OS − βBΦSQ

)
,

v̂ = −
√

ω2 + β2

κ
AΦOS ,

ŵ = − 1√
ω2 + β2

(
iβ

κ
AΦ ′

OS + ωBΦSQ

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

where κ ≡
√

ω2 + γ 2 + β2 is the magnitude of the wavevectors included; ΦOS stands
for the Orr–Sommerfeld continuous-spectrum eigenfunctions, computed as described
in § 2.3.2, and Φ ′

OS denotes the wall-normal derivative of ΦOS . The inflow turbulence
also contains modes from the continuous eigenvalue spectrum of the Squire equation,
denoted by ΦSQ. These are computed in a similar way as the Orr–Sommerfeld
free-stream modes (Jacobs & Durbin 1998). Since the Orr–Sommerfeld and Squire
continuous-spectrum modes incorporate the presence of the wall, they are a suitable
basis to synthesize inflow turbulence downstream of the leading edge of the plate.
The coefficients A and B in (3.2), given in Jacobs & Durbin (1998), contain uniformly
distributed random angles and are weighted according to the von Kármán energy
spectrum of homogeneous isotropic turbulence,

E0(κ) ∝ (κL)4

[1 + (κL)2]17/6
, (3.3)
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Case γ -range (×10−2) β-range (×10−2) ω-range (×10−2) F -range f -range (Hz)

FST1 6.5–103.9 7.4–117.6 7.0–112.3 353.9–5662.8 30.5–488.0
FST2 6.5–103.9 7.4–117.6 1.4–22.5 70.8–1132.6 6.1–97.6
FST3 6.5–103.9 7.4–117.6 0.5–7.5 23.6–377.5 2.0–32.5

Table 4. Wavenumbers and frequencies of three different fields of free-stream turbulence. The
wavenumber and frequency ranges given include 16 modes each. The dimensional frequencies
in the last column are based on the experimental reference of Tandiono et al. (2008).

where L is the turbulent integral length scale. The specific shape of E0 and the
definition of L can also be found in Jacobs & Durbin (2001). The strength of
the free-stream turbulence is set by the turbulent intensity T u. The energy E(κ) of
wavenumber κ is

E(κ) = T u2E0(κ), (3.4)

where E0 is normalized such that
∫ ∞

0
E0(κ) dκ = 3/2 and T u is made dimensionless by

U∞. Here, we consider two values of the turbulent intensity, T u =0.1 % and T u = 1 %,
while keeping the integral length scale constant (L = 5.13δ�

0).
The free-stream turbulence is isotropic only if the same values of ω, γ and β (in

the present reference system) are included in (3.1). The lowest wavenumbers γ and β

are determined by the size of the inflow plane, and hence this also sets a lower bound
ωlow on the frequency. The turbulence field ‘FST1’ listed in table 4 includes similar
ranges of ω, γ and β , i.e. it represents a quasi-isotropic turbulent field. For the other
two cases (‘FST2’ and ‘FST3’), we relax the requirement of isotropy and also include
frequencies ω <ωlow . This avoids prohibitively large computational domains. The
resulting turbulence is nearly isotopic only in cross-stream planes and can be thought
of as a field of low-frequency streamwise-elongated flow structures. In the following,
we use the frequency parameter F rather than the angular frequency ω. Table 4
also lists the corresponding dimensional frequencies pertaining to the experimental
settings of Tandiono et al. (2008, case 1).

3.3. Results

3.3.1. Boundary-layer response to free-stream turbulence

Görtler flow with free-stream turbulence is considered. The wall radius is R∗ = 1 m,
and the turbulent inflow ‘FST1’ (see table 4) is used. This field represents homogeneous
quasi-isotropic free-stream turbulence and shall serve as a reference case here. The
turbulent intensity is T u =1 % and the integral length scale is L = 5.13δ�

0. Figure 16
shows iso-surfaces of negative and positive streamwise disturbance velocities and of
the λ2 vortex identification criterion. Very long streamwise vortices and low- and high-
speed streamwise-velocity streaks with fixed spanwise scales are identified, similar to
those seen in figure 5. This suggests that the present free-stream turbulence mainly
generates steady Görtler modes. Figure 16 also shows that the primary disturbances
soon become susceptive to secondary instabilities in the form of small-scale vortices
on the low-speed streaks. The onset of these secondary vortices is strongly spanwise-
dependent, as was also noticed by Swearingen & Blackwelder (1987). The secondary
instabilities lead to a rapid breakdown of the primary disturbances into smaller
scales.

Figure 17 shows contours of constant instantaneous streamwise velocities in various
cross-stream planes extracted from figure 16. The cross-sections in figure 17(a–e) are at
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Figure 16. Disturbance structures in the transitional region of a Görtler boundary layer
(R∗ = 1 m) subjected to free-stream turbulence (field FST1, see table 4; T u = 1 %, L = 5.13δ�

0).
Iso-surfaces of the streamwise disturbance velocity (blue, u = −0.25; red, u = 0.2) and of the
λ2 vortex criterion (green, λ2 = −5 × 10−4).

the same streamwise positions as those of figure 2(a–e) in Tandiono et al. (2008), and
we also show the same image sections. From top to bottom, the spanwise variations
of the streamwise velocity become more and more pronounced due to the presence of
amplifying boundary-layer streaks. These streaks are fixed in the spanwise direction
(figure 17a–d), i.e. the dominant primary instabilities are stationary. The low-speed
streaks in figure 17(d) feature the characteristic mushroom shape already seen in
figure 5(c). One single mushroom structure is seen to emerge from the two low-speed
streaks marked by the arrows in figures 17(b) and 17(c). This merging of streaks
during the nonlinear stage was also observed in the experiments by Mitsudharmadi,
Winoto & Shah (2005). The mushrooms to the left of figure 17(e) have already broken
down to smaller scales, whereas the midspan structures are still intact. This illustrates
the local nature of the streak breakdown. Far downstream, the primary modes have
vanished (figure 17f), and a small-scale irregular pattern is seen.

The visualizations in figure 17 are in reasonable agreement with those of Tandiono
et al. (2008). However, the flow structures in Tandiono et al. (2008, figure 2a–c)
are more distinct and ‘cleaner’ than those shown here. Tandiono et al. (2008) used
an array of thin vertical wires in order to excite one single Görtler mode with a
fixed wavelength. In contrast, we consider broadband free-stream turbulence and
hence obtain various Görtler modes with different spanwise scales. The average
spanwise wavelength in our simulation is estimated as Λ = 273, which is close to the
value of Λ = 250 considered by Tandiono et al. (2008). The mushroom structures in
figures 17(d) and 17(e) indeed feature similar spanwise and wall-normal length scales
as those of Tandiono et al. (2008, figure 2d, e). However, we observe breakdown of the
mushrooms in figure 17(e), in contrast to Tandiono et al. (2008). We conjecture that
the small-scale free-stream fluctuations required to efficiently trigger the breakdown
were absent in the experiments by Tandiono et al. (2008).

Figure 18 depicts the prevailing frequencies and spanwise wavenumbers of the
boundary-layer disturbance. The same six streamwise locations as in figure 17 are
considered. The temporal-spanwise Fourier amplitudes of the streamwise velocity
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Figure 17. Görtler flow (R∗ =1 m) subjected to free-stream turbulence (field FST1, T u =1%).
Iso-contours of instantaneous streamwise velocity (nine levels ∈ [0.1, 0.9], spacing: 0.1) at
various streamwise positions: (a) ξ = 280.7 (Gθ = 3.7), (b) 376.4 (4.5), (c) 472.2 (5.2), (d) 568.0
(5.9), (e) 663.8 (6.5) and (f) 940.4 (8.3). Positions (a–e) and contour levels correspond to those
of figure 2 in Tandiono et al. (2008); note that only a part of the span of the present domain
is shown. The arrows in (b–d) mark the merging of two adjacent low-speed streaks.
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Figure 19. Görtler boundary layer (R∗ = 1 m) subjected to free-stream turbulence (FST1,
T u = 1 %). (a) Iso-contours of the streamwise velocity at streamwise position ξ =568.0
(Gθ = 5.9; repetition of figure 17d). (b) Isolines of the wall-normal and (c) spanwise derivative
of the streamwise velocity shown in (a). The boundary-layer edge is at δ99 ≈ 12.9. Compare
with figures 5(e) and 6(e) of Tandiono et al. (2008).

shown were evaluated at the wall-normal location of maximum total disturbance
energy. In the pre-transitional boundary layer (figure 18a–d), the disturbance energy
is concentrated on zero or low frequencies. The maximum amplitudes are found
for spanwise wavenumbers around β = 7β0, which yields a dominant wavelength of
Λ =273. An amplification of unsteady disturbances with frequencies around F = 96
is also seen, but these modes are less energetic than the (quasi-)steady contributions.
In figure 18(e), we identify weak fluctuations with F = 1344 and 1536; a third peak
at F = 3104 is not shown here. The corresponding dimensional frequencies (based
on Tandiono et al. 2008, case 1) are f = 115.8, 132.4 and 267.5 Hz, respectively.
These values are in reasonable agreement with experimental observations and
theoretical computations of secondary instabilities and their harmonics. Tandiono
et al. (2008) detected peaks of f = 140, 180 and 280 Hz in their frequency spectra,
while Swearingen & Blackwelder (1987) reported a dominant frequency of secondary
instability of f = 130 Hz. Hall & Horseman (1991) obtained a theoretical value of
f = 110 Hz for the configuration of Swearingen & Blackwelder (1987). The frequencies
and wavenumbers of the primary instabilities are still present in figure 18(e), i.e. not all
Görtler modes have broken down to smaller scales yet (intermittent state). The broad
frequency spectrum seen in figure 18(f) points to a fully turbulent boundary-layer flow.

3.3.2. Secondary instabilities and breakdown

A snapshot of the Görtler flow which undergoes secondary instability is shown in
figure 19, in a cross-flow plane. Iso-contours of the instantaneous streamwise velocity
are plotted in figure 19(a), and its wall-normal and spanwise gradients are shown in
figures 19(b) and 19(c), respectively. The latter two figures highlight regions of intense
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Figure 20. (a) Low-speed streaks in a Görtler boundary layer (R∗ = 1 m) subjected to
free-stream turbulence (FST1, T u = 1 %). Iso-surfaces of uξ = −0.2. (b) Vortical structures

(λ2 = −7.5 × 10−4, light grey) developing on the streaks labelled by ‘1’ and ‘2’ in (a).

wall-normal and spanwise shear and are in good agreement with the results of the
reference experiment by Tandiono et al. (2008, figures 5e and 6e). Local maxima of
∂U/∂η, indicating wall-normal inflection points of the streamwise velocity profiles,
are found at the heads of the mushroom structures near the boundary-layer edge
(δ99 ≈ 12.9); local extrema of ∂U/∂z, marking spanwise inflection points, are seen at
the flanks of the mushrooms. Swearingen & Blackwelder (1987) demonstrated that
these inflection points are the origins of two types of secondary instability, known
as varicose (even) and sinuous (odd) modes. These secondary modes were shown to
destabilize the saturated low-speed Görtler streaks (the mushrooms). In figure 20(a),
we indeed identify two different forms of secondary streak motions – a spanwise
symmetric motion and a spanwise anti-symmetric meandering. The streamwise
wavelengths of these motions are approximately λξ =8 and 33, respectively. This
yields a ratio between λξ and the mean spanwise wavelength of the underlying
Görtler rolls of 0.7 for the symmetric mode and 2.7 for the anti-symmetric mode.
The corresponding ratios obtained from the smoke visualizations of Swearingen &
Blackwelder (1987, figure 14a, c) are 0.8 for the symmetric oscillation and 1.8 for
the meandering. Figure 20(b) highlights typical vortex structures accompanying the
secondary streak motions. The two numbered streaks of figure 20(a) are considered.
The first streak undergoes a symmetric oscillation, which becomes manifest as a
train of horseshoe vortices. The meandering of the second streak is accompanied by
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streamwise-aligned vortices at the flanks of the streaks. Sinuous streak meandering and
varicose horseshoe vortices can also occur in combination, as noticed by Swearingen &
Blackwelder (1987, figure 14b). The dominant secondary instability in the experiments
of Swearingen & Blackwelder (1987) was, though, a purely sinuous mode – owing to
its larger growth rate in comparison to the varicose type (Liu & Domaradzki 1993;
Yu & Liu 1994). However, the sinuous instability does not generally dominate over
the varicose mode. Instead, the type of dominant instability depends on the spanwise
wavenumber of the underlying Görtler vortex-streak system. Li & Malik (1995)
demonstrated by inviscid secondary-instability analysis that the prevailing instability
is of varicose type, if the primary Görtler rolls feature twice the spanwise wavelength of
those in Swearingen & Blackwelder (1987). This finding was experimentally confirmed
by Asai, Minagawa & Nishioka (2002).

3.3.3. Temporal-spanwise averages

The following results were obtained by averaging the flow in the spanwise direction
and time. Note that the nonlinear mean-flow distortion is included in the mean.
Figure 21(a) depicts the streamwise evolution of the Görtler number for plates
with radii R∗ = 1 and 4 m. Two turbulent intensities are considered, T u =0.1 %
and 1 %, and the Görtler numbers of the laminar reference states are also shown.
Transition to turbulence becomes manifest in an increase of the Görtler numbers
beyond their laminar counterparts. Figure 21(b) shows wall-normal mean profiles
of the streamwise velocity at six downstream positions. At ξ = 587, the profile is
highly inflectional due to the action of the Görtler streaks. Farther downstream,
typical turbulent boundary-layer profiles are seen. The shape factor and the wall-
friction coefficient of the boundary layer (figure 21c, d) give a good indication of
the transition region. Note that the upstream deviance of the shape factor from
the Blasius value is due to a limited accuracy of the calculation of Hδθ in the thin
boundary layer near the inlet. As expected, the transition zone is located farther
downstream when the turbulence intensity is reduced and the wall radius is increased;
in the latter case the transitional region also becomes longer. Although the skin
friction follows the Blasius distribution in the laminar region of the Görtler boundary
layer, its level after transition exceeds that of a turbulent flat-plate boundary layer (by
approximately 20 %). This behaviour was also observed by Tandiono et al. (2009),
whose experimental findings are reproduced in figure 21(d). The turbulent skin friction
reported by Schultz & Volino (2003) for a strongly curved Görtler boundary layer
exceeded the flat-plate value by as much as 40 %. Girgis & Liu (2006) proposed
the nonlinear modification of the steady Görtler modes by wavy (sinuous) secondary
instabilities as a possible mechanism of the large skin-friction rise during transition.
Figures 21(c) and 21(d) also indicate that the flat-plate boundary layer – included for
comparison – does not transition to turbulence at all, which highlights the dramatic
effect of wall curvature.

Figure 21(e) shows that the streamwise boundary-layer disturbance velocity
amplifies more rapidly when the wall radius is decreased and the turbulent intensity
is increased. All curves exhibit a significant overshoot beyond the level of fully
turbulent Görtler flow. This behaviour was also observed in flat-plate boundary-
layer experiments with grid turbulence (Fransson, Matsubara & Alfredsson 2005,
figure 10a). Using a logarithmic ordinate (figure 21f) reveals a long region of
exponential amplification in the case of T u = 0.1%. The disturbance growth matches
that of the steady Görtler mode with spanwise wavelength Λ =273, which is the
dominant disturbance scale (cf. § 3.3.1). For a turbulent intensity of T u =1 %, the
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Figure 21. Görtler flow exposed to free-stream turbulence (FST1). (a) Local Görtler number
for different values of R∗ and T u (see legend); dotted lines represent laminar Görtler numbers
for R∗ = 1 and 4 m. (b) Mean profiles (temporal-spanwise average) of the streamwise velocity
at six streamwise positions. (c) Shape factor for various R∗ and T u (see legend); dotted
line represents Blasius value. (d) Skin-friction coefficient; dotted lines denote cf in laminar
and turbulent flat-plate boundary layers. The experimental results by Tandiono et al. (2009,
case 1) are also shown. (e) Effect of R∗ and T u on the downstream evolution of boundary-layer
disturbance. (f) Logarithmic plot of the curves of (e). Thin lines show evolution of the steady
Görtler mode with Λ= 273. Legend in (c) also applies to (d–f).

linear region in the case of R∗ = 1 m is much shorter, whereas no clear linear regime is
seen for R∗ =4 m. This is attributed to an earlier onset of nonlinearity and saturation
of the primary disturbance.



390 L.-U. Schrader, L. Brandt and T. A. Zaki

3.3.4. Receptivity to free-stream turbulence

We have demonstrated in § 2.5 that the receptivity of Görtler boundary layers to
free-stream vortical modes can be linear or nonlinear – depending on the frequency
of the forcing. In order to clarify the relevance of these two mechanisms in Görtler
flow with free-stream turbulence, we now also consider the turbulent fields FST2 and
FST3. These are characterized by lower frequencies of the most energetic turbulent
eddies than those of field FST1 (see table 4). We shall focus on the plate with radius
R∗ = 1 m and consider two values of the turbulent intensity, T u =0.1 % and 1 %. This
hence amounts to six different simulations. When the lowest-frequency field FST3 is
specified at the inflow, the local Görtler number rises above the laminar level farther
upstream than in the presence of fields FST1 and FST2 (figure 22a). This is especially
evident for the lower turbulent intensity (T u =0.1 %). The speed-up of transition
due to fields FST2 and FST3 is also manifested in an upstream shift of the shape-
factor drop and the skin-friction rise as compared with the case FST1 (figure 22b, c).
Transition is seen to terminate farther downstream for field FST2 with T u = 1 % and
farther upstream for FST3 with T u =0.1 %. Moreover, the shape of the cf -curve in
the transitional region differs for the cases FST2 and FST3 from that of case FST1,
suggesting that different modes with different receptivity mechanisms contribute to the
primary instability. This is also evident in the evolution of the streamwise disturbance
(figure 22d, e). In particular, figure 22(e) shows a significant enhancement of upstream
transient growth, if the frequency spectrum of the free-stream turbulence is lowered.
This explains why the Görtler boundary layer is most receptive to the turbulence
field FST3. Large upstream transients are also triggered by turbulence FST2 with
an intermediate frequency spectrum, whereas farther downstream, the boundary-layer
disturbance develops in a similar way as that due to FST1. Lowering the turbulent
frequency spectrum hence causes a change-over from one primary instability type
to another and a speed-up of transition. Figure 22(d) shows that the overshoot
in urms also depends on the frequency spectrum of the free-stream turbulence.
This can be explained by a different energy distribution among the high-frequency
fluctuations, which terminate the growth of the primary disturbances by triggering the
breakdown.

Next, we determine the dominant primary modes and their receptivity to FST1,
FST2 and FST3 (figures 23a,d; 23b,e and 23c,f). For each case, the downstream
evolution of the most energetic steady and unsteady contributions to the boundary-
layer disturbance is shown in terms of the streamwise disturbance amplitude
(temporal-spanwise Fourier transform). The dominant steady disturbance excited
by field FST1 is a Görtler mode with spanwise wavelength Λ = 273 (figure 23a). The
most important unsteady disturbance is a travelling Görtler mode with frequency
F =64 and wavelength Λ = 224, but its amplitude is much lower than that of the
steady Görtler mode. When scaling the curves pertaining to T u =0.1 % such that they
match those for T u = 1 % (figure 23d), we find that the steady Görtler mode scales
as T u2. The underlying receptivity mechanism hence is nonlinear. The amplitude of
the travelling Görtler mode is found to be proportional to T u3 and is thus ascribed
to triad interactions. Being negligible in the present cases, this mode may become
important in an environment of very high turbulent intensity (cf. the experiments by
Schultz & Volino 2003).

The turbulence FST2 (figure 23b) produces a dominant steady mode with larger
spanwise wavelength (Λ = 453) than that excited by FST1. This highlights the
sensitivity of the boundary-layer disturbance to variations of the length and time
scales of the free-stream forcing. The wavelength of the most energetic unsteady
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Figure 22. Görtler flow (R∗ = 1 m) exposed to the free-stream turbulence of types FST1,
FST2 and FST3. (a) Local Görtler number for different turbulent fields and intensities (see
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(c) Skin-friction coefficient; dotted lines: cf in laminar and turbulent flat-plate boundary layer.
(d) Effect of type of turbulence field and T u on downstream evolution of the boundary-layer
disturbance. (e) Logarithmic plot of the curves of (d). Legend in (a) also applies to (b–e).

mode is also Λ =453, and the frequency is F = 72. The transient growth of the
unsteady mode is comparable to that of the steady mode. Both modes scale as
T u2 (figure 23e), indicating quadratic receptivity mechanisms. In the case FST3
(figure 23c), the prevailing unsteady disturbance (F = 48, Λ = 345) undergoes a larger
transient growth than the dominant steady component (Λ = 273). For T u =0.1 %,
the upstream amplitude of the travelling disturbance is significantly larger than that
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Figure 23. Decomposition of the boundary-layer disturbances (R∗ = 1 m) due to free-stream
turbulence (T u =0.1 % and 1 %) into contributions with different frequencies and spanwise
wavenumbers (temporal-spanwise Fourier coefficients). The most energetic steady and unsteady
modes are shown. (a) Response to turbulence field FST1, (b) FST2 and (c) FST3. In (d–f) the
curves of (a–c) pertaining to T u = 0.1 % are scaled to match those for T u = 1 %.

of the steady contribution. These strong travelling modes are responsible for the
significant upstream shift of transition due to turbulence FST3. The amplitude of the
travelling mode is linear in T u, whereas that of the steady Görtler roll is proportional
to T u2 (figure 23f). Linear and quadratic receptivity hence coexist in a turbulent
environment with low frequencies.

To summarize, the receptivity mechanisms of the model problems with free-stream
vortical modes studied in § 2.5 were also found in the case of free-stream turbulence.
Although the receptivity coefficients of the linear mechanism are larger than those of
the nonlinear mechanism, the latter mechanism plays an important role in Görtler flow
with free-stream turbulence. The linear mechanism can only generate unsteady Görtler
modes with low frequencies and is therefore relevant only if the spectrum of the free-
stream turbulence contains enough energy in the low-frequency range. The boundary-
layer receptivity to the low-frequency field FST3 is therefore dominated by the linear
mechanism and produces travelling Görtler vortices, which enhance transition to
turbulence. On the other hand, the receptivity to high-frequency turbulence FST1 is
mainly governed by the nonlinear mechanism and leads to steady Görtler rolls. What
type of receptivity and instability would then prevail in wind-tunnel experiments
with grid turbulence? Kurian & Fransson (2009) investigated the characteristics of
various turbulence grids and measured for the coarsest grid (type E) and the lowest
free-stream velocity (2 m s−1) a longitudinal integral length scale of 35.8 mm. Using
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Taylor’s hypothesis, we obtain a frequency of the most energetic turbulent eddies of
56 Hz. Table 4 reveals that field FST1 best represents such kind of grid turbulence.
This explains why most experimenters (e.g. Swearingen & Blackwelder 1987) only
detected steady Görtler rolls.

4. Conclusions
Boundary-layer flow over concave walls was investigated using spatial DNS. The

boundary layer may be destabilized by centrifugal forces owing to the wall curvature,
and the dominant instability appears as pairs of steady counter-rotating streamwise
vortices, the Görtler rolls. Since alternating positive and negative steady streamwise-
velocity streaks, induced by these rolls, are typically observed in experiments, most
studies in the literature deal exclusively with steady Görtler instability. However,
low-frequency travelling Görtler modes can also attain large amplitudes (see also
Boiko et al. 2010). To study how Görtler vortices are triggered at the wall and from
the free stream, we considered streamwise-localized wall roughness and free-stream
vortical disturbances. Roughness was modelled by smooth step-like surface bumps
with sinusoidal spanwise shapes, prescribed either as a wall deformation (meshed
roughness) or as an inhomogeneous wall boundary condition for the disturbance
velocity (linear roughness model). Free-stream vortical disturbances were modelled
as an inflow condition consisting of modes from the continuous Orr–Sommerfeld
eigenvalue spectrum of Blasius flow. This constitutes a typical receptivity problem
which is best described in terms of receptivity coefficients for the instability modes.
To our knowledge, the present paper reports the first spatial DNS of Görtler flow
used to extract these receptivity coefficients.

The most important results are as follows. The receptivity to wall roughness is linear
in the roughness amplitude even for fairly high bumps (40 % of the local displacement
thickness). Görtler boundary layers are in particular receptive to roughness elements
near the leading edge, while the receptivity decreases significantly farther downstream.
Receptivity to roughness also decreases with increasing wall radius. We propose a
new scaling of the receptivity coefficient, obtained by normalizing the receptivity
amplitude not only by the forcing amplitude but also by the square root of the
local Görtler number. This leads to wall-radius independent receptivity coefficients
and hence allows a comparison of results obtained on walls with different curvature.
We further confirmed that roughness receptivity increases for less localized (‘longer’)
bumps (see e.g. Denier et al. 1991). Longer bumps enhance the transient disturbances
at the roughness site, which in turn trigger the centrifugal instability and feed
the Görtler modes with energy. We also modelled the effect of the roughness by
inhomogeneous boundary conditions of the disturbance (linear roughness model)
and compared the results with those obtained with meshed roughness. Linear
Navier–Stokes computations with the roughness model led to underprediction of the
receptivity coefficients by approximately 10 %, while the roughness model performed
better in nonlinear simulations. We conclude that solutions to the linearized equations
combined with linear roughness models are inaccurate for Görtler boundary layers.
A similar conclusion was drawn by Cabal et al. (2001) for the case of channel flow
with corrugated walls.

Görtler boundary layers are highly receptive to free-stream vortical modes with
zero or low frequency, large spanwise wavelength and small wall-normal wavelength.
These modes penetrate deeply into the shear, introduce significant streamwise vorticity
in the boundary layer and hence efficiently excite boundary-layer streaks by the
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lift-up mechanism. These streaks initiate centrifugal instabilities in the form of steady
or slowly travelling Görtler vortices. The receptivity mechanism is linear, and is
more effective in generating high-amplitude Görtler modes than wall roughness.
Görtler boundary layers are also receptive to pairs of high-frequency free-stream
vortical waves, producing steady Görtler rolls. The associated receptivity mechanism
is quadratic in the amplitude of the free-stream modes. Steady Görtler vortices may
thus originate from linear receptivity to steady free-stream vorticity or from nonlinear
receptivity to high-frequency fluctuations. The linear mechanism is found to be more
efficient than the nonlinear mechanism. In the presence of free-stream turbulence with
a broad frequency spectrum, both receptivity mechanisms may act simultaneously to
initiate the centrifugal instability, as discussed next.

We present a spatial DNS study of Görtler boundary layers subjected to free-stream
turbulence. This type of simulation is reported here for the first time to our knowledge.
The free-stream turbulence was modelled by a sum of Orr–Sommerfeld/Squire
continuous spectrum modes, and three turbulent fields with different frequency
spectra were considered. When high-frequency free-stream fluctuations are prescribed,
the dominant primary boundary-layer instabilities are steady Görtler rolls due to
nonlinear receptivity. Lowering the frequency range of the turbulence leads to an
earlier amplification of the boundary-layer disturbance, which is attributed to
travelling Görtler vortices excited by low-frequency free-stream fluctuations (linear
receptivity). Under these conditions, linear and nonlinear receptivity (travelling and
steady Görtler modes) are competitive. If the turbulent frequency spectrum is low
enough, the travelling modes saturate and break down before the steady Görtler
rolls, leading to a speed-up of transition to turbulence. However, in the wind-tunnel
experiments cited herein, the very-low-frequency free-stream fluctuations required for
this scenario were absent or low in energy. This explains why the prevailing primary
disturbances in those experiments were steady Görtler modes.

While laminar–turbulent boundary-layer transition in Görtler flow occurs farther
upstream than in flat-plate flow subjected to free-stream turbulence, the physical
mechanisms of the breakdown to turbulence are similar. The primary disturbances
first saturate in amplitude and then develop high-frequency secondary instabilities on
the low-speed streaks. We identified two forms of streak instability in our DNS data –
a spanwise anti-symmetric meandering and a spanwise symmetric streak oscillation.
These modes were also observed in experiments (e.g. Swearingen & Blackwelder 1987)
and are known as sinuous and varicose secondary streak instability.
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work. Computer time provided by Imperial College London and the Swedish National
Infrastructure for Computing is gratefully acknowledged. This project is funded by
the Swedish Research Council (VR) and the UK Engineering and Physical Sciences
Research Council. L.-U. S. acknowledges financial support from the foundation Erik
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(3), 316–324.

Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream
turbulence. J. Fluid Mech. 527, 1–25.

Girgis, I. G. & Liu, J. T. C. 2006 Nonlinear mechanics of wavy instability of steady longitudinal
vortices and its effect on skin friction rise in boundary layer flow. Phys. Fluids 18 (024102).

Görtler, H. 1941 Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen
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vortices. Phys. Fluids 20, 094103.

Tandiono, S., Winoto, H. & Shah, D. A. 2009 Wall shear stress in Görtler vortex boundary layer
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