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The spatiotemporal linear stability of viscoelastic planar mixing layers is investigated.
A one-parameter family of velocity profiles is used as the base state with the parame-
ter, S, controlling the amount of shear and backflow. The influence of viscoelasticity
in dilute polymer solutions is modeled with the Oldroyd-B and FENE-P constitutive
equations. Both models require the specification of the ratio of the polymer-relaxation
and convective time scales (the Weissenberg number, W e) and the ratio of solvent
and solution viscosities (β). The maximum polymer extensibility, L, must also be
specified for the FENE-P model. We examine how the variation of these parameters
along with the Reynolds number, Re, affects the minimum value of S at which the
flow becomes locally absolutely unstable. With the Oldroyd-B model, the influence
of viscoelasticity is shown to be almost fully captured by the elasticity, E∗ ≡ (1−β)W e

Re ,
and Scrit decreases as elasticity is increased, i.e., elasticity is destabilizing. A simple
approximate dispersion relation obtained via long-wave asymptotic analysis is shown
to accurately capture this destabilizing influence. Results obtained with the FENE-P
model exhibit a rich variety of behavior. At large values of the extensibility, L, results
are similar to those for the Oldroyd-B fluid as expected. However, when the extensi-
bility is reduced to more realistic values (L ≈ 100), one must consider the scaled shear
rate, ηc ≡ W eS

2L , in addition to the elasticity. When ηc is large, the base-state polymer
stress obtained by the FENE-P model is reduced, and there is a corresponding re-
duction in the overall influence of viscoelasticity on stability. Additionally, elasticity
exhibits a stabilizing effect which is driven by the streamwise-normal perturbation
polymer stress. As ηc is reduced, the base-state and perturbation normal polymer
stresses predicted by the FENE-P model move towards the Oldroyd-B values, and
the destabilizing influence of elasticity observed with the Oldroyd-B model is again
present. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4851295]

I. INTRODUCTION

The fluid dynamics of dilute polymer solutions has received sustained interest over several
decades due in large part to the drag-reducing properties of polymer additives in turbulent flows.1

Most studies of moderate or high-Reynolds number flows have focused on channel and pipe flows
which have attached shear layers. However, in complex geometries, shear layers may separate, and
an improved understanding of instability, transition, and turbulence dynamics in spatially developing
viscoelastic free shear layers is desirable.

Here, we analyze the linear stability of parallel planar mixing layers. Azaiez and Homsy2

(referred to hereafter as AH) investigated the temporal linear stability of a “stationary” mixing layer
(where the two streams have equal speeds but flow in opposite directions) using three different
constitutive models to represent the influence of viscoelasticity. They focused on large Reynolds
(Re) and Weissenberg (W e) numbers where W e is the ratio of polymer-relaxation and convective
timescales. Viscoelasticity was found to be stabilizing, though the strength of the stabilization was
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sensitive to the choice of constitutive model. An important question which follows is, to what degree
do AH’s2 conclusions apply to spatially developing mixing layers? We address this question by
carrying out an absolute/convective linear stability analysis of a one-parameter family of mixing
layer velocity profiles. The profile parameter, S, controls the amount of shear and backflow in the
base state. These profiles were used by Monkewitz and Huerre3 to study convective instability in
inviscid mixing layers while Huerre and Monkewitz4 used them to illustrate absolute/convective
linear stability analysis. The present study can then be considered to be an extension of AH2 to
spatially developing mixing layers or as an extension of the results in Huerre and Monkewitz to
viscoelastic mixing layers.

We use local absolute/convective stability analysis5 where the base flow is assumed to be locally
parallel, and we search for absolute instabilities – perturbations which grow exponentially in time at
the point of excitation. The local approach is best-suited for high-Re, slowly spreading shear flows.
Flow-spreading effects can be fully captured with global methods,6, 7 though the computational cost
is substantially higher. Juniper et al.8 discuss the complementary nature of local and global methods
in their study of the stability of confined Newtonian wakes.

Mixing-layer stability is, of course, closely related to the stability of jets and wakes. The temporal
stability of viscoelastic jets was investigated by Rallison and Hinch9 and Miller.10 There is also an
extensive body of work on viscoelastic cylinder wakes. Relevant studies include the global stability
analysis of Sahin and Owens,11 the Floquet analysis of Richter et al.,12 and the experimental studies
of Cadot and Kumar13 and Pipe and Monkewitz.14 These studies generally found viscoelasticity to
be stabilizing, though Ref. 14 observed a destabilizing effect when the polymer concentration was
sufficiently high.

We note that there have also been a few numerical and experimental studies on the nonlinear
dynamics of viscoelastic mixing layers. Simulations15–18 were carried out for stationary mixing
layers with elasticity number, E ≡ W e

Re � 1, and largely found that disturbance amplitudes were
either unaffected or moderately reduced by viscoelasticity. Exceptions include Azaiez and Homsy’s15

observation that there is an intensification of vorticity in the braid region of a two-dimensional mixing
layer. In addition, Kumar and Homsy16 showed that at small elasticity, secondary instability in a three-
dimensional mixing layer can be enhanced. Experiments on turbulent mixing layers19, 20 indicate
that large-scale structures are “enhanced” by viscoelasticity while smaller scales are attenuated.

We have restricted our focus to the linear problem and evaluate the influence of viscoelasticity
on the spatiotemporal stability of mixing layers. The governing equations and the numerical method
used to solve them are described in Sec. II. Then, we present numerical results which illustrate the
influence of viscoelasticity on the presence and strength of absolute instability. We use two different
constitutive models, and comparisons to long-wavelength asymptotic analysis are used to better
understand the numerical results.

II. FORMULATION AND METHODOLOGY

The influence of polymers on flow dynamics is modeled by adding a “polymer-stress” term to
the Navier-Stokes equations for incompressible flow,

∂u j

∂x j
= 0, (1a)

∂ui

∂t
+ u j

∂ui

∂x j
+ ∂p

∂xi
= β

Re

∂2ui

∂x j∂x j
+ 1 − β

Re

∂a ji

∂x j
, (1b)

where ui is velocity, p is pressure, and 1−β

Re ai j is the polymer stress. The Reynolds number is
Re = U0δ

ν
with velocity scale, U0, and length scale, δ, defined below. The kinematic viscosity of

the solution is ν, while the ratio of the solvent and solution viscosities is β = νs
ν

. We have assumed
that density is uniform and constant. A constitutive equation for the polymer stress is required to
close the system of equations. We will use the Oldroyd-B and FENE-P models. With the Oldroyd-B
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model, aij satisfies

Duai j

Dt
+ 1

W e
ai j = 1

W e

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2)

where W e = λU0
δ

is the Weissenberg number, λ is a polymer relaxation timescale, and Du
Dt is the upper

convected time derivative, Duai j

Dt ≡ ∂ai j

∂t + uk
∂ai j

∂xk
− aik

∂u j

∂xk
− ak j

∂ui
∂xk

. The FENE-P model equations
are

Duci j

Dt
= −ai j , (3a)

ai j = 1

W e

(
L2 − 3

L2 − ckk
ci j − δi j

)
, (3b)

where L is the maximum polymer extensibility. Note that cij and L are non-dimensionalized with the
molecular length scale,

√
kB T/H , where kB is the Boltzmann constant, T is the fluid temperature,

and H is a Hookean spring constant. The Oldroyd-B model equations are recovered from Eq. (3)
by taking the limit L → ∞, and we are using a form of the FENE-P model in which cij = δij at
equilibrium.21, 22

The Oldroyd-B model can be derived from a kinetic theory in which polymers are represented
as beads connected by Hookean springs. While the Oldroyd-B model can qualitatively reproduce
important features of viscoelastic shear flows, the underlying assumption of infinitely extensible
springs is limiting: the Oldroyd-B model cannot reproduce shear-thinning and can perform poorly
in extensional flows. The FENE-P model is based on finitely extensible springs; it does reproduce
shear-thinning and generally performs better than the Oldroyd-B model. Further background on the
Oldroyd-B and FENE-P models can be found in Bird et al.23

Returning to the development of the governing equations, we decompose the flow into a steady,
parallel base state and small-amplitude perturbations, f = F(x2) + f ′(xi , t). Linearizing the gov-
erning equations and assuming perturbations take the form f ′ = f̃ (x2)ei(αx1−ωt), we obtain

A f̃ = B
d f̃

dx2
, (4)

with

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

γ Re − R3(1 − β) + α2β −(1 − β)R2 Re dU1
dx2

− (1 − β)R4 iαRe

−iα 0 0 0

(1 − β)S3 (1 − β)S2 − iαβ −γ Re − α2β + (1 − β)S4 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 (1 − β)R1 + β 0 0

0 0 1 0

0 −(1 − β)S1 0 Re

⎤
⎥⎥⎥⎥⎥⎦ , γ ≡ i(αU 1 − ω),

and f̃ =
[
ũ1

dũ1
dx2

ũ2 p̃
]T

. The components of Rm and Sm are used to relate the polymer stress

perturbations to f̃

iαã11 + dã12

dx2
= R1

d2ũ1

dx2
2

+ R2
dũ1

dx2
+ R3ũ1 + R4ũ2, (5a)

iαã12 + dã22

dx2
= S1

d2ũ1

dx2
2

+ S2
dũ1

dx2
+ S3ũ1 + S4ũ2. (5b)
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Expressions for Rm and Sm are given in Appendix A. We only consider two-dimensional insta-
bilities here. This is a common simplification in absolute/convective instability studies of Newtonian
flows where Squire’s transformation24 can be applied. There is a modified Squire’s transformation
for the Oldroyd-B model25 which states that for a given three-dimensional perturbation, there is
a two-dimensional perturbation with larger growth rate at the same elasticity (though Re and W e
may be different). We are not aware of a similar result for the FENE-P model, and consideration of
three-dimensional modes in future studies with this model may be worthwhile.

The base-state velocity profiles are given by

U 1 = 1 + S tanh(x2/2). (6)

With these profiles, the velocity scale used to non-dimensionalize the equations, U0, is the average
of the two free streams, and the length scale, δ, is the momentum thickness. The velocities of the
two streams are 1 + S and 1 − S. With S < 1, we have a coflowing mixing layer, while S > 1 gives
counterflow. As noted in the Introduction, these profiles were used in earlier linear stability studies
of inviscid mixing layers,3, 4 and they allow us to easily vary the amount of co- or counter-flow. In
our calculations, we follow AH2 (who used U 1 = tanh(x2)) in varying the elasticity while holding
the velocity profile fixed. The base-state polymer stress components for an Oldroyd-B fluid are

A11 = 2W e

(
dU 1

dx2

)2

, A12 = dU 1

dx2
, A22 = 0. (7)

Corresponding results for the FENE-P model are more complicated and are given in Appendix A.
The system of equations (4) defines an eigenvalue problem where both α and ω are assumed

to be complex, and which we solved using a shooting method with re-orthonormalization.26 The
equations were numerically integrated from x2 = ±Ld to x2 = 0. We used Ld = 12 and verified
that our solutions were not affected by increasing Ld. At x2 = ±Ld, we imposed exponentially
decaying free-stream solutions which assume an uniform base flow. These solutions take the form
C1e∓ζ1x2 + C2e∓ζ2x2 where ζ 2

1 = α2, ζ 2
2 = α2 + γ Re

β+ (1−β)
W eγ+1

, and we require the real part of ζ to be

positive, R(ζ ) > 0. The solutions were matched at x2 = 0 by imposing continuity of ũ1, ũ2,
dũ1
dx2

, and p̃. We are principally interested in finding saddle points (which satisfy dω
dα

= 0) that
correspond to the pinching of upstream- and downstream-propagating spatial branches. The long-
time asymptotic behavior of the impulse response of the mixing layer is dictated by the complex
wavenumber and frequency (α0 and ω0, respectively) at these saddle points. Specifically, if the
imaginary part of ω0 is positive, the flow is absolutely unstable.4, 5 The approach used here to find
saddle points is very similar to that used by Monkewitz27 for wake instabilities governed by the
Orr-Sommerfeld equation. For each of two (complex) frequencies, ω1 and ω2, two eigenvalues, α+

and α−, are found which correspond to downstream- and upstream-propagating waves. The four
eigenvalues are used to find a nonlinear least-squares fit to a Taylor expansion around the saddle
point, α± − α0 = ±as(ω − ω0)

1
2 + al(ω − ω0) where as and al are fit parameters. Then, two new

frequencies are chosen closer to the estimated ω0, and the procedure is repeated until the relative
change in ω0 is less than 10−6. Our codes were validated by reproducing: (i) absolute/convective
instability results for inviscid mixing layers from Huerre and Monkewitz;4 (ii) absolute/convective
results for viscous Newtonian wakes from Monkewitz;27 (iii) temporal instability results for the
stationary viscoelastic (Oldroyd-B) mixing layer from AH;2 and (iv) temporal neutral-stability
curves for viscoelastic (FENE-P) channel flow from Zhang et al.28 Results for the inviscid mixing
layer obtained for validation were used as initial guesses for viscoelastic cases with small W e, large
Re, and β close to one.

III. RESULTS

We will first investigate the influence of viscoelasticity on absolute instability using the Oldroyd-
B model. Its analytical tractability will be useful for understanding the major qualitative trends
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FIG. 1. Influence of elasticity on Scrit, (a) Re = 100, three (indistinguishable) curves for β = 0.5, 0.7, 0.9 are shown; (b) β

= 0.7, Re = 50, 100, 400, 1000.

observed in the numerical results. We will then see how imposing a maximum extensibility on
polymer molecules via the FENE-P model modifies the Oldroyd-B results.

A. Oldroyd-B model

In their analysis of the inviscid mixing layer, Huerre and Monkewitz4 found that absolute
instability was present when the shear parameter, S, exceeded a critical value, Scrit = 1.315.
Figure 1 shows how Scrit changes as the elasticity, E∗ ≡ (1−β)W e

Re , is increased. In Figure 1(a),
the Reynolds number is held fixed at Re = 100 while the viscosity ratio, β, is varied. In
Figure 1(b), it is Re which varies while the viscosity ratio is set to β = 0.7. There are several
important points to note. First, we see that absolute instability is “enhanced” by elasticity. Absolute
instability is found at smaller values of S (corresponding to less backflow) as E* increases. Even a
single stream mixing layer (S = 1) may be absolutely unstable if the elasticity is sufficiently large
(E* � 6.8). This destabilizing effect is one of the main results of this paper and will be discussed
further below. In Figure 1(a), we see that using E* as a measure of viscoelasticity fully accounts for
the effect of the viscosity ratio, while Figure 1(b) shows that the Reynolds number has little influence
for Re ≥ 50. AH2 showed that the linear stability equations used here can be reduced to an “elastic
Rayleigh equation” in the limit of large Reynolds and Weissenberg numbers with W e/Re ∼ 1. The
only flow parameter in this equation is the elasticity, E*. Here, we also see that E* is the dominant
flow parameter.

A more detailed view of the influence of viscoelasticity is obtained by examining the complex
wavenumber and frequency (Figure 2). We are primarily interested in the temporal growth rate, ωi,
since its sign determines if absolute instability is possible. The temporal growth rate depends on both
the elasticity, E*, and the profile parameter, S. At large S (S = 2.5, 4), elasticity is predominantly
stabilizing, however, there is a change in behavior at smaller values of S: elasticity is destabilizing
for S = 1, 1.5 and moderate values of E* (Figure 2(b)). Further growth-rate curves illustrating this
destabilizing effect are shown in Figure 3.

1. Long-wavelength asymptotic analysis

We can gain a better understanding of these qualitative trends by comparing our calculations to
results from long-wave (small |α|) asymptotic analysis. Our approach closely follows the analysis
presented in AH2 (which, in turn, closely follows Drazin and Howard29). The main steps are provided
here, and the reader is referred to those papers for additional details. Assuming that W e � 1

|α|2 and

neglecting terms of order β

Re and (1−β)
Re at all orders of the analysis, the governing equations can be
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FIG. 2. (a)–(d) Influence of elasticity and S on absolute instability, Re = 100; β = 0.7; —— (thick), S = 1; – –, 1.5;
– · –, 2.5; ——, 4.0.

FIG. 3. Influence of elasticity and S on temporal growth rate, Re = 100; β = 0.7; S = 0.9, 1.0, 1.1, 1.3.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.82.153.10 On: Fri, 07 Mar 2014 09:53:28



014103-7 P. K. Ray and T. A. Zaki Phys. Fluids 26, 014103 (2014)

simplified to

d

dx2

[
(Ũ 2 − ν̃ A11)

d�

dx2

]
− α2(Ũ 2 − ν̃ A11)� = 0, (8)

where Ũ = U 1 − c, c = ω
α

, ν̃ = 1−β

Re , � = 


Ũ
, and 
 is the perturbation stream function. Note that

ν̃ A11 = 2E∗
(

dU 1
dx2

)2
, and we assume that E* is O(1). In neglecting terms of order (1−β)

Re , we have

effectively approximated the perturbation stress as

ã11 ≈ 2A11
d�

dx2
+ d A11

dx2
�, ã12 ≈ −iαA11�, ã22 ≈ 0. (9)

We have carried out numerical stability calculations for S = 1 using this approximation, and the
results are very close to the full solution presented in Figure 2 (the maximum difference in ωi is on
the order of 10−4).

Continuing on with the development of the asymptotic equations, for x2 > 0, we define
χ = eαx2
. Similarly, for x2 < 0, we define θ = e−αx2
. At x2 = 0, the matching condi-
tion, dχ

dx2
θ − χ dθ

dx2
− 2αθχ = 0 must be satisfied. Then, expanding χ and θ in powers of α,

χ = ∑∞
n=0 αnχn , θ = ∑∞

n=0 αnθn , AH2 obtain

−Ũ 2(0)

h(0)

[
α

(
h+ + h−) + α2

∫ +∞

−∞

(
h − h+) (

h − h−)
h

dx2 −

α3
∫ +∞

−∞
dx2

∫ x2

−∞

(
h(x2) − h+) (

h (x̃2) − h−) (
1

h (x2)
+ 1

h (x̃2)

)
dx̃2 + . . .

]
= 0, (10)

with h = Ũ 2 − ν̃ A11, h+ = (U
+
1 − c)2, h− = (U

−
1 − c)2, and U

±
1 = U 1(x2 → ±∞). AH2 simpli-

fied the integrals in Eq. (10) by considering the large-E* limit. Then, h ≈ −2E∗
(

dU 1
dx2

)2
and the

dispersion relation at 2nd order is

h+ + h− = 2E∗
∫ +∞

−∞

(
dU 1

dx2

)2

dx2. (11)

In an appendix in AH,2 Hinch2 arrived at this result via a different analytical route. The principal
difference between the two approaches is that Hinch2 takes the large-E* limit near the beginning
of his analysis while AH apply this limit near the end of theirs. Hinch2 also noted that Eq. (11)
is equivalent to the dispersion relation for a vortex sheet with surface tension if one replaces the
right-hand side of Eq. (11) with a non-dimensional surface tension, σ . This important analogy with
surface tension helps to provide a physical explanation for the influence of viscoelasticity on mixing
layer stability. Now, returning to the task of finding a solution when E* ∼ O(1), the complex phase
velocity is expanded as c = c0 + αc1 + α2c2 + ···, and Eq. (10) with the velocity profile from
Eq. (6) gives

c0 = 1 + i S, (12a)

c1 = −i S

(
E∗

3
+ 1 − 2I1

)
, (12b)

c2 = i

4S

[
2c2

1 − 4Sc1(4i I1 + I2) − 4S2 I3
]
. (12c)

The terms I1, I2, and I3, represent integrals which depend only on the elasticity, E*. Full
expressions for these integrals are given in Appendix B, and we evaluate them numerically. The final
step is to find saddle points by differentiating Eq. (12) with respect to α and requiring ∂ω

∂α
= 0.

Before looking at the full asymptotic solution (to third order), it is helpful to revisit the large-
E* second order result. In this limit, I1 ≈ 0, c1 ≈ − i SE∗

3 , and there is a saddle point with ωi

= 3(S2−1)
4E∗ S . This approximation is compared with the numerical linear stability result for S = 1.5 in
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FIG. 4. Comparison of stability calculations and asymptotic analysis, Re = 100, β = 0.7; (a) S = 1.5; ——, full numerical
calculation; – –, 2nd order, large-E* approximation; – · –, full 3rd-order approximation; · · · , numerical calculation with
advection approximation; (b) ——, numerical calculation; – · –, full 3rd-order approximation.

Figure 4(a). We see that the approximation approaches the numerical result as E* increases for
E* � 10. However, the approximation does not show the correct behavior for smaller values of
the elasticity. The principal effect of the large-E* approximation is to neglect the advection term
in the x2-momentum equation (the polymer shear-stress term is much larger). We have carried out
numerical calculations where the full stability equations have been modified, and this advection
term has been removed. The result is included in Figure 4(a). Now, the behavior of the calcula-
tion is similar to the large-E* asymptotic approximation, and it is clear that the balance between
the advection of cross-stream momentum and polymer shear-stress is very important. Rallison
and Hinch9 emphasize this balance in their analysis of temporal sinuous instability in viscoelastic
jets. In the mixing layer, the advection/polymer-stress balance helps explain why elasticity be-
comes stabilizing as S is increased (Figure 2(b)). The polymer stress term in the elastic Rayleigh
equation (8) at the mixing-layer centerline is E∗ S2

2 while the advection term, Ũ 2, is relatively insensi-
tive to S. Consequently, at sufficiently large values of S, the polymer stress term becomes dominant
and the influence of elasticity becomes purely stabilizing (as it is in the large-E* limit when S > 1).

The general 3rd-order asymptotic result which uses the full expressions for c1 and c2 retains
the needed advection term and provides a much better approximation to the numerical solution
(Figures 4(a) and 4(b)). Important qualitative details such as the destabilizing effect of elasticity for
small and moderate values of E* are captured. The error in the approximation does increase as the
elasticity decreases towards zero, however this is unsurprising as there is a corresponding increase
in |α| (Figures 2(c) and 2(d)). We can also extract Scrit from the asymptotic result (Figure 5).
There is an “offset” in the asymptotic curve which could be reduced by including higher-order
terms. However, this is unnecessary as the offset is largely independent of the elasticity. Indeed,
scaling the asymptotic result so that it matches the numerical result for an inviscid mixing layer (Scrit

= 1.315) when E* = 0, we see that the approximation accurately reproduces the influence of elasticity
on Scrit.

B. FENE-P model

We have now investigated the stability of Oldroyd-B mixing layers in some detail. However, as
noted in Sec. II, the Oldroyd-B model has tangible deficiencies. Thus, it is important to obtain results
with a more realistic model to test the relevance of the trends observed above. Here, we present
results using the FENE-P model which requires the specification of an additional parameter, the
maximum polymer extensibility, L. For large values of L, results should be close to those obtained
with the Oldroyd-B model. As L is reduced, the (nonlinear) stiffness of the polymer molecules is
increased, and one expects a reduction in the influence of elasticity. We will consider a large range
of values of L, but we are particularly interested in results for L ∼ 100. Simulations30, 31 of channel
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FIG. 5. Asymptotic approximation for Scrit; ——, numerical calculation; – –, 3rd-order approximation; – · –, scaled
3rd-order approximation.

flows with high- and maximum drag reduction have used values of L between 60 and 120 (see also
the discussion on “bead-spring parameters” in Zhou and Akhavan32).

Figure 6(a) shows how Scrit is affected by L with Re = 100 and β = 0.7. At L = 104, the
Oldroyd-B behavior is recovered. As L is reduced from 104 to 3 × 103, there is a small stabilizing
effect. However, the Scrit curve rises significantly as L is decreased further to 103 and a similar trend
is seen in the growth rate for the single-stream mixing layer (Figure 6(b)). Indeed, as can be inferred
from Figure 6(a), the single stream mixing layer will not become absolutely unstable at any value
of E* when L is reduced to 103 (at these values of Re and β). Figure 7 shows the effect of reducing
L further. Reducing L from 1000 to 50 (Figure 7(a)), we see further stabilization. Also notable is the
observation that Scrit now tends to increase with E* indicating that elasticity is stabilizing. Reducing
L from 50 to 10 (Figure 7(b)) largely removes the influence of elasticity.

For the Oldroyd-B fluid, the influence of Re and β was largely subsumed into the elasticity,
E*. The FENE-P model produces more complicated behavior as can be seen in Figure 8 where β

is varied (and L = Re = 100). There is a clear β-dependence in the results which was not present

FIG. 6. Influence of maximum polymer extensibility, L; Re = 100, β = 0.7, L = 1000, 3000, 5000, 104; ——(thick),
Oldroyd-B; (a) Scrit, (b) S = 1.
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FIG. 7. Influence of maximum polymer extensibility, L; Re = 100, β = 0.7; (a) · · · , L = 1000; ——(thick),
L = 500; – –, L = 200; ——, L = 100; – · –, L = 50; (b) L = 10, 20, 50.

in the Oldroyd-B fluid (Figure 1). In addition, the FENE-P results shown thus far indicate that a
realistic maximum extensibility (L ∼ 100) can reduce the influence of viscoelasticity and removes
the destabilizing influence seen in the Oldroyd-B results. We can gain a better understanding of these
results and construct criteria for the recovery of “Oldroyd-B behavior” (with L ∼ 100) by examining
the base-state and perturbation polymer stresses.

1. Base-state polymer stress

The behavior of the base-state polymer stress in the FENE-P mixing layer is closely related
to standard viscometric results for the FENE-P model in steady homogeneous shear flow.33 These
viscometric results show how material functions23 such as the viscosity and normal stress coefficients
depend on the non-dimensional shear rate, λγ̇ , where γ̇ is the velocity gradient. At low shear rates, the
elongation of the FENE springs is modest, and the FENE-P and Oldroyd-B models produce similar
results. At higher shear rates, the springs become more stretched, nonlinear elasticity becomes
important, and the FENE-P polymer stress components become attenuated relative to their Oldroyd-
B counterparts. These trends are present in the tanh mixing layer as well, though the velocity
gradient is not constant, and the polymer stress depends on the local shear rate. The role of the
extensibility must also be considered, and using Eqs. (7), (A1), and (3b), the ratio of the (non-zero)
Oldroyd-B and FENE-P stress components can be shown to be functions of the scaled shear rate,

FIG. 8. (a) and (b) Influence of β on Scrit, Re = 100, L = 100; – –, β = 0.5; ——, β = 0.7; – · –, β = 0.9.
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FIG. 9. Base-state polymer stress; (a) ratio of values of A11(x2 = 0) obtained with FENE-P and Oldroyd-B models; (b) A11

and A12 at x2 = 0 with S = 1 and L = 100; ——, FENE-P; – –: Oldroyd-B.

η ≡ W e dU1
dx2

L ,

A
F
11

A
O
11

= 1

[F(η)]2 , (13a)

A
F
12

A
O
12

= 1

F(η)
, (13b)

where the superscripts “F” and “O” refer to the FENE-P and Oldroyd-B models, respectively.
Both models give A22 = 0, and F is defined in the Appendix A 1. At the mixing-layer centerline,
η = ηc = W eS

2L , and the function, 1
[F(ηc)]2 , is shown in Figure 9(a). As expected, when the shear rate,

ηc, is small, there is little difference between the FENE-P and Oldroyd-B models, and at larger
values of ηc, the Oldroyd-B stress is larger. This behavior is also seen in Figure 9(b) where we have
shown the dependence of the stress components on W e for S = 1, L = 100, and x2 = 0. We can
anticipate that the relative attenuation of A11 as η is increased is connected to the reduction in the
influence of elasticity which was observed in our stability results when L was reduced. Continuing
with this line of reasoning, we would expect to recover Oldroyd-B behavior if ηc is less than some
critical value, η∗

c . Then, taking S ≈ 1.2, L ≈ 100, and E* ≈ 2 (where, in Figure 1, we observed the
strongest destabilization with the Oldroyd-B model), we obtain the criteria, Re � 80(1 − β)η∗

c . This
indicates that we should look at smaller Reynolds numbers; however, with the parallel flow approx-
imation, the Reynolds number cannot be reduced to arbitrarily small values. Therefore, we consider
Re = 10 and first verify that Oldroyd-B trends are not significantly changed by reducing the Reynolds
number from 100 to 10. Figure 10(a) shows that the shape of the Scrit curve is not significantly
changed. There is an upward shift indicating stabilization due to the increased viscous stress, and a
small β-dependence appears when E* � 1. However, our focus is on the destabilizing influence of
elasticity which is largely unaffected. Moving on to FENE-P results with L = 100 (Figure 10(b)),
we now see a very large β-dependence over a broad range of elasticities. Significantly, for β � 0.7
there is now a reduction in Scrit as elasticity is increased. The range of E* over which this behavior
is observed depends strongly on β, and for β = 0.9, elasticity has little influence. When E* = 1, β

= 0.9, and Re = 10, we find that ηc = 0.7 which corresponds to an approximately 50% reduction in
A11 relative to the Oldroyd-B value (Figure 9(a)).

2. FENE-Rayleigh equation

A more concrete view of the dynamics can be obtained by developing approximations similar
to those used in the derivation of the elastic Rayleigh equation (8). We assume that both W e and L
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FIG. 10. Influence of viscosity ratio, β, on Scrit; · · · , β = 0.3; – –, β = 0.5; ——, β = 0.7; – · –, β = 0.9 (a) Oldroyd-B,
(b) Re=10; —— (thick), Oldroyd-B; all other curves: FENE-P with L = 100.

are O(|α|−2) which leads to the following leading-order approximation for the perturbation stress:

a11 ≈
(

2η2

F
+ F

)[
2

F

(
A11

) d�

dx2
+ 1

W e

dC11

dx2
�

]
, a12 ≈ −iα

(
A11

)
�, a22 ≈ 0. (14)

Using this approximation and neglecting the Newtonian viscous stress, the perturbation equations
can be simplified to a “FENE-Rayleigh” equation

d

dx2

[(
Ũ 2 − ν̃ A11

(
1 + 4

η2

F2

))
d�

dx2

]
− α2

(
Ũ 2 − ν̃ A11

)
� = 0. (15)

Before we analyze (15), we should assess how well it and (14) represent the full equations.
Numerical solutions of the FENE-Rayleigh equation and of the full equations modified with (14)
are compared to solutions of the full equations with L = 100 in Figure 11. At Re = 100, the
FENE-Rayleigh equation provides an excellent approximation to the full equations. When
Re = 10, the approximation errors are larger. Reducing the Reynolds number increases the im-
portance of the Newtonian viscous stress which was neglected in deriving (15). Similarly, reducing
Re while holding E* constant results in a reduction of W e which was assumed to be large when
deriving (14). Nevertheless, the maximum error in the FENE-Rayleigh result is less than 10%, this
error decreases as E* increases, and the basic qualitative behavior is well-captured for E* � 1.

Equation (15) is very similar to the elastic Rayleigh equation (8), though there are a few
important differences. As discussed earlier, the normal stress, A11, in the two equations will differ

FIG. 11. Approximations to FENE-P model, β = 0.7, L = 100, (a) Re = 100, (b) Re = 10; ——, full equations; – –, equations
with approximate perturbation polymer stress; – · –, FENE-Rayleigh equation; · · · , modified FENE-Rayleigh equation.
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FIG. 12. Influence of Reynolds number on Scrit for β = 0.7, L = 100; ——, Re = 100; – –, Re = 50; – · –, Re = 20; · · · ,
Re = 10; (b) only:—— (thick), Oldroyd-B. The (*)’s represent points where (a) E* = 0.5; (b) W e/L = 0.5. The solid,
thickened portions of the Re = 10 and Re = 20 curves indicate regions where “Oldroyd-B behavior” is expected.

according to (13a). There is also a new term in the FENE-Rayleigh equation, ν̃ A11(4 η2

F2 ) d�
dx2

, which
is associated with the streamwise-normal perturbation polymer-stress, ã11 (cf. Eq. (14)). This term
represents the generation of ã11 at moderate-to-large shear rates due to the action of the velocity
perturbations on the background normal stress. The importance of this effect can be assessed by
comparing full FENE-Rayleigh calculations to calculations with the term removed. Results from
such a comparison are included in Figure 11. At both Reynolds numbers, we see that the “ã11 term”
has a strong stabilizing effect. At Re = 100, it is almost entirely responsible for the (stabilizing)
influence of viscoelasticity. The ã11 term becomes important when 4 η2

F2 � 1. At moderate and large
shear rates, F(η) ≈ 21/3η2/3 is a very good approximation (cf. the large shear-rate approximations for
material functions in steady shear flow in Bird et al.33). It follows that 4 η2

F2 ≈ (4η)2/3, and the ã11

term makes an increasingly large contribution to the overall influence of viscoelasticity as the shear
rate increases.

We can also use the FENE-Rayleigh equation to gain an improved understanding of when
Oldroyd-B behavior is recovered. The FENE-Rayleigh equation simplifies to the elastic Rayleigh
equation if F ≈ 1 and η � 1

2 . These conditions are not independent and, if one is satisfied, so
is the other. In the discussion of the base-state stress above, we argued that Oldroyd-B behavior
would be seen if ηc < η∗

c , and here, we have now obtained a similar, better-defined constraint for
η. The centerline shear rate, ηc = W eS

2L , contains, S, and since Scrit is an unknown, it is preferable to
work with a constraint which only contains independent variables. If we take S ≈ 1.2 as a “typical”
value, the requirement, W e

L � 1
1.2 is obtained. However, it is helpful to relax this criteria and to

look for “Oldroyd-B-like” behavior if W e
L � 1

2 . Satisfying this constraint does not by itself lead to
elasticity exhibiting a destabilizing influence. In Figure 10(a), we see that the elasticity must also
be sufficiently large, and we set E* � 0.5 as a second requirement. To test the utility of these two
constraints, we have carried out calculations at Re = 10, 20, 50, and 100 with β = 0.7 (Figure 12).
When Re = 50 and E* ≥ 0.5, W e

L ≥ 5
6 and the constraints cannot both be satisfied. Thus, elasticity

should not be destabilizing, and this is consistent with the numerical result. The same argument
applies at Re = 100. When Re = 20 and E* ≥ 0.5, W e

L ≥ 1
3 , so now, destabilization is expected

when 1
3 � W e

L � 1
2 . This portion of the numerical solution is “highlighted” in Figure 12(a), and a

destabilizing influence is indeed observed. At the lowest Reynolds number, Re = 10, the constraints
indicate that the “region of destabilization” is larger which is confirmed by the numerical results. In
Figure 12(b), we also see that in this (highlighted) region the behavior of the Re = 10 FENE-P so-
lution is very similar to that of the Oldroyd-B solution. The simple constraints developed here
provide a helpful framework for understanding earlier results as well. In Figure 10(b), when
β = 0.9, we do not see any destabilization. For this case, W e/L < 0.5 corresponds to
E* < 0.5, and the criteria E* > 0.5 cannot also be satisfied. In Figure 7(a), our criteria require
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0.5 � E* � 1.5 for L = 1000, and this roughly corresponds to the region where viscoelasticity has
a substantive destabilizing influence. Larger values of elasticity correspond to larger shear rates,
and for E* � 4, elasticity exhibits a stabilizing influence. At these larger shear rates, A11 and ã11

are modified by finite-extensibility and nonlinear elasticity (as discussed above) resulting in this
stabilization. Analogous behavior is seen in the L = 1000 growth-rate curve in Figure 6(b).

IV. CONCLUDING REMARKS

The influence of viscoelasticity on absolute instability in locally parallel planar mixing layers
has been investigated. We focused on the effect of the elasticity, E*, on the critical value of the
base velocity profile parameter, Scrit, at which absolute instability first appears, and results with both
the Oldroyd-B and FENE-P constitutive models were presented. With the Oldroyd-B model, we
found that elasticity has a destabilizing influence in that Scrit decreases as elasticity is increased.
This result from a spatiotemporal stability analysis of spatially developing mixing layers should
be contrasted with previous temporal-stability studies of Oldroyd-B mixing layers and jets where
elasticity was found to have only a stabilizing influence.2, 9 Comparisons between numerical results
and asymptotic approximations provided a fuller understanding of the observed trends. For large
values of the elasticity, our results approached the large-E*, long-wave asymptotic approximation
derived by AH.2 For moderate values of E*, full 3rd-order asymptotic results which account for the
advection of cross-stream momentum were needed to capture the influence of elasticity.

Results obtained with the FENE-P model exhibited more complex behavior. At moderate
Reynolds numbers (Re ∼ 100), results are similar to the Oldroyd-B model for sufficiently large L (L
� 3000). However, reducing L to more realistic values (L ∼ 100) resulted in significant changes as
the overall influence of viscoelasticity was reduced and increasing elasticity resulted in an increase
in Scrit – elasticity had become stabilizing. These trends were explained by examining how the

scaled shear rate, η = W e dU1
dx2

L , affected the streamwise-normal polymer stress. As η is increased, the
base-state normal polymer stress is attenuated (relative to the Oldroyd-B stress), and the influence
of elasticity is reduced. Furthermore, the streamwise-normal perturbation polymer stress becomes
more important and has a stabilizing influence. We also showed that reducing the Reynolds number
leads to the appearance of regions in the parameter space where the shear rate is sufficiently small
and the elasticity is sufficiently large for the destabilizing influence of elasticity observed in the
Oldroyd-B results to be recovered when L = 100.

This study provides an improved understanding of the dynamics of mixing layers of dilute
polymer solutions. A number of simplifying assumptions were made, and the relaxation of these
assumptions provides a path for further progress. Understanding the importance of base-flow spread-
ing, confinement, and nonlinearity are all important as is the consideration of closely related flows
such as wakes and jets. Finally, we note that shear flows of polymer melts are of substantial indus-
trial importance. These fluids typically have very large viscosities resulting in flows with near-zero
Reynolds numbers. Consequently, the analysis presented here must be modified appropriately for
low-Re, rapidly spreading shear layers.
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APPENDIX A: FURTHER DETAILS ON FORMULATION AND METHODOLOGY

1. Base state polymer stress for FENE-P model

Expressions for the base state conformation tensor are taken from Sureshkumar et al.:34

C11 = 1

F

(
1 + 2τ 2

F2

)
, (A1a)
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C12 = τ

F2
, (A1b)

C22 = C33 = 1

F
, (A1c)

where F = 3�
2sinh(φ/3) , φ = sinh−1( 3

2

√
3�), � = √

2 τ
L , and τ = W e dU 1

dx2
. Substituting Ci j into

Eq. (3b) gives Ai j .

2. Expressions for perturbation polymer stress

In Sec. II, we presented the governing equations in terms of Rm and Sm (Eqs. (4) and (5)).
Here, we give expressions for these quantities for the Oldroyd-B model and describe how they are
computed for the FENE-P model. Note that quantities with subscripts m and n are not physical
vectors or tensors though summation of repeated indices is implied.

a. Oldroyd-B model

The linearized Oldroyd-B model gives the following relation between ãm = [ã11 ã12 ã22]T and

g̃m =
[

dũ1
dx2

ũ1 ũ2

]T
:

Amnãn = Bmng̃n,

(A2)

Amn =

⎡
⎢⎢⎣

ψ −2τ 0

0 ψ −τ

0 0 ψ

⎤
⎥⎥⎦, Bmn =

⎡
⎢⎢⎣

2τ 2iα(A11W e + 1) −W e d A11
dx2

1 0 −W e d2U 1

dx2
2

+ iα(A11W e + 1)

0 −2iα 2iατ

⎤
⎥⎥⎦,

where ψ = 1 + W eγ , and τ = W e dU 1
dx2

. Inverting Amn, we have ãm = Mmng̃n , Mmn = (Amp)−1Bpn.

It follows that, dãm
dx2

= d Mmn
dx2

g̃n + Mmn
dg̃n

dx2
. Comparing these expressions with Eq. (5) and using

continuity, we obtain

Rm =

⎡
⎢⎢⎢⎢⎢⎢⎣

M21

iαM11 + N21 + M22

iα(M12 − M23) + N22

iαM13 + N23

⎤
⎥⎥⎥⎥⎥⎥⎦

, Sm =

⎡
⎢⎢⎢⎢⎢⎣

M31

iαM21 + N31 + M32

iα(M22 − M33) + N32

iαM23 + N33

⎤
⎥⎥⎥⎥⎥⎦ , Nmn = d Mmn

dx2
. (A3)

b. FENE-P model

The development of the linearized FENE-P equations is similar to but more complicated than the
development of the Oldroyd-B equations above. The perturbation conformation tensor components,

c̃m = [c̃11 c̃12 c̃22 c̃33]T , are related to the velocity, g̃m =
[

dũ1
dx2

ũ1 ũ2

]T
, by

Amnc̃n = W eBmng̃n,

Amn =

⎡
⎢⎢⎢⎢⎢⎣

W eγ + H0(1 + H 11) −2τ H0 H 11 H 11

H0 H 12 W eγ + H0 −τ + H0 H 12 H 12

H0 H 22 0 W eγ + H0(1 + H 22) H 22

H0 H 33 0 H0 H 33 W eγ + H0(1 + H 33)

⎤
⎥⎥⎥⎥⎥⎦, (A4)
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Bmn =

⎡
⎢⎢⎢⎢⎢⎢⎣

2C12 2iαC11 − dC11
dx2

C22 0 − dC12
dx2

+ iαC11

0 −2iαC22 2iαC12 − dC22
dx2

0 0 − dC33
dx2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where τ = W e dU 1
dx2

, H0 = L2−3
L2−Ckk

, and Hi j = Ci j

L2−Ckk
. As with the Oldroyd-B model, we invert Amn to

get c̃m = Dmng̃n , Dmn = W e(Amp)−1 Bpn . We then have, dc̃m
dx2

= d Dmn
dx2

g̃n + Dmn
dg̃n

dx2
. The perturbation

stress, ãm = [ã11 ã12 ã22]T is related to c̃n by

ãm = H0

W e
Emnc̃n,

(A5)

Emn =

⎡
⎢⎢⎣

1 + H 11 0 H 11 H 11

H 12 1 H 12 H 12

H 22 0 1 + H 22 H 22

⎤
⎥⎥⎦ ,

so ãm = Mmpg̃p, Mmp = H0
W e Emn Dnp, and the desired expressions for Rm, Sm are again given

by (A3).

APPENDIX B: EXPRESSIONS FOR INTEGRALS FROM LONG-WAVE ASYMPTOTICS

In Sec. III, results for the complex phase velocity were given in terms of integrals I1, I2, and I3.
The full expressions for these terms are

I1 =
∫ +∞

−∞

dz

g
, (B1a)

I2 =
∫ +∞

−∞

[
tanh(z) + i − 4(tanh(z) − i)

g2

]
dz, (B1b)

I3 =
∫ +∞

−∞

[
(g + 2i)

∫ z

−∞
(g (z̃) − 2i)

(
1

g(z)
+ 1

g(z̃)

)
dz̃

]
dz, (B1c)

where g = (tanh(z) − i)2 − E∗
2

(
tanh2(z) − 1

)2
.
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