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In single-fluid boundary layers, streaks can amplify at sub-critical Reynolds numbers
and initiate early transition to turbulence. Introducing a wall film of different viscos-
ities can appreciably alter the stability of the base flow and, in particular, the transient
growth of the perturbation streaks. The formalism of seminorms is used to identify
optimal disturbances which maximize the kinetic energy in the two-fluid flow. An
examination of optimal growth over a range of viscosity ratios of the film relative
to the outer flow reveals three distinct regimes of amplification, each associated with
a particular combination of the eigenfunctions. In order to elucidate the underlying
amplification mechanisms, a model problem is formulated: An initial value problem
is solved using an eigenfunction expansion and is used to compute the evolution of
pairs of eigenfunctions. By appropriately selecting the pair, the initial value prob-
lem qualitatively reproduces the temporal evolution of the optimal disturbance, and
provides an unambiguous explanation of the dynamics. Two regimes of transient
growth are attributed to the evolution of the interface mode along with free-stream
vortical modes; the third regime is due to the evolution of the interface and a discrete
mode. The results demonstrate that a lower-viscosity film can effectively reduce the
efficacy of the lift-up mechanism and, as a result, transient growth of disturbances.
However, another mechanism of amplification of wall-normal vorticity arises due to
the deformation of the two-fluid interface and becomes dominant below a critical
viscosity ratio. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940221]

I. INTRODUCTION

Laminar-to-turbulence transition in boundary layers is sensitive to the flow configuration and
environmental conditions. Even in a single-fluid zero-pressure-gradient boundary layer, various
breakdown scenarios are possible.1 One general distinction is between natural and bypass transition:
The former takes place when the background disturbances are weak and proceeds via the ampli-
fication of discrete Tollmien–Schlichting waves and their secondary instability which ultimately
leads to the inception of turbulent spots. Bypass transition, on the other hand, takes place when the
free-stream turbulence level is appreciable. It is characterized by the formation of high-amplitude
boundary-layer streaks and early breakdown to turbulence.2 Recent direct numerical simulations3

have demonstrated that introducing a wall film with a carefully selected viscosity can stabilize the
outer boundary layer and delay bypass transition. The streaks which precede transition onset were
weaker in amplitude than in the single-fluid configuration, and the stabilizing influence of the film
was evident despite the potential that the two-fluid interface introduces new instability mechanisms.
The present study applies linear theory to examine the ability of a wall film with different viscosities

a)Author to whom correspondence should be addressed. Electronic mail: t.zaki@jhu.edu
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to weaken the pre-transitional boundary-layer streaks. This work therefore bridges two strands of
research: instability of two-fluid flows and transient growth analysis in single-fluid boundary layers.

A. Two-fluid modal instabilities

In the context of two-fluid shear flows, research has primarily focused on discrete insta-
bility waves. In addition to the conventional Tollmien–Schlichting waves of the outer flow, three
groups of discrete instability modes have been identified: the “soft” mode,4 “H” mode,5 and the
high-Reynolds-number instability.6 The soft mode was established in the pioneering work by Yih.4

The long-wavelength instability arises from the viscosity mismatch across the two-fluid interface
and can exist at any Reynolds number. However, this mode becomes stable when the lower layer
is thinner and less viscous compared to the upper layer.7,8 Unlike the soft mode, the “H mode”
discovered by Hooper and Boyd5 is unstable independent of the viscosity of the inner fluid. It is a
short wavelength instability and is also due to the viscosity jump at the interface. There is no exper-
imental evidence of this mode since a nominal level of surface tension is sufficient to stabilize this
mechanism.9 The final instability exists at high Reynolds numbers, when the kinematic viscosity of
the wall-bounded fluid is less than that of the upper fluid.6 The wavelength of the instability is on
the order of the film thickness and is unaffected by surface tension. The instability derives energy
largely from the Reynolds stress in the lower fluid and has its origin in a viscous layer near the wall.

Recent studies have examined the spatio-temporal character of these two-fluid instabilities and
their evolution in the non-linear regime. For example, Valluri et al.10 demonstrated that channel
flow with a thin wall-film is convectively unstable and that the amplifying soft mode leads to the
formation of ligaments. On the other hand, the non-linear development of the instability waves
for a thick wall film results in the formation of slug structures.11 A combination of both two-
and three-dimensional instabilities in channel flow can produce ligaments, sheets, or “interfacial
turbulence” in different regions of the parameter space.12 For spatially developing two-fluid flows,
the non-linear parabolized stability equations have been formulated and applied to study intermodal
energy transfer and the distortion to the mean flow.13,14

In the present study, we focus on the stabilizing influence of a wall film on the outer boundary
layer. Exponential instabilities can be avoided at moderate Reynolds numbers and when the wall
film is less viscous with a nominal level of surface tension at the interface. As a result, linear
disturbances can only exhibit transient amplification. Transient growth analyses are well established
in the context of stability of single-fluid boundary layers and have received some attention in the
context of subcritical two-fluid channel flows.15–18 They have also been applied to unstable config-
urations, such as core-annular pipe flow,19 two-fluid mixing layers,20 and round viscous jets.21 The
literature has not, however, addressed the two-fluid boundary-layer configuration which is analyzed
herein.

B. Streaks in single-fluid boundary layers

Bypass transition in single-fluid boundary layers takes place in three major stages: The initial
step is the receptivity of the boundary layer to free-stream disturbances. The second stage, which
is the present focus, is the algebraic amplification of boundary-layer streaks. The final stage is the
sporadic burst of turbulent spots caused by the secondary instabilities of the streaky base flow. The
spots spread as they convect downstream and merge to form the fully turbulent boundary layer.

The extent to which a free-stream vortical disturbance perturbs a single-fluid boundary layer
was examined by Jacobs and Durbin22 and later by Zaki and Saha.23 Asymptotic analyses identified
three important regimes based on the ratio k2

yν/kxτ, where ky is the wall-normal wavenumber of
the vortical mode, kx is its streamwise wavenumber, ν is the viscosity, and τ is the mean shear.23

When k2
yν/kxτ ≪ 1, the boundary layer appears impermeable to free-stream disturbances – an

effect known as “shear sheltering.”24 In the reciprocal limit, k2
yν/kxτ ≫ 1, shear-sheltering is

ineffective and free-stream vortical modes permeate the boundary layer. An intermediate regime,
k2
yν/kxτ ∼ O(1), is characterized by partial penetration of the vortical disturbances inside the shear.
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In the context of a two-fluid boundary layer, it is intuitive to expect that a lower viscosity wall
film would enhance shear-sheltering, since k2

yν/kxτ decreases for lower ν and larger τ near the
wall. However, Zaki and Saha23 demonstrated that this trend is not monotonic: The viscosity of the
wall film must decrease below a critical value in order for sheltering to be enhanced. It is therefore
possible to reduce the boundary layer susceptibility to external forcing using a lower-viscosity film.
Whether the penetrating disturbances will amplify to lower- or higher-levels than their single-fluid
counterpart remains unknown.

Characteristics of boundary-layer streaks have been widely documented based on experi-
ments25–28 and simulations.29–32 Their amplification at subcritical Reynolds numbers can be ex-
plained in terms of transient growth theory, i.e., the temporal or spatial evolution of optimal
disturbances from initial conditions.33–35

The solution of the linear perturbation equations as an initial value problem was proposed
by Ellingsen and Palm.36 They reported the existence of an inviscid, three-dimensional algebraic
instability, which was previously overlooked due to Squire’s transformation. Landahl37 examined
the temporal evolution of general localized perturbations. He predicted that the disturbance kinetic
energy increases indefinitely with time due to the inviscid lift-up mechanism and that the stream-
wise extent of the disturbance grows with time which is consistent with rapid distortion theory.38

The viscous initial value problem was subsequently solved in bounded flows.39,40 In boundary
layers, Zaki and Durbin31 solved the initial value problem as a forced response problem where
the wall-normal vorticity was driven by the wall-normal velocity perturbation. Resonance between
the Orr–Sommerfeld forcing and the homogeneous Squire operator lead to a short time algebraic
amplification of the response, followed by long-time viscous decay.

Butler and Farrell33 computed the optimal initial condition which undergoes maximum tran-
sient amplification in wall-bounded flows. The energy growth is viewed as a result of the non-
normality of the coupled system of the Orr–Sommerfeld and Squire equations.41 The same approach
was adopted in the context of boundary layers. In both the temporal and spatial problems, the
optimal disturbance was a streamwise oriented vortex, and the response is a streamwise elon-
gated streak.34,35,42 The analysis also accurately predicts the spanwise spacing of the streaks to be
on the order of the boundary layer thickness, consistent with observations from experiments and
simulations.28,43

In the present study, the influence of a wall-film of different viscosities on the transient ampli-
fication of disturbances in a boundary layer is investigated. The use of a wall-film as a strategy for
bypass transition delay has recently been assessed by Jung and Zaki.3 Those authors used direct
numerical simulations to demonstrate that boundary layer transition beneath free-stream turbulence
can be shifted significantly downstream using a thin, less-viscous film. The linear analyses pre-
sented herein provide a foundation to explain their observations. A lower viscosity film absorbs the
mean shear and can therefore reduce the transient growth of disturbances in the outer flow. How-
ever, the stronger near-wall shear, and the effectively higher Reynolds number due to the lower vis-
cosity, can enhance transient amplification of disturbances near the wall. In addition, the viscosity
mismatch at the interface can introduce new mechanisms of disturbance growth. Both the optimal
disturbance analysis and the initial value problem are presented and, where new mechanisms of
disturbance amplification arise, they are explained.

This paper is organized into six sections. In Sec. II, the procedure for finding optimal distur-
bances in the two-fluid boundary layer is introduced. Results from the optimal disturbance analysis
are reported in Sec. III. In Sec. IV, an initial value problem describing the evolution of a monochro-
matic disturbance is solved and provides the basis for the discussion for the physical mechanisms of
transient amplification in Sec. V. Finally, conclusions are drawn and key results are summarized in
Sec. VI.

II. THEORETICAL FORMULATION

In this section, a framework is developed to compute optimal, temporal disturbances in two-
fluid boundary layer flows.
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A. Base flow

We consider a thin film of thickness y = δ f (x) sheared by an outer boundary-layer flow. The
two fluids are immiscible and support a viscosity discontinuity across the interface. In the subse-
quent stability analyses, a locally parallel flow is assumed. The base flow is computed from the
large-x similarity solution for two-fluid boundary layers derived by Nelson, Alving, and Joseph.44

In both fluids, the Blasius equation is satisfied,

ν̃α
d3F
dξ3 +

F
2

d2F
dξ2 = 0, (1)

where α = 1 in the top fluid and α = 2 in the wall film. The similarity variable is ξ = y
√

U∞x/ν1,
and the streamwise velocity is U = U∞dξF. The similarity variable is based on properties of the
outer fluid, so that ν̃1 = 1 and ν̃2 = ν2/ν1. The free-stream condition along with no slip at the rigid
wall lead to the boundary conditions on F,

dξF(∞) = 1, F(0) = 0, dξF(0) = 0. (2)

Furthermore, continuity of velocities and stresses is imposed across the interface,

⟦F⟧ = 0, ⟦dξF⟧ = 0, ⟦µ̃αd2
ξF⟧ = 0, (3)

where ⟦•⟧ = (•)+ − (•)− is the jump in a quantity across the two-fluid interface. Throughout, vari-
ables are normalized by the top fluid reference quantities. For example, the Reynolds number is
R = U∞δs f /ν1, and the viscosity ratio is m = µ2/µ1.

Some example velocity profiles are reported in Figure 1. The wall-film thickness is δ f =
0.1δs f , where δs f is the boundary layer 99% thickness for a single-fluid flow at the same Reynolds
number. As the viscosity ratio is reduced, more of the shear is contained in the lower fluid. This is
accompanied by a reduction in the boundary layer thickness.

B. Linear perturbation equations

Small perturbations are superimposed onto the parallel base flow, U = [U(y),0,0]. After invok-
ing a normal modes assumption in the streamwise and spanwise directions, ψ ′(x, t) = ψ(y, t)
exp[i(kxx + kzz)], the disturbance evolution is described by the linearized Navier Stokes equations
in each fluid,

ikxu +
∂v

∂ y
+ ikzw = 0, (4a)

ρ

(
∂u
∂t
+ ikxUu + vU ′

)
= −ikxp + µα

(
∂2u
∂ y2 − k2u

)
, (4b)

ρ

(
∂v

∂t
+ ikxUv

)
= − ∂p

∂ y
+ µα

(
∂2v

∂ y2 − k2v

)
, (4c)

ρ

(
∂w

∂t
+ ikxUw

)
= −ikzp + µα

(
∂2w

∂y2 − k2w

)
. (4d)

FIG. 1. (Left) Solutions to the two-fluid similarity equation, (– – –) µ2= 10µ1, (——) µ2= µ1, (—·—) µ2= 0.2µ1. (Right)
δ99 boundary layer thickness as a fraction of the thickness of a single fluid boundary layer. The film thickness δ f = 0.1δs f .
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The interface between the two fluids is a material surface, and small deformations are described by
the linear kinematic condition,(

∂ f
∂t
+ ikxU f

)
δ(y − δ f ) = vδ(y − δ f ). (5)

Integrated in y , Equation (5) yields the familiar interface evolution equation. The inclusion of the
δ-function is necessary for the definition of certain inner products that appear in the optimization
procedure. In the linear problem, matching conditions for the velocities and stresses are applied at
the mean interface location, y = δ f ,

⟦u⟧ = −⟦U ′⟧ f , ⟦v⟧ = 0, ⟦w⟧ = 0, (6a)
⟦µ �

∂yu + ikxv
�⟧ = −⟦µU ′′⟧ f , ⟦µ �

ikzv + ∂yw
�⟧ = 0, ⟦−p + 2µ∂yv⟧ = σk2 f , (6b)

where σ is the surface tension.
It is convenient to express the perturbation equations in operator form,

∂

∂t
Mφ −Lφ ≡ Aφ = 0, (7)

where φ = [u, v,w,p, f ] is the state vector and the operator A contains the linearized Navier–Stokes
equations. Assuming a time dependence φ(y, t) = φ̂(y) exp(−iωt) leads to the eigenvalue problem,

− iω jMφ̂ j = Lφ̂ j . (8)

C. Seminorm optimization

In optimal growth analyses, a measure of energy must be defined. Earlier studies of two-
fluid flows have incorporated the interface displacement in this measure. For example, Yecko and
Zaleski20 included the potential energy of the interface when computing optimal disturbances in
two-fluid mixing layers. However, in other flow configurations, the choice of norm is often con-
strained by convergence issues,45,46 and tuning factors were introduced to ensure convergence.15,16

This practice can obscure the physical interpretation of the term involving f . However, in the
absence of such a term in the functional, there is no penalty associated with storing infinite “energy”
in f at the initial time, which would lead to unbounded transient growth.

The physical problem at hand, namely, the delay of bypass transition using a wall film, has
the perturbation kinetic energy as a natural choice for the objective functional. In order to opti-
mize for this quantity while avoiding the issues mentioned above, the formalism of seminorms is
adopted.35,47 A seminorm is a functional of the state vector with a non-trivial kernel. Therefore, in
the present setup, the perturbation kinetic energy is one example of a seminorm since the interface
deformation is absent. A complementary seminorm involving only f is used to constrain the initial
interface deformation and allows us to search for initial disturbances which maximize the kinetic
energy.

To formalize these ideas, the following global and local inner products are defined:

⟨ς, ϑ⟩ =
 T

0

 ∞

0
ςϑ dydt, (9a)

(ς, ϑ) =
 ∞

0
ςϑ dy, (9b)

where the bar indicates Hermitian transpose. The optimal disturbance, φo, maximizes the kinetic
energy at some target time, T . The objective functional, a seminorm, can be defined using the local
inner product,

J[φ] = ∥φ∥2
u = (φ,Eφ),

=

 ∞

0
φEφ dy, (10)

where E = diag(ρ, ρ, ρ,0,0). We define the complementary seminorm involving only f as ∥φo∥2
f =

(φo,Fφo) ≡ | fo |2, where F = diag(0,0,0,0, δ(y − δ f )). The interest in boundary layer streaks
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focusses attention on purely vortical initial conditions, so the initial interface deformation is con-
strained to be zero, ∥φo∥2

f = 0. Additionally the optimal disturbance is normalized to unit initial
kinetic energy, ∥φo∥2

u = 1.
Accounting for these constraints, the augmented Lagrangian for the optimization problem is

L[φ,φ†, φo, φ†o,{λ j}] = J[φ(T)]    
(i)

− ⟨φ†, Aφ⟩        
(ii)

− (φ†o, φ(t = 0) − φo)                                  
(iii)

− λu(∥φo∥2
u − 1)                      

(iv)

− λ f ∥φo∥2
f        

(v)

. (11)

The Lagrangian includes the objective functional (i) along with a system of constraints (ii)–(v).
Constraint (ii) ensures the disturbance field satisfies the linear equations for all times, and so the
associated Lagrange multiplier is the adjoint field, φ†(y, t). The third term on the right hand side,
constraint (iii), ensures the initial disturbance is the optimal φ(t = 0) = φo. It is important to note
that, in general, φ†o , φ†(t = 0). Terms (iv) and (v) are seminorm constraints on the initial velocity
and interface deformation, respectively.

Optimal initial conditions that satisfy all constraints are obtained by setting the first variation
of the Lagrangian equal to zero, δL = 0. This procedure is described in detail in Appendix A. The
result is a system of equations which are satisfied by the optimal disturbance. The original system of
constraints is recovered,

Aφ = 0, φo = φ(t = 0), ∥φo∥2
u = 1, ∥φo∥2

f = 0. (12)

Furthermore, the adjoint field is also required to satisfy its own evolution equations for all times,

A†φ† = 0. (13)

The adjoint equations and boundary conditions are presented in Appendix B. The system is closed
with relationships between the forward and adjoint perturbation fields at the initial and target times,

Mφ†(t = T) = 2Eφ(t = T), (14a)
2λuEφ(t = 0) + 2λ fFφ(t = 0) =Mφ†(t = 0). (14b)

Equation (14b) provides the shape of the initial disturbance field and the magnitude is determined
by the seminorm constraints.

The optimal disturbance satisfying this system of constraints is obtained using a simple itera-
tive time-marching procedure, similar to that outlined by Luchini35 and Schmid.48

III. OPTIMAL GROWTH

Growth envelopes for a fixed pair of horizontal wavenumbers are reported in Figure 2 for
various viscosity ratios. The growth envelope, or energy gain, is defined by G(t) = J[φ(t)]. The
figure shows a significant reduction in transient growth over the viscous time scale, t ∼ O(R/k2),
when the film viscosity is reduced. Strikingly, there is also the emergence of a second peak
in G(t) at much longer times. Contrary to the short-time amplification, the second maximum is
enhanced as the viscosity ratio is reduced. It will be shown subsequently that the two peaks are

FIG. 2. Growth envelopes at R = 800 with kx = 0.001, kz = 2. The thick grey line is the single-fluid Blasius solution, (——)
m = 0.6, (– – –) m = 0.4, (—·—) m = 0.3, (· · · · · ·) m = 0.25. The film thickness δ f = 0.1δs f .

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

128.220.253.221 On: Tue, 16 Feb 2016 18:05:28



024108-7 Saha, Page, and Zaki Phys. Fluids 28, 024108 (2016)

FIG. 3. ((a) and (b)) Contours of Gs at R = 800, δ f = 0.1δs f : (a) m = 0.6; contours have a spacing of 5, the maximum
contour level is 100. (b) m = 0.35; contours have a spacing of 5, the maximum contour level is 75. (c) Contours of Gmax at
R = 800, δ f = 0.1δs f , with m = 0.3; contours have a spacing of 5, the maximum contour level is 145.

associated with different physical mechanisms. Note that surface tension is set to zero in Figure 2,
We−1 ≡ σ/ρU2

∞δs f = 0. The influence of finite surface tension is examined in Sec. III A.
Caution should be exercised in the interpretation of the long-time transient growth observed

in Figure 2. Transition mechanisms in boundary layers exposed to free-stream disturbances often
act on shorter time scales and, hence, these long-time scale perturbations might not play a signif-
icant role unless they have appreciable amplitudes ahead of the predicted peak. In addition, over
such long times, the parallel flow assumption becomes increasingly inaccurate, particularly in the
two-fluid configuration since the interface spreading rate differs from the boundary layer in the
outer fluid.44 Therefore we will initially focus our attention on short-time amplification, before
presenting a qualitative discussion of the long-time growth.

The analysis is restricted to the short-time behaviour by stopping the optimization procedure
after the first maximum in G(t) is reached. This first maximum is denoted Gs, while the global
maximum is termed Gmax. In general the two peaks are well separated and this procedure is effec-
tive. Contours of Gs as a function of the horizontal wavenumber vector are reported for two viscos-
ity ratios in Figures 3(a) and 3(b). For the more viscous of the two films, m = 0.6, the optimal struc-
ture is streamwise-independent, kx → 0. This is similar to the single-fluid configuration, although
energy amplification is weakened with the wall-film as seen in Figure 2. This behaviour, namely,
the weakening of the streamwise-independent optimal, is termed “regime 1.” The less viscous film,
m = 0.35, exhibits a further damping of Gs across the entire wavenumber space. However, in this
instance, the optimal disturbance shifts to a finite streamwise wavenumber. We term this finite-kx

optimal “regime 2.”
The influence of film thickness on the maximum short-time growth, Gopt

s ≡ max
kx,kz

Gs, in re-

gimes 1 and 2 is examined in Figure 4. For a given m < 1, the reduction in transient growth is
more pronounced with a thicker wall-film. Note that results for mδs f /δ f < 3 have been omitted

FIG. 4. Influence of film thickness on transient growth in regimes 1 and 2. The thick grey lines indicate the energy
amplification in the optimal streamwise vortex, kx = 0. Black lines correspond to the global optimal on the viscous time
scale. Here (– – –) δ f = 0.05δs f ; (——) δ f = 0.1δs f ; (—·—) δ f = 0.2δs f .
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from Figure 4. Below this value, the growth envelopes no longer possess distinct maxima, and
the long-time amplification cannot be distinguished from Gs. This long-time growth is denoted
“regime 3.” Finally, note that the transition from the streamwise independent regime 1 to regime 2,
which has a finite streamwise wavenumber, is only evident in the thinner films, δ f ∈ [0.05,0.1]δs f .
The optimal for the thicker film, δ f = 0.2δs f , remains at kx = 0 over the range of film viscosities
considered.

The majority of results will examine a single film thickness, δ f = 0.1δs f . This particular choice
is motivated by two main considerations: (i) Of the three film thicknesses in Figure 4, δ f = 0.1δs f
exhibits the strongest reduction in the short-time amplification Gopt

s , approximately 35% relative
to the single-fluid boundary layer. (ii) Both regimes 1 and 2 are evident in the short time optimal
growth Gopt

s when δ f = 0.1δs f .
With the limit on the final time removed, we can examine the long-time amplification

(regime 3). This long-time growth is most pronounced at low viscosity ratios. Accordingly, contours
of Gmax are reported in Figure 3(c) for m = 0.3. In this figure, a small amount of surface tension,
We−1 = 10−6, has been included to stabilize the “H mode,” which becomes unstable for large hori-
zontal wavenumbers. For the lower film viscosity considered in Figure 3(c), the most dangerous
initial disturbance shifts back to very long streamwise lengthscales, kx → 0. This behaviour is
similar to that found in regime 1 at short times. However, the Gmax contours in Figure 3(c) indicate
that the spanwise lengthscale is also increased. In fact, the global optimal has both (kx, kz) → 0
and is not contained within the wavenumber range considered in Figure 3. This limit corresponds
to a mean flow distortion. However, significant amplification is still obtained when kz = O(1), and
attention will be focussed on this region of the parameter space.

A. The effect of surface tension

The influence of finite surface tension on optimal disturbances from each of the three regimes
is examined in Figure 5. In all three cases, surface tension has a damping effect on both the
short- and long-time transient growths. A similar stabilizing effect was reported for two-fluid modal
instabilities.12,49

Surface tension impacts the disturbance evolution through the normal stress jump across the
interface (Equation (6b)), exerting a restoring stress proportional to the interface curvature, −k2.
Its effect on the short-time amplification reflects this dependence: Reduction in the first maximum,
Gs, is most pronounced for the regime with the largest horizontal wavenumber, regime 1. However,
a notable reduction in Gs is only observed for the largest surface tension considered in Figure 5.
Therefore, we do not comment further on its effects in regimes 1 and 2.

The long-time amplification, most pronounced in regime 3, exhibits a much stronger depen-
dence on surface tension despite the much lower horizontal wavenumber. The significant damping
effect of surface tension at long-times merits further discussion and is explained in Sec. V in the
context of the initial value problem solved in Sec. IV.

FIG. 5. Influence of surface tension on growth envelopes in the three regimes. From left to right: Regime 1, m = 0.4,
kx = 0.001, kz = 2; regime 2, m = 0.35, kx = 0.056, kz = 1.54; regime 3, m = 0.3, kx = 0.001, kz = 0.5. Grey lines are
the zero surface tension reference cases, We−1= 0; (——) We−1= 10−6; (– – –) We−1= 10−4; (—·—) We−1= 10−3; (· · · · · ·)
We−1= 10−2.
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IV. A MODEL INITIAL VALUE PROBLEM

The optimal growth analyses have identified three regimes of transient growth in wavenumber
space. While the results indicate the propensity for energy amplification, they do not explain the
underlying mechanism. An understanding is sought by solving the initial value problem which
governs the wall-normal vorticity response to decaying vertical velocity and interface modes. The
solution to the initial value problem will be used in Sec. V to examine the relevant mechanisms
which yield optimal growth.

A. Orr-Sommerfeld and Squire subsystems

We return to the linear perturbation equations in primitive variables (4a)-(4d), which can be
reduced to the Orr-Sommerfeld and Squire equations for the normal velocity, v , and vorticity,
η ≡ ikzu − ikxw, respectively. Orr-Sommerfeld and interface evolution equation (5) together form
an autonomous subsystem,(

∂

∂t
+ ikxU

) (
∂2

∂ y2 − k2
)
v − ikxU ′′v − να

(
∂2

∂ y2 − k2
)2

v = 0, (15a)(
∂ f
∂t
+ ikxU f

)
δ(y − δ f ) = vδ(y − δ f ). (15b)

They are, however, two-way coupled due to the interface jump conditions,

⟦v⟧ = 0, ⟦∂yv⟧ = ikx⟦U ′⟧ f , (16a)
⟦µ (

∂2
y + k2

)
v⟧ = ikx⟦µU ′′⟧ f , ⟦ρ �(∂t + ikxU) ∂yv − ikxU ′v

�
− µ

(
∂2
y − 3k2

)
∂yv⟧ = σk4 f .

(16b)

Meanwhile the Squire equation and the associated jump conditions on the normal-vorticity are

∂η

∂t
+ ikxUη − να

(
∂2

∂ y2 − k2
)
η = −ikzU ′v, (17)

⟦η⟧ = −ikz⟦U ′⟧ f , ⟦µ∂yη⟧ = −ikz⟦µU ′′⟧ f . (18)

In Equations (15)–(18), there is one way coupling from the normal velocity and interface
displacement to the normal vorticity: Squire equation (17) is forced by v , which tilts the mean span-
wise vorticity, and also by f in jump conditions (18). The normal-velocity and interface equations
can therefore be regarded as a homogeneous, autonomous subsystem. Assuming a solution ansatz
[v(y, t), f (t)] = [v̂(y), f̂ ] exp(−iωost) results in an eigenvalue problem for the complex frequency,
ωos,

− iωos
j



(d2
y − k2)v̂ j

δ(y − δ f ) f̂ j


=



ikxU ′′ − (ikxU − να(d2
y − k2))(d2

y − k2) 0
δ(y − δ f ) −ikxUδ(y − δ f )





v̂ j

f̂ j


. (19)

The eigensolutions are denoted Orr-Sommerfeld modes. On the other hand, the Squire dynamics are
regarded as a forced response problem in an approach similar to that adopted by Zaki and Durbin.31

The forcing is a known solution of Orr-Sommerfeld/interface system (19). The relevant eigenvalue
problem is the homogeneous Squire equation,

− iωsq
j η̂

H
j = −ikxU η̂Hj + να(d2

y − k2)η̂Hj . (20)

The homogeneous Squire eigenfunctions do not have an associated vertical velocity or interface
displacement and hence satisfy homogeneous jump conditions at the interface,

⟦η̂Hj ⟧ = 0, ⟦µdyη̂
H
j ⟧ = 0. (21)

In general the two sets of eigenvalues, {ωos} and {ωsq}, each consist of a finite number of
discrete modes and a continuous branch. The continuous spectrum modes are oscillatory in the free
stream and are characterized by a wall-normal wavenumber ky. An example eigenvalue spectrum of
the (v, f ) subsystem is reported in Figure 6. There is an interface mode along with the continuous
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FIG. 6. Eigenvalue spectrum and example eigenfunctions of the (v, f ) subsystem. (Left) Eigenvalue spectrum with kx =

0.001, kz = π, R = 800, m = 0.3, δ f = 0.1δs f . (Centre) Interface mode, ω = 3.6×10−4− (3.5×10−7)i. (Right) Continuous
mode, ω = 0.001−0.026i. Grey line is the absolute value, (——) real, (– – –) imaginary component.

spectrum. Figure 6 also shows eigenfunctions of the interface mode and a continuous mode. The
interface mode has a normal velocity component much smaller than the continuous mode. This
observation is important in understanding the evolution of the normal velocity response in the
two-fluid boundary layer.

The transient normal-vorticity response is now obtained by forcing the Squire equation with
a single O-S mode. The forcing mode, [v(y, t), f (t)] = [v̂(y), f̂ ] exp(−iωζt), is labelled ωζ, where
ζ = n corresponds to a mode from the discrete spectrum, whilst ζ = k̃y is a continuous mode with
wall-normal wavenumber k̃y.

B. Solution to the Squire initial value problem

A solution to the forced Squire equation for a single fluid boundary layer was presented by Zaki
and Durbin.31 They expressed the solution η(y, t) to Equation (17) as an eigenfunction expansion
in terms of homogeneous Squire modes (20). In their case, the modes satisfy all the boundary
conditions and are straightforward to adopt. In the two-fluid problem, the homogeneous Squire
modes are continuous across interface (21). However, in forced response problem (17), η(y, t) must
satisfy jump conditions (18). As a result, directly expanding η(y, t) in terms of the homogeneous
Squire eigenfunctions is not ideal.

Instead of η, we solve for a surrogate function, Ψ, which is continuous,

Ψ(y, t) = η(y, t) + ikzU ′ f (t)g(y), (22)

and satisfies the jump conditions implicitly. The function g(y) must be continuous and differ-
entiable over the interval [0,∞) in order for Ψ to be continuous and for η to satisfy the inter-
facial jump conditions. Moreover g(y) should equal unity at the interface and zero at the wall.
The choice of g(y) does not affect the results and any g(y) which satisfies the above criteria
can serve the purpose of solving the initial value problem. In our particular case, we define
g(y) ≡ (y/δ f ) exp[(δ f − y)/δs f ]. Thus the interfacial boundary conditions on Ψ are identical to
those on homogeneous Squire modes (21) and Ψ can be conveniently expanded in terms of the
homogeneous Squire eigenfunctions. Substitution into Squire equation (17) yields the evolution
equation,

∂Ψ

∂t
+ ikxUΨ − να

(
∂2

∂ y2 − k2
)
Ψ = Fe−iωζt, (23)

where the forcing term due to an O-S mode, v̂(y) exp(−iωζt), is given by

F = −ikz


U ′

�
v̂(y) − v̂(yf )g(y)� + να

(
∂2

∂ y2 − k2
)
(U ′g(y)) f̂


.

Following Zaki and Durbin,31 we expand Ψ in terms of the homogeneous Squire eigenfunctions,

Ψ(y, t) =
N
n=1

bn(t)η̂Hn (y) +

ky

bky(t)η̂Hky(y)dky. (24)
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The expansion is substituted into Equation (23) and the amplitude coefficients, bn(t) and bky(t), are
derived using the biorthogonality of η̂Hj (y) and their adjoints η̂H†j (y) (see Appendix B). Finally, one
obtains

bn(t) = bn(0)e−iωnt − (η̂H†n , ρF)
(

e−iωζt − e−iωnt

iωζ − iωn

)
, (25a)

bky(t) = bky(0)e−iωky t − (η̂H†
ky
, ρF) *

,

e−iωζt − e−iωky t

iωζ − iωky

+
-
, ky , k̃y, ωky , ωζ, (25b)

bky(t) = bky(0)e−iωky t − (η̂H†
ky
, ρF) te−iωζt, ky = k̃y, ωky = ωζ, (25c)

where bn(t) are the amplitudes of the discrete modes and bky(t) are the amplitudes of the continuous
modes. Note that the solution differentiates two cases: When the continuous Squire mode matches
the forcing, resonance must be taken into account (25c). This behavior emerges because the eigen-
spectra of the Orr-Sommerfeld and Squire operators have overlapping continuous branches. Finally,
the normal vorticity η is obtained from Ψ using Equation (22).

V. MECHANICS OF ENERGY AMPLIFICATION

In this section, the solution of the initial value problem is invoked to explain the three re-
gimes of energy amplification identified in the optimal growth analysis in Sec. III. We find that
all three behaviours can be reproduced by forcing the Squire equation with an appropriate pair of
Orr-Sommerfeld modes. The approach therefore provides a physical interpretation of each of the
three regimes.

A. Regime 1: Damping of streamwise streaks

The first mechanism of transient growth identified in the optimization was the amplification
of streamwise-independent structures. It was observed that a less-viscous wall film weakens the
kinetic energy growth relative to the single fluid problem. An example growth envelope for this
regime, along with the optimal disturbance field and its response is shown in Figure 7. The dura-
tion of the time integration has been extended to include the second peak in the growth envelope.
The optimal disturbance is a row of counter-rotating streamwise vortices, while the response is
a row of high- and low-speed streaks in the streamwise velocity. This behavior is familiar from
the single-fluid problem:33 the location of streamwise velocity maxima and minima coincide with
regions of downwelling and upwelling by the vortices, which is consistent with the dominance of
the lift-up mechanism. In addition, the interface location at the time of maximum amplification has
been overlayed on the optimal disturbance field. It is significantly deformed from its initially flat
configuration.

FIG. 7. (Left) Optimal growth envelopes for single fluid boundary layer (grey) and for a two-fluid boundary layer in regime
1 (black): R = 800, δ f = 0.1δs f , m = 0.4, kx = 0.001, kz = 2. (Right) the optimal disturbance field, (vo, wo), and response,
u(T ) (contours) and f (T ) (white line), at the time of maximum amplification. The interface displacement has been normalized
such that the maximum value is 0.05. Contours of u(T ) are from −10 to 10, with a spacing of 1 in the outer fluid, 5 in the
wall film.
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We now outline a procedure to use the solution of the initial value problem to examine the trend
in regime 1. The same methodology will be subsequently applied to the other regimes. First, the
optimal disturbance leading to maximum amplification, φo(y), is written as a truncated expansion
in the basis eigenfunctions (see Equation (8)),

φo(y) ≈
N
j=1

D j φ̂ j(y), (26)

where D j = (φ̂†j,Mφo) due to the biorthogonality relationship with the adjoint eigenfunctions
(Appendix B). Since the optimal initial disturbance is primarily streamwise independent, it is nearly
devoid of wall-normal vorticity, η. Therefore, we focus on the projection of the initial condition on
the Orr-Sommerfeld spectrum. This projection will guide the selection of modes for the solution of
the initial value problem.

In Figure 8, the amplitudes of the Orr-Sommerfeld modes are reported for an optimal initial
disturbance in regime 1. The main contribution is due to continuous modes with decay rates
ωi ∼ −10−2. Therefore, we seek to mimic the optimal disturbance evolution by forcing the Squire
operator with an Orr-Sommerfeld eigenfunction representative of these high amplitude modes. The
continuous modes have the dispersion relation,

ω = kxU∞ − iν1

(
k2
x + k2

y + k2
z

)
. (27)

The decay rate is set by the viscosity of the outer fluid, so the response can be meaningfully
compared across a range of viscosity ratios, m, with a fixed wall-normal wavenumber, ky. The most
energetic mode ωi = −10−2 has ky = 2 for kx = 0.001, kz = 2.

Note that the Orr-Sommerfeld mode has an associated interface deformation and a particular
normal vorticity. This is undesirable since setting the initial normal vorticity to zero violates the
interfacial matching conditions. Furthermore, the optimal disturbance has f (t = 0) = 0. In order to
nullify the interface deformation at t = 0 the interface mode is added to the initial condition, so that
the initial disturbance takes the form



v(y, t)
f (t)


= Ak̃y



v̂k̃y
f̂ k̃y


e−iωk̃y

t
+ Aint



v̂int

f̂ int


e−iωintt, (28)

where Ak̃y
f̂ k̃y + Aint f̂ int = 0. The initial vortical disturbance (not shown) is largely unaffected by the

addition of the interface mode, since |Aintv̂int| ≪ |Ak̃y
v̂k̃y |, as was remarked with respect to Figure 6.

Due to the lack of initial interface displacement, initial condition (28) satisfies the jump conditions
at the interface.

The response due to this initial disturbance is reported in Figure 9 for a range of viscosity
ratios, m. Since the response is contained with the shear, the calculation of the kinetic energy is

FIG. 8. (Left) Orr-Sommerfeld eigenvalue spectrum corresponding to the parameters in Figure 7, m = 0.4. (Right) Amplitude
coefficients for the optimal disturbance. The two modes selected for the model initial value problem are highlighted by the
larger dark grey circles.
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FIG. 9. Solution of the model problem in regime 1. (Left) Kinetic energy inside the boundary layer, grey line is the single fluid
solution, “——” m = 0.6, “– – –” m = 0.4, “—·—” m = 0.3, “· · · · · ·” m = 0.25. (Right) Evolution of the streamwise velocity
field and interface displacement at a particular z location for m = 0.4. Top panel shows contours of R[u(y, t)exp(ikzz)],
i.e., at x = 0. The contour spacing is 2; the white line is the interface displacement, which has been given a maximum
amplitude | f |max= 0.1. The spanwise location is indicated by the dashed line in the bottom panel, which shows contours of
R[ f (t)exp(ikxx+ ikzz)].

limited to the boundary layer thickness,

Eb(t) = ρL
δ99

 δ99

0
|u|2 + |v |2 + |w |2dy, (29)

where L is the height of the computational domain and is normalized by the initial disturbance
energy (Equation (10)). The kinetic energy evolution shown in Figure 9 qualitatively agrees with the
growth envelopes in Figure 2. Namely, the model problem captures the two peaks, their dependence
on m and the time of maximum amplification.

In the right panel of Figure 9, the disturbance evolution is shown explicitly for one viscosity
ratio, m = 0.4. The spanwise location was chosen to coincide with the centre of a negative streak.
The initial vertical velocity disturbance inside the boundary layer causes an interface distortion and
leads to the formation of streaks through the lift-up mechanism. Once the streaks have decayed
above the film, the interface remains displaced, but the slower decay of u in the lower fluid means
that a velocity disturbance of opposite sign is generated at y > δ f and remains at long time.

This behavior can be explained through examination of the two eigenfunctions that form the
initial condition. The amplitudes of the two modes were chosen such that the interface displace-
ment is zero at t = 0. However, this cancellation is no longer maintained at later times since the
continuous Orr-Sommerfeld mode decays much faster than the interfacial mode. Indeed, the streak
in Figure 9 can be attributed to the continuous mode, while the existence of an appreciable |u| at
long times is due to the interface mode, which has an associated jump in normal vorticity (18). Our
interest here is on the weakened streaks, and we will return to the long-time effects in more detail in
the discussion of regime 3.

In the model initial value problem, the damped streaks grow on an inertial time scale and are
described by the flow response to the decaying continuous mode. A small viscosity in the wall-film
absorbs the majority of the base-flow shear close to the wall, while weakening the velocity gradient
in the outer fluid. As a result, the effectiveness of the lift-up mechanism is enhanced in the film
and weakened in the outer boundary layer. This competition between the two fluids is captured
in Figure 10 where the lift-up term in the streamwise momentum equation has been integrated in
the wall-normal direction. An examination of the relative contributions of the outer fluid and the
wall-film for δ f = 0.1δs f reveals that lift-up is suppressed in the former but enhanced in the latter,
as expected. In this instance, the weak v near the wall means that the contribution of the outer
fluid is more effective, and lift-up is monotonically decreasing as the film viscosity is reduced. For
thicker films, the further weakening of the mean shear in the outer fluid for a given m results in
a further reduction in lift-up when m < 1, in agreement with the trend in Gmax

s seen in Figure 4.
However, this trend is not maintained as m → 0, reflecting the increasing contribution of the strong
shear in the wall-film.
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FIG. 10. Lift-up term,
 ∞

0 | v̂U ′|dy, as a function of the viscosity ratio m. (Left) Film thickness δ f = 0.1δs f . Grey
lines identifies

 ∞
0 | v̂U ′|dy, while the black lines are the same integral evaluated in the film (– – –) and in the top fluid

(——). (Right) The integral
 ∞

0 | v̂U ′|dy as a function of film thickness; (– – –) δ f = 0.05δs f ; (——) δ f = 0.1δs f ; (—·—)
δ f = 0.2δs f . The eigenfunction, v̂, belongs to the continuous spectrum, kx = 0.001, ky = 2, kz = 2.

B. Regime 2: Transient growth due to discrete modes

In regime 2, the optimal disturbance shifts to non-zero kx (see Sec. III). An example growth
envelope for this regime is reported in Figure 11. Unlike regime 1, there is no amplification at long
times. An example optimal disturbance and response at the time of maximum amplification are also
shown in the figure. The disturbance is distinct from the streamwise oriented vortex discussed in
connection with regime 1. However, the regions of high streamwise velocity fluctuations coincide
with locations where the initial normal velocity perturbation is large. This indicates that amplifica-
tion remains primarily due to the lift-up mechanism. The interface is also significantly deformed at
the time of maximum amplification, similar to regime 1.

The optimal disturbance is again projected onto the linear stability eigenmodes. An example Orr-
Sommerfeld eigenvalue spectrum is shown in Figure 12 alongside the corresponding amplitude coeffi-
cients. Along with the interface mode, the eigenfunctions include a stable Tollmien–Schlichting wave.
This discrete mode has an amplitude an order of magnitude larger than any other eigenfunction.

Motivated by this observation, we mimic the optimal disturbance evolution by constructing an
initial condition using one discrete O-S mode and the interface mode. The amplitude of the latter is
chosen such that f (t = 0) = 0. Examples of the bimodal evolution in this regime for various values
of the viscosity ratio, m, are provided in Figure 13. The solution to the model problem qualitatively
captures the optimal growth behaviour, in particular the time of maximum amplification, but under-
predicts the amplitude. An example disturbance evolution is provided in the right panel of Figure 13.
Streaks grow and decay several times due to the finite frequency of the discrete mode which deter-
mines the phase speed in x and z for the resulting streaks. Again, the discontinuity in the streaks at
the interface forces an interface deformation which is also shown in Figure 13.

FIG. 11. (Left) Growth envelope for a two-fluid boundary layer in regime 2: R = 800, δ f = 0.1δs f , m = 0.35, kx = 0.056,
kz = 1.54; the grey line is the single-fluid solution. (Right) the optimal disturbance field, (vo, wo), and response, u(T )
(contours) and f (T ) (white line), at the time of maximum amplification. The interface displacement has been normalized
such that the maximum value is 0.05. Contours of u(T ) are from −10 to 10, with a spacing of 1 in the outer fluid, 5 in the
wall film.
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FIG. 12. (Left) Orr-Sommerfeld eigenvalue spectrum corresponding to the parameters in Figure 11, m = 0.35. (Right)
Amplitude coefficients for the optimal disturbance. The two modes selected for the model initial value problem are
highlighted by the larger dark grey circles.

C. Regime 3: Long-time amplification due to the interface mode

Finally we consider the long-time amplification, or regime 3. An example growth envelope for
this regime is reported in Figure 14 alongside the optimal disturbance field. The curve G(t) shows a
similar trend to that seen in regime 1, although the second peak is much stronger. This indicates the
dominance of the contribution by the interface. The mechanism was alluded to briefly in the discussion
of regime 1 and is considered here in more detail. The occurrence of the second peak at very long
times suggests that it is less relevant to transitional flows where the earlier growth mechanisms are
likely to dominate. However, the sharp rise in the energy curve towards the second peak starts much
earlier and can therefore be of interest.

The optimal disturbance and response shown in Figure 14 are unfamiliar—The spanwise and
wall-normal lengthscales are much larger than those associated with the streamwise vortex of regime
1. Furthermore, the maxima/minima in the streamwise velocity do not coincide with regions of high
|vo |, which suggests that lift-up does not play a key role at such long times. Rather, the wall-normal
location of |u|max is on the interface itself.

The amplitudes of the basis Orr-Sommerfeld modes in the optimal disturbance are reported in
Figure 15. The eigenvalue spectrum contains only an interface mode and the continuous spectrum,
similar to regime 1. However, the continuous spectrum modes with the largest amplitude have a decay
rate an order of magnitude smaller than in regime 1, ωi ∼ −10−3. This indicates the dominance of
large scales, since ωi ∝ k2

y, and is consistent with observations of Figure 14.
The interface mode and a continuous mode with decay rateωi = −0.002 are used to construct the

initial disturbance for the model problem. The continuous mode produces a streak, while the interface
mode is responsible for the amplification at long times. Example energy evolutions are shown in

FIG. 13. Solution of the model problem for regime 2, R = 800, δ f = 0.1δs f , kx = 0.056, kz = 1.54. (Left) Kinetic energy
evolution, grey line is the single fluid solution, “——” m = 0.6, “– – –” m = 0.4, “—·—” m = 0.35. (Right) Evolution of
the streamwise velocity field and interface displacement at a particular z location for m = 0.35. Top panel shows contours
of R[u(y, t)exp(ikzz)], i.e., at x = 0. The contour spacing is 1; the white line is the interface displacement, which has been
given a maximum amplitude | f |max= 0.1. The spanwise location is indicated by the dashed line in the bottom panel, which
shows contours of R[ f (t)exp(ikxx+ ikzz)].
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FIG. 14. (Left) Growth envelope for a two-fluid boundary layer in regime 3: R = 800, δ f = 0.1δs f , m = 0.3, kx = 0.001,
kz = 0.5. (Right) the optimal disturbance field, (vo, wo), and response, u(T ) (contours) and f (T ) (white line), at the time of
maximum amplification. The interface displacement has been normalized such that the maximum value is 0.05. Contours of
u(T ) are from −13 to 13 with a spacing of 1.

the left panel of Figure 16. Good agreement between the solution of the model problem (Figure 16)
and the growth envelope (Figure 14) is observed. The energy growth at long time is enhanced as the
viscosity ratio is reduced, while the strength of the first peak decreases.

A disturbance evolution for m = 0.3 is displayed in the right panel of Figure 16. Just as in regime
1, there is an initial streak generated by the decaying continuous mode. The long-time growth resulting
from the perturbed interface is significantly more pronounced. The low frequency of the interface
mode (for m = 0.3, ωr ≈ 0.0004) and the associated phase speed are captured in the figure which
spans a very long time period.

The enhanced amplification at lower film viscosities due to the interface deformation mechanism
can be explained by the jump in u across the interface, ⟦u⟧ = −⟦U ′⟧ f . Rewriting the difference in U ′

in terms of m, we obtain

⟦u⟧ =
(

1 − m
m

)
U ′1(δ f ) f . (30)

This equation is proportional to 1/m for small m. Reducing the viscosity of the film enhances the
jump in the mean shear, which means that a larger u fluctuation is required for a given f . In Figure 17,
the energy associated with the interface mode for a fixed f̂ = 1 and a fixed horizontal wavenumber
is plotted as a function of m. The energy behaves as [(1 − m)U ′+/m]2; it is determined by the jump
in streamwise velocity (30). This trend is established because the velocity field associated with the
interface mode is due purely to an interface displacement. The interface mode is also slowly decaying
compared to the viscous decay rate across the range of viscosities considered.

The optimal growth analyses in Sec. III demonstrated that the significant growth in regime 3 can
be suppressed by finite surface tension, and we now briefly examine this effect in the context of the
initial value problem. The long-time amplification has been attributed above to a slowly decaying
interface mode. The initial amplitude of this mode was selected such that there was no initial interface

FIG. 15. (Left) Orr-Sommerfeld eigenvalue spectrum corresponding to the parameters in Figure 14, m = 0.3. (Right) Am-
plitude coefficients for the optimal disturbance. The two modes selected for the model initial value problem are highlighted
by the larger dark grey circles.
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deformation, and thus surface tension influences the long-time evolution in three ways: (i) Modifying
the interface deformation associated with the continuous mode, which controls the interface ampli-
tude once the inertial streaks have decayed (see Equation (28)); (ii) altering the kinetic energy of the
interface mode for a given f̂ ; and (iii) changing the decay rate of the interface mode.

The three effects described above are examined in Figure 18 for a particular viscosity ratio,
m = 0.3, and with varying surface tension. The interface displacement associated with the continuous
mode and the kinetic energy density of the interface mode increase with stronger surface tension.
Both effects thus favour an increase in the growth envelope. The weakened long-time growth can
therefore be attributed solely to the decay rate of the interface mode, which becomes more rapid as
the level of surface tension is increased.

FIG. 16. Solution of the model problem for regime 3, R = 800, δ f = 0.1δs f , kx = 0.001, kz = 0.5. (Left) Kinetic energy
evolution, grey line is the single fluid solution, “——” m = 0.3, “– – –” m = 0.25, “—·—” m = 0.2. (Right) Evolution of
the streamwise velocity field and interface displacement at a particular z location for m = 0.3. Top panel shows contours of
R[u(y, t)exp(ikzz)], i.e., at x = 0. The contour spacing is 1; the white line is the interface displacement, which has been
given a maximum amplitude | f |max= 0.1. The spanwise location is indicated by the dashed line in the bottom panel, which
shows contours of R[ f (t)exp(ikxx+ ikzz)].

FIG. 17. (Left) Energy of the interface mode for a fixed | f̂ | = 1 as a function of the viscosity ratio, m, with kx = 0.001,
kz = 0.5, R = 800, δ f = 0.1δs f . Dashed line is the quantity [(1−m)U ′+/m]2. (Right) Complex frequency of the interface
mode with varying m, the direction of decreasing m is indicated by the arrow.

FIG. 18. Impact of surface tension in the model initial value problem. From left to right: Interface displacement of the
continuous mode; kinetic energy in the interface mode for a unit displacement, | f̂ | = 1; decay rate of the interface mode. Here
R = 800, kx = 0.001, kz = 0.5, m = 0.3.
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VI. CONCLUSION

The temporal amplification of linear perturbations in a boundary layer above a less-viscous wall-
film was examined. An optimization procedure using seminorms was employed to find the most
dangerous initial conditions. Results of these transient growth calculations revealed three regimes of
optimal disturbance. In order to explain the mechanics behind each of the regimes, an initial value
problem for the normal-vorticity response to a decaying vertical velocity mode was solved. The solu-
tion provided insight into the three regimes: each of the behaviors could be replicated by forcing the
normal vorticity equation with just two modes.

Regime 1 was the classical streamwise-independent vortex and was initially dominant as m < 1.
Energy growth was damped by the wall-film. The energy amplification was captured in the initial
value problem by forcing the normal vorticity equation with a continuous and the interface modes. It
was observed that the effectiveness of lift-up was weakened by the redistribution of the mean shear into
the film. The interface mode resulted in a second, weaker peak in the energy at longer times. Regime
2, which is also associated with amplification on the inertial time scale, appeared when m ≤ 0.35 for
δ f = 0.1δs f and had finite streamwise wavenumber. Disturbance amplification in this regime was due
to the influence of a stable Tollmien–Schlichting wave.

Extension of the optimization time to much longer horizons led to the identification of
regime 3. Like regime 1, the optimal in this instance retained streamwise independence. Physically,
the long-time growth derives from the fact that the jump in streamwise velocity perturbation caused
by the interface displacement becomes stronger as the film viscosity is reduced. As a result, a larger
u is established for a given f . The kinetic energy amplification is damped by surface tension, and
the very long time scale of this regime suggests that it will most commonly be preceded by faster
instability mechanisms. However, it highlights the possibility for the interface displacement mecha-
nism to contribute to disturbance growth since the amplification process commences long before the
optimal time.

The results presented provide an explanation of the mechanism by which a wall film can delay
transition in boundary layers beneath free-stream turbulence and complement recent non-linear simu-
lations.3 A judicious choice of the film viscosity can significantly weaken the amplification of bound-
ary layer streaks, while avoiding any interfacial instabilities. Weaker streak distortions reduce the
likelihood of secondary instability50,51 and hence delay transition to turbulence. The present study
focussed on linear, temporal amplification in parallel flow. Future studies should consider the influ-
ence of a spatially developing mean flow, as well as the influence of additional effects, such as density
stratification.

APPENDIX A: DETAILS OF THE OPTIMIZATION PROBLEM

The augmented Lagrangian for the optimization problem defined in the text is (cf.
Equation (11)),

L[φ,φ†, φo, φ†o,{λ j}] = J[φ(T)] − ⟨φ†, Aφ⟩ − (φ†o, φ(t = 0) − φo) − λu(∥φo∥2
u − 1) − λ f ∥φo∥2

f .

(A1)

Initial disturbances devoid of an interface displacement which maximize the kinetic energy at the
target time T are found by setting the first variation to zero,

δL =

δL
δφ
, δφ


          

(a)

+


δL
δφ†

, δφ†


              
(b)

+

(
δL
δφo

, δφo

)
                

(c)

+

(
δL

δφ†o
, δφ†o

)
                

(d)

+

j

δL
δλ j

δλ j                
(e)

= 0. (A2)

Each term must independently vanish. Term (a) is considered first,

δL
δφ
= 2Eφ(T) − δ

δφ
⟨φ†, Aφ⟩ − φ†o = 0. (A3)
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To compute the remaining gradient in the expression above, the definition of the adjoint is used,

⟨φ†, Aφ⟩ = ⟨A†φ†, φ⟩ + B, (A4)

where B denotes boundary terms. In Appendix B, the term B is found explicitly, and after the appro-
priate choice of boundary conditions,

B = (φ†, Mφ)|T − (φ†, Mφ)|0, (A5)

where the subscripts T and 0 signify target and initial times, respectively. Using this expression, term
(a) becomes

δL
δφ
= −A†φ† + 2Eφ(T) −Mφ†(T) +Mφ†(0) − φ†o = 0 (A6)

and is rendered zero through three equalities. First, the adjoint equations hold for all times,

A†φ† = 0. (A7)

The second equality determines final conditions for the adjoint problem in terms of the forward
variables,

Mφ†(T) = 2Eφ(T). (A8)

Finally, we obtain the identity,

φ†o =Mφ†(0), (A9)

which will be revisited subsequently. Gradient term (b) recovers the constraint that the linear equations
in the forward problem are satisfied,

δL
δφ†
= −Aφ = 0. (A10)

In (c), we obtain initial conditions for the forward problem in terms of the adjoint variables,

δL
δφo
= φ†o − 2λuEφo − 2λ fFφo = 0. (A11)

Recalling (A9), the above expression becomes

2λuEφ(0) + 2λ fFφ(0) =Mφ†(0). (A12)

Term (d) recovers the constraint,

δL

δφ†o
= φo − φ(0) = 0, (A13)

whilst (e) yields the seminorm constraints,

δL
δλu
= 1 − ∥φo∥2

u = 0,
δL
δλ f
= −∥φo∥2

f = 0. (A14)

This result sets the relative magnitude of the components of the state vector at t = 0. The wall-normal
shape of the initial disturbance is found from Equation (A12). An iterative method, described in
Sec. II, is used to ensure all of the constraints are satisfied.

APPENDIX B: ADJOINT EQUATIONS

In this appendix, the adjoint equations and their boundary conditions are presented. Using the
inner product introduced in Equation (9), the adjoint operator is defined according to

⟨φ†, Aφ⟩ = ⟨A†φ†, φ⟩ + B. (B1)

This expression was used in Appendix A in the formulation of the optimization problem. Here, how-
ever, we present the full form of B and derive a set of matching conditions for the adjoint variables
at the interface to arrive at the expression quoted in (A5).
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Forming the inner product on the left hand side of (B1) and integrating by parts, the following
set of equations for the adjoint “velocity” and “pressure” are obtained,

ikxu† +
∂v†

∂ y
+ ikzw† = 0, (B2)

− ρ
(
∂u†

∂t
+ ikxUu†

)
= ikxp† + µ

(
∂2u†

∂ y2 − k2u†
)
, (B3a)

−ρ
(
∂v†

∂t
+ ikxUv† −U ′u†

)
=
∂p†

∂ y
+ µ

(
∂2v†

∂ y2 − k2v†
)
, (B3b)

−ρ
(
∂w†

∂t
+ ikxUw†

)
= ikzp† + µ

(
∂2w†

∂ y2 − k2w†
)
. (B3c)

Note that manipulation of the above system can produce adjoint “Orr-Sommerfeld” and “Squire”
equations. The adjoint vertical vorticity is η† ≡ ikxw

† − ikzu†.
Integrating the time derivatives in the original system of equations produces one contribution to

the boundary term B, ∞

0


u†ρu + v†ρv + w†ρw + f

†
δ(y − δ f ) f

T
0

dy ≡ (φ†, Mφ)|T − (φ†, Mφ)|0. (B4)

The terms in (B4) were used to relate the forward and adjoint variables at the initial and final times
in Appendix A.

The remaining contributions to B can be eliminated with the correct choice of boundary condi-
tions on the adjoint variables. Homogeneous conditions are applied on the adjoint velocity, u†, at the
wall, y = 0, and in the free-stream, y → ∞. The adjoint variables also satisfy a set of jump conditions
at the two-fluid interface,

⟦u†⟧ = 0, ⟦v†⟧ = 0, ⟦w†⟧ = 0, (B5a)
⟦µ �

∂yu† + ikxv
†�⟧ = 0, ⟦µ �

ikzv† + ∂yw†
�⟧ = 0, ⟦−p† − 2µ∂yv†⟧ = f †. (B5b)

In addition, additional sources are introduced in the adjoint interface evolution equation,(
−∂ f †

∂t
− ikxU f †

)
δ(y − δ f ) =

(
⟦µU ′′⟧ − µ−⟦U ′⟧ ∂

∂ y

)
u†−δ(y − δ f )

−
(
σk2 + ikxµ−⟦U ′⟧

)
v†−δ(y − δ f ), (B6)

where the subscript “−” indicates quantities evaluated at the interface approached from below.
Similar to the forward equations, the adjoint operator can be decomposed,

A†φ† ≡ − ∂
∂t

Mφ† −L†φ† = 0. (B7)

The corresponding eigenvalue problem is

iω†jMφ̂†j = L†φ̂†j . (B8)

The adjoint eigenfunctions and those of the forward problem are biorthogonal,

(φ̂†m,Mφ̂n) = δmn, (B9)

where the eigenfunctions have been assumed to be appropriately normalized.
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