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The viscoelastic analogue to the Newtonian Orr amplification mechanism is examined
using linear theory. A weak, two-dimensional Gaussian vortex is superposed onto
a uniform viscoelastic shear flow. Whilst in the Newtonian solution the spanwise
vorticity perturbations are simply advected, the viscoelastic behaviour is markedly
different. When the polymer relaxation rate is much slower than the rate of
deformation by the shear, the vortex splits into a new pair of co-rotating but
counter-propagating vortices. Furthermore, the disturbance exhibits a significant
amplification in its spanwise vorticity as it is tilted forward by the shear. Asymptotic
solutions for an Oldroyd-B fluid in the limits of high and low elasticity isolate and
explain these two effects. The splitting of the vortex is a manifestation of vorticity
wave propagation along the tensioned mean-flow streamlines, while the spanwise
vorticity growth is driven by the amplification of a polymer torque perturbation. The
analysis explicitly demonstrates that the polymer torque amplifies as the disturbance
becomes aligned with the shear. This behaviour is opposite to the Orr mechanism
for energy amplification in Newtonian flows, and is therefore labelled a ‘reverse-Orr’
mechanism. Numerical evaluations of vortex evolutions using the more realistic
FENE-P model, which takes into account the finite extensibility of the polymer chains,
show the same qualitative behaviour. However, a new form of stress perturbation is
established in regions where the polymer is significantly stretched, and results in an
earlier onset of decay.
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1. Introduction
Viscoelasticity often introduces counter-intuitive behaviour into the flow dynamics

across a wide range of regimes. Perhaps the most well-known effect is the substantial
drag reduction achieved by the addition of small amounts of polymer to turbulent
flows (White & Mungal 2008). At these low concentrations, the polymer is found
to suppress the formation of the near-wall streamwise vortices, resulting in weaker
streaks and a reduction in skin friction. A similar trend is observed in the simplified
linear problem of roll–streak interaction in laminar Couette flow (Page & Zaki 2014).
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The influence of polymer additives on spanwise vortical structures has also been
noted in the literature; for example, they alter the linear instabilities of free-shear
layers (Azaiez & Homsy 1994; Rallison & Hinch 1995; Ray & Zaki 2014) and can
suppress the von Kármán vortex street downstream of a cylinder (Cadot & Kumar
2000). In moderate Reynolds number channel flow, where a Newtonian fluid would
remain laminar, viscoelastic fluids sustain a chaotic elasto-inertial state dominated
by two-dimensional structures (Samanta et al. 2013). Furthermore, in high Reynolds
number drag-reduced flows, the polymer has a damping effect on hairpin vortices
(Kim et al. 2007). Motivated by the importance of spanwise vorticity in shear flows
and the success of linear theory in clarifying the roll–streak dynamics, we examine
the impact of viscoelasticity on the linear evolution of a two-dimensional vortical
disturbance in homogeneous shear.

1.1. Disturbance amplification in viscoelastic flows
Transient growth of small disturbances in viscoelastic shear flows has been the focus
of recent studies, most of which have focused on streamwise elongated perturbations.
For example, Jovanović & Kumar (2010, 2011) demonstrated that significant energy
amplification is possible even in the absence of inertia. This property therefore
provides a potential pathway to inertialess elastic turbulence (Groisman & Steinberg
2000; Pan et al. 2013). The zero Reynolds number growth is due to polymer stretch
(Kupferman 2005; Doering, Eckhardt & Schumacher 2006), whereby a streamwise
force is generated as the polymer is deformed by the shear. The flow response takes
the form of streamwise streaks, similar in appearance to inertial transient growth in
Newtonian fluids. Further studies have addressed the influence of weak inertia (Page
& Zaki 2014) and finite polymer extensibility (Lieu, Jovanović & Kumar 2013) on
this elastic growth. In inertia-dominated flows, Hoda, Jovanović & Kumar (2008,
2009) introduced stochastic forcing in the linear equations for an Oldroyd-B fluid
and demonstrated that viscoelasticity enhances the energy density of the response.
Based on their energy analysis, Hoda et al. (2009) were able to attribute this growth
to polymer stretch. The relation between this inertial and the aforementioned elastic
growth was established by Page & Zaki (2014). That work examined the streak
response to a decaying streamwise vortex, and demonstrated a dependence on the
ratio of the relaxation time to the disturbance diffusion time scale in the solvent.
If relaxation is relatively fast, the polymer behaves like an additional solvent and a
Newtonian behaviour is recovered. If relaxation is comparatively slow, the dynamics
in the solvent and polymer effectively decouple and large elastic growth can be
attained. Finally, when the time scales are commensurate, the system supports the
propagation of vorticity waves, and the streaks can re-energize.

In contrast to the above studies, which focused on streamwise independent
perturbations, Zhang et al. (2013) studied the influence of fluid elasticity on the
amplification of oblique disturbances. For subcritical, weakly elastic channel flow of a
FENE-P fluid, the optimal growth of oblique disturbances was found to be attenuated
relative to the Newtonian case. Another instance where three-dimensional disturbances
have received attention is the study of elliptic flows. Whilst in the Newtonian case
the unstable waves are three-dimensional (Bayly 1986), Lagnado & Simmen (1993)
demonstrated that the instability becomes predominantly two-dimensional at high
elasticity. The instability mechanism was later explained by Haj-Hariri & Homsy
(1997), and is driven by the rotation of the perturbation wavevector. The above linear
studies have recently been complemented by the first direct numerical simulations
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(DNS) of the full transition process in an inertia-dominated viscoelastic channel flow
at subcritical Reynolds number (Agarwal, Brandt & Zaki 2014). Starting from an
initially localized velocity perturbation, the disturbance evolution was tracked from an
early linear amplification phase through to a turbulent state similar to the maximum
drag reduction (MDR) regime. Their analysis of the energy equation demonstrated
that the polymer tends to resist, or damp, the initial vorticity.

1.2. Polymeric turbulent flows
It is generally accepted that the phenomenon of drag reduction through the addition
of polymer to a Newtonian flow is associated with a large extensional viscosity in
the buffer layer (Hinch 1977; White & Mungal 2008). The exact mechanism remains
a subject of debate, but there is substantial experimental and numerical evidence
that the presence of stretched polymers in this region disrupts the self-sustaining
cycle of near-wall turbulence. For example, experiments by Tiederman and coworkers
(Luchik & Tiederman 1988; Walker & Tiederman 1990; Harder & Tiederman 1991)
found that the frequency of bursting events decreases in dilute solutions, and that the
magnitude of wall-normal velocity fluctuations is reduced. The same observation has
also been made in connection with numerical simulations of drag-reduced flows (Min
et al. 2003; Ptasinski et al. 2003; Dubief et al. 2004), and motivates an examination
of the effects of the polymer on intermittent events and individual flow structures
rather than relying solely on a statistical description.

Studies of intermittency in direct numerical simulations of polymeric turbulence
have shown that viscoelasticity promotes prolonged periods of ‘hibernating turbulence’,
a state of low drag which is also present to a lesser extent in Newtonian flows (Xi &
Graham 2010, 2012). These results offer a possible explanation for the universality of
MDR (Graham 2014). An important flow feature common to both drag-reduced and
MDR flows is the near-wall streamwise vortices. The polymer tends to damp these
structures which generate the buffer-layer streaks (Dimitropoulos et al. 2001; Dubief
et al. 2004, 2005).

The influence of polymers on spanwise vortical structures, such as the hairpin
vortices found above the buffer layer, has received less attention. One notable
exception is the study by Kim et al. (2007). Using conditional averaging, those
authors were able to extract flow structures associated with ejection events. Their
analysis explicitly demonstrated that a streamwise polymer torque tends to oppose
the rotation of streamwise vortices in the buffer layer. More relevant to the present
study is their observation that a resistive torque is also established around the head
of the hairpin vortices: the polymer tends to oppose spanwise vortical motions.

Recent simulations and experiments at near-critical Reynolds numbers also highlight
the significance of spanwise vortical structures. Samanta et al. (2013) focused on
relatively high polymer concentrations (∼500 ppm) in a moderate Reynolds number
regime where the equivalent Newtonian flow would be laminar. They reported that
a chaotic state is sustained through a combination of elastic instabilities and inertial
effects – a state which they termed elasto-inertial turbulence. The dominant flow
structures are different from the rolls and streaks that are prevalent in transitional
and turbulent flows. Instead, spanwise ‘sheets’, where the polymer is significantly
stretched, are formed and align with the mean shear. These sheets of polymer
conformation are accompanied by cylindrical spanwise structures of rotational and
extensional flow (Dubief, Terrapon & Soria 2013; Terrapon, Dubief & Soria 2014).
Wang et al. (2014) affirmed the importance of spanwise independent structures in



330 J. Page and T. A. Zaki

polymeric turbulent flows, and hinted at a connection between the elasto-inertial
turbulence and MDR. By applying proper orthogonal decomposition to time series
of both velocity and polymer stress fields from simulations of MDR in minimal flow
domains, they demonstrated that the dominant modes in the hibernating state also
exhibit a sheet-like structure, with large polymer stretch occurring in thin, isolated
layers.

While turbulent flows are highly nonlinear, a good deal of insight into the
mechanics of energy injection into the perturbation field can be derived from linear
theory. For example, the physical process governing the formation of streaks in shear
flows of Newtonian fluids, or lift-up, has typically been examined in the context
of linear disturbance amplification in laminar and transitional flows (Landahl 1980;
Butler & Farrell 1992). The same underlying mechanism is also of central importance
in the turbulent regime, where streaks of streamwise velocity are observed across a
range of scales (Robinson 1991). By adapting the linear analysis for the case of
a fully turbulent mean-flow profile, del Álamo & Jiménez (2006) were able to
predict the dominant length scales of the streaks, in particular the outer large-scale
motions that fill the channel, and also the buffer-layer streaks. A second type of
transient growth operates in Newtonian flows, namely the inviscid Orr mechanism.
Orr amplification can be traced to mass-conservation and therefore to the action of
pressure. Unlike lift-up, the Orr mechanism favours perturbations with a streamwise
dependence (Farrell 1987; Butler & Farrell 1992). A recent study by Jiménez (2013)
examined the relevance of linear Orr growth to bursting events above the buffer
layer in turbulent flows. There are qualitative similarities between the idealized linear
behaviour and nonlinear bursting events, though it is suggested that a complete
explanation also requires an instability of the buffer layer streaks.

In the present study we investigate the viscoelastic analogue of the Newtonian
Orr mechanism by computing the linear evolution of a localized spanwise vortex in
homogeneous, viscoelastic shear flow. The relative importance of inertia is controlled
by varying the vortex length scale, and a wide range of disturbance Reynolds numbers
are considered. Our work thus advances our understanding of the dynamics of linear
disturbances in viscoelastic shear flows, and provides a foundation for interpreting
observations from more complex nonlinear configurations such as elasto-inertial
and MDR turbulence. The remainder of this paper is organized as follows. In § 2
we formulate the physical problem and present the governing linear equations. For
Oldroyd-B fluids these are reduced to a pair of equations for the spanwise vorticity
and polymer torque. In § 3 the evolution of an isolated vortex is considered for an
Oldroyd-B fluid, and the limits of low and high elasticity are examined asymptotically
in order to explain some of the general features of the solution. The effects of finite
extensibility are examined in § 4, where we compute vortex evolutions in a FENE-P
fluid. Finally, conclusions are provided in § 5.

2. Theoretical formulation
The viscoelasticity of a fluid is modelled in the equations of continuum mechanics

through a polymeric contribution to the total stress alongside the Newtonian solvent
contribution. With this addition, the mass conservation and momentum equations are

∂Uj

∂xj
= 0, (2.1a)

ρ

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
=− ∂P

∂xi
+µs

∂2Ui

∂xj∂xj
+µp

∂T ij

∂xj
, (2.1b)
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where µpT ij is the polymeric stress. Our principal interest is the evolution of
disturbances in dilute solutions, which are well described by the FENE-P constitutive
equation (Bird, Armstrong & Hassager 1987)

T ij = 1
ς
(FCij − δij), (2.2a)

where ς is a relaxation time, Cij is the polymer conformation and

F= L2 − 3
L2 − Ckk

(2.2b)

is the Peterlin function – a nonlinear spring law that provides an upper bound on
the extension of the polymer chains. The parameter L is related to the maximum
extensibility of the polymer chains by L2= L2

max+ 3, where Lmax has been normalized
by the equilibrium chain length. The polymer conformation is an ensemble average
of chain orientations, Cij = (L2/L2

max)〈rirj〉, where the coefficient L2/L2
max is included

so that Cij = δij in the absence of flow (Jin & Collins 2007). Much of the theoretical
development in this paper will invoke the assumption of infinite extensibility, and the
limit L→∞ yields F= 1, which is a linear spring law, or the Oldroyd-B fluid. The
conformation tensor evolves according to

∇

Cij ≡ ∂Cij

∂t
+Uk

∂Cij

∂xk︸ ︷︷ ︸
advection

− Cik
∂Uj

∂xk
− Ckj

∂Ui

∂xk︸ ︷︷ ︸
stretching/distortion

= −T ij︸︷︷︸
relaxation

. (2.3)

The base flow considered herein is a simple unbounded shear, which is one of a
family of linear flows,

Ui(x)= Γijxj, (2.4)

where incompressibility requires that Γjj = 0. For these flows where the deformation
rate is constant, the stretching of the polymers is homogeneous in space, and steady
solutions for the base-state stretch are

T ij = CikΓjk + CkjΓik. (2.5)

The linear perturbation equations for any base flow satisfying (2.4) are derived in § 2.1,
and the case of simple shear is presented in § 2.2.

2.1. Linear perturbation equations: forces and torques in Oldroyd-B fluids
When the base state (2.4) is slightly perturbed, the small disturbance evolves according
to the linear equations

∂uj

∂xj
= 0, (2.6a)

ρ

(
∂ui

∂t
+ Γjkxk

∂ui

∂xj
+ ujΓij

)
=− ∂p

∂xi
+µs

∂2ui

∂xj∂xj
+µpfi, (2.6b)

∂cij

∂t
+ Γklxl

∂cij

∂xk
= Cik

∂uj

∂xk
+ cikΓjk + Ckj

∂ui

∂xk
+ ckjΓik − τij. (2.6c)
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The final term in the momentum equation (2.6b), µpfi≡µp∂τij/∂xj, is the perturbation
force due to the polymer. The stress perturbations are related to perturbations in the
polymer conformation by

τij = F
ς

(
cij+ 1

L2 − Cll
Cijckk

)
︸ ︷︷ ︸

N

. (2.7)

For an Oldroyd-B fluid, L→∞, and the perturbation stress is τij = cij/ς . There is a
direct proportionality between stretch and stress perturbations as a consequence of the
linear spring law. In the more general case (2.7), the nonlinearity of the springs results
in an additional type of stress perturbation, labelled N . These stress perturbations are
a result of the perturbation stretch bringing the polymer chains closer to or further
from their maximum extensibility.

The linear perturbation equations can be simplified substantially when the finite
extensibility of the polymers can be ignored. Therefore, the analysis now proceeds
for the Oldroyd-B fluid, i.e. L→∞ (the discussion of finite extensibility is deferred
to § 4). One particularly useful feature when the mean rate of deformation, Γij, is
constant is that we need only consider the evolution of the polymer forces rather than
the conformation field. This is evident by taking the divergence of (2.6c):

∂fi

∂t
+ Γjkxk

∂fi

∂xj
+ 1
ς

fi = fjΓij + T jk
∂2ui

∂xj∂xk
+ 1
ς

∂2ui

∂xj∂xj
. (2.8)

On the left-hand side are the linearized advection and the relaxation terms. The first
term on the right-hand side represents the polymer stretch mechanism. It is similar
to the vortex deformation term which appears in the linearized vorticity equation,
but remains active in two-dimensional flows. The second term on the right-hand side
describes the generation of polymer force due to the distortion of the mean polymer
stresses by curvature in the velocity field. Taking the divergence once again yields(

∂

∂t
+ Γjkxk

∂

∂xj
+ 1
ς

)
∇ · f = 0. (2.9)

Therefore, an initially divergence-free polymer force field will remain so. In this work
the initial disturbance is devoid of any initial polymer force and as a result ∇ · f = 0
at all times. Equation (2.9) also indicates that the perturbation pressure field is not
directly influenced by the polymer forces since the source term due to the polymer in
the pressure Poisson equation vanishes. Instead, the polymer has an indirect impact
via its influence on the velocity field.

It is instructive to further manipulate the linear equations into a vorticity–torque
system. Upon taking the curl of (2.6b) we obtain

∂ωi

∂t
+ Γjkxk

∂ωi

∂xj
=ωjΓij +Ωj

∂ui

∂xj︸ ︷︷ ︸+ νs
∂2ωi

∂xj∂xj
+ νpχi, (2.10)

where ω ≡ ∇ ∧ u is the perturbation vorticity vector and Ωi ≡ εijkΓkj is the constant
mean vorticity. The terms identified by the underbrace together represent the linearized
vortex deformation term, and they vanish for purely spanwise vorticity perturbations
in two-dimensional flows. We have also introduced the quantity χ ≡∇ ∧ f , which we
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FIGURE 1. Schematic of the model problem. The background flow is simple shear, U= γ̇ y.
A weak spanwise vortex of rotation rate α is superposed at the origin.

label the ‘polymer torque’. This torque is related to the true torque exerted on the
fluid by the polymer stresses (see § A.1) in the same way that the vorticity is related
to the angular momentum of a fluid element. The polymer torque is in part dependent
on the vorticity history, and its evolution follows from taking the curl of (2.8):

∂χi

∂t
+ Γjkxk

∂χi

∂xj
+ 1
ς
χi = χjΓij +Ωj

∂fi

∂xj
+ 2εijk

∂

∂xj
(Γklfl)︸ ︷︷ ︸+T jk

∂2ωi

∂xj∂xk
+ 1
ς

∂2ωi

∂xj∂xj
. (2.11)

The expression identified with an underbrace contains terms analogous to the
linearized vorticity equation (2.10). Similar to vortex deformation in (2.10), they
vanish when we consider purely spanwise vorticity perturbations to two-dimensional
flows. However, the final term, 2εijk∂(Γklfl)/∂xj = 2∇ ∧ (Γ f ), remains. It constitutes a
kinematic torque amplification mechanism which will be examined in detail.

Equations (2.10) and (2.11) provide a complete description of the disturbance
evolution. Casting them in terms of vorticity and torque is particularly advantageous
due to the present focus on spanwise vorticity perturbations. Furthermore, the notion
of polymer torque is conceptually beneficial. Its importance and utility have been
alluded to previously in the literature (Kumar & Homsy 1999; Kim et al. 2007;
Jovanović & Kumar 2011), and here we examine its dynamical evolution in detail.

2.2. The physical problem
The specific problem examined herein is illustrated schematically in figure 1. We
consider homogeneous shear of a viscoelastic fluid with shear rate γ̇ , onto which a
weak, localized disturbance is superposed. Analysis of the same flow configuration
has been instructive in Newtonian studies, for example as a prototypical flow for
rapid distortion theory (Moffatt 1967; Townsend 1976). The same configuration
was also used to examine the Orr amplification mechanism. For example, Farrell
(1987) considered the evolution of a variety of linear disturbances to demonstrate the
requirement of a net tilt of the disturbance streamlines against the mean shear for
energy amplification to take place. In the context of wall-bounded turbulence, Jiménez
(2013) used this base flow to investigate the role of linear growth mechanisms in
bursting events.
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For homogeneous shear the only non-zero entry of Γ is Γ12≡ γ̇ . The corresponding
base-state conformation for an Oldroyd-B fluid is

C =
1+ 2γ̇ 2ς 2 γ̇ ς 0

γ̇ ς 1 0
0 0 1

 . (2.12)

The expressions for Cij in a FENE-P fluid are similar in form and are provided in
appendix A.

For the perturbation field, a Gaussian vortex of characteristic size l is chosen as the
initial condition,

u(x, t= 0)= α(ez ∧ x) exp(−(x2 + y2)/l2), (2.13)

while the initial perturbation polymer stresses are set to zero. The quantity α provides
a measure of the vortex rotation rate. The condition that the vortex is deformed by the
shear much faster than it rolls over, γ̇ /α� 1, ensures that the dynamics are accurately
described by the linear perturbation equations. The axisymmetric initial condition also
enables a useful comparison between the viscoelastic and Newtonian configurations.
In the latter case, an axisymmetric disturbance with no net tilt against the shear will
simply decay (see Farrell 1987, and also § 3.1). Any amplification in the polymeric
flow can therefore be attributed to the influence of elasticity.

The present interest in two-dimensional disturbances motivates the introduction of
the vector potentials,

u=∇ ∧Ψ , (2.14a)
f =∇ ∧Φ, (2.14b)

where Ψ = (0, 0, ψ) and Φ = (0, 0, ϕ). In this form the velocity is written in terms
of the perturbation streamfunction, ψ , while ϕ will be referred to as the polymer
potential. Lines of constant ϕ are instantaneously parallel to the polymer perturbation
force vectors. Furthermore, we may adopt the scalar definitions for the vorticity and
polymer torque: ω ≡ ω · ez = −∇2ψ , χ ≡ χ · ez = −∇2ϕ. According to (2.10) and
(2.11), the spanwise vorticity and polymer torque satisfy

∂ω

∂t
+ γ̇ y

∂ω

∂x
= β

R
∇2ω+ (1− β)

R
χ, (2.15a)

∂χ

∂t
+ γ̇ y

∂χ

∂x
+ 1

W
χ = 2γ̇

∂2ϕ

∂x∂y
+ T jk

∂2ω

∂xj∂xk
+ 1

W
∇2ω. (2.15b)

Equation (2.15b) is non-dimensionalized by the shear rate, γ̇ , and the vortex size
l. This choice yields the following definitions of the Reynolds and Weissenberg
numbers:

R≡ γ̇ l2

ν
, W ≡ γ̇ ς, (2.16a,b)

while β =µs/µ is the ratio of solvent to total viscosity. The unit dimensionless shear
rate, γ̇ , will be retained in the equations for clarity.

An important term appearing in (2.15b) is 2γ̇ ∂2
xyϕ ≡ γ̇ (∂xfx − ∂yfy), which is the

kinematic torque amplification mechanism mentioned in connection with (2.11) and
which will be described in § 3. The term T jk∂

2
jkω in (2.15b) describes the generation

of polymer torque due to the distortion of the mean polymer stresses by curvature in
the vorticity field, and is analogous to the term involving velocity perturbations in the
polymer force equation (2.8). For long relaxation times, or high Weissenberg numbers,
it has a strongly anisotropic character due to the large streamwise base-state stresses.
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FIGURE 2. (a) The spectral energy, |û(k, 0)|2 + |v̂(k, 0)|2, and (b) enstrophy, |ω̂(k, 0)|2,
densities in the initial vortex (2.13).

2.3. Fourier decomposition
Since the flow is homogeneous in both the streamwise and cross-stream directions, the
two-dimensional Fourier transform is introduced:

ω(x, t)= 1
(2π)2

∫∫ ∞
−∞

ω̂(k, t)eik(t)·x d2k. (2.17)

The time evolution of the wavevector is given according to

kx = const., ky(t)= ky − kxγ̇ t. (2.18)

The streamwise spacing of phase fronts remains unchanged, but the cross-stream
wavenumber is altered as the disturbance is reorientated by the shear (unless kx = 0).
To avoid confusion, the dependence of the cross-stream wavenumbers on time will
always be explicitly stated, i.e. we will always write ky(t), while ky will be reserved
for the initial value ky ≡ ky(t= 0).

In Fourier space, the equations for the spanwise vorticity and torque become

dω̂
dt
=−β|k(t)|

2

R
ω̂+ (1− β)

R
χ̂ , (2.19a)

dχ̂
dt
+ 1

W
χ̂ =−2γ̇ kxky(t)

|k(t)|2 χ̂ − T11k2
x ω̂− 2T12kxky(t)ω̂− |k(t)|

2

W
ω̂. (2.19b)

The quantity |k(t)|2 ≡ k2
x + k2

y(t) is the square of the instantaneous total wavenumber.
The initial conditions in Fourier space are ω̂(t = 0) = ω̂(0) and χ̂(t = 0) = 0. The
spectral energy, |û(k, 0)|2+ |v̂(k, 0)|2, and enstrophy, |ω̂(k, 0)|2, densities in the initial
vortex (2.13) are shown in figure 2. At times it is instructive to combine the coupled
system (2.19b) into a single second-order equation for the vorticity:

d2ω̂

dt2
+
(

1
W
+ β|k(t)|

2

R
+ 2γ̇ kxky(t)
|k(t)|2

)
dω̂
dt

+
(
(1− β)T11k2

x

R
+ 2(1− β)T12kxky(t)

R
+ |k(t)|

2

RW

)
ω̂= 0. (2.20)

The initial condition on the time derivative of the vorticity is obtained from the initial
condition on the torque, χ̂(t= 0)= 0, which implies dω̂/dt(t= 0)=−β|k(0)|2ω̂(0)/R.

The vorticity and torque equations will be used throughout the analysis. These
equations (2.19b), or equivalently (2.20), constitute a linear coupled system. A
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FIGURE 3. Example energy (a) and enstrophy (b) evolutions for the Gaussian vortex in
an Oldroyd-B fluid: - - - -, R= 200, W = 15, β = 0.8; — · —, R= 400, W = 30, β = 0.8;
——, R= 400, W = 60, β = 0.8; · · · · · ·, R= 800, W = 60, β = 0.8. The grey lines are the
Newtonian case with R= 800.

general analytical solution is not known, and we will therefore analyse certain
limiting cases of physical relevance. Complementary numerical results are presented,
and are computed in Fourier space from the original linear system of equations
in primitive variables; see appendix A for the equations and a description of the
numerical solution technique.

3. Oldroyd-B fluids
Time evolutions of the energy and enstrophy,

E(t)=
∫∫

ρ|u|2
2

d2x and Λ(t)=
∫∫ |ω|2

2
d2x, (3.1a,b)

of the Gaussian vortex in an Oldroyd-B fluid are reported in figure 3 for several
parameters, alongside a Newtonian case computed at R = 800. In the Newtonian
evolution the energy and enstrophy do not exhibit any amplification. The behaviour
of the energy is anticipated based on the criterion for Orr amplification, since the
streamlines of the vortex do not have net tilt against the mean shear (a summary
of the inviscid Orr amplification is provided in § 3.1). Instead, the energy simply
decays due to the action of viscosity. The enstrophy is solely composed of spanwise
vorticity and, in the present two-dimensional flow, there is no linear Newtonian
mechanism for spanwise vorticity generation. As a result, the enstrophy also decays
by the action of viscosity. The viscoelastic results are a striking departure from the
Newtonian behaviour. Firstly, the energy amplifies, and secondly, there is a large
enstrophy amplification at high Weissenberg numbers. Finally, note that both energy
and enstrophy growth are preceded by an initial period of decay at early times for
all the viscoelastic cases considered in figure 3.

Contours of the spanwise vorticity and the streamfunction are reported in figure 4
for one set of parameters from figure 3. The Reynolds number, R = 400, and
Weissenberg number, W = 60, are both fairly large, and are representative of larger
eddies in strong shear. There are two noteworthy features, both of which will be
explored in detail in this section. (i) As the vortex tilts under the action of the mean
shear it splits into a co-rotating pair. This behaviour coincides with the early dip in
the energy and enstrophy reported in figure 3. (ii) Beyond t= 3, a patch of negative
vorticity forms between the two detached regions of positive vorticity, which become
extended in long stripes due to the action of the mean shear. As advection by the base
flow continues to rotate and extend the disturbance, these stripes of vorticity begin
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FIGURE 4. Time evolution of the vorticity (shading) and streamfunction (lines) for the
Gaussian vortex in an Oldroyd-B fluid. Here, R = 400, W = 60 and β = 0.8. The
instantaneous fields correspond to t = {0, 1, 2, . . . , 7}. Note the change in aspect ratio
for t > 4.

to amplify. Neither of these features, namely the vortex splitting and the subsequent
amplification of vorticity, is observed in a Newtonian fluid.

This section focuses on the mechanisms which lead to the phenomenology described
above. First, a brief review of the Newtonian Orr amplification mechanism is provided
in § 3.1. In § 3.2 the ability of a viscoelastic fluid to support the propagation of
vorticity waves is introduced for the case of zero mean shear. The limit of high
elasticity allows us to isolate the cause of the splitting of the vortex in § 3.3. In
§ 3.4 the more realistic case of small-to-moderate elasticity is examined, and the
mechanism of vorticity growth is explained. The long-time decay of the vortex is
addressed in § 3.5. Finally, a physical discussion of the results is presented in § 3.6.

3.1. The Orr mechanism in Newtonian fluids
A correct interpretation of the viscoelastic results benefits from an understanding of
the Newtonian Orr mechanism. A brief review is presented here; a more detailed
treatment can be found in the literature on Newtonian flows (e.g. Farrell 1987).

Consider the perturbation vorticity equation for an inviscid Newtonian fluid in
spectral space,

dω̂
dt
= 0. (3.2)

The solution, ω̂(t) = ω̂(0), indicates that the perturbation vorticity is a purely
advected quantity, and a localized disturbance constructed from a superposition
of these plane-wave solutions retains this character. This result is intuitive since the
two-dimensionality removes any stretching or tilting effects.

In terms of the streamfunction, ψ̂ = ω̂/|k(t)|2, and therefore (3.2) is equivalent to

dψ̂
dt
= 2γ̇ kxky(t)
|k(t)|2 ψ̂. (3.3)
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FIGURE 5. Evolution of the counter-rotating Gaussian vortex in an inviscid Newtonian
flow. From left to right, t= {0, 1, 2, 4}. The perturbation energy is unchanged throughout
the evolution, E(t)= E(0) ∀t.

The streamfunction can amplify in time and, by extension, so can the kinetic energy.
The right-hand side of (3.3) can be traced back to the pressure-gradient terms in the
momentum equations, and reflects the role of mass conservation in the amplification
process. The disturbance amplifies in time if the product kxky(t) > 0, which is true
when the disturbance phase fronts are instantaneously aligned against the shear.

In physical space, a realistic localized disturbance is constructed from a set of plane
waves according to (2.17). Consequently it may contain both growing and decaying
modes, and the overall energy evolution is a superposition of the two behaviours
(Farrell 1987). An initially symmetric disturbance, such as the Gaussian vortex
considered here, samples all wavevector orientations equally for a given wavenumber
magnitude. In this instance, there is no overall amplification or decay and the net
effect of the term on the right-hand side of (3.3) is muted. This can also be clearly
seen from the perturbation energy equation in physical space (Farrell 1987; Butler &
Farrell 1992):

dE
dt
= −

∫∫
ρuvγ̇ d2x,

=
∫∫

ρ
∂ψ/∂x
∂ψ/∂y

(
∂ψ

∂y

)2

γ̇ d2x,

= −
∫∫

ρ

(
∂y
∂x

)
ψ

(
∂ψ

∂y

)2

γ̇ d2x. (3.4)

The Reynolds stress has been rewritten in terms of the slope of the streamlines
(∂y/∂x)ψ , and the equation has been integrated along a unit length in the span. Thus,
the condition kxky(t) > 0 for plane waves becomes a requirement for a net tilt in the
streamlines of a localized disturbance against the shear.

Snapshots of the perturbation vorticity and streamfunction computed at four
subsequent time instances in an inviscid Newtonian fluid are provided in figure 5. The
disturbance is rotated and extended by the shear, but the total energy and enstrophy
remain constant.

3.2. Zero mean-shear: the equations of linear viscoelasticity
The effects of viscoelasticity on the disturbance evolution are now reintroduced, but
are first limited to the case of zero background shear. This particular limit serves
to illustrate the mechanism by which viscoelastic fluids support the propagation of
vorticity waves.
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In the absence of mean shear, the vorticity–torque system (2.19b) simplifies to

dω̂
dt
=−βκ

2

R
ω̂+ (1− β)

R
χ̂ , (3.5a)

dχ̂
dt
+ 1

W
χ̂ =−κ

2

W
ω̂, (3.5b)

where κ2 ≡ |k(0)|2 is constant since there is no reorientation of the wavevector with
time. Note that when γ̇ =0, the Reynolds and Weissenberg numbers must be redefined
using a new time scale, here the vortex rotation rate, α−1. Equations (3.5a,b) are those
of linear viscoelasticity. On the right-hand side of (3.5a) are solvent diffusion and
the polymer torque. The diffusion term can also be regarded as a viscous torque in
the solvent. The behaviour of this system is most evident by combining (3.5b) into a
second-order equation for the vorticity (cf. (2.20)):

d2ω̂

dt
+
(

1
W
+ βκ

2

R

)
dω̂
dt
− κ2

RW
ω̂= 0. (3.6)

This is an equation for a damped harmonic oscillator. The damping is due to both
relaxation and diffusion in the solvent. The two solutions to (3.6) have an exponential
dependence, ω̂(t)∼ exp(−im±t), where

m± =− i
2W

(
Θ + 1±

√
(1+Θ)2 − 4Θ

β

)
. (3.7)

The two roots depend on the parameter Θ≡Wβκ2/R=ςνsκ
2, which is the ratio of the

relaxation time to the disturbance diffusion time scale in the solvent. The significance
of this parameter was explained by Page & Zaki (2014) and is summarized here. For
either the Newtonian, Θ � 1, or the elastic case, Θ � 1, the roots are imaginary
and the associated solutions to (3.6) are purely decaying. When Θ is of the order
of unity, the roots have a real component and correspond to propagating vorticity
waves in physical space. The precise range of Θ for which propagation of vorticity
waves is supported, i.e. Re(m) 6= 0, depends on β alone, and expands in the limit of a
vanishing solvent (see (3.7)). For a fixed set of flow parameters, {R,W, β}, this range
of Θ ≡Wβκ2/R can be interpreted as a range of wavenumbers, κ . Therefore, when
β is very small, the wide range of wavenumbers indicates that the evolution of the
Gaussian vortex is dominated by wave propagation. An example of this behaviour is
displayed in figure 6.

For dilute solutions, the criteria for wave propagation presented above are satisfied
for only a small range of wavenumbers. This follows from the fact that the generation
of polymer torque according to (3.5b) is due to the familiar viscous term −κ2ω̂ and,
for larger β, diffusion in the solvent ensures that most modes are purely decaying.
However, in the presence of mean shear the forcing on the right-hand side of (3.5b)
is augmented by a term −kjkkT jkω̂. The large streamwise stress T11 can potentially
generate a large polymer torque. As a result, wave propagation may become important
for a much broader range of wavenumbers, and this effect is now explored in the
context of vortex splitting.
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FIGURE 6. Contours of spanwise vorticity for γ̇ = 0. Here Θl ≡ Wβκ2/R = 0.95, with
W = 50, R= 5, β = 0.1. Snapshots correspond to t= {0, 10, 20, 30}.
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FIGURE 7. Spanwise vorticity (shading) and streamfunction (lines) at t = 1: (a,b) E∗ ≡
W(1−β)/R= 2.5, with R= 10, β= 0.5, W= 50 and R= 5, β= 0.8, W= 62.5 respectively;
(c,d) E= 10, with R= 1, β = 0.8, W = 50 and R= 5, β = 0.5, W = 100 respectively.

3.3. Vortex splitting
We now return to the full problem with a finite shear rate. The splitting of the
Gaussian vortex observed in figure 4 can be isolated from the subsequent amplification
by considering the limit of high elasticity, E∗≡W(1−β)/R. Figure 7 shows snapshots
at t = 1 from calculations of vortex evolutions for four sets of flow parameters,
{R, W, β}, which correspond to two values of E∗. Panels (a,b) are at E∗ = 2.5, and
(c,d) are at E∗ = 10. The original vortex separates into a pair of new vortices which
propagate in x, while their cores remain approximately aligned. While the vortex
evolution, for example the vorticity magnitude, depends on all flow parameters, the
streamwise location of the vortex cores at t= 1 is unchanging for fixed values of E∗.
Also, the vortex splitting is more rapid for the relatively large values of E∗.

The evolution of enstrophy is reported in figure 8(a). In all four cases there is a
period of rapid decay in Λ for t . 0.5 associated with the splitting of the Gaussian
vortex into the new pair of vortices. Subsequently, there is a small increase in Λ in
all but the lowest Reynolds number case, after which the enstrophy is monotonically
decaying with time. Streamwise enstrophy spectra are reported in figure 8(b). For a
given wavenumber, kx, the enstrophy is oscillatory in time, and there is a continuous
phase difference in the oscillations across wavenumbers. This trend is indicative of
the mechanism of vorticity-wave propagation in physical space, which was discussed
in § 3.2 in the absence of background mean shear. However, the oscillations do not
persist for all streamwise wavenumbers, notably becoming muted as kx→ 0. Global
decay also sets in quickly for the smaller Reynolds numbers considered in figure 8,
R= {1, 5}, where dissipation of enstrophy in the solvent is more pronounced.

In the subsequent analysis, we extract anisotropic vorticity wave propagation from
the equations for the spanwise vorticity and polymer torque (2.19b) by adopting the
assumption of high Weissenberg number. In this limit the relaxation of the polymer
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FIGURE 8. (a) Enstrophy evolutions for the Gaussian vortex: ——, R= 10, β = 0.5, W =
50, with E∗= 2.5; - - - -, R= 5, β = 0.8, W = 62.5, with E∗= 2.5; — · —, R= 1, β = 0.8,
W = 50, with E∗ = 10; grey line, R= 5, β = 0.5, W = 100, with E∗ = 10. (b) Streamwise
enstrophy spectra. The labels (i)–(iv) correspond to the four parameter sets listed for (a).

may be neglected on the time scale of the background shear, γ̇ −1, and the only
relevant base-state stress is T11. The further assumption of high elasticity allows us
to derive a dispersion relation for the vorticity wave which describes the oscillation
reported in figure 8. These vorticity waves travel much faster than the rate at which
fluid elements are deformed by the shear. This separation of time scales motivates
a multiple-scales analysis which demonstrates that the mean shear modulates the
evolution of the vorticity waves.

Under the assumption of high Weissenberg number, the following expansions for
the spanwise vorticity and polymer torque are adopted:

ω̂(t)= ω̂0(t)+W−1ω̂1(t)+ · · · , (3.8a)
χ̂(t)=Wχ̂0(t)+ χ̂1(t)+ · · · . (3.8b)

Substitution into (2.19b) yields

dω̂0

dt
=−β|k(t)|

2

R
ω̂0 + E∗χ̂0, (3.9a)

dχ̂0

dt
=−2γ̇ kxky(t)

|k(t)|2 χ̂0 − T11

W
k2

x ω̂0. (3.9b)

Note that T11 ≡ 2Wγ̇ 2. In this derivation we have assumed that kx, ky(t) = O(1).
The leading-order approximation (3.9b) remains valid over a time interval t . O(W).
Beyond this time horizon, reorientation of the disturbance by the shear increases the
wall-normal wavenumber and ky(t∼W) 6=O(1).

The system (3.9b) may be combined into a single vorticity equation (cf. (2.20)):

d2ω̂0

dt2
+
(
β|k(t)|2

R
+ 2γ̇ kxky(t)
|k(t)|2

)
dω̂0

dt
+ k2

xBω̂0 = 0. (3.10)

We have introduced the definition B ≡ (1 − β)T11/R in the spring constant. Note
that B is related to E∗, the elasticity parameter, by B = 2E∗γ̇ 2. It was remarked
in connection with figure 7 that the speed of propagation of the vortices depends
on E∗. In (3.10), the spring constant, or natural frequency of oscillation, retains this
dependence. Rescaling time by the natural frequency of oscillation, τ = kx

√
Bt, and

setting ω0(τ )= ω̂0(t), (3.10) becomes

d2ω0

dτ 2
+ 1

kx

√
B

(
β|k(τ )|2

R
+ 2γ̇ kxky(τ )

|k(τ )|2
)

dω0

dτ
+ω0 = 0, (3.11)

where ky(τ )= ky − γ̇ τ/
√
B.
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In the high-elasticity limit, kx

√
B � 1, the damping term in (3.11) becomes

insignificant on the time scale set by the oscillation. The wavevector is also slowly
changing over these short time intervals, ky(τ )≈ const. This scale separation motivates
the use of the method of multiple scales (Bender & Orszag 1978), where the slow
time scale based on the inverse shear rate, t, is reintroduced as an independent
variable alongside the fast time, τ . The leading-order vorticity, ω0(τ ), is then written
as an asymptotic series,

ω0(τ )=ω0
0(τ , t)+ εω1

0(τ , t)+ · · · , (3.12)

where ε≡ 1/kx

√
B� 1. The derivatives are also rewritten:

d
dτ
= ∂

∂τ
+ ε ∂

∂t
,

d2

dτ 2
= ∂2

∂τ 2
+ 2ε

∂2

∂τ∂t
+ ε2 ∂

2

∂t2
. (3.13a,b)

Under this transformation and assuming the expansion (3.12), the leading-order and
first-order corrections are found to evolve according to

∂2ω0
0

∂τ 2
+ω0

0 = 0, (3.14a)

∂2ω1
0

∂τ 2
+ω1

0 =−2
∂2ω0

0

∂τ∂t
−
(
β|k(t)|2

R
+ 2γ̇ kxky(t)
|k(t)|2

)
∂ω0

0

∂τ
. (3.14b)

At leading order the initial conditions are simplified, ω0
0(τ = 0) = ω̂(0), ∂τω0

0
(τ = 0)= 0.

The solution of the leading-order equation (3.14a),

ω0
0(τ , t)= A(t) cos(τ + θ(t)), (3.15)

is purely oscillatory on the fast time scale, τ ≡ kx

√
Bt. In physical space this solution

corresponds to left and right streamwise travelling waves of vorticity along the
tensioned streamlines at speed

√
B.

Contours of the spanwise vorticity and polymer torque for a vortex evolution with
high elasticity, E∗ = 10, are provided in figure 9. These snapshots were obtained
from numerical solution of the full equations in primitive variables, and highlight the
manner in which the propagation of the vorticity waves is confined to the streamwise
direction. The propagation mechanism is similar to that described in § 3.2. Polymer
torque is generated due to the curvature in the vorticity perturbation acting on the
mean polymer stress, −T11k2

x ω̂, on the right-hand side of (3.9b). In contrast to the
zero-shear case, this term depends on streamwise curvature only: the large base-state
stress, T11, acts as a streamwise extensional viscosity. This is verified in figure 9
where the polymer torque at early times is proportional to the streamwise curvature
of the vorticity field.

The effects of the damping term in (3.11), which includes solvent diffusion, can
only be neglected on the time scale of the oscillation. For longer times damping is
important, and is included in the multiple-scales solution at leading order through
the slowly varying amplitude, A(t), and phase, θ(t), of the oscillation in (3.15).
Expressions for these functions are derived by requiring that the right-hand side of
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FIGURE 9. Contours of (a) spanwise vorticity and (b) polymer torque perturbations. In
this example W = 100, R= 5, β = 0.5. Panes are extracted at t= {0+, 0.3, 0.6, 0.9}.
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FIGURE 10. Contours of spanwise vorticity (shading) and streamfunction (lines)
comparing the multiple-scales approximation (b) with the full numerical solution (a) at
W = 100, R= 5, β = 0.5. Panes are extracted at t= {0+, 0.3, 0.6, 0.9}.

the first-order correction (3.14b) does not include terms that lead to secular growth
at O(ε). This requirement is satisfied if

2
∂2ω0

0

∂τ∂t
+
(
β|k(t)|2

R
+ 2γ̇ kxky(t)
|k(t)|2

)
∂ω0

0

∂τ
= 0, (3.16)

from which we find θ(t)= 0 and

A(t)= ω̂(0)
( |k(t)|2
|k(0)|2

)1/2

︸ ︷︷ ︸ exp
(
− β

2R

∫ t

|k(t′)|2 dt′
)
. (3.17)

In figure 10 the leading-order multiple-scales approximation is compared with the
solution of the full equation. The good agreement indicates that the approximation
provides an accurate description of the dynamics across a range of wavenumbers. Note
that the expression (3.17) for the envelope A(t) also includes an algebraically growing
component, which is identified by an underbrace. This growth is insignificant in the
high elasticity limit, where the dynamics are dominated by fast oscillations and where
decay is ensured by solvent diffusion. However, for low elasticities the growth is
significant, and its origins are explained in detail in § 3.4.
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FIGURE 11. (a) Enstrophy evolutions with fixed R= 800, β = 0.8: · · · · · ·, W = 5; ——,
W = 15; - - - -, W = 30; — · —, W = 60. The thick grey line is the Newtonian result
at the same total Reynolds number. (b) Streamwise enstrophy spectra. The labels (i)–(iv)
correspond to the four parameter sets listed for (a).
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FIGURE 12. (a) Enstrophy evolutions with fixed B = 0.05: ——, R = 1200, W = 100,
β = 0.7; - - - -, R = 2000, W = 100, β = 0.5; — · —, R = 4000, W = 100, β = 0. The
grey line is the high Weissenberg number, high Reynolds number approximation (3.20).
(b) Streamwise enstrophy spectra. The labels (i)–(iv) correspond to the four parameter sets
listed for (a).

3.4. Spanwise vorticity amplification: a reverse-Orr mechanism
A selection of enstrophy evolutions for the Gaussian vortex are presented in
figure 11(a) for much larger values of the Reynolds number, or lower elasticities, than
those considered in § 3.3. The solvent Reynolds number is fixed and the Weissenberg
number is varied. For low Weissenberg number (W = 5) the enstrophy is purely
decaying, and deviation from the Newtonian curve is insignificant. This result is
intuitive since the fast relaxation of the polymer chains means that the elastic
component of the fluid simply behaves like an additional solvent. As the Weissenberg
number is increased, significant enstrophy amplification is achieved. Streamwise
enstrophy spectra are provided in figure 11(b). The amplification at high Weissenberg
numbers is restricted to a narrow band of streamwise wavenumbers.

Further enstrophy evolutions are provided in figure 12(a). In this instance, the
Weissenberg number is fixed at W = 100, and both R and β are varied such that
the elastic wavespeed introduced in § 3.3,

√
B, is constant. The curves collapse at

short times, although decay sets in faster for lower solvent Reynolds numbers, R/β.
Corresponding streamwise enstrophy spectra are presented in figure 12(b). In addition
to the amplification, oscillations are also visible across a range of kx for lower values
of β, indicative of the wave propagation discussed in § 3.3. Note that the wavenumbers
have been scaled by the vorticity wave speed,

√
B. Under this normalization, it is

clear that growth is most significant in modes with low frequencies, kx

√
B< 1.
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The vorticity amplification mechanism is examined here in detail, again in the limit
of high Weissenberg number. First, the physical origins of the vorticity growth are
explained qualitatively. Matched asymptotic expansions are then employed to examine
the evolution of low-frequency waves. The analysis establishes the dependence of
the amplification on both the frequency, kx

√
B, and the initial orientation of the

wavevector, (kx, ky). The connection between these results and the splitting behaviour
examined in § 3.3 is reviewed in § 3.6.

Consider again the leading-order equations in the high Weissenberg number
approximation (3.9b):

dω̂0

dt
=−β|k(t)|

2

R
ω̂0 + E∗χ̂0, (3.18a)

dχ̂0

dt
=−2γ̇ kxky(t)

|k(t)|2︸ ︷︷ ︸
S

χ̂0 − T11

W
k2

x ω̂0. (3.18b)

In the high-elasticity limit (§ 3.3), attention was focused on vortex splitting,
and the term labelled S had only a weak influence on the dynamics, causing a
small modulation of the oscillation envelope. However, for the moderate elasticities
considered here, or equivalently slower vorticity wave speeds, the effects of this term
are dominant. There is an analogy between the amplification of polymer torque driven
by S χ̂0 and the Orr mechanism for energy amplification in Newtonian fluids which
was reviewed in § 3.1. This analogy is evident when S χ̂0 is compared to the term
that causes Orr amplification on the right-hand side of (3.3). The Newtonian term
is positive and the streamfunction amplifies when the wavefronts are instantaneously
aligned against the shear. In contrast, here the term S χ̂0 has the opposite behaviour:
perturbations with wavefronts aligned with the shear can experience an amplification
in their polymer torque. This observation is significant because all perturbations, bar
those with kx = 0, align with the shear as time increases.

It is by virtue of the solenoidal nature of the polymer force field that S χ̂0 has
been written in the form appearing in (3.9b). While this presentation highlights the
importance of the wavevector’s alignment relative to the shear, it masks the physical
mechanism. The torque amplification is a kinematic effect which can be seen most
clearly when S χ̂ is expressed in its original form in terms of forces,

S χ̂ = γ̇ (ikx f̂x − iky(t)f̂y). (3.19)

The two terms on the right-hand side have a simple physical interpretation. A
schematic illustrating the effects of each term in physical space is provided in
figure 13. The first term, γ̇ ikx f̂x, describes the change in torque induced at a point
by the relative advection of layers of streamwise varying polymer force. The second
term, −γ̇ iky(t)f̂y, is similar in character, but in this instance the streamwise force
is first generated via the polymer stretch mechanism, whereby the shear causes
a reorientation, or tilting, of the wall-normal polymer force which generates a
streamwise force. The wall-normal variation of the force field results in a torque.

For a more detailed analysis of the torque amplification mechanism on spanwise
vorticity growth, we consider the second-order vorticity equation in the limit of high
Weissenberg number (3.10). However, since attention is focused on high Reynolds
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(a)  (b)

FIGURE 13. A schematic of the torque amplification mechanism. (a) A small element
with ∂xfx > 0 is distorted by the mean shear to generate a local polymer torque. (b) A
small element with ∂yfy < 0 is distorted to generate a streamwise force via the polymer
stretch mechanism. The y-variation corresponds to a torque.

numbers, solvent diffusion is neglected in order to simplify the analysis:

d2ω̂0

dt2
+ 2γ̇ (kr − γ̇ t)

1+ (kr − γ̇ t)2︸ ︷︷ ︸
−S

dω̂0

dt
+ k2

xBω̂0 = 0. (3.20)

In this equation the definition kr ≡ ky/kx = O(1) has been introduced for the initial
gradient of the wavevector. The torque amplification mechanism, S χ̂0, appears in
this oscillator equation as the damping term. The term becomes negative, which
corresponds to an injection of vorticity, when the phase fronts are aligned with the
shear. Our interest is the strongly amplifying, low-frequency modes, and hence we
adopt the definition ε≡ k2

xB� 1.
Before proceeding, the validity of neglecting the solvent diffusion term in (3.20)

should be assessed. The approximation (3.20) becomes exact in the special limit
W → ∞, R → ∞, with W/R finite. In this sense it is equivalent to the elastic
Rayleigh equation (Azaiez & Homsy 1994; Rallison & Hinch 1995; Ray & Zaki
2014, 2015), which has been used to examine the stability of viscoelastic free-shear
flows. In the present problem the role of solvent diffusion is to act as a damper
with a time-dependent strength. This damping becomes increasingly effective as
the disturbance aligns with the shear and the sharpening gradients increase the rate
of momentum diffusion. As such, the approximation (3.20) becomes increasingly
inaccurate at capturing the enstrophy evolution as time advances, and this effect
is seen in the results reported in figure 12(a). For lower solvent Reynolds numbers,
R/β, the exact enstrophy evolution deviates quickly from that predicted by (3.20). The
streamwise enstrophy spectra presented in figure 12(b) reveal that solvent diffusion
tends to damp high-frequency oscillations, which persist in the solution to (3.20).
However, the most significant enstrophy amplification is associated with low-frequency
modes, kx

√
B < 1, which is present in the solutions to both the full equations with

finite β, and the approximation (3.20).
It is instructive to analyse (3.20) further using matched asymptotic expansions,

since the equation provides an upper bound on the amplification at early times and
its dynamics provide an uncluttered view of the amplification mechanism. With
the removal of solvent diffusion and once the disturbance aligns with the shear,
ky(t)/kx < 0, there are no sinks of vorticity in (3.20) and, as a result, the disturbance
continues to amplify as t → ∞. In reality, vorticity decays at long time due to
the action of solvent diffusion and other terms that were neglected in the high
Weissenberg number approximation (3.9b). These effects will be examined in § 3.5.
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Inner solution
The vorticity is expanded as an asymptotic series in powers of ε, ω̂0(t)= ω̂0

0(t)+
εω̂1

0(t)+ · · · . Substituting into (3.20), the leading-order and first-order equations are(
d
dt
+ 2γ̇ (kr − γ̇ t)

1+ (kr − γ̇ t)2

)
dω̂0

0

dt
= 0, (3.21a)(

d
dt
+ 2γ̇ (kr − γ̇ t)

1+ (kr − γ̇ t)2

)
︸ ︷︷ ︸

−S

dω̂1
0

dt
=−ω̂0

0. (3.21b)

In the absence of solvent diffusion, the polymer torque is related to the vorticity
gradient by χ̂0(t)=R(1−β)−1 dω̂0/dt. Therefore it is helpful to think of the first-order
equation (3.21b) as a forced equation for the polymer torque, or a one-way coupling
from the flow perturbation to the polymer. Without the solvent, the initial conditions
are simplified: at leading order we apply ω̂0

0(t= 0)= ω̂(0) and dtω̂
0
0(t= 0)= 0; higher-

order corrections have homogeneous initial conditions.
The solution to (3.21b) gives an expression for ω̂0(t) up to O(ε):

ω̂0(t) = ω̂(0)
(

1+ ε

γ̇ 2

[
(kr − γ̇ t)2 − k2

r

6
+ 1

3
log
(

1+ (kr − γ̇ t)2

1+ k2
r

)
− (kr − γ̇ t)

(
1+ (kr − γ̇ t)2

3

) (
tan−1(kr − γ̇ t)− tan−1 kr

)])
. (3.22)

The vorticity is constant to leading order on account of the absence of an initial
torque. Amplification is possible at first order, however. The growth at first order in
(3.22) violates the adopted asymptotic series when t∼O(ε−1/3), and again later at t∼
O(ε−1/2). More precisely, the series expansion becomes invalid when the wavenumber
ratio ky(t)/kx ≡ (kr − γ̇ t)= O(ε−1/3). Therefore, we define the shifted time ξ = (kr −
γ̇ t)/γ̇ as our new independent variable. Note that ξ is essentially a scaled cross-stream
wavenumber, and becomes negative when the phase fronts are aligned with the shear.
In the large-ξ limit (3.22) becomes

ω̂0(ξ)∼ ω̂(0)
(

1+ ε
[(π

2
+ tan−1 kr

) γ̇ ξ 3

3
+ ξ

2

2
+ · · ·

])
. (3.23)

Intermediate solution
In order to extend the validity of the asymptotic solution beyond ξ =O(ε−1/3), an

intermediate variable is defined, η ≡ ξε1/3, with which the governing equation (3.20)
becomes

ε2/3 d2ω̃0

dη2
− 2γ̇ 2η

1+ γ̇ 2η2ε−2/3

dω̃0

dη
+ εω̃0 = 0, (3.24)

where ω̃0(η) = ω̂0(ξ). The large-ξ limit of the inner solution (3.23) suggests an
intermediate expansion ω̃0(η) = ω̃0

0(η) + ε1/3ω̃1
0(η) + · · · . The leading-order and

first-order corrections satisfy
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d

dη
− 2
η

)
dω̃0

0

dη
= 0, (3.25a)(

d
dη
− 2
η

)
dω̃1

0

dη
=−ω̃0

0. (3.25b)

The solution correct to O(ε1/3) reads

ω̃0(η)= Ã01
η3

3
+ Ã02 + ε1/3

[
Ã11

η3

3
+ Ã12 +

(
Ã02

η2

2
− Ã01

η5

30

)]
. (3.26)

The constants can be evaluated from matching with the inner solution. By writing
(3.23) as a function of the intermediate variable, ω̂0(η), and comparing terms with
(3.26), we find Ã11 = Ã12 = 0 and

Ã01 = ω̂(0)γ̇
(π

2
+ tan−1 kr

)
, Ã02 = ω̂(0). (3.27a,b)

Outer solution
The intermediate solution (3.26) breaks down when η = O(ε−1/6), or when ξ =

O(ε−1/2). Therefore, we rewrite (3.20) in terms of the outer variable, K≡ηε1/6= ξε1/2,

d2ω0

dK2
− 2γ̇ 2K
ε+ γ̇ 2K2

dω0

dK
+ω0 = 0, (3.28)

where ω0(K)= ω̃0(η). The form of the intermediate solution (3.26) suggests an outer
expansion, ω0(K) = ε−1/2ω−1

0 (K) + ω0
0(K) + · · · . Notice that the leading term is

O(ε−1/2) ≡ O(1/kx

√
B), which means the vorticity has been amplified by a factor

inversely proportional to its frequency of oscillation. Both the leading-order and
first-order terms satisfy the homogeneous equation

d2ω
j
0

dK2
− 2

K
dωj

0

dK
+ωj

0 = 0. (3.29)

The solution is

ω
j
0(K)=Dj1(K cos K − sin K)+Dj2(K sin K + cos K). (3.30)

Expanding the trigonometric functions in the small-K limit and comparing terms with
(3.26), we find

D−11 =−ω̂(0)γ̇
(π

2
+ tan−1 kr

)
, D−12 = 0, (3.31a,b)

and
D01 = 0, D02 = ω̂(0). (3.32a,b)

In summary, the asymptotic solution has a triple-deck structure, and is given by
(3.22) for |ξ | . ε−1/3, (3.26) for ε−1/3 . |ξ | . ε−1/2, and (3.30) for |ξ | & ε−1/2. In
figure 14 the matched asymptotic expansions are compared to numerical solution of
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FIGURE 14. Comparison of the matched asymptotic expansions with numerical solution
of (3.20): - - - -, inner solution; — · —, intermediate; ——, outer. The numerical solution
is shown in grey. (a) The two panels have ε= 0.05, with kr = 1 and kr =−1 respectively.
(b) The two panels were computed with ε = 0.01, with kr = 3 and kr =−3 respectively.
The vertical lines identify the points where ξ =−ε−1/3 and ξ =−ε−1/2. For a given ε the
evolutions for ±kr are plotted on the same scale to highlight the enhanced amplification
for waves with an initial tilt against the shear, kr > 0.

(3.20) for two values of kx

√
B ≡ ε1/2, each for a pair of initial orientations, ±kr. In

both cases, good agreement is achieved throughout the time evolution.
The form of the outer solution (3.30) is interesting: it describes algebraically

growing oscillations of frequency kx

√
B. These oscillations correspond to streamwise

propagating waves of vorticity in physical space, similar to the situation in § 3.3.
Whilst all waves are amplifying once they are tilted with the shear, such that
|ξ |& ε−1/2, the amplification rate of a particular mode exhibits a curious dependence
on the initial gradient of the wavevector. This dependence is contained in the
coefficient D−11, which can be written as D−11=−ω̂(0)γ̇ (φ+π/2). In this definition
φ is the angle that the initial wavevector makes with the horizontal axis. If kx > 0,
for example, φ increases anticlockwise, and can take values φ ∈ [−π/2, π/2]. For
modes with a strong initial tilt with the shear, φ → −π/2, the amplification rate
is comparatively weak. Conversely, for modes initially aligned against the shear,
φ → π/2, the subsequent growth rate of the oscillations is large. This dependence
of the amplitude of oscillation on the initial wavevector gradient is exhibited in the
solutions presented in figure 14, where the evolutions of pairs of modes with equal
and opposite φ are computed.

The preferential amplification of waves with an initial tilt against the shear is
due to the fact that these modes reside for a longer duration in the ‘inner region’.
The coefficient of ξ 3 in the inner-solution first-order correction (3.23) ultimately
sets the value of D−11. It was remarked that the first-order correction, (3.21b), can
be considered as a forced equation for the polymer torque. The inner region also
contains the range of wavevector orientations for which S has its maximum. The
longer a mode resides in this inner region, the larger the polymer torque due to
the vorticity perturbation. The large polymer torque then determines the amplitude
of oscillation, or the vorticity wave, at later times when the flow and the polymer
are two-way coupled and the disturbance aligns with the shear (3.29). Ultimately, as
ξ →−∞, both diffusion in the solvent and the terms which were neglected in the
original high Weissenberg number assumption should become important; these effects
are now incorporated as we examine the long-time decay.
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FIGURE 15. Long-time enstrophy evolutions of the Gaussian vortex. (a) Grey line, R=
800, β = 0.8, W = 60, such that B = 0.03. Black lines, R= 400, β = 0.8; ——, W = 15;
- - - -, W = 30; — · —, W = 60. Note that the R= 400, W = 30 case also has B= 0.03. (b)
Black lines, R= 400, β = 0.8; grey lines, R= 200, β = 0.8; ——, W = 15; - - - -, W = 30.

3.5. Long-time decay
The long-time evolution of the enstrophy of the Gaussian vortex is considered in
figure 15 for a range of flow parameters. While the rate of amplification at earlier
times was shown to be dependent on the elasticity, or the vorticity wavespeed

√
B,

the enstrophy decay rate does not retain this dependence; neither is the rate of decay
dependent on the Reynolds number. At early times, during the amplification phase, the
effects of solvent diffusion amounted to a damping in an oscillator equation. However,
the results presented in figure 15(b) indicate that the long-time decay rate of the vortex
is dictated by the Weissenberg number. The mechanics of this long-time decay are
explored here.

It was remarked earlier that the high Weissenberg number approximation (3.9b)
cannot be expected to hold when t = O(W), since the reorientation of the phase
fronts by the shear means that components of the base-state polymer stress other
than T11 are no longer of secondary importance. More precisely, the magnitude of
the terms neglected in the derivation of (3.9b) is dependent on the instantaneous
wavenumber ratio, ξ ≡ (kr − γ̇ t)/γ̇ , which was also used in § 3.4. Consider the
original vorticity/polymer torque system (2.19b), rewritten in terms of ξ :

−dω̂
dξ
=−βk2

x

R
(1+ γ̇ 2ξ 2)ω̂+ (1− β)

R
χ̂ , (3.33a)

−dχ̂
dξ
+ 1

W
χ̂ =− 2γ̇ 2ξ

1+ γ̇ 2ξ 2
χ̂ − k2

x

(
T11 + 2T12γ̇ ξ + 1

W
(1+ γ̇ 2ξ 2)

)
ω̂. (3.33b)

When ξ = O(W), both 2T12γ̇ ξ and (1+ γ̇ 2ξ 2)/W are of the same order as T11, and
cannot be neglected.

Since the long-time decay is determined by the elastic properties of the fluid, we
define the scaled variable ξ ≡ ξ/W, while {ω(ξ), χ(ξ)} = {ω̂(ξ), χ̂(ξ)}. The system
(3.33) becomes

− 1
W

dω
dξ
=−βk2

x

R
(1+ γ̇ 2W2ξ

2
)ω+ (1− β)

R
χ, (3.34a)

− 1
W

dχ
dξ
+ 1

W
χ =− 2γ̇ 2Wξ

1+ γ̇ 2W2ξ
2χ − k2

x

(
T11 + 2T12γ̇Wξ + 1

W
(1+ γ̇ 2W2ξ

2
)

)
ω.

(3.34b)
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Assuming the Weissenberg number to be large, an asymptotic expansion is adopted:

ω(ξ)=ω0(ξ)+W−1ω1(ξ)+ · · · , (3.35a)
χ(ξ)=W2χ 0(ξ)+Wχ 1(ξ)+ · · · . (3.35b)

If W/R=O(1), then at leading order

0=−βk2
x

R
γ̇ 2ξ

2
ω0 + (1− β)R

χ 0, (3.36a)

−dχ 0

dξ
+ χ 0 =−

2
ξ
χ 0 − k2

x

(
T11

W
+ 2T12γ̇ ξ + γ̇ 2ξ

2
)
ω0. (3.36b)

The realignment of the wavevector by the mean shear, which generates large
cross-stream gradients in the vorticity and enhances the rate of solvent diffusion, has
rendered the effects of inertia unimportant. As a result, the leading-order vorticity
equation (3.36a) is an instantaneous balance between the viscous torque in the
solvent and the polymer torque. In the polymer evolution equation (3.36b) all terms
are important.

The system (3.36) can be rewritten as a single equation for the vorticity:

dω0

dξ
=
(

2(1− β)
βξ

2 + 2(1− β)
βξ

+ 1
β

)
ω0. (3.37)

This equation is easily integrated, and the long-time evolution of a Fourier mode is
therefore described by

ω0(ξ)= A∞ξ
2(1−β)/β

exp
(
−2(1− β)

βξ
+ ξ
β

)
. (3.38)

Therefore, the enstrophy at long times can be approximated by

Λ(t)∼ t4(1−β)/β exp
(

4W(1− β)
βt

− 2t
Wβ

)
. (3.39)

This expression is compared with the long-time behaviour obtained from numerical
solution of the full equations (appendix A) for a single Fourier mode in figure 16,
and good agreement is observed. There are several interesting features in the solution.
(i) As t→∞, the decay rate of the vorticity perturbations is set by the retardation rate,
1/Wβ. Decay at the retardation rate is associated with a rate-of-strain response to an
applied stress. (ii) The role of the streamwise polymer stress, T11, is altered from the
splitting/amplification behaviours. In those regimes, the highly tensioned mean-flow
streamlines provided a mechanism for wave propagation. However, here diffusion is
sufficiently fast that the leading-order vorticity is instantaneously responsive to an
applied polymer torque. Consequently, T11 leads to growth Λ∼ exp(4W(1−β)/βt). Its
effects are weakened with time. (iii) There is also an algebraic growth, Λ∼ t4(1−β)/β ,
although it is ultimately muted by the exponential decay. This algebraically growing
component is due to the increasing effectiveness of the polymer shear stress, T12, to
generate polymer torque as the disturbance aligns with the shear.
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FIGURE 16. Enstrophy evolutions for individual Fourier modes, comparing the exact
solution (black) to the long-time approximation of (3.39) (grey). (a) R = 400, β = 0.8,
W = 30, k(0)= (1, 3); (b) R= 1200, β = 0.7, W = 100, k(0)= (1, 1).

3.6. Discussion
At large Weissenberg numbers, the evolution of the weak Gaussian vortex in
homogeneous shear of an Oldroyd-B fluid departs significantly from the Newtonian
behaviour. At early times, differences arise due to the large normal stress, T11, and the
kinematics of the polymer torque. The former provides a mechanism for vorticity to
propagate as waves in the streamwise direction; the latter feeds tilting and stretching
mechanisms for the generation of polymer torque. Together, these effects cause the
vortex to split and amplify as it is tilted forward by the mean shear. Later, when the
vortex is significantly deformed, the influence of inertia weakens and the long-time
decay of the vortex is dictated by elastic effects. Large cross-stream gradients mean
that both base-state polymer stresses are important, and the decay rate differs from
the pure retardation which would be observed in the absence of shear.

The early-time dynamics were explained by adopting a high Weissenberg number
approximation (3.9b). This assumption amounts to ignoring the effects of polymer
relaxation, and taking the base-state stress to consist of T11 alone. In this limit
vorticity disturbances propagate along the tensioned streamlines at a speed

√
B ≡√

(1− β)T11/R. These vorticity waves travel on top of the local base-flow velocity.
They are confined to the streamwise direction, and are non-dispersive. In addition, a
kinematic effect amplifies the polymer torque when the disturbance aligns with the
mean shear – a mechanism we termed ‘reverse-Orr’ amplification. This mechanism,
which is encapsulated by the coefficient S in § 3.4, generates torque at a point as
advection realigns layers of varying polymer force. It operates on a time scale set by
the shear, γ̇ −1.

In §§ 3.3 and 3.4 the vortex splitting was demonstrated to be dominant when
kx

√
B � 1, while amplification is most pronounced if kx

√
B � 1. The change in

behaviour between these two limits can be understood by considering the relative
number of vorticity waves that pass an observer moving at the local base-flow velocity
within the shear time scale, γ̇ −1:

n=
√
B/γ̇

2π/kx
. (3.40)

If kx

√
B � 1 a large number of vorticity waves pass by: to the observer the

amplification term (≡ S χ̂ ) appears highly oscillatory and is unable to generate
a significant torque. Conversely, if kx

√
B � 1 the local polymer force field appears

quasi-steady to the observer, and the kinematic amplification mechanism is most
effective.
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FIGURE 17. Evolution of a Gaussian vortex with R= 1200, W = 100, β = 0.7, snapshots
extracted at t={1, 3, 5, 7}. (a) Contours of spanwise vorticity; the locations of the critical
layers, y=±λc, are indicated by the horizontal lines. Note that the aspect ratio is 2:1. (b)
Spectral enstrophy density as a function of initial wavevector orientation.

In addition to the low frequency requirement, kx

√
B� 1, the matched asymptotic

expansions in § 3.4 explicitly demonstrated that the amplification rate of a vorticity
wave is a strong function of its initial orientation. While the amplification occurs
when modes align with the shear (reverse-Orr), modes with an initial tilt against the
shear, kr= ky/kx> 0, are most strongly amplified once they become favourably aligned.
The importance of the initial orientation is due to the fact that a significant polymer
torque is generated when the wavefronts are almost vertical, ky(t)/kx ∼ 0. In this
region there is a one-way coupling from the flow perturbation to the polymer. This
large torque then sets the amplification rate of the vorticity when the wavenumber
satisfies the condition ky(t)/γ̇ kx . 1/kx

√
B, i.e. the outer solution from § 3.4. To relate

this expression to the notion of travelling vorticity waves, the same condition can be
written as

|ky(t)|& λ−1
c , (3.41)

where λc ≡
√
B/γ̇ is a length scale that we term the ‘critical layer height’. This

terminology is adopted from the stability literature (e.g. Drazin & Reid 1995), since
it identifies points in the flow, y =±λc, where the base-flow velocity and the speed
of vorticity-wave propagation are equal. A vorticity mode begins to experience
amplification when its cross-stream length scale is of the order of the critical-layer
height.

Snapshots of a vortex evolution which demonstrate these observations are provided
in figure 17, along with the corresponding spectral enstrophy densities. As time
advances, contours of the spectral enstrophy density indicate that the most amplified
modes have an initial tilt against the shear, kr > 0, in agreement with the arguments
above. The critical layers in the flow, y = ±λc, have been overlaid on the spanwise
vorticity contours. As the disturbance starts to amplify (snapshots t = {5, 7}), the
cross-stream length scale is of the order of the critical-layer height. Furthermore,
the physical disturbance appears ‘pinned’ at the points y=±λc, where the base-flow
velocity and either the left- or right-travelling vorticity wave combine to result in no
overall motion.
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FIGURE 18. Evolution of a vortex without rotational symmetry, defined by (3.42) with
δ= 0.05. (a) Enstrophy evolution: ——, θ =−π/6; - - - -, θ =π/6. The grey curve is the
untilted reference case. (b) The initial condition for the tilted cases and the corresponding
spectral enstrophy densities. The dashed lines identify the semi-major axes of the ellipses.

Finally, we comment briefly on the evolution of vortices without rotational
symmetry. In examining the evolution of the axisymmetric Gaussian vortex, our
analysis considered individual Fourier modes. The conclusions are therefore also
applicable to other initial conditions. For the purposes of illustration, we consider the
evolution of a slightly distorted vortex, without azimuthal symmetry:[

u′(x′, t= 0)
v′(x′, t= 0)

]
= α

[−y′(1+ δ)2
x′

]
exp(−(x′2 + (1+ δ)2y′2)/l2). (3.42)

In the above expression, δ > 0 and the primed coordinates are related to the
original coordinate system through an anticlockwise rotation, x′ = R(θ)x. The choice
0 < θ < π/2 gives the vortex an initial tilt against the shear, while −π/2 < θ < 0
gives the vortex a favourable alignment with the shear. Example enstrophy evolutions
for this initial condition for θ ∈ [−π/6, 0, π/6], δ = 0.05 are provided in figure 18,
alongside the initial condition and spectral enstrophy densities for the tilted cases. The
enstrophy amplification differs slightly between the three cases under consideration;
it is strongest when the initial condition is tilted against the shear. This is consistent
with the discussion above and the analysis in § 3.4. The initial tilt against the shear
corresponds to an increased effectiveness at generating polymer torque at early times,
and, as a result, stronger amplification of vorticity in the reverse-Orr phase, when the
disturbance is aligned with the shear.

4. Finite extensibility
The effects of finite extensibility of the polymer chains are now reintroduced. As

remarked in § 2, the assumption that L = ∞ for the polymer chains is equivalent
to a linear spring law. This simplification is known to be inaccurate in certain
flow configurations. Examples include the unbounded growth of the polymer stress
in extensional flows, and inaccurate assessment of hydrodynamic stability in parallel
flows (Ray & Zaki 2014, 2015). Therefore, it is important to verify that the behaviour
reported in § 3 is retained with a more realistic constitutive equation.

The influence of L on the energy and enstrophy evolution of the Gaussian vortex
for a particular set of flow parameters is reported in figure 19. For very large polymer
extensibility, L = 1000, the Oldroyd-B results are recovered as anticipated. As L is
reduced, L= {100, 50}, the rate of enstrophy amplification is altered slightly, but the
qualitative behaviour remains unchanged. However, the decay sets in earlier and at
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FIGURE 19. Influence of L on (a) energy and (b) enstrophy evolution of the Gaussian
vortex. Here R= 400, W = 60, β = 0.8: · · · · · ·, L= 1000; ——, L= 100; - - - -, L= 50;
— · —, L= 10. The thick grey lines are the Oldroyd-B results.
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FIGURE 20. Time evolution of the vorticity (shading) and streamfunction (lines) for the
Gaussian vortex in a FENE-P fluid with L = 100. Here, R = 400, W = 60 and β = 0.8.
The instantaneous fields correspond to t={0, 1, 2, . . . , 7}. Note the change in aspect ratio
for t > 4.

a higher rate than the Oldroyd-B results. For the smallest extensibility, L = 10, the
influence of the polymer on the flow dynamics diminishes; only a small amplification
of Λ is observed prior to the onset of decay. The practical relevance of drag-reduced
flows and elasto-inertial turbulence focuses our interest on values of L=O(100).

The effect of finite extensibility on disturbance evolution is examined further
in figure 20. Snapshots showing contours of the spanwise vorticity and the
streamfunction are reported, and should be compared to those appearing in figure 4
which are the analogous Oldroyd-B results. The time series focuses on the initial
amplification phase, where the FENE-P evolution appears similar to the Oldroyd-B
fluid. In particular, the short-time vortex splitting is observed, as is the subsequent
amplification in long stripes. These results are in accord with the enstrophy evolution
reported in figure 19, and confirm that the finite polymer extensibility does not alter
the qualitative behaviour of the vorticity field and its amplification.

The influence of L on the decay of the disturbance is much more pronounced, and
merits further discussion. In the context of the linear perturbation equations, the finite
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FIGURE 21. Influence of finite extensibility on the base-state polymer stresses: (a) normal
stress and (b) shear stress. The superscript ∞ indicates the Oldroyd-B result.

extensibility influences the dynamics through (i) an altered base-state stress tensor and
(ii) an additional class of stress perturbations.

The influence of finite polymer extensibility on the base-state stresses has been
examined by Ray & Zaki (2014), and a brief overview is provided here. Those authors
show that the ratios of the FENE-P stresses to the Oldroyd-B values are

T11

T∞11
= 1

F(%)2
,

T12

T∞12
= 1

F(%)
, (4.1a,b)

where the Peterlin function, F, is expressed in terms of %≡ γ̇ ς/L (see appendix A).
The two ratios (4.1) are reported in figure 21. There is a significant reduction of both
base-state stresses when %� 1. However, for the flow parameters of interest here, %.
1, and thus F(%)∼ 1. As a result, the Oldroyd-B scaling remains, T11=O(Wγ̇ 2), T12=
O(γ̇ ), and the short-time dynamics retain the same features as the Oldroyd-B results.

For an Oldroyd-B fluid, the role of the base-state stresses is to weaken the enstrophy
decay rate (see § 3.5). In particular the normal stress resulted in an exponentially
amplifying term and the polymer shear-stress caused an algebraic amplification.
Therefore, the weaker base-state stresses for FENE-P fluids go some way towards
explaining the trend seen in figure 19. However, the dominant contribution to decay
in (3.39) is set by the retardation rate. The retardation rate is proportional to the
polymer relaxation rate which, in the FENE-P fluid, increases due to a new form of
stress perturbation. This additional stress perturbation arises from the nonlinearity of
the spring law, and was discussed in connection with (2.7):

τij = F
W

(
cij+ 1

L2 − Cll
Cijckk

)
︸ ︷︷ ︸

N

. (4.2)

The nonlinear springs become increasingly stiff as the polymer chains approach
their extensibility limit, and this is reflected in the linear theory through the
dependence on ckk. Contours of ckk/L2, extracted from a vortex evolution in a
FENE-P fluid, are reported in figure 22. The snapshots include both the amplification
period (t = {4, 5, 6, 7}) and the interval during which the enstrophy is decaying
(t = {24, 28, 32, 36}). The polymers become significantly stretched at early times.
There is a thin region of strong positive stretch, ckk/L2 > 0, surrounded by regions
where the polymer is compressed, ckk/L2 < 0. At long time, the region of positive
stretch remains despite the decay of energy and enstrophy. The stretching is isolated
in a very narrow region, and is reminiscent of flow structures observed in nonlinear
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FIGURE 22. Time evolution of the trace of the conformation tensor, ckk/L2 (shading), with
the streamfunction overlaid (lines) for the Gaussian vortex in a FENE-P fluid with L=100.
Here, R= 400, W = 60 and β = 0.8. The instantaneous fields correspond to t= {4, 5, 6, 7}
(a–d) and t= {24, 28, 32, 36} (e–h). Note the change in aspect ratio.

simulations of inertial polymer flows (Dubief et al. 2013; Agarwal et al. 2014; Wang
et al. 2014).

The mechanism behind the flow localization can be explained by contracting the
polymer conformation (2.6c) to obtain the evolution of cii,[

d
dt
+ F

W

(
1+ Cjj

L2 − Ckk

)]
ĉii = 2Cijêij + 2E ijĉij, (4.3)

where êij = (1/2)(ikjûi + ikiûj) is the perturbation rate-of-strain tensor. Note that the
polymer is only stretched by the straining component of the flow. Contours of the two
terms on the right-hand side of (4.3) are provided in figure 23 and correspond to four
of the snapshots of ckk/L2 reported in figure 22. The first of these two terms, namely
2Cijêij, is the action of the straining from the perturbation flow field on the base-state
polymer stretch. It acts to compress the polymer between the two co-rotating vortices.
The second term, 2E ijĉij, describes the stretching of the polymer due to straining by
the mean flow. This term is dominant throughout the vortex evolution and stretches
the polymer in a thin region, or sheet.

In summary, the influence of finite extensibility becomes progressively more
pronounced during the evolution of the Gaussian vortex. In the early amplification
phase the behaviour remains qualitatively similar to the Oldroyd-B results, largely due
to dominance of the base-state streamwise stress. However, the significant stretching
of the polymer in an isolated region initiates a more rapid polymer relaxation rate,
and causes an earlier onset of enstrophy decay.

5. Conclusions
The evolution of spanwise vorticity perturbations in dilute polymer solutions

has been studied using the model problem of a Gaussian vortex superposed onto a
homogeneous shear flow. The analysis identified two behaviours unique to viscoelastic
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FIGURE 23. Snapshots of the two terms on the right-hand side of (4.3) (shading) with
the streamfunction overlaid (lines) for the Gaussian vortex in a FENE-P fluid with L =
100, R= 400, W = 60, β = 0.8. The instantaneous fields correspond to t = {4, 6, 24, 32}.
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fluids: (i) the tensioned mean-flow streamlines support streamwise vorticity wave
propagation; (ii) the vorticity amplifies as the disturbance is aligned with the
shear. These two effects were explained using the linear perturbation equations
for Oldroyd-B fluids.

In the present set-up, the vorticity wave propagation led to the splitting of the
Gaussian vortex at early times. The behaviour is most pronounced for high elasticity,
or equivalently small-scale disturbances in strong shear, where the waves travel much
faster than the rate at which an eddy is deformed by the mean flow.

For weak elasticity but high Weissenberg number, the splitting is still observed at
early times. However, there is an amplification of spanwise vorticity as the disturbance
is reoriented in the direction of the shear by the base flow. The amplification is due
to a kinematic mechanism for the growth of the polymer torque. This mechanism
behaves somewhat analogously to Orr amplification in Newtonian fluids. However, the
Orr amplification requires a tilt in the perturbation streamlines against the shear, while
the torque amplification has the opposite behaviour, and amplification occurs during
alignment with the shear.

Calculations of vortex evolutions with the more realistic FENE-P model showed
similar qualitative behaviour. However, for small polymer extensibility the onset
of decay occurs sooner, and its rate is more rapid. This effect is due to a faster
retardation rate driven by a new form of stress perturbation, which is proportional to
net stretching of the polymer chains, and is a result of their nonlinearity. Straining
by the base flow results in significant stretching of the polymer in an isolated region,
or a sheet.

The present analysis has identified a variety of new dynamical behaviours for
small spanwise vorticity perturbations in viscoelastic shear flows, and demonstrated
a new mechanism by which the vorticity can amplify. Despite the idealized flow
configuration and choice of initial disturbance, the results show some qualitative
similarities with flow structures observed in more complex configurations, such as
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nonlinear EIT (Dubief et al. 2013), and in transitional viscoelastic channel flow
(Agarwal et al. 2014). Finally, we note that the dependence of the dynamics on the
elasticity, E∗ = W(1 − β)/R ≡ ςνp/l2, is equivalent to a dependence on the length
scale of the disturbance in a particular fluid. Consequently, both wave propagation
and amplification may be observed at different length scales in any given flow.
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Appendix A. Further details on theoretical formulation
A.1. Polymer torque

In the main body of the paper the terminology ‘polymer torque’ is adopted in
reference to the curl of the polymer force. The purpose of this section is to
demonstrate the connection between χ ≡ ∇ ∧ f and the actual torque exerted by
the polymer stresses on a fluid element. The presentation is similar to that given by
Saffman (1992) in relation to vorticity and angular momentum.

Consider an infinitesimal fluid element with volume δV . The torque exerted on this
element about its centroid by the polymer stresses is

δζ =µp

∫
δV
(δx∧ δf ) dV, (A 1)

where µpfi =µp∂τij/∂xj is the perturbation polymer force per unit volume.
The difference in the force across the fluid element is

δfi = ∂fi

∂xj
δxj

= 1
2

(
∂fi

∂xj
+ ∂fj

∂xi

)
δxj + 1

2

(
∂fi

∂xj
− ∂fj

∂xi

)
δxj

= 1
2

(
∂fi

∂xj
+ ∂fj

∂xi

)
δxj − 1

2
εijkχkδxj, (A 2)

where χ ≡∇ ∧ f is defined in the text as the ‘polymer torque’. Equation (A 1) now
reads

δζi = 1
2
µp

∫
δV
εijkδxj

(
∂fk

∂xl
+ ∂fl

∂xk

)
δxl dV − 1

2
µp

∫
δV
εijkεklmδxjχmδxl dV

= 1
2
µp

∫
δV
εijkδxj

(
∂fk

∂xl
+ ∂fl

∂xk

)
δxl dV + 1

2
µp

∫
δV
(δxkδxkδij − δxiδxj)χj dV. (A 3)

As δV→ 0 we may write

δζi = 1
2
µpεijk

(
∂fk

∂xl
+ ∂fl

∂xk

) ∫
δV
δxjδxl dV + 1

2
νpI ijχj, (A 4)

where I ij= ρ
∫
δV(δxkδxkδij− δxiδxj) dV is the inertia tensor of the fluid element. If our

fluid element is a sphere, then the first term on the right-hand side of (A 4) vanishes,
and

δζ = 1
2νpIχ . (A 5)

The ‘polymer torque’, χ , is therefore proportional to the physical torque, δζ , exerted
on a spherical fluid element by the polymer stresses.
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A.2. Base-state conformation tensor
Expressions for the base-state conformation tensor were provided in (2.12) for an
Oldroyd-B fluid. The corresponding FENE-P values are

C11 = 1
F

(
1+ 2γ̇ 2ς 2

F2

)
, C12 = γ̇ ςF2

, C22 =C33 = 1
F
, (A 6a−c)

where F, the Peterlin function, can be written in terms of the variable % ≡ γ̇ ς/L
(Sureshkumar, Beris & Handler 1997):

F(%)=
√

6%
2 sinh(ϑ/3)

, where ϑ = sinh−1(3
√

6%/2). (A 6d)

A.3. Linear equations in Fourier space
The majority of results presented in this paper were computed numerically by time-
advancement of the Fourier coefficients in primitive variables. These equations are
presented here.

The momentum equations in Fourier space read

dû
dt
=−γ̇ v̂ + 2k2

x γ̇

|k(t)|2 v̂ −
β|k(t)|2

R
û+ (1− β)

R

(
ikxτ̂11 + iky(t)τ̂12 − ikxkikj

|k(t)|2 τ̂ij

)
, (A 7a)

dv̂
dt
= 2kxky(t)γ̇
|k(t)|2 v̂ − β|k(t)|

2

R
v̂ + (1− β)

R

(
ikxτ̂12 + iky(t)τ̂22 − iky(t)kikj

|k(t)|2 τ̂ij

)
, (A 7b)

where the continuity equation, kxû+ ky(t)v̂= 0, is satisfied implicitly since it has been
invoked to rewrite the pressure:

p̂= 2ikxγ̇

|k(t)|2 v̂ +
(1− β)kikj

R|k(t)|2 τ̂ij. (A 8)

The Fourier coefficients of the polymer stress are related to the polymer conformation
through

τ̂ij = F
W

(
ĉij + F

L2 − 3
Cijĉkk

)
. (A 9)

The coefficients of the polymer conformation evolve according to

dĉ11

dt
= (2ikxC11 + 2iky(t)C12)û+ 2γ̇ ĉ12 − τ̂11, (A 10a)

dĉ12

dt
= ikxC11v̂ + iky(t)C22û+ γ̇ ĉ22 − τ̂12, (A 10b)

dĉ22

dt
= (2ikxC12 + 2iky(t)C22)v̂ − τ̂22, (A 10c)

dĉ33

dt
=−τ̂33. (A 10d)

The Fourier coefficients are advanced in time with an explicit Adams–Bashforth
scheme. Integral quantities of interest, such as the perturbation energy and enstrophy,
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are computed in spectral space using Parseval’s theorem. The inversion integral (2.17)
is computed with a direct Riemann sum to obtain fields in physical space.
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