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Streak evolution in viscoelastic Couette flow
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The combined effect of inertia and elasticity on streak amplification in planar Couette
flow of an Oldroyd-B fluid is examined. The linear perturbation equations are solved
in the form of a forced-response problem to obtain the wall-normal vorticity response
to a decaying streamwise vortex. With significant disparity between the solvent
diffusion and polymer relaxation time scales, two distinct responses are possible.
The first is termed ‘quasi-Newtonian’ because the streak evolution collapses onto
the Newtonian behaviour at the same total and solvent Reynolds numbers when
relaxation is very fast or slow, respectively. The second response is labelled ‘elastic’:
with a long relaxation time, the streaks can reach significant amplitudes even with
very weak inertia. If the diffusion and relaxation time scales are commensurate, the
streaks are able to re-energize in a periodic cycle within an envelope of overall
decay. This behaviour is enhanced in the instantaneously elastic limit, where the
governing equation reduces to a forced wave equation. The streak re-energization is
demonstrated to be a superposition of trapped vorticity waves.
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1. Introduction

The fluid dynamics of viscoelastic liquids often defies intuition gleaned from the
study of Newtonian flows. A good example is the linear instability in zero-Reynolds-
number flows with streamline curvature (Shaqfeh 1996). This phenomenon vanishes
in the limit of zero curvature, but recent work has shown the potential for significant
transient amplification of disturbances in parallel, inertialess flows (Jovanovic &
Kumar 2010). Interestingly, the most amplifying events are streak-like perturbations
in the streamwise velocity, the same flow structures observed in high-Reynolds-number
Newtonian flows. In this work, the transient streak amplification in response to forcing
by a decaying streamwise vortex is investigated using the linear perturbation equations.
The evolution of the streaks displays a rich variety of dynamical behaviours, which
depend on the ratio of the solvent diffusion time scale and the relaxation time of
the polymer. The analysis offers a new perspective on the phenomenon of transient
growth in highly elastic, weakly inertial flows, and also identifies a new regime
where the transmission of information via wave propagation leads to streaks which
re-energize many times before eventual decay.
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1.1. Transient growth in viscoelastic fluids
Non-modal stability analyses have shown that short-time energy amplification can be
achieved in flows which are linearly stable. This result is possible owing to the fact
that the eigenvectors of the stability operator are non-orthogonal (Butler & Farrell
1992; Schmid & Henningson 2001). Physically, this energy growth is associated
with well-understood mechanisms. Short-time growth is predominantly driven by the
wall-normal displacement of mean momentum, referred to as lift-up (Landahl 1980).
Perturbations with vanishing streamwise dependence are typically found to be most
amplifying, and so the transient behaviour of the optimal disturbance describes the
growth and decay of streamwise-aligned streaky structures. This is consistent with
experimental observations of the early stages of transition in noisy environments. One
example is the agreement of the optimal disturbance analysis (Andersson, Berggren
& Henningson 1999) with experimental measurements of the streamwise velocity
perturbations in transitional boundary layers beneath free-stream turbulence. In reality,
the streaks can reach a sufficiently large amplitude to be subject to secondary
instabilities from which breakdown to turbulence follows (Vaughan & Zaki 2011).

Recently, an analogy has been proposed between transient growth in high-Reynolds-
number Newtonian flows and strongly elastic flows of polymer solutions (Jovanovic
& Kumar 2010, 2011; Lieu, Jovanović & Kumar 2013). This rests on a similarity
between the lift-up term in the momentum equation and polymer stretching terms
in the constitutive relation. The polymer stretching mechanism was first identified
through consideration of a class of pure stress perturbations to Couette flow of
an Oldroyd-B fluid. These stress perturbations are divergence free, and hence do
not contribute any forcing in the momentum equations (Kupferman 2005; Doering,
Eckhardt & Schumacher 2006; Renardy 2009). In the polymer conformation equation,
they undergo transient amplification due to polymer stretching by the base-flow shear,
and they ultimately decay due to relaxation. Since the polymer evolution equations
for an Oldroyd-B fluid are linear in the stress, the divergence-free stress perturbations
remain admissible solutions in the linearized and fully nonlinear flow problems. As
such, they alone cannot be the initial seed for transition to turbulence since they do
not couple to the nonlinear terms in the momentum equations (Renardy 2009).

The ability of viscoelastic fluids to support short-time kinetic energy growth has
been established by Hoda, Jovanović & Kumar (2008, 2009). They investigated the
response of channel flow of an Oldroyd-B fluid to stochastic body forcing, which is
introduced as an input to the momentum equations. Therefore, the polymer plays a
subservient role in the ensuing dynamics. It was found that increasing the relative
contribution of the polymer to the total viscosity significantly enhanced the energy
density of the response. Also of interest is the fact that the response showed peaks
at non-zero frequencies, in contrast to the Newtonian problem. The new time scales
introduced with the polymer dynamics were cited as being responsible for this shift
(Hoda et al. 2009). More recently, Zhang et al. (2013) computed optimal velocity
disturbances in channel flow of a FENE-P fluid with large inertia, at sub-critical
Reynolds number. Elasticity was found to enhance the amplification of streamwise
streaks relative to the Newtonian flow.

Jovanovic & Kumar (2010) established that significant kinetic energy amplification
can be achieved in the absence of inertia altogether. Their work explored the effects
of initial conditions in the polymer stresses on transient growth of the streamwise
velocity. Non-zero initial stress perturbations are essential since the velocity field
is enslaved to the dynamics of the polymers. Accordingly, the growth mechanism
was shown to be polymer stretching by background shear, the same mechanism
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responsible for the transient amplification of pure stress perturbations. The polymer
stretching results in the emergence of a body force in the streamwise momentum
equation, leading to streaks in the streamwise velocity. The initial polymer stresses
responsible for streak formation are those in the cross-flow plane. Since the rate of
decay is now set by the relaxation time, the potential for energy amplification scales
as W2, where W is the Weissenberg number. This corresponds to an O(W) streak
amplitude. Further work by Jovanovic & Kumar (2011) used singular perturbation
methods to investigate energy amplification due to stochastic body forces in the
weak-inertia, high-elasticity limit. Their analysis provides further evidence of
similarities between polymer stretching in highly elastic flows and tilting of mean
vorticity in high-Reynolds-number Newtonian flows. Recently, these results have been
extended to a more realistic polymer model, where the large energy growth generated
by polymer stretch is upper bounded by the maximum extensibility of the polymer
chains (Lieu et al. 2013).

Significant energy amplification in elastic flows with inertia can form a pathway
to bypass transition to a disordered state termed ‘elasto-inertial turbulence’ (Dubief,
Terrapon & Soria 2013; Samanta et al. 2013). This phenomenon has been found
experimentally to be sustained at lower Reynolds numbers than Newtonian turbulence.
However, it is distinct from ‘elastic turbulence’, a term coined to describe the chaotic
state seen experimentally at negligible Reynolds numbers (Groisman & Steinberg
2000; Larson 2000). Elastic turbulence is triggered by the linear elastic instability in
flows with streamline curvature. More recently, Pan et al. (2013) reported based on
experimental evidence that elastic turbulence can be realized in parallel flows using
finite-amplitude perturbations.

1.2. Hyperbolicity in instantaneously elastic fluids
In a Newtonian fluid, the transient response to a decaying streamwise vortex is the
short-time growth of a spanwise row of high- and low-speed streaks. The streaks are
dominated by their streamwise velocity perturbation, u, which initially amplifies and
subsequently decays due to viscosity (Butler & Farrell 1992; Reddy & Henningson
1993; Schmid 2007). It is curious to consider how the introduction of viscoelastic
effects augments this process. For instance, in Poiseuille flow of shear-thinning fluids,
a reduction in the viscosity close to the wall has a stabilizing effect and reduces
the propensity for energy amplification due to the altered shear distribution (Nouar,
Bottaro & Brancher 2007). However, in fluids exhibiting stress memory and relaxation,
the introduction of hyperbolic polymer dynamics means that a simple modification of
the Newtonian solution is not likely. Instead, entirely new patterns of behaviour can
be anticipated.

The growth of streamwise-oriented streaks in an Oldroyd-B fluid is shown here to
be governed by a wave equation with damping. A similar operator has appeared in
the viscoelastic literature before, but in a different context: it governs the evolution of
the velocity field in one-dimensional, time-dependent shear flows (Joseph 1990). For
example, Tanner (1962) solved the viscoelastic equivalent of Stokes’ first problem.
For very dilute polymer solutions, the behaviour resembles a Newtonian fluid,
whereby information propagates upwards through the diffusion of vorticity. However,
if the solvent contribution to the viscosity vanishes, the governing equation becomes
hyperbolic. Consequently, the vorticity discontinuity propagates upwards as a shear
wave, with a speed fixed by the properties of the fluid. The wave is damped by the
relaxation of the polymer. Without a solvent viscosity, the shock is not smoothed.
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This solution has formed the theoretical underpinning for a device that measures the
shear wave speed for elastic liquids (Joseph, Narain & Riccius 1986). A thorough
overview of solutions to variations on this problem is given by Preziosi & Joseph
(1987).

Of significant relevance to transient streak growth in viscoelastic liquids is the
analogous problem of impulsively started Couette flow. As described above, the
discontinuity in the vorticity propagates away from the moving wall as a shear wave
in the instantaneously elastic limit, a behaviour which diminishes as the solvent
contribution to the total viscosity is increased. Denn & Porteous (1971) solved this
problem for an instantaneously elastic fluid. Unusual velocity profiles are observed
prior to the steady state, due to reflection of the shear wave from the opposite
boundary. Zhou, Cook & McKinley (2012) have shown that this behaviour is retained
in a set of equations which model start-up Couette flow in a shear-banding fluid.
The transmission, reflection and interference of the shear wave lead to the formation
of shear bands. Therefore, the equilibrium shear profile ultimately depends upon the
start-up motion of the plate, which is a continuous approximation to a Heaviside
function.

This paper aims to advance the understanding of the mechanisms of disturbance
amplification in viscoelastic liquids. Disturbance evolution in viscoelastic Couette flow
is studied by writing the linear perturbation equations as a forced-response problem for
the wall-normal vorticity. The forcing is a decaying streamwise vortex, or ‘roll’, which
has an associated cross-flow-plane conformation field. Results consistent with previous
work on inertialess transient growth are retrieved as a special case. Furthermore, the
implications of the hyperbolic stress evolution equations for transient amplification are
demonstrated. A number of limiting forms of the wall-normal vorticity equation are
derived, which are used to describe the trends seen in the transient response. It should
be cautioned that the analyses presented herein are focused on streamwise elongated
disturbances only. The behaviour of oblique modes is not addressed, and cannot
necessarily be inferred from the current results (Azaiez & Homsy 1994; Rallison &
Hinch 1995).

The rest of this paper is organized as follows. In § 2 the governing linear
equations are presented, and are reduced for streamwise-independent disturbances.
The dispersion relation of the forcing vortex is discussed in § 3. The solution of the
initial value problem which governs the wall-normal vorticity response is presented
in § 4, and the various dynamical regimes are discussed. Finally, conclusions are
provided in § 5.

2. Theoretical formulation
2.1. Viscoelastic model and base flow

On a macroscopic scale, viscoelastic fluids are characterized by their ability to support
normal stress differences and their memory of flow history. These properties arise
from the tendency of polymers dispersed in the solvent to align themselves with the
shear. In such configurations, they are stretched while entropic forces continually act
to relax them to their equilibrium, coiled state. In the simplest model, the relaxation
of the polymer is captured by a single time scale, ς , which corresponds to modelling
a polymer chain as a single spring. The assumption of a linear spring force produces
the Oldroyd-B model (Bird, Armstrong & Hassager 1987).

The Oldroyd-B model has several well-known deficiencies. For example, it does not
model shear thinning, although this restriction is not severe for dilute solutions and,
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in particular, Boger fluids which are designed to not exhibit shear thinning (James
2009). In addition, the assumption of a linear spring leads to the prediction of infinite
stresses in extensional flows. Where the influence of finite extensibility is important,
for example in defining stability boundaries in shear flows, the FENE-P model can
be adopted and its prediction matches the Oldroyd-B analysis when the constraint
on maximum extensibility is relaxed (Ray & Zaki 2014). However, the Oldroyd-B
model includes the physical effect responsible for much of the new dynamics, namely
the first normal stress difference. As a result, in certain problems, e.g. the study of
melt fracture, the even simpler upper-convected Maxwell model is a good starting
point (see Graham 1999; Morozov & Saarloos 2007). Evidence of the adequacy
of the Oldroyd-B model is provided by the agreement between linear theory and
experiments in inertialess Taylor–Couette flow (Larson, Shaqfeh & Muller 1990). It
has also been used to predict the onset of turbulent drag reduction using polymer
additives (Min et al. 2003), although typically a nonlinear spring law is introduced
to avoid unbounded polymer stretch (e.g. Dubief et al. 2004; Terrapon et al. 2004).

The Oldroyd-B model is used throughout this work, motivated by the desire
to assess the role of stress relaxation on streak amplification, without introducing
additional physical effects. The total stress tensor is written in terms of a solvent and
a polymer contribution. The solvent stress obeys the familiar Newtonian constitutive
equations, while the polymer, or elastic, stress is µpTij = µp(Cij − δij)/ς . The tensor
Cij is the polymer conformation. The equations of motion can then be written as:

∂Ui

∂xi
= 0, (2.1)

ρ

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
=− ∂P

∂xi
+µs

∂2Ui

∂xj∂xj
+µp

∂Tij

∂xj
, (2.2)

∇
Cij≡ ∂Cij

∂t
+Uk

∂Cij

∂xk︸ ︷︷ ︸
advection

−Cik
∂Uj

∂xk
−Ckj

∂Ui

∂xk︸ ︷︷ ︸
stretching/distortion

=− 1
ς
(Cij − δij)︸ ︷︷ ︸

relaxation

. (2.3)

The operator (
∇·) is the upper-convected derivative. The choice to write the total stress

in terms of solvent and polymer contributions is useful for the interpretation of some
of the results in this paper.

It is at times also instructive to consider the fluid as a whole by introducing the
total stress, σij = 2µsEij + µp(Cij − δij)/ς . Substituting into (2.3), and using the fact

that
∇
δ ij=−2Eij, leads to the evolution equation:

ς
∇
σ ij +σij = 2(µs +µp)

(
Eij + ςβ

∇
Eij

)
. (2.4)

This formulation describes the stress (strain rate) response to an applied strain rate
(stress). A new time scale, ςβ, emerges, where β=µs/(µs+µp) is the ratio of solvent
to total viscosity. This time scale is denoted the retardation time, and it captures the
degree to which the strain rate remembers the history of stress. For moderate β, an
Oldroyd-B fluid describes a dilute polymer solution, and β→ 0 is a crude model of
a polymer melt. If β = 0, the fluid is said to be instantaneously elastic, or an upper-
convected Maxwell fluid.

The base state is steady Couette flow, driven by the relative motion of two plates
moving at ±U0 and separated by a distance 2d. The Reynolds number is based on
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the total viscosity, R = U0d/(νs + νp). A non-dimensional relaxation parameter, the
Weissenberg number, W = ςU0/d, quantifies the ratio between the relaxation and
convective time scales.

The non-dimensional base-state velocity field is identical to the Newtonian solution:

U = γ̇ y, (2.5)

where the shear rate, γ̇ = 1, has been retained for clarity. This produces the constant
polymeric stresses:

T =
2Wγ̇ 2 γ̇ 0

γ̇ 0 0
0 0 0

 . (2.6)

The equations governing infinitesimal perturbations to this state are presented
next and are subsequently restricted to streamwise-independent disturbances. This
assumption simplifies the governing dynamical system, while retaining the essential
elements to study the development of streaks in this viscoelastic flow configuration.

2.2. Linear equations: homogeneous and forced-response subsystems
The equations governing the evolution of small perturbations are:

∂u′i
∂xi
= 0, (2.7)

∂u′i
∂t
+Uj

∂u′i
∂xj
+ u′j

∂Ui

∂xj
=−∂p′

∂xi
+ β

R
∂2u′i
∂xj∂xj

+ (1− β)
R

1
W

∂c′ij
∂xj

, (2.8)

∂c′ij
∂t
+Uk

∂c′ij
∂xk
+ u′k

∂Cij

∂xk
=Cik

∂u′j
∂xk
+ c′ik

∂Uj

∂xk
+Ckj

∂u′i
∂xk
+ c′kj

∂Ui

∂xk
− 1

W
c′ij, (2.9)

where uppercase variables denote the base state, and lowercase variables and
primes denote perturbation quantities. The parallel base flow allows for a normal-
mode assumption in the streamwise and spanwise directions, such that φ′(x, t) =
φ(y, t)exp[i(kxx+ kzz)]. The disturbances of interest are streamwise elongated streaks,
which are strongly amplifying in both Newtonian and viscoelastic shear flows.
Therefore, the streamwise wavenumber, kx, is set equal to zero. This decouples
the disturbance eigensystem into two subsystems and removes the dependence on the
streamwise normal stress for the other components of the state vector. The decoupling
in the linear system has featured in previous studies (Hoda et al. 2009; Jovanovic &
Kumar 2010, 2011). For example, it was used to derive the scaling of kinetic energy
growth with the Weissenberg number in zero-Reynolds-number flows (Jovanovic
& Kumar 2010). Here, it will be exploited in order to derive a normal-vorticity
equation without any explicit dependence on the polymer conformation field. The
corresponding Orr–Sommerfeld (O–S) and Squire equations are:

∂ψ

∂t
− β

R
∇2
⊥ψ =

(1− β)Tv
R

, (2.10)

∂η

∂t
− β

R
∇2
⊥η=−ikzvγ̇︸ ︷︷ ︸

tilting

+(1− β)Tη
R

, (2.11)
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where ψ =∇2
⊥v and η= ikzu. The symbol ∇2

⊥≡D2− k2
z is the Laplacian in the cross-

flow plane, with D denoting the wall-normal derivative. The stress term in the O–
S equation is Tv = (−k2

z Dc22 − ikz(D2 + k2
z )c23 + k2

z Dc33)/W. The new term in the
Squire equation, Tη= ikz(Dc12+ ikzc13)/W, is the spanwise variation of the streamwise
polymer body force. The evolution equations for Tv and Tη are:(

∂

∂t
+ 1

W

)
Tv = 1

W
∇2
⊥ψ, (2.12)(

∂

∂t
+ 1

W

)
Tη = 1

W
∇2
⊥η+

ikzγ̇ (Dc22 + ikzc23)

W︸ ︷︷ ︸
polymer stretch

. (2.13)

Finally, replacing Tv and Tη by (2.10) and (2.11) yields

Lψ ≡ ∂
2ψ

∂t2
+
(

1
W
− β

R
∇2
⊥

)
∂ψ

∂t
− 1

RW
∇2
⊥ψ = 0, (2.14)

L η ≡ ∂
2η

∂t2
+
(

1
W
− β

R
∇2
⊥

)
∂η

∂t
− 1

RW
∇2
⊥η=F (y, t), (2.15)

which are hereafter referred to as the Orr–Sommerfeld and Squire damped wave
equations.

The O–S equation (2.14) is autonomous and admits solutions of the form v(y, t)=
v̂(y)exp(−iωt). With this ansatz, the components of the conformation tensor in the
cross-flow plane can be defined fully:

ĉ22 = 2W
(1− iωW)

dv̂
dy
, ĉ23 = −W

ikz(1− iωW)

(
d2

dy2
+ k2

z

)
v̂, ĉ33 = −2W

(1− iωW)
dv̂
dy
.

(2.16)
The equation for the wall-normal vorticity (2.15) is regarded as a forced-response
problem. Such an approach has been applied to the study of boundary layer streaks,
where an exact resonance between Orr–Sommerfeld and Squire modes creates a
transient response in the wall-normal vorticity, or Klebanoff distortions (Zaki &
Durbin 2005). The forcing, F (y, t), contains both a vorticity tilting and a polymer
stretching term, and can now be expressed solely in terms of the wall-normal
velocity:

F (y, t) = −ikzγ̇

(
∂

∂t
+ 1

W

)
v + (1− β)

R
ikzγ̇ (Dc22 + ikzc23)

W

= −ikzγ̇

[ (
1
W
− iω

)
︸ ︷︷ ︸

tilting

− (1− β)
R(1− iωW)

∇2
⊥︸ ︷︷ ︸

polymer stretch

]
v̂e−iωt. (2.17)

An eigenfunction of the homogeneous v-equation (2.14) which has the appearance of
a streamwise vortex is selected for the forcing term. This mode shape is invariant with
respect to changes in the elasticity of the fluid. It is applied as forcing in the initial
value problem for η, and the flow response is analysed. The choice of the forcing
mode is discussed in the following section.
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3. Streamwise vortex
In this section, eigensolutions to the autonomous equation for v (2.14) are computed.

The evolution of these modes describes the dynamics of the streamwise ‘roll’
structures. The two time scales in the problem have interesting consequences for the
eigenvalue spectrum which are examined. A particular mode shape is then selected to
force the normal-vorticity equation (2.15) which governs the formation of the streaks.

3.1. The dispersion relation for the Orr–Sommerfeld mode
The solution ansatz, v(y, t) = v̂(y)exp(−iωt), reduces the homogeneous O–S-type
equation (2.14) to a two-point boundary value problem:

d2ψ̂

dy2
− λ2ψ̂ = 0, (3.1)

d2v̂

dy2
− k2

z v̂ = ψ̂, (3.2)

where λ is given by

λ2 = k2
z − iωR

(1− iωW)
(1− iωWβ)

. (3.3)

The temporal eigenvalues are obtained by rearranging (3.3):

ω± =− i
2W

(
Wβκ2

R
+ 1±Φ

)
, (3.4)

with

Φ(κ; R,W, β)=
[(

1+ Wβκ2

R

)2

− 4Wκ2

R

]1/2

, (3.5)

and κ2 ≡ k2
z − λ2 is a wavenumber in the cross-flow plane. For a given set of

parameters, the mode shape, v̂(y), is associated with two possible complex frequencies,
ω±, as described by (3.4). This is a consequence of the two time scales of the system:
solvent diffusion and polymer relaxation. Two initially identical mode shapes can have
different time evolutions, since their respective ω and, as a result, their initial slopes,
∂tv, differ.

The solution for ψ̂(y) can be written in terms of hyperbolic functions:

ψ̂(y)=K1cosh (λy)+K2sinh (λy) . (3.6)

Introducing this solution on the right-hand side of (3.2), in combination with
no-slip/no-penetration boundary conditions, forms an eigenvalue problem for λ which
behaves like a wall-normal wavenumber for a given mode. The eigenvalues are
solutions to the transcendental equations:

λtanh(λ)= kztanh(kz) symmetric,
λtanh(kz)= kztanh(λ) anti-symmetric,

}
(3.7)

and have associated eigenfunctions,

v̂(y)= Akcosh(kzy)+ Aλcosh(λy) symmetric,
v̂(y)= Bksinh(kzy)︸ ︷︷ ︸

v̂k

+ Bλsinh(λy)︸ ︷︷ ︸
v̂λ

anti-symmetric,

 (3.8)
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FIGURE 1. Example eigenvalue spectra of the homogeneous O–S-type equation (2.14).
Here R = 25, β = 0.5 and kz = 1.6. (a) W = 0.25, (b) W = 25, (c) W = 100. The grey
line indicates the retardation rate in each case, ωi = −1/Wβ. The labels in (a) identify
limiting forms of ω derived in the text.

where Ak/Aλ = −λsinhλ/kzsinhkz and Bk/Bλ = −λcoshλ/kzcoshkz. Therefore,
specification of a spanwise length scale of the disturbance produces the set {λj} with
corresponding mode shapes {v̂j(y; λj)}. The other parameters, {R,W, β}, do not alter
the mode shapes, namely v̂j(y) and by continuity ŵj(y). However, these parameters
change the complex frequency of the mode and, as a result, the conformation field
in the cross-flow plane (2.16).

Example eigenvalue spectra are shown in figure 1. The spectra have characteristics
which distinguish them from their Newtonian counterparts. Most striking are the
modes with non-zero frequency, ωr 6= 0, seen clearly lying in ellipsoidal lobes in
figure 1(a). Figures 1(b) and 1(c) show this behaviour diminishing with an increase
in elasticity. Figure 1(a) has points labelled to identify limiting forms of ω. Consider
the first permissible mode shape, λj = λ1, for a given kz. Its eigenfunction, v̂(y; λ1),
has two associated eigenvalues, ωN1 and ωE1. For other values of λj, j= 2, 3, . . . , the
associated eigenvalue pairs move down from N1 and up from E1. Beyond a particular
λj, the eigenvalues have non-zero frequency, ω± = ±ωr + iωi. As λ increases, the
eigenvalue pairs move down the two ellipsoidal branches until they coalesce again.
As the wall-normal wavenumber is increased further, one eigenvalue has a decay rate
ωi→−∞, labelled N2 on figure 1(a). The second eigenvalue approaches a point in
the ω-plane, E2, leading to an infinite number of modes clustering here. The labelling
N1, 2 is in reference to a quasi-Newtonian mode and E1, 2 denotes an elastic mode.
This terminology is explained below and is retained throughout the rest of this paper.

An important parameter appearing in the dispersion relation (3.4) and (3.5) is the
ratio of the relaxation time to the disturbance diffusion time scale in the solvent,
which we denote Θ:

Θ ≡ Wβκ2

R
. (3.9)

The quantity W/R is the elasticity number, which is a ratio of the relaxation and
diffusion time scales. An alternative elasticity number can be defined with the solvent
viscosity, Eβ ≡ ςνs/d2 = Wβ/R, in which case Θ = Eβκ2 can be interpreted as the
product of elasticity and the disturbance wavenumber. It is instructive to consider
low- and high-Θ limits of the dispersion relation (3.4). As this is done, the labels
from figure 1(a) are retained, but the specific locations of these points depend on the
parameters chosen. It is also assumed that the solution is sufficiently dilute, such that
(1 − β)/β = O(1). First, consider the case where the polymer relaxes much faster
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than the rate at which momentum is diffused in the solvent, Θ � 1. Then, Φ can
be expanded as a power series by assuming Θ as a small parameter, which yields the
following approximations to ω:

ωN1 ∼− iκ2

R

[
1+ Θ(1− β)

β

]
, (3.10)

ωE1 ∼− i
W

[
1− Θ(1− β)

β

]
. (3.11)

The first expression is a small correction to the dispersion relation obtained in
a Newtonian flow at the same total Reynolds number. In this case, the polymer
responds instantaneously and the conformation field results in a polymeric stress
proportional to the rate of strain. The polymer therefore behaves as an additional
solvent (see (2.16)). The expression for ωE1 is a modified relaxation time. In this
case, the dynamics are driven by the very large stresses associated with ωE1.

The reciprocal limit is retrieved when the polymer relaxation time is much longer
than the solvent diffusion time scale, Θ� 1. The expansion of Φ with Θ−1 as a small
parameter produces the two limiting forms of the dispersion relation:

ωE2 ∼− i
Wβ

[
1+ (1− β)

βΘ

]
, (3.12)

ωN2 ∼− iβκ2

R

[
1− (1− β)

βΘ

]
. (3.13)

The first is a modified retardation time for the fluid and results in an infinite number
of modes clustered close to this point in the ω-plane. It is associated with polymer
stresses of order β/(1− β) and describes the rate of strain response to a quasi-steady
stress. The second approximation, ωN2, describes diffusion in the solvent since
the polymer dynamics are frozen with respect to this time scale. The associated
conformation field produces a polymer stress O(1/Θ) � 1. For sufficiently large
Wβ/R, any allowable wall-normal wavenumber may result in Θ � 1, which is why
points N1 and E1 are eliminated in figure 1(b,c).

In the region where ωr 6= 0 (the ellipsoidal region in figure 1a) the dynamics of the
system cannot be delineated so clearly. This region of the spectrum can be determined
from Φ when

2κ√
RW

>
1
W
+ βκ

2

R
. (3.14)

This inequality leads to a propagating wave, in contrast to the purely decaying modes
discussed above.

The wave propagation can be explained by considering the behaviour of an
instantaneously elastic fluid, where β = 0, ν = νp and the operator L̃ =L (β = 0):

L̃ =L (β = 0)= ∂2

∂t2
+ 1

W
∂

∂t
− 1

RW
∇2
⊥. (3.15)

This operator is hyperbolic and featured in earlier studies of Stokes’ first problem
(Preziosi & Joseph 1987). The hyperbolicity is seen in the dispersion relation for
(3.15), where there is no upper bound on the region of finite frequency, which occurs
when

2κ
M
>

1
W
. (3.16)
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FIGURE 2. Bounds on the region of finite frequency in terms of the relative value of the
solvent diffusion and relaxation time scales.

The quantity M≡√RW is the viscoelastic Mach number (Joseph 1990) based on the
speed of the elastic shear wave cs≡

√
νp/ς . Therefore, the inequality (3.16) states that

an eigenmode exhibits a finite phase speed, or equivalently a finite ωr, if its associated
shear wave can travel multiple wavelengths within a relaxation time. As the length
scale of the disturbance decreases, the propagation speed in the cross-flow plane tends
to the shear wave speed:

cr = ωr

κ
∼± 1

M
. (3.17)

In a more realistic dilute polymer solution with finite β (3.14), this behaviour is
curtailed by diffusion in the solvent. The elastic shear wave speed is based on the
total viscosity (c≡√ν/ς ). The parabolic governing equation means this is no longer
a well-defined quantity, although it remains helpful in describing the region of finite
frequency.

The condition (3.14) encapsulates the requirements for wave propagation. When the
length scale of the disturbance is very long (κ → 0), viscous decay is weak, and
damping in the system is dominated by the fixed relaxation time. However, the elastic
shear wave propagates slowly in relation to the large length scale of the disturbance,
so decay is assured. For very short length scales (κ →∞), the elastic shear wave
can propagate many wavelengths of the disturbance within a relaxation time. However,
viscous decay in the solvent is very fast, so again damping dominates. The condition
of finite frequency defines a region of the parameter space where the length scale of
the disturbance is such that neither relaxation nor viscous decay in the solvent can act
sufficiently fast to prevent significant propagation of the elastic shear wave.

It is simple to show that this region is centred around, and therefore always includes,
the point at which the two time scales (relaxation and solvent diffusion) are exactly
equal. The level of disparity required before this behaviour is muted is set by β
alone. Considering the bounds defined by (3.14), and solving for the points where
the behaviour changes, yields:

Θ± = ±β
2
√

1− β ± (2− β) . (3.18)

Should β→ 1, both bounds tend to unity and the behaviour is lost. The dependence
of Θ± on β is shown in figure 2.

Interest in the formation and amplification of streaks focuses attention on
eigenmodes of the v-equation (2.14) which resemble streamwise vortices, or ‘rolls’.
One such mode shape is shown in figure 3, where the streamlines have the appearance
of a row of counter-rotating vortices. Since (2.14) is homogeneous, the vertical
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FIGURE 3. Streamlines of the O–S eigenmode in the cross-flow plane. The pattern
resembles a streamwise vortex. The mode has a spanwise wavenumber kz = 1.6, which
sets λ=−2.63i. Dashed lines indicate negative values.
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FIGURE 4. The two possible decay rates of the mode approximating a streamwise vortex
(λ=−2.63i), as a function of the time scale ratio Θ . Horizontal lines are the decay rates
of the Newtonian modes at the same total and solvent Reynolds numbers. ——, Described
in the text as the quasi-Newtonian mode; – – –, described as the elastic mode. Here R=
25, β = 0.5, kz = 1.6. The labels identify limiting forms of ω described in the text.

velocity, v(y, t; kz, λ), associated with this mode decays exponentially in time. Mass
conservation requires that the associated w(y, t; kz, λ) also decays. The particular
mode in figure 3 has kz = 1.6, which is the spanwise wavenumber of the optimal
disturbance in Newtonian Couette flow (Butler & Farrell 1992). Its wall-normal extent
is equal to the domain height and λ=−2.63i. Changing the flow parameters, and in
particular Θ , does not alter the shape of the vortex, but changes its location in the
complex ω-plane.

With the disturbance length scale fixed, the two decay rates associated with this
particular O–S mode shape are tracked as a function of Θ in figure 4. In the limit
Θ � 1, the two eigenvalues approach the Newtonian decay rate, ω = ωN1 ∼ −iκ2/R,
and the polymer relaxation time, ω = ωE1 ∼ −i/W, respectively. When Θ � 1, one
eigenvalue describes viscous decay in the solvent, ω=ωN2 ∼−iβκ2/R, and the other
describes the fluid retardation time, ω = ωE2 ∼−i/Wβ. When Θ ∼ 1, the two decay
rates are identical and ω±r 6= 0. The well-defined limits of the decay rates motivate
the terminology ‘quasi-Newtonian’ and ‘elastic’ modes. The quasi-Newtonian mode
describes the branch, ωN = ω(Θ), linking ωN1 and ωN2. This is the solid line in
figure 4. The elastic mode, ωE, describes the branch linking ωE1 and ωE2; the dashed
line in figure 4.

3.2. Forcing: tilting of mean vorticity versus polymer stretch
The Squire damped wave equation which describes the transient growth of streaks
contains two forcing mechanisms: tilting of mean vorticity and polymer stretch (recall
(2.15) and (2.17)). The invariance of the O–S eigenfunction to changes in the elastic
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FIGURE 5. (a) A comparison of the size of the forcing terms in the wall-normal vorticity
equation as a function of Θ , when forced by the quasi-Newtonian mode: ——, |T |;
– – –, |P|; the grey line is the sum, |T +P|, which acts only on v̂λ. (b) α=phase(T )−
phase(P) as a function of Θ . R= 25, β = 0.5.

properties of the fluid means that the wall-normal profiles of the two contributions to
F do not change. However, the magnitude and phase of the initial polymer stresses
depend on the complex frequency of the forcing mode. Furthermore, the combined
effect of both terms on energy growth is not immediately obvious. Examination of the
source term highlights the importance of ω in favouring one mechanism. The forcing
term is expressed as:

iF (y)
γ̇ kz

=
[(

1
W
− iω

)
− (1− β)

R(1− iωW)
∇2
⊥

]
v̂ = T v̂︸︷︷︸

tilting

+ P v̂λ︸︷︷︸
polymer stretch

. (3.19)

Here, T ≡ W−1 − iω and P ≡ κ2(1 − β)/R(1 − iωW) describe the coefficients of
mean vorticity tilting and polymer stretch, respectively. Note that the polymer stresses
are only a function of v̂λ=Aλcosh(λy), which is the second solution for v̂ (see (3.8)).

The magnitudes of the coefficients are plotted in figure 5(a) for the quasi-Newtonian
mode, which has a Newtonian decay rate when the diffusion and relaxation time scales
differ significantly. The dynamics of the response are set by the relative weightings
of the terms in the operator L , but this figure identifies the dominant contribution
to the forcing. Vorticity tilting is orders of magnitude larger than polymer stretch for
both small and large values of Θ .

The magnitude of the polymer body force term is identical to the vorticity tilting
term throughout the finite-frequency region. However, there is a phase difference
between the two terms which can suppress the efficacy of tilting. This is captured by
the phase angle, α= phase(T )− phase(P), which is plotted in figure 5(b). The two
coefficients cancel one another entirely when the two time scales are equal, Θ = 1.
The suppression of the lift-up term only applies to one component of the vertical
velocity, v̂λ = Aλcosh(λy). This particular component is the rotational part of the
initial condition, since the streamwise vorticity is ω̂x =−iκ2Aλcosh(λy)/kz. Therefore,
the polymer distortion term acts to suppress the effects of streamwise rotation. The
contribution from the irrotational component, v̂k = Akcosh(kzy), to F is unaltered
throughout by P v̂λ.

Similar to figure 5, the magnitudes of the forcing terms T and P and their
relative phase are plotted in figure 6 for the elastic mode. The decay rate of this
mode tends towards the relaxation and retardation rates in the limits of small and
large Θ , respectively. The coefficient of the polymer stretch term for elastic forcing is
exactly equal to that of the quasi-Newtonian vortex tilting term: |P(ωE)| = |T (ωN)|.
The forcing differs in its decay rate and only acts on the second component of the
vortical eigenfunction, v̂λ.
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FIGURE 6. (a) A comparison of the size of the forcing terms in the wall-normal vorticity
equation as a function of Θ , when forced by the elastic mode: ——, |T |; – – –, |P|;
the grey line is the sum, |T +P|, which acts only on v̂λ. (b) α= phase(T )− phase(P)
as a function of Θ . R= 25, β = 0.5.
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FIGURE 7. Contours of Re[u(y= 0, t) exp(ikzz)], obtained from numerical solution of the
initial value problem. (a) Forcing from a quasi-Newtonian mode, ω = ωN1 with Θ � 1;
R= 100, W = 0.5, β = 0.5. (b) Forcing from an elastic mode, ω = ωE2, Θ � 1; R= 0.5,
W= 50, β= 0.5. (c) Forcing has non-zero frequency, with Θ∼ 1; R= 50, W= 50, β= 0.1.

4. The normal vorticity response
Much like the earlier discussion of the dispersion relation of the O–S modes, the

transient normal-vorticity response to forcing by the decaying streamwise vortex can
be broadly classified into three categories: (i) quasi-Newtonian, (ii) elastic and (iii)
finite-frequency response. These three behaviours are shown in figure 7. Here, and in
all subsequent figures, the disturbance has been normalized such that |v|2 + |w|2 = 1
at t = 0. The results were obtained from numerical computations of the linearized
Navier–Stokes equations, using a Chebyshev expansion in the wall-normal direction
and a second-order backward Euler scheme in time. (i) The Newtonian-type behaviour
(figure 7a) is the response to forcing by the quasi-Newtonian mode. In both the limits
Θ�1 and Θ�1, the response has the form of streamwise-independent streaks which
amplify in time and subsequently decay. (ii) The elastic-type behaviour (figure 7b)
is the response to forcing by the elastic mode. In the limit Θ � 1, the response is
a very slowly decaying, large-amplitude streak, even though the inertia is very weak.
This behaviour is consistent with earlier work on transient growth in strongly elastic
fluids (Jovanovic & Kumar 2010, 2011). (iii) The most interesting behaviour is seen
when Θ ∼ 1; an example response is shown in figure 7(c). We term this behaviour
‘re-energization’ of the streaks. In this instance, the Squire response resembles a
superposition of unequal, counter-propagating waves in the span. Both the asymmetry
and the ‘re-energization’ when Θ ∼ 1 will be examined in detail in § 4.4.
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The physical mechanisms controlling these different transient responses are not
evident from the numerical solutions. Therefore, this section focuses on explaining
the different dynamical regimes. First, an exact analytical solution to the initial
value problem is presented. The solution confirms that it is the value of Θ , and the
choice of the forcing O–S mode, that determine the response. Then, the mechanics
of the flow are explained using limiting forms of the governing Squire damped wave
operator.

4.1. Solution of the Squire initial value problem
The wall-normal vorticity response is governed by the inhomogeneous initial-boundary-
value problem:

∂2η

∂t2
+
(

1
W
− β

R
∇2
⊥

)
∂η

∂t
− 1

RW
∇2
⊥η=−ikzγ̇

[(
1
W
− iω

)
− (1− β)

R(1− iωW)
∇2
⊥

]
v̂e−iωt.

(4.1)
The second-order differential equation requires two initial conditions, on η and ∂tη.
The case of zero initial wall-normal vorticity is considered, η(y, t= 0)= 0. In addition,
c12 and c13, which only feature in the Squire sub-system, are also set to zero at initial
time. This condition is equivalent to zero initial polymer force in the modified Squire
equation, Tη(y, 0)= 0 (see (2.11)), and therefore ∂tη(t= 0)=−ikzγ̇ v(y, t= 0).

A general solution to (4.1) is found using the Laplace transform. Details are
relegated to the Appendix. The solution is most conveniently written in the form:

η(y, t) = η̂p(y)e−iωt +
∞∑

j=1

Cj(ω
+
η,j;ω, R,W, β)cosh(λη,jy)exp(−iω+η,jt)

+
∞∑

j=1

Cj(ω
−
η,j;ω, R,W, β)cosh(λη,jy)exp(−iω−η,jt), (4.2)

where the cosh(λη,jy) are the even eigenfunctions of the homogeneous Squire damped
wave equation and λη,j = (2j − 1)iπ/2 the wall-normal wavenumbers. While the
eigenvalues are not equal to those of the forcing O–S mode, they satisfy a dispersion
relation of similar form:

ω±η,j =−
i

2W

(
Wβκ2

η,j

R
+ 1±Φη,j

)
, (4.3)

where κ2
η,j = k2

z − λ2
η,j and

Φη,j(κη,j; R,W, β)=
(1+ Wβκ2

η,j

R

)2

− 4Wκ2
η,j

R

1/2

. (4.4)

Therefore, the asymptotic forms of the dispersion relation found in § 3 are relevant to
the transient response as well. The decay rate of the disturbance was demonstrated to
have well-defined limiting behaviour with small and large values of Θ . The analytical
solution suggests that this may be the same criterion as that which dictates the streak
response. However, there are additional factors to consider. The forcing term contains
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FIGURE 8. Quasi-Newtonian mode. (a) Contours of the forcing term in the cross-flow
plane, Re[F (y)exp(ikzz)], the grey lines indicate negative values. (b) The wall-normal
vorticity response at R = 50, β = 0.5 in the limit Θ � 1 (——), W = 0.5, and in the
limit Θ � 1 (– – –), W = 300. The grey lines are the Newtonian solutions at the same
total and solvent Reynolds numbers.

the effects of both the vorticity tilting and the polymer stretching terms. It is not
clear how their combination affects amplification. Moreover, the mechanism behind
the observed re-energization of streaks when Θ ∼ 1 is unclear. In order to address
these points, solutions to the Squire equation are computed for a range of Θ , and
limiting forms of the governing equation are considered in detail.

When assembling the results there is a large parameter space to consider. The
situation is muddied further by the two potential forcing modes. To simplify the
presentation, we consider the forcing modes separately. First, results are presented
for forcing by the quasi-Newtonian mode (§ 4.2). The streaks resulting from forcing
by the elastic mode are discussed next (§ 4.3). Finally, the re-energizing streaks
are explained (§ 4.4). These structures occur when Θ ∼ 1, and the terminology of
‘quasi-Newtonian’ and ‘elastic’ modes is no longer appropriate, since both forcing
modes have identical decay rates.

4.2. The quasi-Newtonian mode
The term quasi-Newtonian mode is applicable when there is a large disparity between
the relaxation and solvent diffusion time scales, since the modal decay rate approaches
a Newtonian value in the limits Θ � 1 and Θ � 1. The structure of the forcing,
F , due to the quasi-Newtonian mode is shown in figure 8(a). The forcing term
resembles a streamwise vortex, consistent with the assessment in § 3.2 of the dominant
contribution to the forcing term. Figure 8(b) shows the amplitude of the resulting
streaks in both the low- and high-Θ limits, where the response is observed to be
very close to the Newtonian curves. The latter were computed at the same total and
solvent Reynolds numbers, respectively. Recovering Newtonian behaviour from the
governing equation is made easier by rescaling time, t̃= tβκ2/R with η̃(y, t̃)= η(y, t),
to reflect that the decay rate of the forcing term is set by a viscous time scale. After
rearrangement, the governing equation reads:

Wβκ2

R
∂2η̃

∂ t̃2
+
(

1− Wβ
R
∇2
⊥

)
∂η̃

∂ t̃
− 1
βκ2
∇2
⊥η̃= f̂ (y)exp(−iωRt̃/βκ2). (4.5)

Fast polymer relaxation: If the polymer relaxes much faster than solvent diffusion,
then the appropriate small parameter is ε =Θ� 1. The equation becomes:

ε
∂2η̃

∂ t̃2
+
(

1− ε

κ2
∇2
⊥
) ∂η̃
∂ t̃
− 1
βκ2
∇2
⊥η̃= f̂ (y; ε)exp(−iωN1Rt̃/βκ2). (4.6)
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FIGURE 9. Quasi-Newtonian mode with large Θ . Grey lines are the Newtonian solutions
at the same solvent Reynolds numbers. Black line is the exact solution. (a) Θ ∼ 30, with
R= 50, W = 300, β = 0.5; (b) Θ ∼ 40, with R= 100, W = 500, β = 0.8. The dashed lines
identify the retardation rate, η∝−t/Wβ.

In this limit, the appropriate approximation for ω has been adopted (ω = ωN1 ∼
−iκ2/R). Note that this approximation assumed a relatively dilute polymer solution,
(1 − β)/β = O(1). Neglecting terms of O(ε) in the forcing, the right-hand
side reduces to the familiar forcing term from the Newtonian Squire equation,
f̂ (y; ε) ∼ −ikzγ̇Rv̂exp(−t̃/β)/βκ2. Therefore, assuming an asymptotic expansion
η̃= η̃0 + εη̃1 + · · · , at leading order the wall-normal vorticity equation is:

∂η̃0

∂ t̃
− 1
βκ2
∇2
⊥η̃0 =−ikzγ̇

R
βκ2

v̂e−t̃/β . (4.7)

Reverting back to the convective time scale reveals that the governing equation is
simply the Newtonian Squire equation at the same total Reynolds number. This is
expected since the polymer can effectively respond instantaneously on a solvent time
scale. The presence of a small parameter in front of the leading-order derivative does
not lead to boundary-layer-type behaviour, since the leading-order equation satisfies
the initial conditions exactly.

Slow polymer relaxation: The response due to the quasi-Newtonian mode when
relaxation is much slower than solvent diffusion is considered by introducing
δ=Θ−1� 1. The forcing decay rate can then be approximated as ω=ωN2∼−iβκ2/R.
The wall-normal vorticity equation (4.5) becomes:

∂2η̃

∂ t̃2
+
(
δ − 1

κ2
∇2
⊥

)
∂η̃

∂ t̃
− δ

κ2
∇2
⊥η̃= f̂ (y; δ)exp(−iωN2Rt̃/βκ2). (4.8)

The response in this limit is examined over a long time in figure 9. The streaks are
observed to match the Newtonian solution at the same solvent Reynolds number for
short times. At longer times a second, much weaker streak amplifies and subsequently
decays at the retardation rate, −1/Wβ. The second streak can be established as a
delayed polymer response. To demonstrate this effect, we introduce the expansion η̃=
η̃0+ δη̃1+ · · · in (4.8), and retain the equations governing the leading- and first-order
terms. These equations are integrated once in time. The original initial conditions are
applied at leading order, and homogeneous initial conditions are enforced for η̃1 and
its time derivative, which yields:

∂η̃0

∂ t̃
− 1
κ2
∇2
⊥η̃0 =−ikzγ̇

R
βκ2

v̂e−t̃, (4.9)
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∂η̃1

∂ t̃
− 1
κ2
∇2
⊥η̃1 = (1− β)

βκ2

∫ t̃

0
∇2
⊥η̃0(y, σ )dσ

+ ikzγ̇
R
βκ2

(1− β)
β

(
1+ 1

κ2
∇2
⊥

)(
1− e−t̃

)
v̂. (4.10)

The leading-order dynamics are governed by the Newtonian Squire equation for
the solvent. This result is understood by considering that (i) the initial polymer
stresses are � 1 (see § 3) and (ii) the polymer is effectively frozen with respect
to the time scale of the streamwise roll. At first order, there are new, unfamiliar
amplification mechanisms on the right-hand side of (4.9). The term involving v̂ is the
O(δ) contribution from polymer stretch in the original forcing term on the right-hand
side of (4.1). The integral term is a polymer memory effect. It is a release of energy
stored by the polymer after it has been stretched by the initial row of streaks in the
solvent. This term is shown below to contribute to the delayed amplification of the
streaks seen in figure 9.

In order to capture the long-time behaviour of the streaks, time is now rescaled by
relaxation, T = t/W, in the full force-response equation. Setting η(y, t)= η(y, T), the
governing equation reads:

δ
∂2η

∂T2
+
(
δ − 1

κ2
∇2
⊥

)
∂η

∂T
− 1
βκ2
∇2
⊥η

=− ikzγ̇
R
βκ2

[
1− 1

δ

(
1− (1− β)

β
δ

)
+ (1− β)

βκ2
∇2
⊥ +O(δ)

]
v̂e−T/δ. (4.11)

Equation (4.11) has a boundary layer of thickness T ∼ Θ−1, where the solution
matches the faster dynamics discussed above in relation to the solvent time scale.
If, however, we consider the behaviour on the slow time scale, at leading order
equation (4.11) reduces to: (

∂

∂T
+ 1
β

)
∇2
⊥η0 = 0. (4.12)

The solution to (4.12) is η0 = N0(y)exp(−T/β). The y-dependence is found by
matching the solution η(y, T) with η̃(y, t̃) as T→ 0 and t̃→∞. The leading-order
solution on the solvent time scale, η̃0(y, t̃), decays to zero as t̃ → ∞. Therefore,
N0(y)= 0 and there is no second streak at leading order.

The first-order correction satisfies an identical equation to the leading-order solution
(4.12); the solution is again simply η1=N1(y)exp(−T/β). However, at first order the
equation on the solvent time scale (4.9) has a non-trivial, steady solution, which yields
the function N1(y):

∇2
⊥N1 =− (1− β)

β

∫ ∞
0
∇2
⊥η̃0dt̃+ ikzγ̇

R
β

(1− β)
β

(
1+ 1

κ2
∇2
⊥

)
v̂. (4.13)

At long time, the decay rate of η1 is set by the retardation time, which is consistent
with the reappearance of the streaks being a release of energy by the polymers back
into the flow. Decay at the retardation rate is a characteristic associated with a rate-
of-strain response to an applied stress.



538 J. Page and T. A. Zaki

0 100 200 300
t

z

0 100 200 300
−3

0
3

z

t
0 100 200 300

−3
0
3

10
1

10
0

10
–2

10
–1

(a) (b)

(c)

FIGURE 10. First-order correction for large Θ . Here Θ ∼ 30, R= 50, W = 300, β = 0.5.
(a) Full solution shown with the thick grey line; – – –, leading-order solution; ——, the
composite solution η̃0 + δ(η̃1 + η1 − N1). (b) Contours of Re[u(y = 0, t)exp(ikzz)] when
forcing is only due to the term involving v̂. (c) Contours of Re[u(y= 0, t)exp(ikzz)] when
forcing is only due to the memory term.

Figure 10(a) shows the composite solution, η̃0+ δ(η̃1+ η1−N1), for an example set
of parameters. The first-order correction qualitatively describes the re-emergence of the
streaks after their initial decay, but under-predicts their amplitude. The correction also
shows that the emergent streaks have an opposite sign to those from the leading-order
response. For this reason, the amplitude of the exact solution falls off more quickly
than the leading-order approximation after the initial peak. The second, weaker streak
has a decay rate set by the retardation time, which explains the second peak in the
wall-normal vorticity amplitude at longer time when the leading-order behaviour has
decayed.

The emergent streaks are due to the two forcing terms appearing at first order, (4.9).
In order to isolate their respective impact, the linearity of the operator is exploited and
the equation is solved with forcing from each term separately. Recall that the term
associated with v̂ is a polymer stretch contribution, the integral term is a polymer
memory effect. The solutions associated with forcing by these mechanisms alone are
identified with superscripts η̃v and η̃m. The term involving v̂ serves to reinforce the
leading-order streaks, as shown in figure 10(b), which corresponds to the solution
η̃0 + δ(η̃v1 + ηv1 − Nv

1). The polymer-memory term results in the reappearance of the
streaks and dominates at long time. This behaviour is plotted in figure 10(c), where
the contours of u(y= 0, z, t) were extracted from the solution η̃0 + δ(η̃m

1 + ηm
1 − Nm

1 ).
The streaks resulting from the polymer-memory forcing term are seen for t> 100.

Since the transient streak growth follows the Newtonian curve at the same solvent
Reynolds number, a large R/β is required for the streaks to reach a significant
amplitude. In turn, this requires large W to ensure Θ � 1, as shown in figures
figures 9 and 10. It should be cautioned that the Oldroyd-B model becomes
increasingly unrealistic as the Weissenberg number is increased, because it neglects
the finite extensibility of the polymers. Therefore, future work must assess the
influence of finite extensibility on streak amplification in this regime.

4.3. The elastic mode
The terminology ‘elastic mode’ describes the branch ω(Θ) which is set by the
polymer time scale when the diffusion and relaxation time scales are disparate. In
this case, the forcing term in the Squire damped wave equation is dominated by
polymer stretching rather than tilting of mean vorticity, as previously shown in
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FIGURE 11. Elastic mode. (a) Contours of the forcing term in the cross-flow plane,
Re[F (y)exp(ikzz)], the grey lines indicate negative values. (b) The wall-normal vorticity
response in the limit Θ� 1. The parameters are W = 50, R= 0.5, β = 0.5.

figure 6(a). Attention will be focused on the case where Θ � 1, and no results are
shown for Θ� 1. In the latter limit, the streak response to forcing by an elastic O–S
mode is always significantly weaker than the response to a quasi-Newtonian O–S
mode, at the same parameters. This observation is intuitive because the limit Θ � 1
implies W� R/βκ2, and since ωE1 ∼−i/W and ωN1 ∼−iκ2/R, the decay rate of the
elastic O–S forcing is rapid compared to the quasi-Newtonian case.

Results for Θ � 1 are shown in figure 11 and were computed using numerical
solution of the linearized disturbance equations. Contours of the total forcing term
from an elastic O–S mode are plotted in a cross-flow plane figure 11(a). The wall-
normal vorticity response is shown in figure 11(b): despite the very weak inertia, the
streak reaches a significant amplitude over a long time scale.

The mechanics of the response are not clear at first sight, so an approximate form of
the wall-normal vorticity equation is sought for the elastic mode when δ−1 =Θ� 1.
The decay of the forcing is set by the fluid’s elastic properties, so time is rescaled
accordingly, T = t/W, with η(y, T)= η(y, t). The Squire damped wave equation then
takes the form:

δ
∂2η

∂T2
+
(
δ − 1

κ2
∇2
⊥

)
∂η

∂T
− 1
βκ2
∇2
⊥η=

WR
βκ2

F (y)e−T/β . (4.14)

At leading order: (
∂

∂T
+ 1
β

)
∇2
⊥η0 = ikzγ̇W∇2

⊥v̂e−T/β . (4.15)

The solution can be written in the form:

η0(y, T)= ikzγ̇Wv̂ Te−T/β +N0(y)e−T/β . (4.16)

The solution (4.16) demonstrates that streak growth follows η ∝ t exp(−t/Wβ): the
amplitude is proportional to time but ultimately decays due to the retardation rate. This
result is in agreement with the work on inertialess transient growth in Jovanovic &
Kumar (2010). Note that in (4.16), the first term on the right-hand side is independent
of Reynolds number. Therefore, as R→ 0, the large growth of the streaks is retained.

Since (4.14) is first order in time, it is not possible to impose both initial conditions.
Instead, the function N0(y) can be determined by matching the outer dynamics to an
inner solution. Indeed, (4.14) has a boundary layer of thickness T ∼ Θ−1 at T = 0



540 J. Page and T. A. Zaki

t
0 50 100

5

10

0 0.2 0.4

0.05

0.10

t

(a) (b)

FIGURE 12. (a) Comparison of the numerical and asymptotic solutions with elastic forcing
in the limit Θ� 1. Grey lines are the numerical solutions; ——, Θ = 1327, with R= 0.1,
W = 20, β = 0.7; – – –, Θ = 474, with R = 0.5, W = 50, β = 0.5. (b) The short-time
behaviour.

where the dynamics of the solvent are dominant. Rescaling t̃ = T/δ ≡ tβκ2/R, with
η̃(y, t̃)= η(y, T), we find, at leading order:

∂

∂ t̃

(
∂η̃0

∂ t̃
− 1
κ2
∇2
⊥η̃0

)
= ikzγ̇

R
βκ2

v̂λ. (4.17)

Integration and application of the scaled initial condition ∂t̃η̃(t̃ = 0) = −ikzγ̇Rv̂/βκ2

reveals the short-time dynamics are governed by:

∂η̃0

∂ t̃
− 1
κ2
∇2
⊥η̃0 =−ikzγ̇

R
βκ2

v̂ + ikzγ̇
R
βκ2

v̂λ t̃. (4.18)

This is the Newtonian Squire equation at the solvent Reynolds number. A solution
using Laplace transforms is presented in the appendix. It is matched to the outer
solution (4.16) to determine the function N0(y). A uniformly valid composite solution
can therefore be written in the form:

η0(y, t)= ikzγ̇ v̂(y)te−t/Wβ +N0(y)e−t/Wβ +
∞∑

j=1

Sj(ωη,j; R, β)cosh(λη,jy)exp(−iωη,jt),

(4.19)
where ωη,j = −iβκ2

η,j/R are the homogeneous Squire eigenvalues due to the solvent.
A comparison of the asymptotic solutions with the numerical results is shown in
figure 12. The zoomed-in view in figure 12(b) exposes the short time decay of the
contribution from the solvent Squire modes. The overall, or long-time, dynamics
(figure 12a) are dictated by the outer solution (4.16), and clearly show streak growth,
even in the inertialess limit.

4.4. Streak re-energization
When the relaxation and solvent diffusion time scales are commensurate, Θ ∼ 1, a
distinction into quasi-Newtonian and elastic modes is no longer appropriate. This is
due to the equal decay rates of the pair of O–S modes with the same eigenfunction,
Im(ω+) = Im(ω−). Furthermore, the modes have equal and opposite frequencies,
Re(ω+) = −Re(ω−), which introduces some choice in the type of O–S roll used to
force the Squire equation. For example, forcing with ω+ alone corresponds to a row
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FIGURE 13. Forcing mode has a non-zero frequency. (a) Contours of the forcing term in
the cross-flow plane, Re[F (y)exp(ikzz)], the grey lines indicate negative values. (b) The
wall-normal vorticity response with Θ ∼ 1. The parameters are R= 50, W = 25, β = 0.2.
The grey lines show the Newtonian solutions at same total and solvent Reynolds numbers.
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FIGURE 14. (a) Contours of streamwise velocity at the centreline, Re[u(y= 0, t)exp(ikzz)],
and (b) in the cross-flow plane at times indicated by vertical black lines in (a). Here
Θ = 0.95; R= 50, W = 25, β = 0.2.

of streamwise vortices propagating in the +z direction with speed |Re(ω)|/kz. This
propagation is only by virtue of the elastic properties of the fluid and is absent in
simple Newtonian Couette flow. The disturbance energy of the rolls in this case is
monotonically decreasing in time. On the other hand, forcing can be constructed
from a superposition of ω+ and ω− to form a vortex which pulsates in place. In this
instance, the disturbance energy is oscillatory inside a decay envelope. Throughout
this section we will compute the response to a single propagating mode, before
discussing the properties of the solution due to forcing from a stationary vortex.

When the forcing is due to a single O–S mode, say ω=ω+, the forcing term and
Squire response are shown in figure 13. As demonstrated in § 3.2, when Θ ∼ 1, the
polymer conformation field associated with the rolls mutes the rotational component
of the tilting term on the right-hand side of the wall-normal vorticity equation. A
consequence of this cancellation is that the source term is localized near the walls
of the channel, as shown in figure 13(a). Nonetheless, the amplitude of the streak
response is enhanced compared with the Newtonian case at the same total Reynolds
number (figure 13b).

Although the strength of the normal-vorticity response is enhanced in this regime,
the most striking feature of the solution when Θ ∼ 1 is the multiple maxima seen in
the streak amplitude, |η|max. This behaviour is explored further in figure 14. Contours
of the streamwise velocity perturbation field at the centreline, u′(y = 0, z, t), are
reported in figure 14(a). The response is a spanwise row of streaks which grow and
subsequently decay. Streak decay is accompanied by a shift in the span before the
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FIGURE 15. Maximum amplitude in the wall-normal vorticity response as a function of
time. The dashed lines identify the amplitude of the first even wall-normal vorticity mode
pair in the response (ω±η,j=1). (a) Θ = 5.69, with R= 50, W = 100, β = 0.3. (b) Θ = 0.95,
with R = 50, W = 25, β = 0.2. The inset shows the (even) spectrum of the wall-normal
vorticity operator, with the forcing mode plotted in grey.

cycle of amplification and decay repeats. The streamwise velocity perturbation field
in the cross-flow plane at three instances in this process is shown in figure 14(b).
The streaks fill the channel, but their spanwise shape is asymmetric.

The normal-vorticity response plotted in figure 14 resembles a superposition of
unequal, counter-propagating waves in the span. This behaviour was also remarked
on in connection with figure 7(c), and can be understood in the context of the
exact solution (4.2): when Θ ∼ 1, the ωη spectrum of the Squire equation includes
finite-frequency modes, and a given eigenfunction is associated with two waves, ω±η,j,
propagating in ±z with speed |Re(ωη,j)|/kz. The amplitude of the excited Squire
modes was given by Cj ∝ (ω−ω±η,j)−1 in (4.2). Since the forcing is from a travelling
vortex, say ω=ω+, Squire modes travelling in the same direction will be preferentially
excited, Cj(ω

+
η,j) > Cj(ω

−
η,j). The solution also contains a wave travelling at the speed

of the forcing, Re(ω+)/kz, identified with η̂p(y) in (4.2). The superposition of unequal
travelling waves leads to the broken spanwise symmetry in the response (figure 14a).
This behaviour is affirmed in figure 15, where the amplitudes of the pair of Squire
modes with the largest coefficients are overlayed on the full solution. The inset in
this figure shows the spectrum of the homogeneous wall-normal vorticity equation,
including the location of the forcing O–S mode.

The above perspective includes the wall-normal variation in the response implicitly
as a summation of eigenfunctions. This approach does not fully characterize the re-
energization process. For this purpose, an appropriate limiting form of the Squire
damped wave equation is sought. The relevant time scale is the frequency of the
forcing, which, when Θ = 1 exactly, has the form:

Re(ω±)=±κ
√

1− β√
RW

. (4.20)

The frequency is inversely proportional to the viscoelastic Mach number, M ≡√RW,
and for lower values of β can be approximated as Re(ω±) ≈ ±κ/√RW. Using this
frequency to define a new time variable, t̂ = tκ/

√
RW, the Squire damped wave

equation becomes:

∂2η

∂ t̂2
+
√
β

Θ

(
1− Θ

κ2
∇2
⊥

)
∂η

∂ t̂
− 1
κ2
∇2
⊥η=

WR
κ2

F (y)exp(−iωt̂
√

RW/κ). (4.21)
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FIGURE 16. (a) Wall-normal vorticity amplitude at the centreline for constant Θ with
varying β. Here Θ = 0.95, R = 5: ——, W = 5, β = 0.1; – – –, W = 20, β = 0.025;
grey line, W = 50, β = 0.01. (b) Contours of |∂η/∂y| for the three cases, the dotted lines
identify the trajectory of a shear wave.

The normal vorticity response at the centreline is plotted for three {W, β} pairs, with
Θ held constant, in figure 16. The amplitude scales approximately with

√
RW. Re-

energization is more evident as the solvent viscosity is reduced, and in the limit β� 1
with Θ ∼ 1, the Squire equation (4.21) becomes a forced wave equation in the y–z
plane without damping. This suggests that re-energization is a superposition of trapped
vorticity waves.

We can connect this understanding to the earlier discussion of the eigenfunction
expansion. The forcing term in (4.21) appears oscillatory but is in fact a travelling
wave in the span prior to the normal-mode assumption that was invoked in the z-
direction. Therefore, the vertical-vorticity response will include a wave travelling in
the +z-direction with speed cz=Re(ω+)/kz, which is consistent with the exact solution
(4.2). The response also includes vertical-vorticity waves propagating in the cross-flow
plane with speed 1/M. These vorticity waves are reflected from the walls, which
act as a waveguide for the counter-propagating waves. An attempt to identify wall-
normal wave propagation and reflection is presented in figure 16(b), where contours
of |∂η/∂y| are shown. In all cases, identification of wave fronts is difficult due to the
smoothing effect of the small but finite solvent viscosity.

The smoothing effect can be removed by considering an instantaneously elastic fluid
with β = 0. To connect the results to the above discussion of Θ ∼ 1 we must retain
ε = R/Wκ2 � 1. For the instantaneously elastic fluid, the dispersion relation of the
forcing takes the form:

ω± ∼− i
2W
± κ

M

(
1− ε

8
+ · · ·

)
. (4.22)

The decay rate of the roll is set by the relaxation time, and the same is true of the
excited Squire modes, Im(ω±η,j)=−1/2W∀j. Therefore, the role of polymer relaxation
is to set a decay envelope for the response, and the wall-normal vorticity can be
written in the form η(y, t)= η̃(y, t)exp(−t/2W)= η̃(y, t̂)exp(−√ε t̂/2). Assuming this
ansatz, the leading-order, short-time behaviour of η is governed by the forced wave
equation:

∂2η̃0

∂ t̂2
− 1
κ2
∇2
⊥η̃0 =−kzγ̇

M
κ
v̂ke−it̂. (4.23)

An example response is reported in figure 17. A shear wave can be identified in the
contours of |∂η/∂y| seen in figure 17(a). The wave undergoes multiple reflections
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FIGURE 17. Solution in the instantaneously elastic limit (β = 0). Here R= 2, W = 100,
which sets a wave speed M−1= 0.07. (a) Contours of |∂η/∂y|, dashed black lines identify
shear wave propagation. (b) Vertical vorticity at the centreline; the dashed grey line
follows the envelope modulation at the beating frequency, plotted here as |Amsin((K1 −
κ)t/2M)exp(−t/2W)|.

from the walls. Interestingly, there are two clear frequencies in the vorticity amplitude
(figure 17b): a short-time oscillation and a longer-scale modulation.

Extracting the two frequencies is easiest by constructing a solution to (4.23) with
the method of images. Shifting the wall-normal coordinate Y = y+ 1, and placing an
infinite number of forcing images above and below the original domain, allows the
solution to be expressed as a Fourier sine series, η̃0(Y, t̂) =∑∞n=1 ϕn(t̂)sin(nπY/2).
Substituting this expansion into (4.23) and using the orthogonality property of the
basis functions, the amplitudes are found from the system of ordinary differential
equations:

d2ϕn

dt̂2
+ K 2

n

κ2
ϕn =−kzγ̇

M
κ

bne−it̂, (4.24)

where K 2
n = k2

z + (nπ/2)2, and the bn are the Fourier coefficients of v̂k. The initial
conditions are ϕn(0) = 0 and dtϕn(0) = −ikzγ̇ bn − ikzγ̇ cn. The cn are the coefficients
of v̂λ. The Fourier amplitudes are therefore:

ϕn(t̂)=D+n exp(iKn t̂/κ)+D−n exp(−iKn t̂/κ)+ fne−it̂, (4.25)

with

D±n =∓
[

kzγ̇M
2(Kn ± κ)bn + kzγ̇M

2Kn
cn

]
, fn =− kzγ̇Mκ

K 2
n − κ2

bn. (4.26)

The terms involving D±n constitute the trapped vorticity waves, and the fn term
corresponds to the component of the response propagating in the span with the
forcing. Furthermore, the solution demonstrates that the streak amplitude is set by
the viscoelastic Mach number, M, consistent with the scaling in figure 16, where β
is finite but small. With the first ten modes of the Fourier expansion, n ∼ 10, the
shear waves can be accurately resolved. However, the fast and slow frequencies are
already contained in the evolution equation for the first Fourier mode. Rearranging
the expression for the ϕ1(t̂), the two frequencies are found as:

Ωfast = K1 + κ
2M

, Ωslow = K1 − κ
2M

. (4.27)
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The modulation is a manifestation of ‘beating’, which results from the slight disparity
between the phase speed of the forcing, cz ≈ κ/Mkz, and the phase speed of the
trapped normal-vorticity waves, cη ≈ K1/Mkz. The predicted beating frequency has
been overlaid on figure 17(b).

We now briefly comment on the flow response to a stationary, pulsating streamwise
vortex, which can be constructed from an equal superposition of O–S modes with ω=
ω+ and ω = ω−. In this case there is no broken symmetry in the z–t plane, since
Squire modes travelling in both ±z are excited equally. In special cases, the form of
the forcing term to the Squire equation, F (y, t), triggers a standing wave only in the
response. For example, for very low β, a roll of the form:

v′(y, z, t)= v̂(y)exp(ikzz− iω+t)+ v̂(y)exp(ikzz− iω−t)=2v̂(y)cos(ωrt)exp(ikzz)exp(ωit),
(4.28)

produces a Squire response which is a standing wave in the cross-flow plane,
oscillating at the forcing frequency. In this instance, the initial conditions on the
forcing term, F (y, t), and on ∂tη allow the response to immediately follow the
forcing. For other forcing parameters, or rolls, this is not the case, and the response
includes propagating and reflecting vertical-vorticity waves alongside this oscillatory
component.

The low-Reynolds-number/high-elasticity behaviour identified in this section is
distinct from the prediction by Jovanovic & Kumar (2010, 2011), which has been
recovered in the current formulation in the limit Θ� 1. The particular limit presented
here for Θ ∼ 1, with very low β, may have relevance to polymer melts or very dense
micellar solutions (Zhou et al. 2012). Importantly, the behaviour is retained in
dilute solutions (i.e. as shown in figures 13–16), although vorticity waves cannot
be identified due to the smoothing action of solvent diffusivity. The bounds on the
region of finite frequency in the dispersion relation (3.18) provide some guidance as
to the extent of the region where Θ ∼ 1 for a given polymer concentration, and hence
when propagating vorticity waves (and streak re-energization) can be anticipated.

5. Conclusion

The mechanics of energy amplification in viscoelastic Couette flow were examined
by considering the linear flow response to forcing from a decaying streamwise vortex.
A key parameter which determines the nature of the forcing and the transient streak
response is Θ =Wβκ2/R, the ratio of the relaxation time to the disturbance diffusion
time scale in the solvent.

The forcing vortex is an eigenfunction of the homogeneous Orr–Sommerfeld
damped wave equation. It can have one of two complex frequencies, which were
associated with a ‘quasi-Newtonian’ and an ‘elastic’ mode. (i) Forcing from the
quasi-Newtonian mode produced streaks which collapse onto the Newtonian curves at
the same total and solvent Reynolds numbers, when Θ� 1 and Θ� 1, respectively.
When Θ � 1 the polymer is instantly responsive on the solvent time scale, and
produces a stress proportional to the rate of strain. In the opposite limit, Θ� 1, the
polymer is essentially frozen and the dynamics in the solvent decouple. (ii) Forcing
from the elastic mode results in streaks growing and decaying like t exp(−t/Wβ)
when Θ � 1. The associated mechanism, polymer stretch, remains at low Reynolds
numbers, and causes significant streak amplification even in inertialess flows.

When Θ ∼ 1, the decay rates of the quasi-Newtonian and the elastic modes
coalesce. This wall-normal vorticity response in this regime is characterized by streak
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re-energization, a behaviour which becomes more prominent with decreasing solvent
viscosity. Examination of the operator as β→0 revealed that the streak re-energization
is a superposition of trapped vertical-vorticity waves.

The analysis highlights the wealth of possible dynamics that result from introducing
polymer additives to a seemingly simple flow configuration. Although the wavenumber
of the streamwise vortex, κ , was fixed in this study, its appearance in the parameter Θ
is intriguing. It suggests that, in more complicated situations, the dominant dynamics
will depend not only on the flow parameters, but also on the spectrum of perturbations
present. An important question is whether the streamwise vortex would be observed
in practice in a real flow. Previous linear analyses of the flow response to body forces
in both Newtonian (Bamieh & Dahleh 2001; Jovanović & Bamieh 2005) and weak-
inertia viscoelastic (Lieu et al. 2013) flows highlight a flow sensitivity to streamwise
elongated disturbances with O(1) spanwise spacing. This sensitivity underscores the
importance of the current results.

The present work identified a rich variety of streak dynamics in viscoelastic Couette
flow, despite adopting a very simple model for the polymeric liquid. Further work
is required to assess how the growth mechanisms which were identified here are
altered in more realistic polymer models that include, for example, the effects of
shear thinning or finite polymer extensibility.

Appendix. Details of the initial value problems

Details of the Laplace-transform solutions to initial value problems discussed in the
text are presented here.

A.1. The general solution to the initial value problem
The wall-normal vorticity response to forcing from the decaying streamwise vortex is
governed by the initial boundary value problem:

∂2η

∂t2
+
(

1
W
− β

R
∇2
⊥

)
∂η

∂t
− 1

RW
∇2
⊥η=−ikzγ̇

[(
1
W
− iω

)
− (1− β)

R(1− iωW)
∇2
⊥

]
v̂e−iωt.

(A 1)
We solve for the temporal behaviour by taking a Laplace transform:

ηs(y, s)=
∫ ∞

0
η(y, t)e−st dt. (A 2)

Since all variables in the forced system are initially zero, the vertical vorticity inherits
the initial condition on the polymer body force, Tη(y, 0)= 0, through the condition

∂η

∂t

∣∣∣∣
t=0

=−ikzγ̇ v̂. (A 3)

The Laplace transform leaves a two-point boundary value problem:

d2ηs

dy2
−
(

k2
z + sR

(1+ sW)
(1+ sWβ)

)
ηs= ikzγ̇R

(s+ iω)(1+ sWβ)

(
(1+ sW)− W(1− β)

R(1− iωW)
∇2
⊥

)
v̂.

(A 4)
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The forcing is due to a symmetric eigenfunction, from which the general solution
is found to be (s 6= 0,−1/W,−iω):

ηs(y, s) = ikzγ̇Ak

s(s+ iω)

(
coshkz

coshχ
cosh (χy)− cosh (kzy)

)
+ ikzγ̇Aλ

W(s+ iω)2(s+ ϑ)
(
(1+ sW)+ iωW(1− β)

(1− iωWβ)

)
×
(

coshλ
coshχ

cosh (χy)− cosh (λy)
)
, (A 5)

where

χ(s)=
(

k2
z + sR

(1+ sW)
(1+ sWβ)

)1/2

, ϑ = (1− iωW)
W(1− iωWβ)

. (A 6)

The solution is invalid at the three points indicated above, since χ(s) = kz in the
case of s= 0,−1/W and χ(s)= λ if s=−iω. The wall-normal vorticity operator is
then forced by one of its homogeneous solutions, leading to resonant behaviour. The
solutions when χ(s)= kz are analytic at the points in the s-plane where they are valid
and do not contribute to the inversion. The solution at s = −iω gives the particular
response to the forcing mode in the frequency domain,

ηs(y, s) = ikzγ̇Ak

s(s+ iω)

(
coshkz

coshχ
cosh (χy)− cosh (kzy)

)
+ ikzγ̇RAλ

2λ(s+ iω)(1+ sWβ)

(
(1+ sW)+ iωW(1− β)

(1− iωWβ)

)
×
(

ysinh (χy)− sinhλ
coshχ

cosh (χy)
)
. (A 7)

We can now invert back into the time domain with the Bromwich integral:

η(y, t)= 1
2πi

∫ γ+i∞

γ−i∞
ηs(y, s)estds= 1

2πi

∮
C
ηs(y, s)estds, (A 8)

where γ is to the right of all singularities in the s-plane. The contour is closed with
a semicircle to the left of γ . Since ηs(y, s) has no branch points, the solution is the
sum of the residues:

η(y, t)=
∑

j

Res
[
ηs(y, s)est, sj

]
. (A 9)

There are simple poles at s = −iω and the zeros of coshχ , or equivalently χ 2 =
−(2j− 1)2π2/4, with j= 1, 2, . . .. Upon expansion of χ the zeros of coshχ are seen
to correspond to the symmetric eigenvalues of the homogeneous wall-normal vorticity
equation, s=−iω±η,j, with

ω±η,j =−
i

2W

(
Wβκ2

η,j

R
+ 1±Φη,j

)
, (A 10)
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where κ2
η,j = k2

z − λ2
η,j, with λη,j = (2j− 1)iπ/2 the wall-normal wavenumbers, and

Φη,j(κη,j; R,W, β)=
(1+ Wβκ2

η,j

R

)2

− 4Wκ2
η,j

R

1/2

. (A 11)

The homogeneous wall-normal vorticity eigenvalues satisfy a dispersion relation which
has an identical form to that of the homogeneous subsystem, though there is an extra
degree of freedom since the wall-normal vorticity gradient does not need to vanish at
the wall. Summing the residues:

η(y, t) =
[

ikzγ̇RAλ[1− iωWβ(2− iωW)]
2λ(1− iωWβ)2

(
ysinh (λy)− tanhλcosh (λy)

)
+ kzγ̇

ω
v̂

]
e−iωt

+
∞∑

j=1

ikzγ̇Akcoshkz

φjsinhλη,j

[
1

ω±η,j(ω−ω±η,j)
+ 1

W(ω−ω±η,j)2(ϑ − iω±η,j)

×
(
(1− iω±η,jW)+

iωW(1− β)
(1− iωWβ)

)]
cosh

(
λη,jy

)
e−iω±η,jt, (A 12)

with φj= dsχ(−iω±η,j). The summation is carried out twice, once over each eigenvalue
pair ω±η,j. The solution consists of the forced vorticity eigenmode, complemented by a
packet of homogeneous, even vorticity modes (η̂h(y; j)= cosh(λη,jy)).

In the main body of the text, the solution is written as

η(y, t) = η̂p(y)e−iωt +
∞∑

j=1

Cj(ω
+
η,j;ω, R,W, β)cosh(λη,jy)exp(−iω+η,jt)

+
∞∑

j=1

Cj(ω
−
η,j;ω, R,W, β)cosh(λη,jy)exp(−iω−η,jt). (A 13)

The terms appearing here, namely ηp and Cj, can be identified in the exact solution
(A 12).

A.2. Elastic mode with Θ� 1
When forcing is due to the elastic mode with Θ � 1, the leading-order vertical
vorticity on the solvent time scale is found from

∂η̃0

∂ t̃
− 1
κ2
∇2
⊥η̃0 =−ikzγ̇

R
βκ2

v̂ + ikzγ̇
R
βκ2

v̂λ t̃. (A 14)

We take a Laplace transform in time to obtain an ordinary differential equation in y:

d2ηs
0

dy2
− (k2

z + s̃κ2
)
ηs

0 = ikzγ̇
R
β

1
s̃
v̂ − ikzγ̇

R
β

1
s̃2
v̂λ, (A 15)

where s̃ is the transform variable for the solvent time scale.
The general solution, valid everywhere except s̃= 0,−1, is

ηs
0(y, s̃) = ikzγ̇RAk

βκ2s̃2

(
coshkz

coshζ
cosh(ζy)− cosh(kzy)

)
− ikzγ̇RAλ(1− s̃)

βκ2s̃2(1+ s̃)

(
coshλ
coshζ

cosh(ζy)− cosh(λy)
)
, (A 16)
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with ζ (s) =√k2
z + s̃κ2. At s̃ = 0 and s̃ = −1, the operator is forced by one of its

homogeneous solutions. The solution at s̃=−1 is analytic, so only the correction at
s̃= 0 is required:

ηs
0(y, s̃) = − iγ̇RAk

2β s̃

(
ysinh(ζy)− tanh kzcosh(ζy)

)
− ikzγ̇RAλ(1− s̃)

βκ2s̃2(1+ s̃)

(
coshλ
coshζ

cosh(ζy)− cosh(λy)
)
. (A 17)

There are simple and second-order poles at s̃ = 0, and simple poles at the zeros of
coshζ which are the rapidly decaying solvent vorticity modes. The lack of branch
points means that the solution in physical space is obtained by summing the residues
of ηs

0(y, s̃)exp(s̃t̃). In terms of the convective time scale the solution is written as:

η̃0(y, t) = ikzγ̇ v̂ t− 2ikzγ̇R
βκ2

v̂ + iγ̇RAk

β

(
ysinh(kzy)− tanh kzcosh(kzy)

)
+

∞∑
j=1

2ikzγ̇ βAλcoshλ
ω2
η,jR(1− iωη,jR/βκ2)

λη,jcosh(λη,jy)
sinhλη,j

exp(−iωη,jt), (A 18)

where ωη,j =−iβκ2
η,j/R are the rapidly decaying solvent Squire modes. Matching this

solution to the inner limit of the outer solution (4.16), we find the function N0(y):

N0(y)=−2ikzγ̇R
βκ2

v̂ + iγ̇RAk

β

(
ysinh(kzy)− tanh kzcosh(kzy)

)
. (A 19)

The uniformly valid composite solution is then found by combining the outer (4.16)
and inner (A 18) solutions and subtracting their overlapping value:

η0(y, t)= ikzγ̇ v̂(y)te−t/Wβ +N0(y)e−t/Wβ +
∞∑

j=1

Sj(ωη,j; R, β)cosh(λη,jy)exp(−iωη,jt),

(A 20)
where Sj can be identified above in (A 18).
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