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Sensitivity of high-speed boundary-layer stability
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The linear stability of high-speed boundary layers can be altered by distortions to the
base velocity and temperature profiles. An analytic expression for the sensitivity is
derived for parallel and spatially developing boundary layers, the latter using linear
parabolized stability equations and their adjoint. Both the slow mode, S, and the
fast mode, F, are investigated at Mach number 4.5. The mode S is more sensitive
with respect to distortion in base velocity than in base temperature. The sensitivity is
largest within the boundary layer away from the wall. Near the critical layer, where
the phase speed of the mode equals the base streamwise velocity, the sensitivity to
the base streamwise velocity is negative. For the mode F, there is a discontinuous
jump in the sensitivity when the phase speed is below unity, and a critical layer is
established. The sensitivity of the two modes increases with the Reynolds number,
but there is a sudden drop and a jump in the sensitivities of the modes S and
F, respectively, near the synchronization point where the phase speeds of the two
modes are equal. Furthermore, the maximum uncertainty bounds are obtained for the
distorted base state that maximizes the destabilization or stabilization of the modes
by solving the Lagrangian optimization problem for the sensitivity. The sensitivity of
the flow stability to surface heating is then studied, and changes in growth rate and
the N-factor are evaluated. The formulation provides a clear physical interpretation of
these changes, and establishes uncertainty bounds for stability predictions for a given
level of uncertainty in wall temperature.

Key words: boundary layers, boundary layer stability

1. Introduction
Boundary-layer transition to turbulence is of significant importance in high-speed

applications, and stability analyses such as locally parallel linear stability theory
(LST) (Mack 1975), and linear and nonlinear parabolized stability equations (PSE)
(Bertolotti 1991; Chang et al. 1993) have been commonly used as efficient tools for
transition prediction. The prediction accuracy of these techniques can, however, be
affected by uncertainties. For instance, a small uncertainty in the linear operator of the
stability problem can cause significant change in the eigenvalue spectrum (Schmid
2007; Schmid & Brandt 2014). In order to investigate the stability of boundary
layers, the base state is often obtained from laminar similarity solutions which can
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differ from the realistic base state in physical experiments or nonlinear simulations,
due to uncertainties in flow and boundary conditions. The present work examines
the sensitivity of linear stability predictions in high-speed boundary layers to such
modifications of the base flow.

1.1. Transition in high-speed boundary layers and stability analysis techniques
Previous studies of transition to turbulence in high-speed boundary layers have
spanned laboratory experiments (Demetriades 1960; Kendall 1975; Kosinov, Maslov &
Shevelkov 1990; Schneider 2001; Laurence et al. 2012; Parziale, Shepherd & Hornung
2015) and flight data (Schneider 1999; Kimmel & Adamczak 2017). Numerical efforts
included various levels of fidelity, such as direct numerical simulations (Guarini et al.
2000; Martin 2007; Li, Fu & Ma 2010), large-eddy simulations (Yan, Knight &
Zheltovodov 2002; Grilli, Hickel & Adams 2013; Chen et al. 2017; Nichols et al.
2017) and parabolized stability equations (Oliviero et al. 2015; Kocian et al. 2016).
Furthermore, high-speed transition has been investigated over various geometries
including flat plates (Graziosi & Brown 2002; Joo & Durbin 2012), cones (Germain
& Hornung 1997; Balakumar & Owens 2010; Ward et al. 2012; Sivasubramanian &
Fasel 2015) and realistic flight-vehicle geometries (Schneider 2006). For extensive
reviews of stability and transition in high-speed flows, we refer the readers to Kimmel
(1999) and Reed et al. (2013, 2015).

The cost of experiments and direct numerical simulations to investigate high-speed
transition is appreciable. As a result, efficient theoretical approaches, and in particular
stability analyses, have been adopted widely. Predictions of transition are frequently
made based on the N-factor from the eN-method which measures exponential growth
of instability waves (Van Ingen 1956). Locally parallel linear stability theory (LST)
predicts N-factors that agree fairly well with experiments (Mack 1987). While
instability modes have been established for some time (Lees & Lin 1946; Lees
& Reshotko 1962), the first and second modes were highlighted by Mack (1969)
who thoroughly investigated their relative importance depending on the free-stream
Mach number M0. The first mode, known as the Tollmien–Schlichting (TS) wave
in the low Mach number limit, becomes three-dimensional when M0 is higher than
unity. The two-dimensional second mode appears when the Mach number is above
4 for adiabatic boundary layers. The dominant mode among the two modes depends
on the flow parameters and the wall-temperature ratio. In addition to discrete modes,
there also exist continuous modes that can be vortical, entropic or acoustic (Tumin &
Fedorov 1983; Balakumar & Malik 1992; Tumin 2007).

More recently, the phase-speed synchronization between modes has been investigated
since it can lead to intermodal energy exchange (Fedorov & Khokhlov 2001; Fedorov
2011). Synchronization between the two discrete modes was detailed by Fedorov &
Tumin (2011), who adopted the terminology slow (S) and fast (F) rather than the
first and second modes. The phase speed of the slow mode S tends to c= 1− 1/M0,
and corresponds to a slow acoustic wave in the leading-edge region; the phase speed
of the fast mode F tends to c= 1+ 1/M0, or a fast acoustic wave. In the presence of
viscosity, the phase speed of mode S increases while that of mode F decreases with
local Reynolds number. Thus there is a synchronization point where the two modes
have the same phase speed, which leads to an appreciable change in their growth
rates (Guschin & Fedorov 1990; Forgoston & Tumin 2005; Fedorov 2011; Fedorov
& Tumin 2011).

In order to take into account the spatial growth of the boundary layer, Bertolotti
(1991) developed the parabolized stability equations (PSE). One of the advantages of
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PSE is computational efficiency since solutions are marched downstream (Bertolotti
1991; Bertolotti & Herbert 1991; Chang et al. 1993). Linear and nonlinear variants
have been developed and applied with success in high-speed boundary layers (Chang
et al. 1993), reacting flows (Day, Mansour & Reynolds 2001) and two-fluid flows
(Cheung & Zaki 2010, 2011). The nonlinear PSE account for finite-amplitude
instability waves, modal interactions and mean-flow distortion. They can predict
the onset of transition in boundary layers and agree with direct numerical simulations
(Chang et al. 1993; Chang & Malik 1994). The stability of high-speed boundary
layers has also been investigated over various geometries such as cones at zero
and non-zero angles of attack (Gasperas 1987; Mack 1987; Balakumar 2009), blunt
bodies (Lei & Zhong 2010; Jewell & Kimmel 2017) and swept wings (Mack, Schmid
& Sesterhenn 2008; Balakumar & King 2010), and when the leading-edge shock
introduces new, shock modes (Hu & Zhong 1997).

1.2. Sensitivity to base-state distortion
While stability analyses have shown good agreement with precisely controlled direct
numerical simulations and experiments, they do not consider uncertainties that may
affect practical flow configurations. The uncertainties can be due to operator modelling
in the theory, environmental conditions or the choice of the base state. For instance,
Schmid & Brandt (2014) showed that small random noise in the LST operator could
generate large changes in eigenvalue spectra. In terms of environmental conditions,
appreciable free-stream noise can promote transition (Schneider 2001; Joo & Durbin
2012) and surface vibration can alter the transition behaviour in high-speed boundary
layers (Frendi, Maestrello & Bayliss 1993). In stability analyses, we often consider
a canonical base flow obtained from the similarity equations, and void of any
uncertainties. Such base state is idealized, for example it does not account for the
influence of upstream shocks that could alter the base flow and its instability (Pinna
& Rambaud 2013), and ultimately transition location.

Understanding the influence of base-flow distortions on stability is essential for
robust flow design. For instance, surface roughness modifies the boundary layer
and, as a result, the associated instability modes. Whether transition is promoted
or delayed is sensitive to the type, size and even locations of roughness elements
(Schneider 2008). Isolated and arrays of semi-spherical roughness elements were
shown to promote transition (Driest & Van McCauley 1960; Iyer, Muppidi & Mahesh
2011), while Fujii (2006) observed that wavy-wall roughness can delay breakdown to
turbulence. Transition can also be modified by surface cooling or heating. Lysenko
& Maslov (1984) studied the effect of cooling on stability in supersonic boundary
layers and found that it stabilizes the first mode and destabilizes the second mode.
The subharmonic of the second mode is also destabilized (El-Hady 1992) and, as a
result, transition triggered by the second mode instability is promoted.

It is difficult to predict whether a particular modification of the base state, for
example by surface roughness or cooling, will stabilize or destabilize the flow,
without performing additional experiments or computations. Furthermore, stability
analyses using idealized base states do not take into account uncertainties that could
lead to changes in the instability growth rate and N-factor. For instance, Masad,
Nayfeh & Al-Maaitah (1992) have shown fairly good agreement between their
stability results and experimental data from Lysenko & Maslov (1984). However,
the reported deviations in the growth rates could not be explained by conventional
stability analyses, and will be assessed herein by evaluating the impact of uncertainties
in the experimental thermal conditions.
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The above discussion motivates an investigation of the sensitivity of instability
waves to base-state distortions. Our approach will utilize the forward and adjoint
stability equations. Adjoint techniques have been adopted for a wide range of
computational studies in flow control (Walther, Airiau & Bottaro 2001; Pralits, Hanifi
& Henningson 2002; Pralits & Hanifi 2003) and shape optimization (Pralits 2003;
Amoignon et al. 2006). In the present work, we seek analytic expressions for the
sensitivity of instability growth rates to modifications in the base flow, in high-speed
boundary layers. Similar analysis has been performed for incompressible flows only.
For example, Bottaro, Corbett & Luchini (2003) derived analytic expressions for the
sensitivity of eigenvalues of the Orr–Sommerfeld operator to base-flow variations;
Marquet, Sipp & Jacquin (2008) studied the flow past a cylinder using global
linear stability theory, and found sensitive regions that facilitate passive flow control;
Brandt et al. (2011) evaluated the optimal forcing and response in an incompressible
boundary layer, and found that the disturbance amplification is most sensitive to
flow distortions in the spatial region of overlap between the upstream forcing and
the downstream response. In compressible flows, Pralits et al. (2000) examined the
flow response to surface disturbances and momentum sources, but did not study the
sensitivity of instability waves to base-state distortions.

In the present work, we will derive analytical expressions for the sensitivity of the
modal growth rates and the N-factor to base-flow distortions in high-speed boundary
layers. The mathematical/theoretical formulation is developed for both the locally
parallel and parabolized linear stability equations, and utilizes their adjoints (§ 2). We
discuss the sensitivity of zero-pressure-gradient boundary layers at M0 = 4.5 in § 3.
In § 4, we apply the sensitivity results to heated boundary layers and provide both
qualitative and quantitative interpretation of changes in the instability growth rate.
In § 5, we discuss the deviation of theoretical growth rates from experimental data
(Lysenko & Maslov 1984; Masad et al. 1992) in terms of uncertainty in the thermal
conditions, and provide concluding remarks.

2. Problem formulation
We consider the Navier–Stokes equations for an ideal compressible gas in Cartesian

coordinates (x, y, z) where x, y and z denote the streamwise, wall-normal and spanwise
directions. The Blasius length L0 =

√
x0µ0/(ρ0U0) is adopted as the reference length

scale, where x = x0 is the streamwise location at the inflow, µ0, ρ0 and U0 are the
reference viscosity, density and velocity at x = x0 in the free stream y→∞. The
reference time scale is t0 = L0/U0, pressure is P0 = ρ0U2

0 and temperature is T0. The
non-dimensional continuity, momentum, energy and state equations for velocity ṽ =

(ũ, ṽ, w̃)T where T is the transpose, pressure p̃, temperature T̃ and density ρ̃ are,

∂ρ̃

∂t
+ ∇̃ · (ρ̃ṽ)= 0, (2.1)

ρ̃

[
∂ ṽ

∂t
+ (ṽ · ∇̃)ṽ

]
=−∇̃p̃+

1
Re0
[∇̃ · {λ̃(∇̃ · ṽ)I + µ̃(∇̃ṽ + ∇̃ṽ

T
)}], (2.2)

ρ̃

[
∂T̃
∂t
+ (T̃ · ∇̃)ṽ

]
=

1
Re0Pr0

∇̃ · (k̃∇̃T̃)+ E0

[
∂ p̃
∂t
+ (ṽ · ∇̃)p̃+ Φ̃

]
, (2.3)

γ0M2
0 p̃= ρ̃T̃. (2.4)

The operator ∇̃ ≡ êx(∂/∂x) + êy(∂/∂y) + êz(∂/∂z) is the Laplacian, I is the identity
matrix, Re0 = ρ0U0L0/µ0 is the Reynolds number, µ̃ and λ̃ are the first and second
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coefficients of viscosity, Pr0 = µ0cp0/k0 is the Prandtl number where cp0 and k0 are
the reference specific heat and heat conductivity, k̃ is the heat conductivity, E0 =

(γ0 − 1)M2
0 is the Eckert number where γ0 is the specific heat ratio and M0 =

U0/
√
γ0RT0 is the Mach number with R the gas constant, and Φ̃ is

Φ̃ = λ̃(∇̃ · ṽ)2 +
µ̃

2
(∇̃ṽ + ∇̃ṽ

T
)2. (2.5)

Here, we assume that the specific heat cp is constant and viscosity µ̃ follows the
Sutherland formula,

µ̃(T̃)= (1+C0)
T̃1/2

1+C0/T̃
, (2.6)

where C0= 110.3/T0. The heat conductivity k̃ is set to follow the Sutherland formula
in such a way that the specific heat remains constant (Malik 1990).

As a base state, compressible boundary layer on a flat plate with zero pressure
gradient is considered with base streamwise velocity UB and base temperature TB.
Adopting the similarity coordinates ζ = x and η=

√
Re0/(2ζ )

∫ y
0 ρB(s) ds (Schlichting

& Gersten 1979), we obtain the following equations

d
dη

(
µB

g
d2f
dη2

)
+ f

d2f
dη2
= 0, (2.7)

1
Pr0

d
dη

(
kB

g
dg
dη

)
+ f

df
dη
+

E0µB

g

(
d2f
dη2

)2

= 0, (2.8)

where f is the similarity variable, the base velocity is UB = df /dη, the base
temperature is TB = g, the base viscosity is µB and the base heat conductivity is
kB. The base-flow equations (2.7)–(2.8) are solved using a fourth-order Runge–Kutta
scheme with Newton’s iteration method (Malik 1990). For flow over an adiabatic
wall, the boundary conditions are df /dη = dg/dη = 0 at η = 0, and df /dη = g = 1
as η→∞; for isothermal walls at Tw, we impose df /dη = 0 and g = Tw at η = 0,
and df /dη= g= 1 as η→∞. The velocity profile UB(x, y) and temperature TB(x, y)
profiles are evaluated by transforming back from (ζ , η) to (x, y) coordinates. The base
density is ρB(x, y) = 1/TB from the equation of state, and the wall-normal velocity
VB is obtained by the relation (Cheung 2007)

VB =
1
ρB

[
η(df /dη)− f
√

2Re0ζ
−UB

∫ y

0

∂ρB

∂x
(x, s) ds

]
. (2.9)

We perturb the above base state,

ũ=UB + u, ṽ = VB + v, w̃=w, p̃= PB + p,
ρ̃ = ρB + ρ, T̃ = TB + T,

}
(2.10)

µ̃=µB +µ, λ̃= λB + λ, k̃= kB + k. (2.11a−c)

Provided that the disturbance is infinitesimally small, the linearized equation for the
perturbation q= (ρ, u, v,w, T)T can be written as

Vt
∂q
∂t
+ L(Q)q= 0, (2.12)
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where Q= (ρB,UB,VB, 0, TB)
T is the base state, Vt is the linear operator matrix and L

is the linear differential operator matrix (Chang et al. 1993) which can be decomposed
as

L = V0 + Vx
∂

∂x
+ Vy

∂

∂y
+ Vz

∂

∂z
+ Vxx

∂2

∂x2
+ Vxy

∂2

∂x∂y
+ Vxz

∂2

∂x∂z

+Vyy
∂2

∂y2
+ Vyz

∂2

∂y∂z
+ Vzz

∂2

∂z2
. (2.13)

Details of the operator matrices V are presented in appendix A.

2.1. Parallel linear stability theory with sensitivity analysis
We first consider locally parallel boundary layers with base state UB =UB(y), VB = 0,
TB=TB(y). The linear stability analysis is performed by considering the normal modes,

q= q̂(y) exp[αx+ i(βz−ωt)] + c.c., (2.14)

where α=αr+ iαi is the complex streamwise wavenumber, αr is the growth rate, αi is
the wavenumber, β is the spanwise wavenumber, ω is the frequency and c.c. denotes
the complex conjugate. With the modal ansatz, the linearized perturbation equation
(2.12) is transformed into an eigenvalue problem,

αA(Q, α, β)q̂+B(Q, β, ω)q̂= 0, (2.15)

where

A= Vx + αVxx + Vxy
∂

∂y
+ iβVxz, (2.16)

B=−iωVt + V0 +

(
Vy + Vyy

∂

∂y
+ iβVyz

)
∂

∂y
+ iβ(Vz + iβVzz). (2.17)

Standard solution techniques for the eigenvalue problem are reported in various
references (e.g. see Malik 1990). The focus here is placed on deriving an analytic
expression for the sensitivity of the complex wavenumber α to base-state distortion.

Assume that the base state Q is distorted by δQ. Then the eigenvalue problem (2.15)
is also distorted as

(α + δα)A(Q+ δQ, α + δα)(q̂+ δq̂)+B(Q+ δQ)(q̂+ δq̂)= 0, (2.18)

where δα is the distortion in complex wavenumber and δq̂ is the distortion in the
associated eigenfunction. Using Taylor series, the linear operators A and B are
expanded, for example

A(Q+ δQ, α + δα)=A(Q)+
∂A
∂Q

δQ+
∂A
∂α
δα +O(δ2), (2.19)

and similarly for B. In keeping with the formalism of linear theory, we assume that
the base-state distortion is small and neglect higher-order terms. Subtracting (2.18) and
(2.15), we obtain

δα

(
A(Q)+ α

∂A
∂α

)
q̂+

(
α
∂A
∂Q

δQ+
∂B
∂Q
δQ
)

q̂+ (αA(Q)+B(Q))δq̂= 0. (2.20)
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This expression shows a linear relation between the wavenumber distortion δα, the
base-state distortion δQ and the eigenfunction distortion δq̂.

Sensitivity is defined as the gradient of the complex wavenumber α with respect to
the base state, i.e. ∇Qα. Mathematically, it is expressed using the inner product

δα = (∇Qα, δQ), (2.21)

where (â, b̂) =
∫
∞

0 â∗b̂ dy and ∗ denotes the complex conjugate. The sensitivity
establishes a linear relation between δα and δQ, and our objective is to find the
analytic expression ∇Qα. To do so, we use the adjoint eigenfunction q̂† which
satisfies the following adjoint relation

(q̂†
, (αA+B)q̂)= ((α†A†

+B†)q̂†
, q̂)= 0, (2.22)

where α†
= −α∗. The inner product of the adjoint eigenfunction q̂† with (2.20)

eliminates the last term associated with the eigenfunction distortion, and we obtain
the following expression,

δα

(
q̂†
,

(
A(Q)+ α

∂A
∂α

)
q̂
)

︸ ︷︷ ︸
=R̂

=−

(
q̂†
,

(
α
∂A
∂Q

δQ+
∂B
∂Q
δQ
)

q̂
)
, (2.23)

where R̂ denotes the norm by the dot product between adjoint q̂† and mode shape q̂
multiplied by the matrix A+ α(∂A/∂α). Since both sides of (2.23) are composed of
dot products between q̂ and q̂†, we can normalize q̂ and q̂† in such a way that the
norm R̂ satisfies R̂= 1. Moreover, we can manipulate the right-hand side into the form
(Ŝ, δQ) by adjoint operations to separate δQ from other terms (Marquet et al. 2008).
From its definition, the sensitivity to the base-state distortion is Ŝ,

∇Qα = Ŝ. (2.24)

The base-state variation δQ is composed of base-velocity δUB and base-temperature
δTB distortions, and the latter influences the thermal fluid properties,

δρB =−
1

T2
B
δTB, δµB =

∂µB

∂TB
δTB, δkB =

∂kB

∂TB
δTB. (2.25a−c)

The complex wavenumber distortion δα can thus be expressed as the sum of δα|UB

and δα|TB , due to changes in the base velocity δUB and temperature δTB, respectively,

δα = δα|UB + δα|TB = (∇UBα, δUB)+ (∇TBα, δTB), (2.26)

and
∇UBα = ŜUB, ∇TBα = ŜTB . (2.27a,b)

The form (2.26)–(2.27) enables parametric sensitivity analyses, as well as examining
the relative importance of variations in the base velocity and temperature within a
realistic base-state distortion δQ that is obtained from experiments, direct simulations
or solution of the similarity equations (2.7)–(2.8). The velocity sensitivity ŜUB can
be further decomposed into various terms, that can be traced back to changes
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in the mean shear in the x-momentum equation, in the advection terms, in the
viscous dissipation and in the pressure dilatation in the energy equation. Similarly,
the temperature sensitivity ŜTB is comprised of several contributions, which arise
from the effect of changes in base temperature on the mean-shear terms, advection
terms, density variation in the continuity equation, pressure-gradient terms in the
momentum equations, mean temperature-gradient effects, viscous dissipation terms,
heat conduction and the pressure dilatation term in the energy equation. Detailed
expressions for both quantities are presented in appendix B, and physical interpretation
of the most important terms is provided in the following sections where quantitative
results are presented.

2.2. Parabolized stability equations and sensitivity analysis
The PSE are derived starting from the linearized perturbation equations (2.12) with
the following perturbation ansatz,

q= q̌(x, y) exp
[∫ x

x0

γ (s) ds+ i(βz−ωt)
]
+ c.c., (2.28)

where q̌ = (ρ̌, ǔ, v̌, w̌, Ť)T is the mode shape and γ = γr + iγi is the local complex
streamwise wavenumber, and the real part γr is the local growth rate and γi is the
local wavenumber. The PSE are thus,

Ǎ(Q)
∂ q̌
∂x
+L(Q, β, γ , ω)q̌= 0, (2.29)

where Ǎ is the linear differential operator obtained by taking the leading-order term
in A (the details of Ǎ are given in appendix A), and L= γA(Q, β, γ )+B(Q, β, ω).
To resolve the ambiguity of the streamwise dependence of q̌ and γ , the following
normalization condition is adopted,∫

∞

0
ρB

(
ǔ∗
∂ ǔ
∂x
+ v̌∗

∂v̌

∂x
+ w̌∗

∂w̌
∂x

)
dy= 0. (2.30)

We also define the N-factor and the total growth rate σ ,

N(x)≡
∫ x

x0

σ dx, σ ≡Re
[
γ +

1
E

∫
∞

0
ρB

(
ǔ∗
∂ ǔ
∂x
+ v̌∗

∂v̌

∂x
+ w̌∗

∂w̌
∂x

)
dy
]
, (2.31a,b)

where E is the perturbation kinetic energy E≡
∫
∞

0 ρB(|ǔ|2 + |v̌|2 + |w̌|2) dy. Since we
use the normalization (2.30), the second term in the definition of σ vanishes, and thus
σ is simply σ = γr (Park & Park 2016).

We define the sensitivity to base-state distortion, ∇Qγ , as follows

δγ = (∇Qγ , δQ), (2.32)

where δγ (x) is the distortion of the local complex wavenumber.
Similar to § 2.1, we subtract the distorted and reference PSE, apply Taylor-series

expansion and neglect quadratic terms in the distortions to obtain,

δγ
∂L
∂γ

q̌+

(
∂Ǎ
∂Q

δQ
∂ q̌
∂x
+
∂L
∂Q
δQq̌

)
+

(
Ǎ(Q)

∂

∂x
+L(Q)

)
δq̌= 0. (2.33)
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In order to eliminate the last term, we introduce the adjoint perturbation,

q†
= q̌†

(x, y) exp
[∫ x

x1

γ †(s) ds+ i(β†z−ω†t)
]
+ c.c., (2.34)

where † denotes an adjoint quantity, and x1 is the streamwise location at the outflow.
The adjoint equations are derived from the original PSE using the relation,〈

q̌†
, Ǎ

∂ q̌
∂x
+Lq̌

〉
=

〈
Ǎ† ∂ q̌†

∂x
+L†q̌†

, q̌

〉
+ J̌x(x1)− J̌x(x0)= 0, (2.35)

where 〈ǎ, b̌〉 =
∫ x1

x0

∫
∞

0 ǎ∗b̌ dx dy is the two-dimensional dot product. Similar to
Dobrinsky (2003), we adopt the α-normalization where {γ †, β†, ω†

} = {−γ ∗, β, ω},
and verify that the bi-linear concomitant J̌x = (q̌

†
, Ǎq̌) is constant in the streamwise

direction, when we solve the adjoint PSE (APSE),

Ǎ† ∂ q̌†

∂x
+L†q̌†

= 0. (2.36)

The two-dimensional dot product of q̌† and (2.33) yields,∫ x1

x0

δγ (x)
∫
∞

0
q̌†∗
(
∂L
∂γ

q̌
)

dy dx=−
∫ x1

x0

∫
∞

0
q̌†∗

(
∂Ǎ
∂Q

δQ
∂

∂x
+
∂L
∂Q
δQ

)
q̌ dy dx.

(2.37)
We define Ř= (q̌†

, (∂L/∂γ )q̌) and manipulate the right-hand side term

−

∫
∞

0
q̌†∗

(
∂Ǎ
∂Q

δQ
∂

∂x
+
∂L
∂Q
δQ

)
q̌ dy= (Š, δQ). (2.38)

From the definition of sensitivity δγ = (∇Qγ , δQ) and by normalizing Ř = 1, we
obtain

∇Qγ = Š. (2.39)

The complex wavenumber distortion δγ and the sensitivity ∇Qγ can be decomposed
into three terms,

δγ = (∇UBγ , δUB)+ (∇VBγ , δVB)+ (∇TBγ , δTB), (2.40)

and the corresponding sensitivities are,

∇UBγ = ŠUB, ∇VBγ = ŠVB, ∇TBγ = ŠTB . (2.41a−c)

In contrast to parallel flow, an additional sensitivity to distortions in the wall-normal
base velocity, ∇VBγ , is included in (2.41) for developing boundary layers. Each
of the sensitivities (ŠUB, ŠVB, ŠTB) are composed of contributions that have physical
interpretation (see appendix B for detailed expressions), and reduce to the parallel-flow
results when the streamwise dependence of the base state and mode shape are
neglected.
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3. Sensitivity in parallel high-speed boundary layers

In this section, we briefly review the stability of a high-speed boundary layers at
Mach number M0 = 4.5, at which we perform the sensitivity analysis. At this Mach
number, the growth rates of the two discrete modes S and F are commensurate (Mack
1975; Fedorov & Tumin 2011). We consider typical values for air with specific heat
ratio γ0= 1.4, Prandtl number Pr0= 0.72 and ratio of the first and second coefficients
of viscosity l= λB/µB=−2/3. The stagnation temperature is set to Tstag= 310 K and
the reference temperature is T0 = Tstag/(1+M2

0(γ − 1)/2). The normalized frequency
is F=ω/Re0× 106 and the normalized spanwise wavenumber is b=β/Re0× 104. The
displacement thickness δ∗ is given by,

δ∗ =

∫
∞

0
(1− ρBUB) dy, (3.1)

and the boundary-layer thickness δ99 is the wall-normal height where UB(δ99)= 0.99.
The normalized temperature is defined as,

θB(y)=
TB(0)− TB(y)

TB(0)− TB(∞)
, (3.2)

and an associated thermal boundary-layer thickness θ99 is the wall-normal location
where θB(θ99)= 0.99.

Numerical discretization of the eigenvalue problem (2.15) and the PSE (2.29) is
performed using Chebyshev collocation spectral method in the wall-normal direction
(Antkoiwak & Brancher 2004; Park 2012). While the number of collocation points
required to ensure convergence at low Mach numbers is Ny ' 120 (Hanifi, Schmid
& Henningson 1996; Brandt et al. 2011), higher resolution is required for high Mach
number. In the present results, Ny= 300 is used. Boundary conditions û= v̂= ŵ= T̂ =
0 are imposed at y=0 and y= ymax (Malik 1990; Hanifi et al. 1996). Our linear results
were validated against results from Tumin (2007) and Fedorov & Tumin (2011). For
the adjoint equations, the boundary conditions û†

= v̂†
= ŵ†

= T̂†
= 0 are imposed at

y= 0 and ymax, and the eigenvalue relation α†
=−α∗ is verified in order to validate the

adjoint solution. For the PSE and adjoint PSE, forward and backward finite difference
schemes are used for marching in the streamwise direction, and the algorithm was
verified against results by Chang & Malik (1994).

We first consider a steady laminar base state with streamwise velocity UB and
temperature TB, which are obtained by solving the similarity equations (2.7)–(2.8) with
an adiabatic boundary condition (∂TB/∂y= 0 at y= 0). Figure 1(a) shows UB(y), with
boundary-layer thickness δ99 = 13.6 and displacement thickness δ∗ = 10.5; figure 1(b)
shows TB(y), which has a thermal boundary-layer thickness θ99 = 14.7 and the wall
temperature Tw = 4.43. Solution of the eigenvalue problem (2.15) at Re0 = 2000,
F= 50 and b= 0 yields the eigenvalue spectrum in figure 1(c). Typical characteristics
of the spectrum are observed: discrete modes denoted F and S, continuous branches
of acoustic modes and overlapped continuous branches of vorticity and entropy
modes which are aligned horizontally near αi = ω = Re0F/106

= 0.1 (Balakumar
& Malik 1992; Joo & Durbin 2012). Mode S has a complex wavenumber α =
3.277 × 10−4

+ 0.1142i, and its phase speed c = ω/αi = 0.8756 is slower than the
free-stream velocity; Mode F has α = −2.911 × 10−4

+ 0.0856i and its phase speed
c= 1.1674 is faster than the free stream.
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FIGURE 1. (a,b) Profiles of base velocity UB and temperature TB in the wall-normal
direction y for adiabatic high-speed boundary layer at M0 = 4.5. (c) Eigenvalue spectrum
for M0 = 4.5, Re0 = 2000, F= 50 and b= 0.
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FIGURE 2. (a) Growth rate αr and (b) phase speed c as a function of the Reynolds
number Re0 for the mode S (black) and the mode F (grey) for M0 = 4.5, F = 50 and
b = 0. Dashed lines indicate where the phase speed of the mode F becomes unity, and
black dot in (b) indicates the synchronization point where the phase speeds of the modes
S and F are equal.

The spatial growth rates αr and phase speeds c of modes F and S are plotted
as a function of Reynolds number Re0 in figure 2. Mode S has the first unstable
region in the range 590 . Re0 . 2480 and the second unstable region in the range
3590 . Re0 . 4540, while mode F is always stable over this range of Re0. It is well
established that mode S appears at low Reynolds number near the slow acoustic mode
with a phase speed c = 1 − 1/M0, while the mode F appears near the fast acoustic
mode with phase speed c = 1 + 1/M0 (Fedorov & Khokhlov 2001; Fedorov 2011;
Fedorov & Tumin 2011). The phase speed of the former increases with Re0 while that
of the latter decreases, and they become equal in the synchronization region around
Re0' 3820. Fedorov & Tumin (2011) suggested a model that describes the instability
around the synchronization point due to mode crossing captured in figure 2. Beyond
Re0 ' 3340, the phase speed of mode F becomes less than unity and a discontinuity
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FIGURE 3. (a,b) Eigenfunctions |q̂| with components |T̂| (black solid), |ρ̂| (black dashed),
|û| (grey solid), |v̂| (grey dashed) and (c,d) adjoint eigenfunctions |q̂†

| with components
|T̂†
| (black solid), |ρ̂†

| (black dashed), |û†
| (grey solid), |v̂†

| (grey dashed) for the mode S
(a,c) and the mode F (b,d) in figure 2(a) at Re0=2000. The eigenfunctions are normalized
by the maximum of |T̂| while the adjoint eigenfunctions are normalized by the maximum
of |û†

|.

in α is observed due to a synchronization between mode F and the continuous branch
of entropy and vorticity modes. This modal exchange can be important for transition
triggered by mode F (Fedorov 2011). The eigenfunctions associated with modes S and
F are shown in figure 3(a,b), and the corresponding adjoint eigenfunctions are plotted
in figure 3(c,d). The perturbation temperature T̂ is the largest component for both
modes while the largest component in the adjoint eigenfunction is û†. These forward
and adjoint eigenfunctions, q̂ and q̂†, will be used to evaluate the sensitivity profiles,
∇Qα.

3.1. Sensitivity profiles
The sensitivity profiles of mode S are evaluated using equation (2.23) and are plotted
in figure 4. They are decomposed into real and imaginary parts: ∇UBα = ∇UBαr +

i∇UBαi and ∇TBα=∇TBαr+ i∇TBαi, where the real part is the sensitivity of the growth
rate and the imaginary part is the sensitivity of streamwise wavenumber. In (a,c), we
also display rescaled profiles of UB and TB to indicate where the sensitive region lies
relative to the boundary-layer thicknesses. The profiles all oscillate in the wall-normal
coordinate, and the sensitivity is small near the wall y= 0 and in the free stream y→
∞; it is large immediately below the boundary-layer thickness y99. Specifically, the
sensitivities ∇UBαr and ∇TBαr are large and negative near the critical layer yc, where
the phase speed of mode S equals the base-flow velocity (i.e. UB(yc)= c). For ∇UBαr,
there are two heights with positive sensitivity, one near δ99 and the other just below
y = 10. Also ∇TBαr is positive just below y = 10 and positive but small near y =
δ99. It is important to note that ∇UBα is larger than ∇TBα by orders of magnitude.
Uncertainties in the base velocity are thus more influential with respect to stability,
compared to uncertainties in the base temperature. The sensitivity profiles for three-
dimensional instability waves (i.e. β > 0) are qualitatively similar to those in figure 4.

In figure 5, we decompose ∇UBαr into its constituents Ŝ
1−3

UB
to assess the importance

of each contribution. Note that the term Ŝ
4

UB
is zero since it is due to streamwise

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Jo

hn
s 

H
op

ki
ns

 U
ni

ve
rs

ity
, o

n 
21

 N
ov

 2
01

8 
at

 1
7:

42
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.819


488 J. Park and T. A. Zaki

y

(a) (b) (c) (d)

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

◊UBår ◊UBåi

-0.2 0.20
◊TBår (÷ 10-3)

-5 50
◊TBåi (÷ 10-3)

-5 50-0.2 0.20

FIGURE 4. (a) Real and (b) imaginary parts of the sensitivity to base-velocity distortion
∇UBα, and (c) real and (d) imaginary parts of the sensitivity to base-temperature distortion
∇TBα for the mode S at Re0= 2000. Thin solid and dashed linear lines represent properly
scaled base velocity UB and temperature TB, and horizontal dashed lines represent the
critical layer yc, respectively.
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FIGURE 5. (a) The growth-rate sensitivity to base-velocity distortion ∇UBαr (grey lines),

and (b–d) the real part of components Ŝ
1−3

UB
(black lines) for the mode S at Re0 =

2000. Dotted, solid, dashed and dash-dot lines in (a) represent thermal boundary-layer
thickness θ99, boundary-layer thickness δ99, critical layer yc and displacement thickness
δ∗, respectively.

variation of UB in the pressure dilation in the energy equation, and hence is not plotted.
The real part of Ŝ

1

UB
= ∂/∂y(ρBv̂

∗û†), which arises from the variation in UB altering
the mean shear ρB(∂UB/∂y) in the streamwise momentum equation, has a very similar
profile to ∇UBαr; the other terms, Ŝ

2

UB
and Ŝ

3

UB
, have a relatively small amplitude. The

results demonstrate that Ŝ
1

UB
is the dominant term. Moreover, ∇UBαr and the real part

of Ŝ
1

UB
are largely negative near the critical layer yc where the change in vorticity

gradient ∂2UB/∂y2 can significantly affect stability, due to the singular term in the
inviscid limit. For instance, if we allow a positive distortion δUB > 0 narrowly around
yc, the vorticity gradient around yc is negative (i.e. ∂2(δUB)/∂y2< 0) and stabilizes the
mode.
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FIGURE 6. (a) The growth-rate sensitivity to base-temperature distortion ∇TBαr (grey

lines), and (b–h) the real part of components Ŝ
1−7

TB
(black lines) for the mode S at

Re0 = 2000.

Figure 6 displays the total growth-rate sensitivity to base-temperature distortion
∇TBαr and the real part of the sensitivity components Ŝ

1−7

TB
. In this case, Ŝ

8

TB
is

zero because it is associated with the variation of the base state in the streamwise
direction. The real part Ŝ

1

TB
= (∂UB/∂y)(v̂∗û†/T2

B), which arises due to the modification
of the mean shear in the u-momentum equation by δTB, is similar to the total profile
∇TBαr. But we see that other components also have an appreciable amplitude, for
example Ŝ

3

TB
= [α∗û∗ρ̂†

− v̂∗(∂ρ̂†/∂y) − iβŵ∗ρ̂†
]/T2

B which is the sensitivity due to

base-density variation in the continuity equation, and Ŝ
5

TB
= ρB(∂/∂y)(v̂∗T̂†) which is

the sensitivity due to mean temperature-gradient terms in the energy equation. As
the result, the growth-rate sensitivity ∇TBαr is due to combined influence of these
multiple contributions from the continuity, momentum and energy equations; it is not
dominated by any particular effect.

Now we turn our attention to the sensitivity of the fast mode F, which is plotted
in figure 7 at low Reynolds number Re0 = 2000. Compared to mode S, very small
sensitivity to δUB and δTB is observed above the boundary-layer thickness, and the
profile is less oscillatory. The weak sensitivity can be ascribed to mode F not having
a critical layer at Re0= 2000 since its phase speed c is larger than unity. As a result,
at Re0 = 4000 when mode F has a critical layer at yc = 11.5, its sensitivity profiles
are very different (see figure 8): they become oscillatory and are appreciably larger in
amplitude. The value of ∇UBαr is negative at the critical layer, and ∇UBα is orders of
magnitude larger than ∇TBα – both observations similar to mode S.

3.2. Parametric study
The sensitivities of modes S and F vary with the parameters of the flow and the
instability wave, for example the Reynolds number and the wavenumber of the modes.
Figure 9 focuses on the effect of the Reynolds number. The wall-normal maxima in
the sensitivity profiles, |∇UBα| and |∇TBα|, are plotted versus Re0. In general, the
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FIGURE 7. (a) Real and (b) imaginary parts of the sensitivity to base-velocity distortion
∇UBα, and (c) real and (d) imaginary parts of the sensitivity to base-temperature distortion
∇TBα for the mode F at Re0 = 2000.
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FIGURE 8. Sensitivity profiles of the mode F at Re0 = 4000. Dashed lines denote the
critical layer yc of the mode F.

sensitivities increase with Reynolds number and ∇UBα is always substantially larger
than ∇TBα. At low Re0, mode S has a much larger sensitivity than mode F.

Around Re0 = 3340, mode F coalesces with the continuous vorticity/entropy
branches (Fedorov & Khokhlov 2001), and the LST solution at this point is not
achievable and hence neither is its sensitivity. Away from this point, however, LST
analysis of mode F is valid and the sensitivity formulation is therefore applicable. The
discontinuous jump in the sensitivity of that mode takes place when its phase speed
becomes less than unity and its critical layer is established. The two modes F and
S become synchronous at Re0 ' 3820; while the stability operator can be expanded
differently in the vicinity of this point (Fedorov & Khokhlov 2001), such expansion
is applicable for locally varying solutions. Therefore, the LST and sensitivity results
presented herein are not affected. Over the range 36006Re0 6 4600, the sensitivity of
mode F increases rapidly, and surpasses the sensitivity of mode S which is reduced. In
this regime, the temperature eigenfunction T̂(y) of the latter mode changes appreciably,
but its impact on sensitivity was not possible to isolate because (ρ̂, û, v̂) also change.
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FIGURE 9. Maximum in y-direction of the sensitivity (a) |∇UBα| and (b) |∇TBα| as a
function of the Reynolds number for the modes S (black) and F (grey). Dashed lines
denote the Reynolds number where the phase speed of the mode F becomes unity.
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FIGURE 10. Contours of the maximum of sensitivity functions (a) log(max |∇UBα|)
and (b) log(max |∇TBα|) for the mode S in the parameter space (Re0, F). Dashed lines
represent the neutral stability curve where αr = 0; black solid lines represent the location
where the growth rate αr is maximum; white solid lines represent the synchronization
condition where the phase speeds of modes F and S are equal.

Figure 10 shows contours of the maximum sensitivity of the two-dimensional mode
S to δUB and δTB, as a function of the Reynolds number Re0 and the non-dimensional
frequency F. The earlier trend shown in figure 9 for F = 50 is observed at other
frequencies: both ∇UBα and ∇TBα increase with Re0 and drop transiently near the
synchronization point. Dashed lines indicate neutral stability for mode S, and the solid
line marks where the two-dimensional mode S is most unstable. The maximum growth
rate coincides with the local minimum sensitivity. We also see that ∇UBα is larger than
∇TBα in orders of magnitude in all of the parameter space of Re0 and F.

The effect of three-dimensionality of mode S is examined in figure 11 where
contours of the maximum sensitivities are plotted versus Re0 and b = β/Re0 × 104,
at F = 50. The growth rate of the mode reaches a maximum around Re0 = 4000
when b = 0; for b > 0.4, the first unstable region moves upstream and the second
unstable region disappears. At a fixed b, the sensitivity increases with Re0, but drops
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FIGURE 11. Contours of the maximum of sensitivity functions (a) log(max |∇UBα|) and
(b) log(max |∇TBα|) of the mode S in the parameter space (Re0, b). Dashed lines represent
the neutral stability curve where αr = 0.
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FIGURE 12. Contours of the maximum of sensitivity functions (a) log(max |∇UBα|) and
(b) log(max |∇TBα|) of the mode F in the parameter space (Re0,F). Dashed lines in white
area represent the location where the phase speed of the mode F becomes unity, and white
solid lines represent the synchronization point where the phase speed of the mode F equals
to that of the mode S.

suddenly in the second unstable region b< 0.4. At a fixed Re0, the sensitivity shows
weak dependence on b. Over the entire parameter space, ∇UBα is larger than ∇TBα
by approximately four orders of magnitude.

The sensitivity of the mode F is also examined as a function of (Re0, F), and
contours of the maximum values of ∇UBα and ∇TBα are plotted in figure 12. The
sharp jump in the sensitivity around the Reynolds number where the phase speed
becomes unity (dashed line) is observed over the full range of frequencies considered.
The increase in sensitivity in the vicinity of the synchronization point (white solid
line) also persists. Similar to mode S, the sensitivity increases with frequency F at a
fixed Re0, and ∇UBα is orders of magnitude larger than ∇TBα.

3.3. Optimal base state
The sensitivity profiles ∇UBα and ∇TBα identify wall-normal heights at which the
boundary-layer stability is most responsive to base-state distortions. For instance, local
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acceleration of δUB near the critical layer can effectively stabilize modes S and F.
The question naturally arises as to what is the optimal distortion to the base state,
which causes the largest change in flow stability. In the limit of a small distortion
in incompressible flow, Bottaro et al. (2003) solved the optimization problem and
showed that ∇UBαr, with appropriate scaling, is in fact the optimal modification δUB.
The optimization problem is herein examined for compressible flows in order to
evaluate the optimal base velocity Ū and temperature T̄ . A Lagrangian approach is
adopted, and we restrict the optimal base state Ū and T̄ to satisfy the following
energy constraints,

JU =

∫
∞

0
ρB(Ū −UB)

2 dy− r2
U = 0, JT =

∫
∞

0

ρ2
B

γ0(γ0 − 1)M2
0
(T̄ − TB)

2 dy− r2
T = 0,

(3.3a,b)
where rU and rT are the prescribed kinetic and thermal energy distortions, scaled
similarly to the definition of the energy norm by Hanifi et al. (1996). We define the
Lagrangian,

L = α − (q̂†
, (αA+B)q̂)+ λUJU + λTJT, (3.4)

where λU, λT and the adjoint eigenmode q̂† are all Lagrange multipliers. In order to
maximize α, we seek stationary points of L . Differentiation with respect to λU and
λT yields the constraints (3.3); differentiation with respect to the adjoint q̂† yields the
eigenvalue problem (2.15), and with respect to q̂ yields the adjoint equations (2.22);
the derivative with respect to α gives,

∂L

∂α
= 1−

(
q̂†
,

(
A+ α

∂A
∂α

)
q̂
)
= 0. (3.5)

Comparison of the above expression to (2.23) shows that the norm R̂ is unity. In order
to determine the optimal base state, we differentiate the Lagrangian L with respect
to Ū and T̄ ,

∂L

∂Ū
δU =−

(
q̂†
, α
∂A
∂Ū

δUq̂+
∂B
∂Ū

δUq̂
)

︸ ︷︷ ︸
=(∇UBα,δU)

+ 2λU

∫
∞

0
ρB(Ū −UB)δU dy= 0, (3.6)

∂L

∂T̄
δT =−

(
q̂†
, α
∂A
∂T̄
δT q̂+

∂B
∂T̄
δT q̂

)
︸ ︷︷ ︸

=(∇TBα,δT)

+ 2λT

∫
∞

0

ρ2
B

γ0(γ0 − 1)M2
0
(T̄ − TB)δT dy= 0.

(3.7)

Taking the real part of the sensitivities, ∇Uαr and ∇Tαr, leads to the optimal base
state

Ū =UB ±
TB

2λU
∇UBαr, T̄ = TB ±

γ0(γ0 − 1)M2
0T2

B

2λT
∇TBαr, (3.8a,b)

which maximizes the change in flow stability. The Lagrange multipliers λU and λT are
determined from the constraints (3.3),

λU =

√
1

4r2
U

∫
∞

0
TB(∇Uαr)2 dy, λT =

√
γ0(γ0 − 1)M2

0

4r2
T

∫
∞

0
T2

B(∇TBαr)2 dy. (3.9a,b)
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FIGURE 13. (a) Growth rate and (b) phase speed of the mode S (black solid lines) and
the mode F (grey solid lines), and uncertainty bounds with |rU|6 10−4, rT = 0 (light grey
area), and |rT |6 10−3, rU = 0 (dark grey area).

The corresponding growth-rate distortion is then,

δαr|U =±

√
r2

U

∫
∞

0
TB(∇UBαr)2 dy, δαr|T =±

√
r2

Tγ0(γ0 − 1)M2
0

∫
∞

0
T2

B(∇TBαr)2 dy.

(3.10a,b)
The sensitivity profiles ∇UBαr and ∇TBαr are thus, with appropriate scaling, the most
destabilizing or stabilizing distortions δUB and δTB, respectively.

Similarly, taking the imaginary part of (3.6)–(3.7) gives the optimal base state

Ū =UB ±
TB

2λU
∇UBαi, T̄ = TB ±

γ0(γ0 − 1)M2
0T2

B

2λT
∇TBαi, (3.11a,b)

which maximally distorts the streamwise wavenumber. The resulting changes in αi are,

δαi|U =±

√
r2

U

∫
∞

0
TB(∇UBαi)2 dy, δαi|T =±

√
r2

Tγ0(γ0 − 1)M2
0

∫
∞

0
T2

B(∇TBαi)2 dy.

(3.12a,b)
The optimal base state (3.8) is valid when rU and rT are infinitesimal, and hence

the distortions are small – a condition that is satisfied in the present work. Similar to
Bottaro et al. (2003), while the reference state (UB, TB) satisfies the boundary-layer
similarity equations, we did not apply the same constraint to the distorted base state.
This choice enabled the derivation of analytical expressions for the optimal base
state, and the establishing of its relation to the sensitivity profile. For finite-amplitude
distortions, and to constraint the optimal base state to satisfy the boundary-layer
equations, the optimization problem must be solved numerically and iteratively.

Figure 13 shows the growth rate αr and the phase speed c of modes S and F, and
the corresponding uncertainty bounds with αr ± δαr and c ± δc = ω/(αi ± δαi). The
deviations δαr and δαi are evaluated from (3.10) and (3.12). The light grey bands
represent the uncertainty bounds when |rU| 6 10−4 and rT = 0, while the dark grey
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FIGURE 14. (Colour online) Perturbations of (a) velocity u and (c) temperature T , and
mode shapes (b) |ǔ| and (d) |Ť| from the PSE computation of the mode S for M0 =

4.5 and F = 50. Solid, dashed and dash-dot lines denote the boundary-layer thickness
δ99, the critical layer yc and the displacement thickness δ∗, respectively. For clarity, the
perturbations in (a,c) are plotted in a small portion of the domain, which is identified by
the grey rectangles in (b,d).

are the uncertainty bounds when rU = 0 and |rT | 6 10−3. It is remarkable that such
a small energy of the base state modification, of the order of O(10−6–10−8), yields
significant changes in the growth rates and phase speeds. In particular, mode F has
very large uncertainty bounds after its phase speed becomes less than unity. Not
only does its growth rate change substantially, but also the synchronization Reynolds
number becomes uncertain (3670 . Re0 . 4380). Since the sensitivity ∇TBα is orders
of magnitude smaller than ∇UBα, a larger value of rT remains relatively benign in
terms of its impact on the growth rate and phase speed.

4. Sensitivity in spatially developing boundary layers
4.1. PSE solution and its sensitivity

In this section, we investigate the sensitivity of spatially developing boundary layers
to base-state distortion using the PSE. We focus on the sensitivity of the mode S,
both in terms of its growth rate and the N-factor. Figure 14 shows perturbations u
and T and the corresponding mode shapes ǔ and Ť of mode S at F= 50. The inflow
condition for the PSE is obtained from the LST results at Re0= 750. We only display
the perturbation in the downstream portion of the domain in order to highlight the
development of the instability wave. The most energetic component is the perturbation
temperature T which is mostly localized near the critical layer yc. The perturbation
u, on the other hand, is localized below yc. Figure 14(b,d) shows the corresponding
mode shapes ǔ and Ť . Overall, they shift upward and their amplitudes decrease as
the boundary layer develops downstream. The adjoint perturbations u† and T† are
displayed in figure 15(a,c). Since the unstable mode S grows downstream, the adjoint
mode grows upstream, and therefore only the region near the inflow is displayed
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FIGURE 15. (Colour online) Adjoint perturbations (a) u† and (c) T†, and adjoint mode
shapes (b) |ǔ†

| and (d) |Ť†
| from the adjoint PSE. For clarity, the adjoint perturbations in

(a,c) are plotted in a short portion of the domain, which is identified by the grey rectangles
in (b,d).

in the figure for clarity. Among the adjoint perturbation components, u† is most
energetic. The adjoint mode shapes ǔ† and Ť† are also displayed in figure 15(b,d).
Their amplitude grows along the boundary-layer thickness, similar to Ť .

The spatially developing mode shape q̌ and its adjoint q̌† for mode S are used to
obtain sensitivity profiles in the (x, y)-plane (figure 16). The growth-rate sensitivity
∇UBγr increases downstream up to x' 1.6× 104, and again for x> 2.5× 104. However,
in between these two streamwise position, 1.6 × 104 6 x 6 2.5 × 104, the sensitivity
is very weak. In terms of the local Reynolds number Rex = ρ0U0x/µ0, this range
corresponds to 3464< Re=

√
Rex < 4330, where the growth rate of mode S becomes

positive after the synchronization point. It is important to note that the most sensitive
region lies between the boundary-layer thickness δ99 and the displacement thickness
δ∗. Also, sensitivity is negative along the critical layer yc which is consistent with
observations from the parallel-flow case. The sensitivity profiles ∇VBγr and ∇TBγr have
similar features: they move up as the boundary layer develops downstream with the
mode sensitivity region between δ99 and δ∗, and are small in the second unstable
region 1.6 × 104 6 x 6 2.5 × 104. The growth-rate sensitivity to distortion in base
velocities ∇UBγr and ∇VBγr are of the same magnitude, and are significantly larger
than ∇TBγr.

The wall-normal maxima of |∇UBγ |, |∇VBγ | and |∇TBγ | were extracted, and are
plotted against the streamwise position x in figure 16(d). The sensitivities of the
instability wave to base-state modifications increase downstream, and drop in the
second unstable region 1.6 × 104 6 x 6 2.5 × 104. The results for ∇UBγ and ∇TBγ

are compared to their counterparts from parallel LST, ∇UBα and ∇TBα, which are
appropriately renormalized using the square of the local length scale. Good agreement
is observed, although the parallel theory does not provide any estimate of |∇VBγ |

which is the largest component.
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FIGURE 16. (Colour online) (a–c) Two-dimensional profiles of the growth rate sensitivity
for the mode S: (a) ∇UBγr, (b) ∇VBγr and (c) ∇TBγr. Solid, dashed and dash-dot lines
denote the boundary-layer thickness δ99, the critical layer yc and the displacement thickness
δ∗, respectively. (d) Maximum sensitivity in y-direction versus x for max(|∇UBγ |) (black
solid), max(|∇VBγ |) (grey solid) and max(|∇TBγ |) (light grey solid). Dashed lines are the
rescaled maximum sensitivity functions |∇UBα| and |∇TBα| from the LST in figure 9.

4.2. Optimal base state
An optimal base state is sought to maximize the Lagrangian,

Ľ =

∫ x1

x0

γr(x) dx−
〈

q̌†
, Ǎ

∂ q̌
∂x
+Lq̌

〉
+ λ̌U J̌U + λ̌V J̌V + λ̌T J̌T, (4.1)

where the objective function is the N-factor N(x1) =
∫ x1

x0
γr(x) dx. In the above

expression, {q̌†
, λ̌U, λ̌V, λ̌T} are Lagrange multipliers and {J̌U, J̌V, J̌T} are the constraints,

J̌U =
1
Lx

∫ x1

x0

∫
∞

0
ρB(Ū −UB)

2 dy dx− ř2
U = 0,

J̌V =
1
Lx

∫ x1

x0

∫
∞

0
ρB(V̄ − VB)

2 dy dx− ř2
V = 0,

J̌T =
1
Lx

∫ x1

x0

∫
∞

0

ρ2
B

γ0E0
(T̄ − TB)

2 dy dx− ř2
T = 0,


(4.2)

where Lx = x1 − x0 is the streamwise extent of the optimization domain.
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We seek stationary points of the Lagrangian. The derivative of Ľ with respect to
γ yields the equation for the norm Ř,

∂Ľ

∂γ
δγ =

∫ x1

x0

δγ dx−
〈

q̌†
,
∂L
∂γ
δγ q̌

〉
= 0 → Ř=

(
q̌†
,
∂L
∂γ

q̌
)
= 1. (4.3)

Differentiating Ľ with respect to U, V and T , and taking the real part of the
sensitivities, we obtain the optimal base state,

Ū =UB ±
Lx

2λ̌U

TB∇UBγr, λ̌U =

√
Lx

4r2
U

∫ x1

x0

∫
∞

0
TB(∇UBγr)2 dy dx, (4.4a,b)

V̄ = VB ±
Lx

2λ̌V

TB∇VBγr, λ̌V =

√
Lx

4r2
V

∫ x1

x0

∫
∞

0
TB(∇VBγr)2 dy dx (4.5a,b)

T̄ = TB ±
Lxγ0E0

2λ̌T

T2
B∇TBγr, λ̌T =

√
Lx

4r2
T

∫ x1

x0

∫
∞

0
γ0E0T2

B(∇TBγr)2 dy dx. (4.6a,b)

The associated change in the N-factor is given by,

δN(x1)= δN|UB + δN|VB + δN|TB, (4.7)

where

δN|UB =

∫ x1

x0

δγr|UB dx=±

√
Lxr2

U

∫ x1

x0

∫
∞

0
TB(∇UBγr)2 dy dx,

δN|VB =

∫ x1

x0

δγr|VB dx=±

√
Lxr2

V

∫ x1

x0

∫
∞

0
TB(∇VBγr)2 dy dx,

δN|TB =

∫ x1

x0

δγr|TB dx=±

√
Lxr2

T

∫ x1

x0

∫
∞

0
γ0E0T2

B(∇TBγr)2 dy dx.


(4.8)

Figure 17 shows the downstream evolution of the N-factor, computed from the
amplification of mode S that was shown in figure 14. The bands mark the uncertainty
bounds N ± δN from (4.7): Grey corresponds to {|řU|6 10−4, řV = řT = 0}, light grey
marks {|řV | 6 10−4, řU = řT = 0} and dark grey denotes {|řT | 6 10−3, řU = řV = 0}.
The sensitivity ∇TBγr is smaller than ∇UBγr and ∇VBγr, so the uncertainty bounds
with larger řT are relatively narrow. The bounds widen downstream as the sensitivity
increases, and are widest around x = 1.6 × 104 where the sensitivity is maximum.
The results demonstrate that a very small distortion in the base state can lead to
appreciable changes in the N-factor. For instance, the optimal base state U with
|řU|6 10−4 increases the N-factor by 9 % at x= 1.5× 104. Not only is δN at a given
streamwise position important, but also δx for a target value of the N-factor that is
relevant to transition prediction. For instance, the estimated streamwise location for
N = 8 can vary by as much as |δx| ' 103 according to the figure when |řU| = 10−4.

The optimal base-state modifications may not be practical for flow control, but
they provide quantitative bounds on uncertainty. In the next section, we consider the
problems of surface heating and cooling. Using sensitivity analysis, we delineate how
the changes in the base state lead to modification of the flow stability.
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FIGURE 17. PSE evaluation of the N-factor from the reference state (black solid line)
and of the uncertainty bounds N± δN due to optimal base-state distortions. (Grey) {|řU|6
10−4, řV = řT = 0}; (light grey) {|řV | 6 10−4, řU = řT = 0}; (dark grey) {|řT | 6 10−3, řU =

řV = 0}.

5. Application of the sensitivity analysis to heated boundary layers
5.1. Effect of surface heating on the base state and stability

In this section, the adiabatic boundary-layer profiles from figure 1(a,b) are regarded as
the reference base state, and its distortions are obtained by increasing or decreasing
the wall temperature Tw. The distorted states can, therefore, be evaluated from
the similarity equations (2.7)–(2.8) subject to isothermal wall boundary conditions.
Figure 18 shows the deviation of the base velocity and temperature from the adiabatic
reference case, when the wall temperature is increased or reduced. For example, when
the wall temperature is raised, the base temperature TB increases at all wall-normal
locations and the base velocity UB decreases. Note that the relative change in base
temperature is larger than that in the base velocity.

Figure 19 shows the growth rate αr and the phase speed c as a function of the
Reynolds number Re0 for modes S and F for three wall boundary conditions: adiabatic
and isothermal with 1Tw/Tw =±0.05. The effect of surface heating depends on the
Reynolds number, and differs for the two modes. For example, the growth rate of
the mode S increases with heating at low Re0 and decreases at high Re0. On the
other hand, the growth rate of the mode F decreases with heating at low Re0 and
increases at high Re0. The influence on the phase speed is shown in figure 19(b): the
synchronization point shifts upstream with surface heating.

5.2. Sensitivity to distortion resulting from change in wall temperature
The effect of surface heating on flow stability can be evaluated by applying LST to
the adiabatic and to the heated boundary layers, and evaluating the change in the
instability growth rate, δαr. For every new wall temperature, an eigenvalue problem
must be solved for the new base state. The results for mode S at Re0 = 2000
are plotted in figure 20 using filled symbols, and show that the flow becomes
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FIGURE 18. Distortions of base flow δUB and temperature δTB from the adiabatic
boundary layer by changing wall temperature 1Tw/Tw = ±0.02 (inner lines) and ±0.04
(outer lines) with heating (dashed) and cooling (dash-dot).
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FIGURE 19. (a) Spatial growth rate αr and (b) phase speed c of the modes S (black)
and F (grey) for adiabatic wall (solid lines), heated with 1Tw/Tw = 0.05 (dashed lines)
and cooled with 1Tw/Tw =−0.05 (dash-dot lines). Direction of the arrows indicates the
heating, and filled circles in (b) show the synchronization points of the modes S and F.

progressively more unstable with wall heating. Alternatively, we can take advantage
of the sensitivity analysis and compute δαr = (∇Qα, δQ), where δQ is the difference
between the adiabatic and heated base flows. In this case, once the sensitivity profile
∇Qα is evaluated, the effect of any modified base state can be computed relatively
efficiently. The results are shown in figure 20 by the solid lines. Near the reference
adiabatic state, when |1Tw/Tw|< 0.02, the results agree very well with the prediction
of LST which entails a re-evaluation of the eigenvalue problem. The discrepancy at
larger changes in the wall temperature are expected because the sensitivity analysis
assumes small base-state distortions. The prediction can be improved by defining
new reference states, for example at 1Tw/Tw =±0.05, and performing the sensitivity
analysis relative to that state; these results are shown by the grey lines in figure 20(a).
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FIGURE 20. (a) Growth rate αr versus change in wall temperature at Re0 = 2000 for
mode S from the LST computation (dots), and the growth-rate estimation αr + δαr from
the sensitivity analysis using the sensitivity profiles at the adiabatic reference state 1Tw=

0 (black solid line) and at 1Tw/Tw = ±0.05 (grey solid lines). Empty circles mark the
reference base states used in the sensitivity analysis. (b) Growth-rate distortion δαr versus
wall-temperature change from the LST (black dots) and the sensitivity analysis (solid line).
Dashed and dash-dot lines indicate the growth-rate distortions due to base velocity and
temperature distortion δαr|UB and δαr|TB , respectively.

Another advantage of the sensitivity analysis is demonstrated in figure 20(b), where
the change in the growth rate is decomposed into the contributions from the change
in base velocity and temperature, δαr = δαr|UB + δαr|TB = (∇UBαr, δUB)+ (∇TBαr, δTB).
While δαr|UB increases, δαr|TB decreases with wall heating. In other words, the
base-state deceleration δUB < 0 associated with surface heating is destabilizing, while
the mean-temperature increase δTB > 0 is stabilizing for mode S. Despite the weaker
relative change in the base velocity (figure 18), its contribution is dominant and the
net change in the growth rate is positive when the wall temperature is increased. The
same analysis at Re0 = 4000, where the growth rate decreases with heating, shows
the opposite outcome: δαr|TB surpasses δαr|UB and αr decreases with increase in Tw.

The sensitivities ∇UBαr and ∇TBαr can be further decomposed into their different
constituents (appendix B), and the impact of each term on flow stability can be
isolated. When the wall temperature is increased by 1 %, the change in the growth
rate is positive as shown in figure 21(a). This change is first split into the effect
of modification of the base velocity (dark red) and base temperature (dark blue), or
δαr|UB and δαr|TB . The base-flow deceleration, δUB < 0, that takes place when the
wall is heated has a destabilizing influence, δαr|UB > 0; in contrast, the increase in
the base temperature, δTB > 0, is stabilizing, δαr|TB < 0.

The change in αr due to the modification of the base velocity is the sum of
three contributions, δαr|UB =

∑3
i=1 δαi

r|UB where δαi
r|UB = (Re(Ŝ

i

UB
), δUB), and

similarly the effect of the base temperature can be divided into seven terms.
These are marked by the light-coloured columns in figure 21(a). The component
Ŝ

1

UB
= ∂/∂y(ρBv̂

∗û†) is the dominant contributor to δαr|UB , and it can be tracked
to the mean-shear term in the u-momentum equation. For the base temperature,
the component Ŝ

1

TB
= (∂UB/∂y)(û†v̂∗/T2

B) makes the most significant contribution

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Jo

hn
s 

H
op

ki
ns

 U
ni

ve
rs

ity
, o

n 
21

 N
ov

 2
01

8 
at

 1
7:

42
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.819


502 J. Park and T. A. Zaki

∂år

∂år

∂år|UB ∂år|TB

(a) (b)

-2

-1

0

1

2

0

1

2

3

4

N-
fa

ct
or

5

6

7

1000 2000 3000
Re0

500040001 2 3 1 2 3 4 5 6 7

(÷ 10-4)

FIGURE 21. (Colour online) (a) Histogram of growth-rate distortions for mode S at Re0=

2000 when the boundary layer is heated by 1 % relative to an adiabatic reference state.
Black column is the predicted total growth-rate distortion δαr obtained using the sensitivity
analysis. The sensitivity due to the variation in the base velocity (dark red) is decomposed
into three contributions (light red); the sensitivity due to the change in base temperature
(dark blue) is decomposed into seven contributions (light blue). (b) LST evaluation of
N-factor of mode S with F = 50 versus Reynolds number. Solid line corresponds to the
adiabatic reference state, and grey regions mark uncertainty bounds when the change in
wall temperature is (dark grey) 1 % and (light grey) 2 %.

to δαr|TB and it arises due to distortion in mean-shear term in the x-momentum
equation. But other components also have an appreciable influence on δαr|TB ,
for example Ŝ

2

TB
= (UBα

∗
+ iω)(û†û∗ + v̂†v̂∗ + ŵ†ŵ∗)/T2

B which arises due to

the effect of changing the base temperature on the advection terms, and Ŝ
3

TB
=

(α∗ρ̂†û∗ − v̂∗(∂ρ̂†/∂y) − iβρ̂†ŵ∗)/T2
B which is due to the influence of changing the

base temperature on the continuity equation.
The growth rate of mode S with frequency F = 50 was computed using locally

parallel LST, and integrated from Re0 = 750 downstream to obtain the N-factor
(figure 21b). Using the sensitivity analysis, the uncertainty bounds N ± δN were
evaluated for 1 % and 2 % changes in the wall temperature from the adiabatic
value. The N-factor curve displays two unstable regions, the first one in the range
750 < Re0 < 2500 and the second in the range 3600 < Re0 < 4500. The uncertainty
bounds become wider after the second region, where the sensitivity is large, and the
N-factor at the peak can be changed by unit value in response to a 2 % uncertainty
in the wall temperature.

Figure 22(a) shows the PSE predictions of the N-factor for mode S, at various
frequencies in the range 406F 6 80, plotted versus the local Reynolds number

√
Rex.

The black lines correspond to a reference adiabatic boundary layer. Overall, the
amplification is enhanced as the frequency decreases, and an envelope of the N-factor
can be determined from the figure (Park & Park 2016). For each curve, the grey band
marks uncertainty bounds, N ± δN, obtained from the sensitivity analysis when the
base flow is distorted by 1Tw/Tw =±0.01. Near the plateaus in the N-factor curves,
uncertainty bounds are wide due to an increase of sensitivity. It is also important to
note that the uncertainty in the streamwise position for a target value of the N-factor
near the plateau is very wide, which has significant implications for prediction of the
transition location. In contrast, the uncertainty bounds around the maximum N-factor
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FIGURE 22. (Colour online) (a) PSE evaluation of N-factor versus local Reynolds number√
Rex, for mode S with frequencies F ∈ [40, 80] with increment 1F = 5. The left-most

curve represents the N-factor curve for F = 80. Black lines correspond to the adiabatic
reference states, and grey areas mark the uncertainty bounds with |1Tw/Tw| 6 0.01. (b)
Histogram of N-factor distortion for the mode S at F = 50 and

√
Rex = 2000 when the

boundary layer is heated by 1 % relative to an adiabatic reference state. Black column
denotes a prediction of the total N-factor distortion δN from the sensitivity analysis, and
red, green and blue columns denote N-factor modifications due to distortions in base
velocity UB, VB and temperature TB, respectively.

are relatively narrow due to the small sensitivity around the second unstable region
of mode S.

Using the analytical expressions for sensitivity, we can dissect the change in the
N-factor without any additional PSE computations. Figure 22(b) shows the N-factor
distortion, δN, for the mode S at F = 50 and

√
Rex = 2000, when the wall is heated

by 1 %. The net change is decomposed into the contributions from in the base
streamwise (red) and wall-normal (green) velocities and base temperature (blue),
δN = δN|UB + δN|VB + δN|TB . Similar to the parallel boundary layer, δN|UB increases
while δN|TB decreases with surface heating. In the spatial boundary layer, the increase
in wall temperature also changes the base vertical velocity VB and, as a result,
introduces a finite δN|VB which is negative. But since the normalized change in VB
is very weak in comparison to that in UB and TB, its effect δN|VB is relatively small.
Ultimately the influence of δN|UB is dominant, and the net change in δN is positive
which corresponds to flow destabilization in response to an increase in the wall
temperature.

In this section, the sensitivity analysis was applied to predict the change in the
growth rate of instability waves and uncertainty in the N-factor in response to
changes in the base state. Results for uncertainty in wall temperature, relative to an
adiabatic reference state, were presented and demonstrate that deceleration in the base
streamwise velocity, δUB < 0, increases the growth rate and N-factor; Meanwhile, an
increase in base temperature, δTB > 0, has a stabilizing influence.

6. Conclusions and discussion
This work examines the sensitivity of high-speed boundary-layer stability when the

base state is distorted. The zero-pressure-gradient flow is at Mach number M0 = 4.5,
and its stability was reviewed using locally parallel linear stability theory (LST) and
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linear parabolized stability equations (PSE). Two discrete modes, the slow mode
S and fast mode F, are equally important at M0 = 4.5, and their sensitivity to
base-state distortion is analysed. Using linearized stability equations and their adjoint,
a formulation of the sensitivity of the complex streamwise wavenumber to base-state
modification is derived analytically. The sensitivity is decomposed into various
components: sensitivities to base-velocity and to base-temperature modifications, and
each can be further divided into various physical mechanisms that can be traced back
to particular terms in the governing equations.

The analysis of mode S in a locally parallel boundary layer reveals that its
sensitivity profile is oscillatory in the wall-normal direction. The distortion of the
base velocity has a larger impact on the growth rate than that of the base temperature,
and is negative near the critical layer. The decomposition of the sensitivity shows
that the dominant contribution is from the modification of the mean shear in the
momentum equations. The sensitivity increases with the Reynolds number Re0 but
there is a sudden drop in the second unstable region of mode S. This trend is generic
across temporal frequencies and spanwise wavenumbers of the mode.

The sensitivity of mode F has an interesting behaviour: a discontinuity is observed
when the phase speed of the mode becomes less than unity, and increases in the region
near the synchronization point when the phase speeds of modes F and S become
equal. In this region, the sensitivity of mode F exceeds that of mode S. Detailed
parametric studies over wide ranges of Reynolds numbers, modal frequencies and
spanwise wavenumbers confirm these effects.

An analytical expression for the base state which maximizes the change in the
instability growth rate was derived using Lagrangian optimization. It was shown
that, in the limit of small-amplitude distortion, the optimal modifications to the base
velocity and temperature are in fact the rescaled sensitivity profiles. When applied,
even with very weak amplitude, the optimal base-flow distortion leads to a significant
change in the growth rate and phase speed of the instability wave.

Analytic expressions for the sensitivity of the growth rate in spatially developing
high-speed boundary layers was also derived using the PSE and adjoint PSE. The
sensitivity of mode S at M0= 4.5 was assessed by evaluating ∇UBγ , ∇VBγ and ∇TBγ ,
whose largest values lie between the boundary-layer thickness and the displacement
thickness. The Lagrangian optimization to find the optimal base state that maximizes
the change in the N-factor was formulated and solved, and uncertainty bounds for the
N-factor were computed.

The influence of surface heating on the stability of high-speed boundary layers
was examined. Both LST and PSE results were compared to predictions from the
sensitivity analysis, when the base flow is changed from the adiabatic solution to
heated or cooled isothermal wall conditions. Near the reference state, the changes in
the instability growth rate δαr and the N-factor δN are accurately predicted by the
analysis. When the wall is heated, the base streamwise velocity decelerates, δUB < 0,
while the base temperature increases, δTB > 0. For mode S, the former effect is
destabilizing while the latter is stabilizing. The sum of the two contributions depends
on the Reynolds number Re0: The mode is destabilized by heating at low Re0 and
stabilized at high Re0. Detailed analysis of the change in the growth rate reveals
that it is primarily due to the effect of δUB on the mean shear in the streamwise
momentum equation. The analysis was also applied to compute uncertainty bounds
on the N-factor in response to uncertainty in the wall temperature.

The sensitivity analysis can be applied to interpret deviations of experimental
measurements from theoretical predictions. For instance, figure 23 shows the growth
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FIGURE 23. Comparison of instability growth rates in adiabatic boundary layers at M0= 2
from (solid line) LST and (circles) the experiments by Lysenko & Maslov (1984). Dark
and light grey areas indicate uncertainty bounds in response to 1 % and 2 % uncertainty
in wall temperature, respectively.

rates reported from the experiments by Lysenko & Maslov (1984) and evaluated from
our linear stability analyses, for an adiabatic boundary layer at M0 = 2. Note that
our stability results are the same as those reported in figure 8(a) by Masad et al.
(1992). The figure also shows uncertainty bounds that we evaluated using the present
sensitivity analysis, and assuming that the base flow is distorted due to uncertainty in
wall temperature (similar to § 5). As demonstrated by the figure, within the context
of LST, 1 %–2 % change in the wall temperature can explain the discrepancy between
the experimental results and the theory. In reality, the discrepancy is also due to
other sources of uncertainty that may have been at play and the assumptions of the
theoretical model.

In the Introduction, we mentioned that the similarity base-state profiles can be
distorted by the upstream shock, which impacts the flow stability (e.g. Pinna &
Rambaud 2013). When the effect of the shock on the boundary-layer mean flow is
small, it can be regarded as a base-state distortion from the similarity profile. Our
sensitivity profiles can then be used to evaluate the associated changes in the growth
rates and N-factors of the instability waves. Alternatively, the stability and sensitivity
analyses can be evaluated for the ‘shocked’ mean flow itself, and compared to the
results of the self-similar boundary layers presented herein.

The analysis performed in this work provides a detailed view of changes in
high-speed boundary-layer stability in response to modifications of the base flow. The
formulation was developed for linear parallel and parabolized stability equations, and
hence the computational cost is modest. The expressions for sensitivity are parametric,
due to base-flow modifications in δU, δV or δT , and hence required the forward and
adjoint perturbation equations only. The results can subsequently be applied to
study conditions where all three components of the base state are distorted while
satisfying the mean-flow equations, as performed herein to evaluate the influence of
wall-temperature uncertainty on boundary-layer stability. Future efforts can examine
the sensitivity of instability waves to steady forcing, i.e. sensitivity to distortions in the
base-flow equations; this analysis requires the forward and adjoint perturbations and
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mean-flow equations (see e.g. Marquet et al. 2008, for an incompressible example).
The present results can also be extended to other instabilities such as shock modes
(Hu & Zhong 1997), and to other methods such as the nonlinear parabolized stability
equations.
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Appendix A. Elements of the operator matrices
In this section, we present details of non-zero elements of the operator matrices V ,

which feature in the linear perturbation equations. We also provide the details of the
operator Ǎ that is used in the PSE.

The non-zero elements of the matrix operator V(i, j) are given below, where the
indices i, j represent the row and the column entries within the matrix operator:

Vt(1, 1)= 1, Vt(2, 2)= Vt(3, 3)= Vt(4, 4)= Vt(5, 5)= ρB, (A 1)

V0(1, 1)=
∂UB

∂x
+
∂VB

∂y
, V0(1, 2)=

∂ρB

∂x
, V0(1, 3)=

∂ρB

∂y
, (A 2)

V0(2, 1)=UB
∂UB

∂x
+ VB

∂UB

∂y
+

1
γ0M2

0

∂TB

∂x
, V0(2, 2)= ρB

∂UB

∂x
,

V0(2, 3)= ρB
∂UB

∂y
,

V0(2, 5)=
1

γ0M2
0

∂ρB

∂x
−

1
Re0

[
l
{(

∂2UB

∂x2
+
∂2VB

∂x∂y

)
∂µB

∂TB

+

(
∂UB

∂x
+
∂VB

∂y

)
∂2µB

∂T2
B

∂TB

∂x

}
+ 2

(
∂2UB

∂x2

∂µB

∂TB
+
∂UB

∂x
∂2µB

∂T2
B

∂TB

∂x

)
+

(
∂2UB

∂y2
+
∂2VB

∂x∂y

)
∂µB

∂TB

+

(
∂UB

∂y
+
∂VB

∂x

)
∂2µB

∂T2
B

∂TB

∂y

]
,



(A 3)

V0(3, 1)=UB
∂VB

∂x
+ VB

∂VB

∂y
+

1
γ0M2

0

∂TB

∂y
, V0(3, 2)= ρB

∂VB

∂x
,

V0(3, 3)= ρB
∂VB

∂y
,

V0(3, 5)=
1

γ0M2
0

∂ρB

∂y
−

1
Re0

[
l
{(

∂2UB

∂x∂y
+
∂2VB

∂y2

)
∂µB

∂TB

+

(
∂UB

∂x
+
∂VB

∂y

)
∂2µB

∂T2
B

∂TB

∂y

}
+ 2

(
∂2VB

∂y2

∂µB

∂TB
+
∂VB

∂y
∂2µB

∂T2
B

∂TB

∂y

)
+

(
∂2UB

∂x∂y
+
∂2VB

∂x2

)
∂µB

∂TB

+

(
∂UB

∂y
+
∂VB

∂x

)
∂2µB

∂TB

∂TB

∂x

]
,



(A 4)
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V0(5, 1)=UB
∂TB

∂x
+ VB

∂TB

∂y
+ (γ0 − 1)TB

(
∂UB

∂x
+
∂VB

∂y

)
,

V0(5, 2)= ρB
∂TB

∂x
, V0(5, 3)= ρB

∂TB

∂y
,

V0(5, 5)= (γ0 − 1)ρB

(
∂UB

∂x
+
∂VB

∂y

)
−

γ0

Re0Pr0

[(
∂2TB

∂x2
+
∂2TB

∂y2

)
∂kB

∂TB

+

{(
∂TB

∂x

)2

+

(
∂TB

∂y

)2
}
∂2kB

∂T2
B

]

−
γ0(γ0 − 1)M2

0

Re0

∂µB

∂TB

[
2

{(
∂UB

∂x

)2

+

(
∂VB

∂y

)2
}

+

(
∂VB

∂x
+
∂UB

∂y

)2

+ l
(
∂UB

∂x
+
∂VB

∂y

)2
]
,



(A 5)

Vx(1, 1)=UB, Vx(1, 2)= ρB, (A 6)

Vx(2, 1)=
TB

γ0M2
0
, Vx(2, 2)= ρBUB −

l+ 2
Re0

∂µB

∂TB

∂TB

∂x
, Vx(2, 3)=−

1
Re0

∂µB

∂TB

∂TB

∂y
,

Vx(2, 5)=
ρB

γ0M2
0
−

1
Re0

∂µB

∂TB

[
l
(
∂UB

∂x
+
∂VB

∂y

)
+ 2

∂UB

∂x

]
,


(A 7)

Vx(3, 2)=−
l

Re0

∂µB

∂TB

∂TB

∂y
, Vx(3, 3)= ρBUB −

1
Re0

∂µB

∂TB

∂TB

∂x
,

Vx(3, 5)=−
1

Re0

∂µB

∂TB

(
∂UB

∂y
+
∂VB

∂x

)
,

 (A 8)

Vx(4, 4)= ρBUB −
1

Re0

∂µB

∂TB

∂TB

∂x
, (A 9)

Vx(5, 2)= (γ0 − 1)−
2γ0(γ0 − 1)M2

0µB

Re0

[
(l+ 2)

∂UB

∂x
+ l
∂VB

∂y

]
,

Vx(5, 3)=−
2γ0(γ0 − 1)M2

0µB

Re0

(
∂VB

∂x
+
∂UB

∂y

)
,

Vx(5, 5)= ρBUB −
2γ0

Re0Pr0

∂kB

∂TB

∂TB

∂x
,


(A 10)

Vy(1, 1)= VB, Vy(1, 3)= ρB, (A 11)

Vy(2, 2)= ρBVB −
1

Re0

∂µB

∂TB

∂TB

∂y
, Vy(2, 3)=−

l
Re0

∂µB

∂TB

∂TB

∂x
,

Vy(2, 5)=−
1

Re0

∂µB

∂TB

(
∂UB

∂y
+
∂VB

∂x

)
,

 (A 12)
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Vy(3, 1)=
TB

γ0M2
0
, Vy(3, 2)=−

1
Re0

∂µB

∂TB

∂TB

∂x
, Vy(3, 3)= ρBVB −

l+ 2
Re0

∂µB

∂TB

∂TB

∂y
,

Vy(3, 5)=
ρB

γ0M2
0
−

1
Re0

∂µB

∂TB

[
l
(
∂UB

∂x
+
∂VB

∂y

)
+ 2

∂VB

∂y

]
,


(A 13)

Vy(4, 4)= ρBVB −
1

Re0

∂µB

∂TB

∂TB

∂y
, (A 14)

Vy(5, 2)=−
2γ0(γ0 − 1)M2

0µB

Re0

(
∂VB

∂x
+
∂UB

∂y

)
,

Vy(5, 3)= (γ0 − 1)−
2γ0(γ0 − 1)M2

0µB

Re0

[
(l+ 2)

∂VB

∂y
+ l
∂UB

∂x

]
,

Vy(5, 5)= ρBVB −
2γ0

Re0Pr0

∂kB

∂TB

∂TB

∂y
,


(A 15)

Vz(1, 4)= ρB, (A 16)

Vz(2, 4)=−
l

Re0

∂µB

∂TB

∂TB

∂x
, (A 17)

Vz(3, 4)=−
l

Re0

∂µB

∂TB

∂TB

∂y
, (A 18)

Vz(4, 1)=
TB

γ0M2
0
, Vz(4, 2)=−

1
Re0

∂µB

∂TB

∂TB

∂x
, Vz(4, 3)=−

1
Re0

∂µB

∂TB

∂TB

∂y
,

Vz(4, 5)=
ρB

γ0M2
0
−

l
Re0

∂µB

∂TB

(
∂UB

∂x
+
∂VB

∂y

)
,


(A 19)

Vz(5, 4)= (γ0 − 1)−
2lγ0(γ0 − 1)M2

0µB

Re0

(
∂UB

∂x
+
∂VB

∂y

)
, (A 20)

Vxx(2, 2)=−(l+ 2)
µB

Re0
, Vxx(3, 3)=−

µB

Re0
,

Vxx(4, 4)=−
µB

Re0
, Vxx(5, 5)=−

γ0kB

Re0Pr0
,

 (A 21)

Vxy(2, 3)=−(l+ 1)
µB

Re0
, Vxy(3, 2)=−(l+ 1)

µB

Re0
, (A 22)

Vxz(2, 4)=−(l+ 1)
µB

Re0
, Vxz(4, 2)=−(l+ 1)

µB

Re0
, (A 23)

Vyy(2, 2)=−
µB

Re0
, Vyy(3, 3)=−(l+ 2)

µB

Re0
,

Vyy(4, 4)=−
µB

Re0
, Vyy(5, 5)=−

γ0kB

Re0Pr0
,

 (A 24)
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Vyz(3, 4)=−(l+ 1)
µB

Re0
, Vyz(4, 3)=−(l+ 1)

µB

Re0
, (A 25)

Vzz(2, 2)=−
µB

Re0
, Vzz(3, 3)=−

µB

Re0
,

Vzz(4, 4)=−(l+ 2)
µB

Re0
, Vzz(5, 5)=−

γ0kB

Re0Pr0
.

 (A 26)

Note that in the parallel LST, the base state is assumed to be parallel thus VB and
terms with derivatives with respect to x are zero.

In the PSE, the wall-normal base velocity VB and terms with derivative ∂/∂x are of
order O(1/Re0), and terms with order O(1/Re2

0) are neglected (Bertolotti 1991). The
matrix operator Ǎ in the PSE consists of the following non-zero elements:

Ǎ(1, 1)=UB, Ǎ(1, 2)= ρB, Ǎ(2, 2)= Ǎ(3, 3)= Ǎ(4, 4)= Ǎ(5, 5)= ρBUB,

Ǎ(2, 1)=
TB

γ0M2
0
, Ǎ(2, 5)=

ρB

γ0M2
0
, Ǎ(5, 2)= (γ0 − 1).


(A 27)

Appendix B. Detailed expressions of the sensitivity
In this section, we present detailed expressions of the sensitivity of the complex

streamwise wavenumber to base-flow distortions. The results are given in the context
of the PSE, and reduction to the parallel configuration is straightforward.

The norm Ř is an integral of the form Ř=
∫
∞

0 Řy dy, where

Řy = q̌†∗
(
Vx + 2γVxx + Vxy

∂

∂y
+ iβVxz

)
q̌

= ρ̌†∗(UBρ̌ + ρBǔ)+ ǔ†∗

[
1
γM2

0
(TBρ̌ + ρBŤ)+ ρBUBǔ−

1
Re0

∂µB

∂TB

∂TB

∂y
v̌

−
µB

Re0

(
2(l+ 2)γ ǔ+ (l+ 1)

∂v̌

∂y
+ iβ(l+ 1)w̌

)]
+ v̌†∗

[
−

1
Re0

∂µB

∂TB

(
l
∂TB

∂y
ǔ+

∂UB

∂y
Ť
)

+ ρBUBv̌ −
µB

Re0

(
2γ v̌ + (l+ 1)

∂ ǔ
∂y

)]
+ w̌†∗

[
ρBUBw̌−

µB

Re0
(2γ w̌+ iβ(l+ 1)ǔ)

]
+ Ť†∗

[
ρBUBŤ + (γ0 − 1)ǔ−

2γ0kB

Re0Pr0
γ Ť −

2γ0(γ0 − 1)M2
0µB

Re0

∂UB

∂y
v̌

]
. (B 1)

The sensitivity to streamwise velocity distortion δUB is defined as ∇UBγ = ŠUB . In
addition, ŠUB can be decomposed into four components:

ŠUB = Š
1

UB
+ Š

2

UB
+ Š

3

UB
+ Š

4

UB
. (B 2)

First, Š
1

UB
arises due to distortion in the mean shear ρB(∂UB/∂y) in the x-momentum

equation, and is given by,

Š
1

UB
=
∂

∂y
(ρBv̌

∗ǔ†). (B 3)
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Second, the distortion of the advection terms gives rise to,

Š
2

UB
= −γ ∗[ρ̌∗ρ̌†

+ ρB(ǔ∗ǔ†
+ v̌∗v̌†

+ w̌∗w̌†
+ Ť∗Ť†)] + ρ̌∗

∂ρ̌†

∂x
+ ǔ∗

∂(ρBǔ†)

∂x

− ρB

(
v̌† ∂v̌

∗

∂x
+ w̌† ∂w̌∗

∂x
+ Ť† ∂Ť∗

∂x

)
+UB

∂(ρ̌∗ǔ†)

∂x
+
∂(VBρ̌

∗ǔ†)

∂y
−
∂TB

∂x
ρ̌∗Ť†.

(B 4)

Third, the distortion in viscous dissipation term yields

Š
3

UB
= −

1
Re0

∂

∂y

[
∂µB

∂TB
Ť∗
(
γ ∗v̌†
−
∂ ǔ†

∂y

)
+ 2γ0(γ0 − 1)M2

0

{
∂UB

∂y
∂µB

∂TB
Ť∗

+ µB

(
γ ∗v̌∗ +

∂ ǔ∗

∂y

)}
Ť†

]
. (B 5)

The last term, Š
4

UB
arises due to the mean-velocity distortion within the pressure

dilatation term in the energy equation,

Š
4

UB
= (γ0 − 1)

∂

∂x
[Ť†(TBρ̌

∗
+ ρBŤ∗)]. (B 6)

Similarly, the sensitivity to variation in the mean wall-normal velocity has the
general form ∇VBγ = ŠVB , where ŠVB can be decomposed into three components,

ŠVB = Š
1

VB
+ Š

2

VB
+ Š

3

VB
. (B 7)

The first term, Š
1

VB
, arises due to modification of the mean shear ρB∂VB/∂y in the

v-momentum equation, and is given by,

Š
1

VB
=
∂

∂y
(ρBv̌

†v̌∗). (B 8)

The second term is again due to the distortion of the advection term,

Š
2

VB
= ρ̌∗

∂ρ̌†

∂y
− ρB

(
ǔ∗
∂ ǔ†

∂y
+ v̌∗

∂v̌†

∂y
+ w̌∗

∂w̌†

∂y
+ Ť∗

∂Ť†

∂y

)
− ρ̌∗

(
∂UB

∂y
ǔ†
+
∂TB

∂y
Ť†

)
.

(B 9)

The last term, Š
3

VB
, is due to the variation of VB in the pressure dilatation term of the

energy equation,

Š
3

VB
= (γ0 − 1)

∂

∂y
[Ť†(TBρ̌

∗
+ ρBŤ∗)]. (B 10)

Finally, the sensitivity to base-temperature distortion has the form ∇TBγ = ŠTB ,
where ŠTB can be decomposed into eight components,

ŠTB = Š
1

TB
+ Š

2

TB
+ Š

3

TB
+ Š

4

TB
+ Š

5

TB
+ Š

6

TB
+ Š

7

TB
+ Š

8

TB
. (B 11)
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The distortion of the mean shear in the momentum equations gives rise to,

Š
1

TB
=

1
T2

B

[
ǔ†

(
∂UB

∂x
ǔ∗ +

∂UB

∂y
v̌∗
)
+
∂VB

∂y
v̌†v̌∗

]
. (B 12)

The changes in the advection terms due to the variation of TB lead to,

Š
2

TB
=

1
T2

B

[
UB

(
ǔ† ∂ ǔ∗

∂x
+ v̌† ∂v̌

∗

∂x
+ w̌† ∂w̌∗

∂x
+ Ť† ∂Ť∗

∂x

)

+VB

(
ǔ† ∂ ǔ∗

∂y
+ v̌† ∂v̌

∗

∂y
+ w̌† ∂w̌∗

∂y
+ Ť† ∂Ť∗

∂y

)
+(UBγ

∗
+ iω)(ǔ∗ǔ†

+ v̌∗v̌†
+ w̌∗w̌†

+ Ť∗Ť†)
]

+
∂(UBρ̌

∗Ť†)

∂x
+
∂(VBρ̌

∗Ť†)

∂y
. (B 13)

Changes in the continuity equation due to variation of TB gives rise to

Š
3

TB
=−

ǔ∗

T2
B

∂ρ̌†

∂x
−
v̌∗

T2
B

∂ρ̌†

∂y
+
ρ̌†

T2
B
(γ ∗ǔ∗ − iβw̌∗). (B 14)

Changes in the pressure-gradient terms in the momentum equations due to variation
of the base temperature lead to

Š
4

TB
=

1
γ0M2

0

(
ρ̌∗ −

Ť∗

T2
B

)(
∂ ǔ†

∂x
− γ ∗ǔ†

+
∂v̌†

∂y
+ iβw̌†

)
. (B 15)

The variation in the base-temperature gradient in the energy equation leads to

Š
5

TB
= ρB

[
∂

∂x
(ǔ∗Ť†)+

∂

∂y
(v̌∗Ť†)

]
. (B 16)

The change in viscous dissipation term gives rise to,

Š
6

TB
= −

1
Re0

[
∂2µB

∂T2
B

∂UB

∂y

(
Ť∗
∂ ǔ†

∂y
− ǔ† ∂Ť∗

∂y

)
+ γ ∗

∂µB

∂TB

∂(ǔ†v̌∗)

∂y
+
∂µB

∂TB

∂

∂y

(
ǔ† ∂ ǔ∗

∂y

)
−
∂µB

∂TB
ǔ†

{(
(l+ 2)γ 2∗

+
∂2

∂y2
− β2

)
ǔ∗ + (l+ 1)γ ∗

(
∂v̌∗

∂y
− iβw̌∗

)}
+
∂µB

∂TB

{
lγ ∗

∂(ǔ∗v̌†)

∂y
+ (l+ 2)

∂

∂y

(
v̌† ∂v̌

∗

∂y

)
− liβ

∂(w̌∗v̌†)

∂y

}
−
∂2µB

∂T2
B

∂UB

∂y
γ ∗Ť∗v̌†

−
∂µB

∂TB
v̌†

{(
γ 2∗
+ (l+ 2)

∂2

∂y2
− β2

)
v̌∗ + (l+ 1)

(
γ ∗
∂ ǔ∗

∂y
− iβ

∂w̌∗

∂y

)}
+
∂µB

∂TB

{
∂

∂y

(
w̌† ∂w̌∗

∂y

)
− iβ

∂(v̌∗w̌†)

∂y

}
−
∂µB

∂TB
w̌†

{(
γ 2∗
+
∂2

∂y2
− (l+ 2)β2

)
w̌∗ − (l+ 1)iβ

(
γ ∗ǔ∗ +

∂v̌∗

∂y

)}
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− γ0(γ0 − 1)M2
0
∂UB

∂y

{
∂2µB

∂T2
B

∂UB

∂y
Ť∗ + 2

∂µB

∂TB

(
γ ∗v̌∗ +

∂ ǔ∗

∂y

)}
Ť†

]
. (B 17)

Modification of the heat condition term in the energy equation gives rise to

Š
7

TB
=

γ0

Re0Pr0

∂kB

∂TB
T̂∗
(
γ 2∗
+
∂2

∂y2
− β2

)
Ť†. (B 18)

The final term arises due to the change in the pressure dilatation term in the energy
equation,

Š
8

TB
= (γ0 − 1)

(
∂UB

∂x
+
∂VB

∂y

)(
Ť∗

T2
B
− ρ̌∗

)
Ť†. (B 19)

The sensitivities ∇UBα and ∇TBα for parallel LST are the same as above ∇UBγ
and ∇TBγ when the base state is assumed to be parallel (i.e. UB =UB(y), TB = TB(y),
and VB = 0). The mode shape q̌ is replaced by q̂, and derivatives with respect to the
streamwise coordinate x are set to zero.
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