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Viscoelastic shear flow over a wavy surface
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A small-amplitude sinusoidal surface undulation on the lower wall of Couette flow
induces a vorticity perturbation. Using linear analysis, this vorticity field is examined
when the fluid is viscoelastic and contrasted to the Newtonian configuration. For
strongly elastic Oldroyd-B fluids, the penetration of induced vorticity into the bulk
can be classified using two dimensionless quantities: the ratios of (i) the channel
depth and of (ii) the shear-waves’ critical layer depth to the wavelength of the surface
roughness. In the shallow-elastic regime, where the roughness wavelength is larger
than the channel depth and the critical layer is outside of the domain, the bulk flow
response is a distortion of the tensioned streamlines to match the surface topography,
and a constant perturbation vorticity fills the channel. This vorticity is significantly
amplified in a thin solvent boundary layer at the upper wall. In the deep-elastic
case, the critical layer is far from the wall and the perturbation vorticity decays
exponentially with height. In the third, transcritical regime, the critical layer height
is within a wavelength of the lower wall and a kinematic amplification mechanism
generates vorticity in its vicinity. The analysis is extended to localized, Gaussian wall
bumps using Fourier synthesis. The Newtonian flow response consists of a single
vortex above the bump. In the shallow-elastic flow, a second vortex with opposite
circulation is established upstream of the surface protrusion and is induced by the
vorticity layer on the upper wall. In the deep transcritical case, the perturbation field
consists of a pair of counter-rotating vortices centred on the large vorticity around
the critical layer. The more realistic FENE-P model, which accounts for the finite
extensibility of the polymer chains, shows the same qualitative behaviour.
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1. Introduction
The introduction of fluid elasticity can fundamentally modify Newtonian flow

dynamics. Some examples include the tendency of the polymer to alter the linear
amplification of disturbances in shear flows, shift the onset of laminar-to-turbulence
transition and reduce drag in the turbulent flow regime. In order to explain the
mechanics underpinning some of these flows, there has been recent focus on the
transient evolution of idealized disturbances in viscoelastic fluids in both the linear
and nonlinear regimes. In the context of such dynamical studies, an important problem
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is receptivity, and in this work we examine the structure of vortical disturbances
generated by surface roughness. The problem set-up is analogous to the Newtonian
study by Charru & Hinch (2000). We examine the flow response due to small
surface undulations on the lower wall of a viscoelastic Couette flow. Our linear
analysis demonstrates that elasticity introduces new interesting regimes which differ
appreciably from the Newtonian flow.

1.1. The effect of viscoelasticity on flow stability
Viscoelasticity has a profound effect on the stability characteristics of inertia-
dominated flows. For example, the temporal growth of inviscid instability waves
in mixing layers is attenuated by elasticity, and the amplification of short scales
can be suppressed entirely (Azaiez & Homsy 1994). In jets, the interplay between
fluid elasticity and flow inertia introduces new modes of instability (Rallison & Hinch
1995). Furthermore, spatio-temporal analyses of these flow configurations indicate that
viscoelasticity enlarges the region of the parameter space for which these free-shear
layers are absolutely unstable (Ray & Zaki 2014, 2015). Some of these effects can
be understood through an analogy between the elastic normal stress in the shear layer
and a membrane tension.

The influence of fluid elasticity on the stability characteristics of moderate Reynolds
number, bounded flows has also received attention. In channels, a small amount of
elasticity can stabilize the flow with respect to exponential instabilities (Zhang
et al. 2013). The effect of viscoelasticity on non-modal, transient amplification
processes was investigated by Hoda, Jovanović & Kumar (2008, 2009). Those authors
computed the flow response to stochastic body forcing in the momentum equations
and demonstrated that the polymer stress fluctuations enhance the associated kinetic
energy amplification. In a more recent study, Zhang et al. (2013) examined optimal
velocity disturbances in channel flows at subcritical Reynolds numbers. A small
amount of elasticity strengthens the amplification of streamwise streaks relative to
the Newtonian flow, but damps oblique disturbances. The effect of polymer additives
on both the lift-up and Orr amplification mechanisms was examined analytically by
Page & Zaki (2014, 2015). For high Weissenberg numbers, two-dimensional vortical
disturbances amplify as they align favourably with the shear, which was termed a
reverse-Orr effect. The nonlinear stages of the transition process in inertia-dominated
viscoelastic channel flow were examined by Agarwal, Brandt & Zaki (2014). They
performed direct numerical simulations of subcritical transition initiated by a localized
velocity disturbance, and demonstrated that the polymer attenuates the streamwise
streaks in the nonlinear regime.

In the above studies the base flows under consideration were parallel, with straight
streamlines. In those configurations, the influence of the streamline tension due
to the polymer was often stabilizing. In curved geometries, streamline tension
has an opposite effect and introduces new elastic instabilities. The most striking
feature of these instabilities is their persistence in inertialess flows (Shaqfeh
1996). A combination of experiments and linear stability analyses of an inertialess
Taylor–Couette flow identified their physical origin (Muller, Larson & Shaqfeh 1989;
Larson, Shaqfeh & Muller 1990; Shaqfeh, Muller & Larson 1992). The viscoelastic
inertialess instability depends on the shear rate (Larson et al. 1990), and draws
energy from the base-state hoop stress in the curved streamlines. A succession of
curvature-induced purely elastic instabilities can give way to elastic turbulence – a
chaotic state with a broad range of spatial and temporal scales (Groisman & Steinberg
2000).
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While there is no inertialess instability in planar viscoelastic Couette flow
(Gorodtsov & Leonov 1967; Renardy & Renardy 1986), parallel viscoelastic flows can
exhibit strong non-modal amplification in the zero-Reynolds-number limit (Jovanovic
& Kumar 2010, 2011; Lieu, Jovanović & Kumar 2013; Page & Zaki 2014). In
addition, although these flows are asymptotically stable to infinitesimal perturbations,
they may be unstable to finite-amplitude disturbances (Morozov & Saarloos 2007).
These perturbations induce finite curvature in the streamlines and the flow becomes
susceptible to a secondary linear instability (Meulenbroek et al. 2004; Morozov &
Saarloos 2005). There is also experimental evidence that a planar viscoelastic flow
can support a self-sustaining chaotic state (Pan et al. 2013).

The present study is focused on the manner by which wall undulations induce
streamline curvature in parallel viscoelastic shear flows. In low-Reynolds-number
Newtonian configurations the flow field is determined by the instantaneous diffusion
of vorticity (Charru & Hinch 2000). As will be demonstrated, the viscoelastic case is
richer due to the potential role of the base-state stresses and the wave-like behaviour
of vorticity.

1.2. Vorticity wave propagation in viscoelastic fluids
At finite Reynolds numbers the phase difference between the flow and polymer
responses provides a mechanism for the propagation of vorticity waves (Joseph
1990). This phenomenon is apparent in the viscoelastic analogues to some of the
classical time-dependent solutions of the Navier–Stokes equations. For example, in
the starting plate, or Stokes’ first problem, the vortex sheet initiated by the jump in
the wall velocity propagates upwards as a shear wave (Tanner 1962; Denn & Porteous
1971). In oscillatory pipe flows, shear waves can lead to instability (Torralba et al.
2007; Casanellas & Ortín 2014). In micellar solutions, their interference can initiate
the formation of shear bands (Zhou, Cook & McKinley 2012). In wall-bounded
flows, vorticity wave propagation and reflection can result in spanwise-travelling
re-energizing streaks (Page & Zaki 2014).

The highly tensioned streamlines in a viscoelastic shear flow provide an additional
mechanism for wave propagation along the flow direction. Unlike the aforementioned
shear waves, these streamwise-travelling waves persist even in dilute solutions. They
can lead to new instabilities in flows with shear discontinuities (Rallison & Hinch
1995), and the combined effects of wave propagation and shear deformation can
amplify disturbances as they align with the shear (Page & Zaki 2015). More
fundamentally, the propagation of vorticity waves along tensioned streamlines can
introduce critical layers in the flow. Across these layers, the domain is divided into
‘subcritical’ and ‘supercritical’ regions where the fluid is travelling slower and faster
than the wave speed, respectively (Joseph, Renardy & Saut 1985). Yoo & Joseph
(1985) and Ahrens, Yoo & Joseph (1987) have investigated the change of type
which occurs for upper convected Maxwell fluids in channels and pipes with surface
waviness. Close to the wall, the vorticity equation is elliptic. There is a sudden
change of type at the critical layer, and in the supercritical core of the flow domain
the vorticity equation is hyperbolic. This critical layer is smoothed in fluids with a
finite solvent viscosity, which are the focus of the current work. However, the critical
layers can still have a dramatic influence on the penetration and amplification of
vorticity generated at the wavy wall.

The studies by Yoo & Joseph (1985) and Ahrens et al. (1987) focused on the
phenomenon of a change in type which occurs in inertia-dominated, instantaneously
elastic flows – although they also commented on the form of the perturbation field.
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For example, Yoo & Joseph (1985) noted that the spanwise-vorticity perturbations
induced by the wavy wall are ‘swept out along characteristics’ in the hyperbolic core
of the channel, although they could not find an explanation for this property. In the
present study, the structure of the vorticity field is explained in detail in terms of
the coupling between vorticity and the polymer torque. Detailed asymptotic analyses
identify the mechanism for vorticity amplification at the critical layer. Furthermore,
we find intriguing behaviour in inertialess flows where the critical layer is outside of
the flow domain and does not influence vorticity penetration. The competing effects
of the wall wavelength, channel depth, critical layer height, inertia and fluid elasticity
are distilled to a dependence on just two parameters: the ratios of the channel depth
and of the critical layer height to the roughness wavelength.

The remainder of this paper is organized as follows: in § 2 the physical problem is
defined, and the linear perturbation equations are manipulated into a vorticity/polymer-
torque system. The various flow regimes are identified and parameterized using a
phase diagram in § 3, before the underlying mechanics are explained in § 4. The flow
response to localized wall roughness is examined in § 5 and conclusions are provided
in § 6.

2. Theoretical formulation

On a macroscopic scale, the presence of small amounts of polymer dissolved in
a solvent results in an additional forcing term in the momentum equation due to a
polymeric stress, µpF∗i =µp∂T ∗ij/∂x∗j . The modified flow equations are

∂U∗i
∂x∗i
= 0, (2.1a)

ρ

(
∂U∗i
∂t∗
+U∗j

∂U∗i
∂x∗j

)
=−∂P∗

∂x∗i
+µs

∂2U∗i
∂x∗j ∂x∗j

+µpF∗i , (2.1b)

where the asterisk indicates a dimensional variable. The quantities µs and µp are the
dynamic solvent and polymer viscosities, respectively. The current study focuses on
dilute solutions, which can be described by the Oldroyd-B model. In an Oldroyd-B
fluid, polymer chains are modelled as infinitely extensible dumbbells, and stress is
related to the polymer conformation by T ∗ij= (1/ς)(Cij− δij), where ς is the polymer
relaxation time. The polymer conformation evolves according to

∂Cij

∂t∗
+U∗k

∂Cij

∂x∗k
=Cik

∂U∗j
∂x∗k
+Cjk

∂U∗i
∂x∗k
− T ∗ij. (2.1c)

The Oldroyd-B model predicts some of the important behaviours associated with
viscoelastic fluids, for example the normal stress difference in shear flows and a fading
memory of flow history. In this work, we exploit its simplicity to examine analytically
the influence of these effects on the vorticity induced by surface waviness in Couette
flow. However, the Oldroyd-B model suffers from well-documented deficiencies,
in particular its performance at higher shear rates and failure in extensional flows
(Bird, Armstrong & Hassager 1987). Therefore, in § 5.2, the more realistic FENE-P
model, which accounts for the finite extensibility of the polymer chains, is considered
numerically.
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2.1. The physical problem
The flow configuration is presented schematically in figure 1. We consider a channel
of depth d with flow driven by motion of the top plate at speed U0. The lower wall
has a wavy surface, y∗ = h∗cos(k∗x∗). Under the assumption of small wave slopes,
εh≡ k∗h∗� 1, the flow induced by the surface undulations can be treated as a small
O(ε) perturbation to a Couette base state,

U∗ = γ̇ ∗y∗, (2.2a)

which has an associated constant polymer stress tensor,

T ∗ =
2γ̇ ∗2ς γ̇ ∗ 0

γ̇ ∗ 0 0
0 0 0

 , (2.2b)

where γ̇ ∗ ≡ U0/d is the shear rate. We consider the problem in a frame where the
lower wall is at rest and therefore the perturbations appear steady.

The linearized no-slip condition on the undulating lower wall becomes a slip
condition on the perturbation velocity,

u∗(x∗, 0)=−γ̇ ∗h∗cos(k∗x∗), v∗(x∗, 0)= 0, (2.3a)

while the perturbation velocities vanish at the upper wall,

u∗(x∗, d)= v∗(x∗, d)= 0. (2.3b)

The problem is non-dimensionalized by the wavenumber, k∗, and the shear rate,
γ̇ ∗. With this scaling, the base-state velocity profile is U = γ̇ y, with associated
non-dimensional base-state stresses T11 = 2Wγ̇ 2 and T12 = γ̇ , where W ≡ γ̇ ∗ς is the
Weisenberg number, the ratio of the polymer relaxation time to a flow time scale, and
the unit dimensionless shear rate γ̇ is retained for clarity. The equations governing
the linear perturbations are now introduced, and are reduced to an Orr–Sommerfeld
equation for the streamfunction and an equation for a quantity that plays the role of
a polymer potential.

2.2. Linear perturbation equations: streamfunction and polymer potential
For Oldroyd-B fluids, the non-dimensional, steady perturbation equations are

∂u′i
∂xi
= 0, (2.4a)

Γjkxk
∂u′i
∂xj
+ u′jΓij =−∂p′

∂xi
+ α

2

R

(
β
∂2u′i
∂xj∂xj

+ (1− β)f ′i
)
, (2.4b)

Γjkxk
∂f ′i
∂xj
+ 1

W
f ′i = f ′j Γij + T jk

∂2u′i
∂xj∂xk

+ 1
W

∂2u′i
∂xj∂xj

, (2.4c)

where Γij is the base-state velocity gradient tensor. For Couette flow, the only non-
zero entry is Γ12 = γ̇ (= 1). The quantity α ≡ k∗d is the normalized channel depth,
R≡ γ̇ ∗d2/ν is the bulk Reynolds number and β ≡ νs/ν is the ratio of the solvent to
total viscosity. The variable f ′ ≡ ∇ · τ ′ is the perturbation force due to the polymer
(Page & Zaki 2015).
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d

FIGURE 1. Viscoelastic Couette flow over a wavy wall. The unit length is the inverse
wall wavenumber k∗−1; the unit time is the inverse shear rate γ̇ ∗−1.

Taking the divergence of (2.4c), we find that the polymer force field is solenoidal,
∇ · f ′ = 0. The present focus on two-dimensional perturbations thus motivates the
introduction of the pair of vector potentials for the velocity and polymer force fields,

u′ =∇ ∧ψ ′ez, f ′ =∇ ∧ ϕ′ez, (2.5a,b)
where ψ ′ is the perturbation streamfunction and ϕ′ is termed the ‘polymer potential’,
which is instantaneously tangent to the polymer force vectors (Page & Zaki 2015).

We seek solutions of the form(
ψ ′(x)
ϕ′(x)

)
=Re

{(
ψ(y)
ϕ(y)

)
eikx

}
, (2.6)

where the unit non-dimensional wavenumber, k = 1, is retained for clarity, and
manipulate equations (2.4) into a viscoelastic Orr–Sommerfeld system,

ikγ̇ y
(

d2

dy2
− k2

)
ψ = α

2

R

[
β

(
d2

dy2
− k2

)2

ψ + (1− β)
(

d2

dy2
− k2

)
ϕ

]
, (2.7a)

ikγ̇ yϕ + 1
W
ϕ =

[
−k2T11 + 2ikT12

d
dy
+ 1

W

(
d2

dy2
− k2

)]
ψ. (2.7b)

The disturbance velocity boundary conditions (2.3a) are expressed in terms of the
streamfunction,

dyψ(0)=−γ̇ h, ψ(0)= 0, (2.8a,b)
where h= 1 is assumed such that the wave slope is a small parameter, εh= k∗h∗. The
streamfunction and its gradient have homogeneous boundary conditions at the top wall,
y= α.

It will often be instructive to analyse the perturbation field in terms of the spanwise
vorticity, ω≡−∇2ψ =−(d2

y − k2)ψ , and the spanwise polymer torque, χ ≡−∇2ϕ =
−(d2

y − k2)ϕ, which are governed by

ikγ̇ yω= α
2

R

[
β

(
d2

dy2
− k2

)
ω+ (1− β)χ

]
, (2.9a)

ikγ̇ yχ + 1
W
χ = 2ikγ̇

dϕ
dy
+
[
−k2T11 + 2ikT12

d
dy
+ 1

W

(
d2

dy2
− k2

)]
ω. (2.9b)

The polymer torque is proportional to the torque exerted on a fluid element by the
polymer stresses.
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3. Flow regimes and phase diagram
3.1. Quasi-Newtonian flow

Here we briefly examine the flow response to the surface waviness in the low-
Weissenberg-number limit. This limit yields a quasi-Newtonian behaviour, and at
leading order, the results are identical to those presented by Charru & Hinch
(2000). Therefore, this section establishes the background against which the
elasticity-dominated flows are compared in subsequent sections.

In the limit of small Weissenberg number, W � 1, the polymer behaves like an
additional solvent. To leading order in W, the equations for the vorticity (2.9a) and
polymer torque (2.9b) are

ikγ̇ yω0 = α
2

R

[
β

(
d2

dy2
− k2

)
ω0 + (1− β)χ0

]
, (3.1a)

χ0 =
(

d2

dy2
− k2

)
ω0. (3.1b)

As anticipated, the polymer torque (3.1b) is instantaneously responsive to the flow and,
since the background stresses are weak, χ0 depends on the curvature in the vorticity
field alone. The Newtonian spanwise vorticity is recovered after combining the system
(3.1),

ikγ̇ yω0 = α
2

R

(
d2

dy2
− k2

)
ω0. (3.2)

An identical equation is obtained in the limit of pure solvent, β = 1.
The solution to equation (3.2) above a wavy wall was discussed in detail by Charru

& Hinch (2000). Those authors demonstrated that the vorticity perturbations induced
by the lower wall can be classified into three regimes, depending on the values of a
pair of parameters:

α ≡ k∗d and θ ≡
(
α2

R

)1/3

=
(
νk∗2

γ̇ ∗

)1/3

. (3.3a,b)

The first of these, α, is the normalized channel depth. The second, θ , is a normalized
viscous length scale. Three regimes are defined following the analysis and terminology
introduced by Charru & Hinch (2000): (i) the shallow-viscous regime, α < 1; θ > α;
(ii) the deep-viscous regime, α > 1, θ > 1; (iii) the inviscid regime, α > 1, θ < 1.

The vorticity and streamfunction in three examples representative of the Newtonian
regimes are reported in figure 2. In figure 2(a) the vorticity perturbation fills the
channel and the effects of inertia, which would tip the roll structures forward with
the shear, are negligible. This behaviour is characteristic of the shallow-viscous regime
where the roughness wavelength is longer than the channel depth, α < 1, and the
viscous length is greater than the channel height, θ > α. In figure 2(b), the vorticity
perturbations penetrate about a wavelength into the flow and inertial effects are still
unimportant. This behaviour, which occurs for deep channels, α > 1, with θ > 1, is
termed the ‘deep-viscous’ regime. Finally, figure 2(c) is an example of the ‘inviscid
regime’. The induced rolls are tipped forward under the action of the shear, while
the vorticity penetration depth is of the order of the viscous length. This regime is
associated with conditions where α > 1 and θ < 1.

In order to quantify vorticity penetration, Charru & Hinch (2000) introduced
a measure of penetration depth based on the inverse wall vorticity, |ω(0)|−1.
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FIGURE 2. Vortical perturbations (top) induced by the wavy wall (bottom) in Newtonian
fluids. Filled contours are the spanwise vorticity, lines are the streamfunction. (a) Shallow-
viscous regime α = 0.5 and θ = 0.63. (b) Deep-viscous regime, α = 10 and θ = 4.64.
(c) Inviscid regime, α = 10 and θ = 0.46.

This definition is intuitive because the action of viscous diffusion means that the
vorticity maximum is always at the lower wall, and in deep channels vorticity
monotonically decays with increasing y. Elasticity-dominated flows with W > 1 do
not share these Newtonian characteristics, and a more general definition of penetration
depth will be required.

3.2. Viscoelastic phase diagram
Similar to the quasi-Newtonian limit, the solution at moderate to high Weissenberg
numbers depends on two dimensionless parameters. The first remains the normalized
channel depth, α ≡ k∗d. However, the viscous diffusion length is now of secondary
importance. We will see that vorticity penetration is instead dependent on the
parameter,

Σ ≡
√
µpT∗11/ρ

γ̇ ∗/k∗
, (3.4a)

=
√

2νpς

1/k∗
, (3.4b)

which is related to the bulk elasticity, E∗ ≡ (1− β)W/R, by Σ = k∗d
√

E∗. However,
when written in the form (3.4a), Σ may be interpreted as the ratio of a vorticity
wave speed, c∗ω=

√
µpT∗11/ρ, to the base-flow velocity one wavelength above the lower

wall. This classification reflects that vorticity fluctuations in a viscoelastic flow may
propagate as streamwise-travelling waves along the tensioned mean-flow streamlines –
a scenario which shares some similarities with the propagation of Alfvén waves along
magnetic field lines (Chandrasekhar 1961). The difference in the viscoelastic case is
that a mean shear is required to establish the normal stress µpT∗11, and this shearing
also has associated with it a kinematic vorticity amplification mechanism (Page &
Zaki 2015). When written in the form (3.4b), Σ is a ratio of length scales: the critical
layer height and the roughness wavelength. The critical layer is the surface where the
speed of the base flow matches the wave speed c∗ω. While the vorticity perturbations
are steady in the present problem, the longitudinal vorticity wave speed c∗ω remains
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FIGURE 3. Vortical perturbations (top) induced by the wavy wall (bottom). Filled contours
are the spanwise vorticity, lines are the streamfunction. (a) Shallow-elastic regime α= 0.5
and Σ = 3 with R = 1, β = 0.7, W = 60. (b) Deep-elastic regime, α = 10 and Σ = 60
with R= 1, β = 0.7, W = 60. (c) Transcritical regime, α= 10 and Σ = 1.9 with R= 1000,
β = 0.7, W = 60.

an important property of the viscolelastic flow. The critical layer height, which can be
thought of as the point where an observer travelling with the mean flow would see
the lower wall disturbance sweep by at the elastic wave speed, has particular physical
significance (§ 4.3).

Three examples of vortical disturbances induced by the lower wall in flows with a
fairly large Weissenberg number, W=60, are reported in figure 3. The same behaviour
is preserved at lower values of W, but a relatively high value was adopted here in
order to highlight the observed effects. Each of the panels in the figure illustrates a
different regime.

In figure 3(a) counter-rotating rolls fill the channel. Rolls with positive vorticity sit
above troughs and with negative vorticity over peaks. The parameters correspond
to the shallow-viscous behaviour in a Newtonian fluid. However, in this high-
Weissenberg-number flow, the rolls are tipped forward, a behaviour normally attributed
to inertial effects. In addition, the vorticity maxima are located along the top wall.
In general, these characteristics are associated with conditions where α . 1, Σ > α

which we term ‘shallow-elastic’ flows.
In figure 3(b), the rolls remain in phase with the surface waviness and their

associated vorticity decays within roughly one wavelength from the wall. Despite
the high Weissenberg number, the perturbation flow is indistinguishable from the
Newtonian deep-viscous regime. In general, this behaviour occurs when α & 1 and
Σ & 1, and is denoted the ‘deep-elastic’ regime.

Finally, the most intriguing behaviour is encountered when α >Σ and Σ . 1, and
is displayed in figure 3(c). The vorticity is amplified in stripes tilted forward with the
shear, and the amplification is localized around a y-location away from the wall. This
regime is referred to as ‘transcritical’ flow.

Both the shallow-elastic and transcritical flows have characteristics which differ
substantially from the Newtonian configuration. Shallow-elastic flows exhibit
vorticity amplification at the upper wall, while flows in the transcritical regime
are characterized by non-local vorticity amplification in the bulk of the channel.
These features motivate a definition of penetration depth based on a measure of the
total perturbation vorticity, rather than one constructed from local information about
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FIGURE 4. Penetration depth, P as a function of Σ . (a) ‘Shallow’ channels with W = 60,
β=0.7: dashed line, α=0.01; black solid line, α=0.1; grey solid line, α=0.5. (b) ‘Deep’
channels with W = 60, β = 0.7; grey solid line, α= 1; black solid line, α= 5; dashed line,
α = 10. The dotted line is P =Σ .
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Shallow-elastic regime Deep-elastic regime
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FIGURE 5. Phase diagram for vorticity disturbances initiated by the surface waviness.

the vorticity magnitude. We adopt the following measure of penetration depth,

P ≡ y(Λr = 0.99); where Λr(y)=

∫ y

0
|ω(y′)|2 dy′∫ α

0
|ω(y′)|2 dy′

, (3.5)

which can account for non-local effects. Note that (3.5) recovers the Newtonian
scalings for penetration depth found by Charru & Hinch (2000) in the limit W� 1.

The penetration depth P is evaluated for a range of α and Σ and is used in figure 4
to examine the transitions between the three regimes reported in figure 3. Shallow
channels, α < 1, are considered in figure 4(a) and Σ (or the vorticity wave speed) is
varied by changing the bulk Reynolds number, R. When the critical layer is outside
of the flow domain, Σ & α, the vorticity perturbation fills the channel, P ∼ α. Deep
channels are considered in figure 4(b). When Σ . 1 the penetration depth scales with
the dimensionless critical layer height, P ∼Σ (transcritical regime). There is a sharp
transition to the deep-elastic regime when Σ & 1 and penetration is of the order of a
wavelength, P ∼ 1.

In analogy to the Newtonian problem (Charru & Hinch 2000), these results may
be summarized in the form of a ‘phase diagram’. The diagram for the viscoelastic
Couette flow is presented schematically in figure 5. Each of the three regimes
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FIGURE 6. Vortical perturbations (top) induced by the wavy wall (bottom) in the shallow-
elastic regime. Filled contours are the spanwise vorticity, lines are the streamfunction. The
channel depth α = 0.5, and the solvent viscosity and bulk Reynolds numbers are fixed,
R= 1, β = 0.5. (a) W = 20 (Σ = 2.24); (b) W = 40 (Σ = 3.16); (c) W = 80 (Σ = 4.47).

spans a sector in the {log α, log Σ} plane. This classification does not explain the
characteristics of the vorticity eigenfunctions in each regime; for example the vorticity
generation at the top wall in shallow-elastic flows or the amplification of vorticity in
the bulk fluid in transcritical channels. These effects are now explored further using
asymptotic analyses.

4. Asymptotic solutions in the three regimes
4.1. Shallow-elastic flow

Shallow-elastic flows are those where α . 1 and Σ >α. The second of these criteria
means that the base flow is slower than the vorticity wave speed; the critical layer
is outside of the flow domain. Examples of the streamfunction and vorticity in this
regime are provided in figure 6 for increasing values of the Weissenberg number,
W. As W is increased, the vorticity across the bulk of the channel becomes nearly
constant, except for a rapid variation close to the upper wall where it is significantly
amplified. This behaviour should be contrasted with Newtonian shallow-viscous flows
where the vorticity distribution is linear and dictated by viscous diffusion.

In order to explain the structure of the vorticity perturbation in this regime, we
examine the streamfunction–polymer potential system (2.7) in the long-wave limit,
α � 1. The solution to the long-wave equations will be shown to depend on the
parameter W ≡ αγ̇W. In the limit W � 1 the bulk flow response to the vorticity
injection at the bottom wall can be classified as ‘elastic’, and a solvent boundary layer
forms at the upper wall where the spanwise vorticity is amplified by a factor which
we will show is W1/2.

The present interest in shallow channels motivates rescaling the equations by the
channel height Y = y/α, with α2ψ̂(Y) = ψ(y), ϕ̂(Y) = ϕ(y). The system of (2.7)
becomes

iαγ̇Y
(

d2

dY2
− α2

)
ψ̂ = β

R

(
d2

dY2
− α2

)2

ψ̂ + (1− β)
R

(
d2

dY2
− α2

)
ϕ̂, (4.1a)(

Y + 1
iW

)
ϕ̂ =

[
2iW + 2

d
dY
+ 1

iW

(
d2

dY2
− α2

)]
ψ̂, (4.1b)
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where W ≡ αγ̇W = U0ςk∗ is proportional to the number of bottom waves that an
observer travelling at the top wall speed would pass in a relaxation time ς . Assuming
that α� 1, an expansion in powers of α−1 yields the leading-order equations,

0= β d4ψ̂0

dY4
+ (1− β)d

2ϕ̂0

dY2
, (4.2a)(

Y + 1
iW

)
ϕ̂0 =

(
2iW + 2

d
dY
+ 1

iW
d2

dY2

)
ψ̂0. (4.2b)

An exact solution to this inertialess system of equations is

ψ̂0(Y) = C1Y2 +C2Y

+C3

(
Y + 1

iWβ

)(3β−2)/2β

H(1)
(3β−2)/β

(
2(1+ i)

√
W
(1− β)
β

(
Y + 1

iWβ

))

+C4

(
Y + 1

iWβ

)(3β−2)/2β

H(2)
(3β−2)/β

(
2(1+ i)

√
W
(1− β)
β

(
Y + 1

iWβ

))
,

(4.3)

where the H( j)
n are Hankel functions of order n. The solution is a function of W and

the polymer concentration, β. However, extracting the physical mechanism behind the
vorticity amplification from this solution is difficult. Since the upper wall amplification
is increasingly pronounced for large W , we instead seek an approximate solution of
the long-wave equations (4.2) assuming W� 1.

Bulk elastic solution: defining ε≡W−1� 1 and Φ̂0 = εϕ̂0, equations (4.2) become

0= εβ d4ψ̂0

dY4
+ (1− β)d

2Φ̂0

dY2
, (4.4a)

(Y − iε)Φ̂0 =
(

2i︸︷︷︸+ 2ε
d

dY︸ ︷︷ ︸−iε2 d2

dY2

)
ψ̂0, (4.4b)

where the underbraces in the polymer potential equation (4.4b) identify the terms
associated with the base-state polymer stresses, T11 and T12 (cf. equation 2.7b). We
adopt the asymptotic expansion

ψ̂0(Y; ε) = ψ̂0
0 (Y)+ ε1/2ψ̂

1/2
0 (Y)+ εψ̂1

0 (Y)+ · · ·, (4.5a)

Φ̂0(Y; ε) = Φ̂0
0 (Y)+ ε1/2Φ̂

1/2
0 (Y)︸ ︷︷ ︸+εΦ̂1

0 (Y)+ · · ·, (4.5b)

where the eigensolution at O(ε1/2), identified with an underbrace, will be required for
matching with the solution at the top wall.

At leading order and O(ε1/2),

0= d2Φ̂
j
0

dY2
, (4.6a)

YΦ̂ j
0 = 2iψ̂ j

0. (4.6b)
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The dominant balance implies that the polymer torque, χ̂0 ∝ −d2
YΦ̂0, is zero to

leading order. Equation (4.6b) indicates that forces are generated through the action
of the base-state streamwise stress on curvature in the perturbation streamlines as the
polymer is advected. After applying the boundary conditions at Y = 0 we find

ψ̂0
0 (Y)= Y(A0Y − ĥ), ψ̂

1/2
0 (Y)= A1/2Y2, (4.7a,b)

where A0 and A1/2 are constants and ĥ≡ h/α. The first-order correction accounts for
polymer relaxation and also the influence of the base-state shear stress, T12,

0= d2Φ̂1
0

dY2
, (4.8a)

YΦ̂1
0 − iΦ̂0

0 = 2iψ̂1
0 − 2

dψ̂0
0

dY
. (4.8b)

Applying homogeneous boundary conditions at Y = 0, the streamfunction is ψ̂1
0 (Y)=

A1Y2, and the solution correct to O(ε) reads

ψ̂0(Y)= Y(A0Y − ĥ)+ ε1/2A1/2Y2 + εA1Y2 + · · ·. (4.9)

This expression, which is dictated by elastic effects only, corresponds to a vorticity
perturbation which is constant across the channel, ω0(Y)=−2A0 − 2ε1/2A1/2 − · · ·. In
fact, the elastic flow response (4.9) is a simple distortion of the mean-flow streamlines
to mimic the topography of the lower wall across the depth of the channel. As such,
it cannot satisfy both boundary conditions at the upper wall, Y = 1.

Upper wall layer: in order to focus on the upper wall region, we introduce the
new coordinate η ≡ (Y − 1)/δ(ε). In terms of η, the bulk streamfunction (4.9) takes
the form

ψ̂0(η)= A0 − ĥ+ ε1/2[(2A0 − ĥ)η+ A1/2] + ε(A0η
2 + 2A1/2η+ A1)+ · · ·. (4.10)

Enforcing the no penetration condition at Y = 1, or η= 0, implies A0 = ĥ. There is a
non-zero gradient in the streamfunction, or a slip velocity, which must be corrected
by the inner solution.

In the wall layer, we define the vorticity and polymer potential, {ψ0(η), Φ0(η)} =
{ψ̂0(Y), Φ̂0(Y)}, and the rescaled equations (4.2) become,

0= εβ d4ψ0

dη4
+ δ2(1− β)d

2Φ0

dη2
, (4.11a)

(1+ δη− iε)Φ0 =
(

2i+ 2
ε

δ

d
dη
− iε2

δ2

d2

dη2

)
ψ0. (4.11b)

Balancing vorticity diffusion in the solvent with polymer torque implies that δ= ε1/2,
which motivates the asymptotic expansion,

ψ0(η; ε)= ε1/2(ψ
0
0(η)+ ε1/2ψ

1
0(η)+ · · ·), (4.12a)

Φ0(η; ε)= ε1/2(Φ
0
0(η)+ ε1/2Φ

1
0(η)+ · · ·). (4.12b)
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At leading order

0= β d4ψ
0
0

dη4
+ (1− β)d

2Φ
0
0

dη2
, (4.13a)

Φ
0
0 = 2iψ

0
0. (4.13b)

After eliminating an unphysical solution which grows exponentially as η → −∞
and applying the homogeneous boundary conditions at η = 0, the leading-order
streamfunction is

ψ
0
0(η)= B0(κη+ 1− eκη), (4.14)

where κ= (1− i)
√
(1− β)/β. At first order there are correction terms due to advection

of the polymer and the base shear stress T12,

0= β d4ψ
1
0

dη4
+ (1− β)d

2Φ
1
0

dη2
, (4.15a)

Φ
1
0 + ηΦ0

0 = 2iψ
1
0 + 2

dψ
0
0

dη
. (4.15b)

Combining these equations and solving for ψ
1
0, the inner streamfunction to O(ε) is

ψ0(η) = ε1/2B0(κη+ 1− eκη)

+ ε
[

B1(κη+ 1− eκη)+ B0

(
κη2 − (2iκ2 − 1)η

4
+ η

4
(κη− 1+ 2iκ2)eκη

)]
.

(4.16)

Matching with the inner limit of the streamfunction in the bulk (4.10) determines the
unknown constants in both regions,

B0 = A1/2 = ĥ
κ
, B1 = A1 = ĥ

κ2

(
7+ 2iκ2

4

)
. (4.17a,b)

A composite solution is formed by combining the bulk (4.9) and inner (4.16)
contributions and subtracting their overlap. It compares favourably to the solution
to the long-wave equations (4.3) and also to the full numerical solution of (4.1) in
figure 7. In particular, the matched asymptotics are able to accurately capture the
amplification of the vorticity near the upper wall.

The asymptotic solution is instructive. Unlike the Hankel function solution of the
long-wave equations (4.3), the matched asymptotic solution (4.9), (4.16) delineates
the origin of the vorticity distribution across the channel and of the vorticity
amplification at the top wall. It also demonstrates that the flow response in the
shallow-elastic regime is dominated by elastic effects. The distortion of the highly
tensioned mean-flow streamlines by the surface undulations establishes an irrotational
polymer force field in the bulk of the channel (χ̂ ∝ −d2

YΦ̂ = 0 in 4.6a), which
corresponds to a constant perturbation vorticity (ω̂0 ≈−2ĥ from 4.9). The perturbed,
total velocity streamlines are parallel to the bottom wall topography in this layer.
Close to the upper wall, the no-slip condition generates large vorticity gradients, with
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FIGURE 7. Comparison of numerics (grey line), long-wave (dark grey line) and W � 1
(black line) solutions for the vorticity, ω̂=−d2

Yψ̂ . The parameters correspond to those in
figure 6 and from (a)–(c) W = {10, 20, 40}.

corresponding variations in polymer torque. The wall vorticity can be evaluated from
the inner solution,

ω̂0(1) = κ ĥ
ε1/2
+O(1),

= κW1/2ĥ+O(1), (4.18)

and has been amplified relative to its value in the bulk, ω̂≈−2ĥ, by a factor κW1/2.
This effect is therefore increasingly important with increasing polymer concentration
and elasticity

4.2. Deep-elastic flow
The terminology ‘deep elastic’ refers to flow configurations where α & 1 and Σ & 1.
The second of these requirements places the critical layer sufficiently far from the
wall such that vorticity wave propagation dominates the dynamics of the perturbation
field rather than base-flow advection. Two examples of the vorticity induced by the
lower wall in this regime are reported in figure 8, alongside a Newtonian solution
from the deep-viscous regime. The vorticity appears unchanged from the Newtonian
solution irrespective of the choice of parameters, and |ω̂| is monotonically decaying
with height.

In this section we construct an asymptotic solution to (2.7) assuming Σ � 1, and
demonstrate that the vorticity is unchanged from the Newtonian deep-viscous solution
for any choice of W or β. We then examine the high-Weissenberg-number limit in
order to explain why the polymer does not alter the structure of the perturbation field
in deep channels with high elasticity.

We assume that α � 1 so that the upper wall no longer appears in the problem.
Then, defining the scaled polymer potential Φ ≡ ϕ/W, the governing system (2.7)
becomes

ikγ̇ y
(

d2

dy2
− k2

)
ψ = Σ

2

2

[
β

(1− β)W
(

d2

dy2
− k2

)2

ψ +
(

d2

dy2
− k2

)
Φ

]
, (4.19a)

(
ikγ̇ y+ 1

W

)
Φ =

[
−2k2γ̇ 2 + 2iγ̇

W
d
dy
+ 1

W2

(
d2

dy2
− k2

)]
ψ. (4.19b)
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FIGURE 8. Vortical perturbations (top) induced by the wavy wall (bottom) in the
deep-elastic regime. Filled contours are the spanwise vorticity, lines are the streamfunction.
(a) Newtonian flow (deep viscous) α = 10, R = 5. (b) Deep-elastic flow, α = 10 and
Σ = 8.9 with R= 5, β = 0.8, W = 10. (c) Deep-elastic flow, α = 10 and Σ = 34.6 with
R= 5, β = 0.5, W = 60.

Assuming that the critical layer is far above the lower wall Σ� 1, we seek a solution
in powers of ε≡ 1/Σ2� 1,

ψ(y; ε)=ψ0(y)+ εψ1(y)+ · · ·, (4.20a)
Φ(y; ε)=Φ0(y)+ εΦ1(y)+ · · ·, (4.20b)

At leading order only the advection term in the Orr–Sommerfeld equation vanishes,
leaving the inertialess system

0= β

W

(
d2

dy2
− k2

)2

ψ0 + (1− β)
(

d2

dy2
− k2

)
Φ0, (4.21a)(

ikγ̇ y+ 1
W

)
Φ0 =

[
−2k2γ̇ 2 + 2iγ̇

W
d
dy
+ 1

W2

(
d2

dy2
− k2

)]
ψ0. (4.21b)

Note that we have not yet invoked any assumptions regarding the magnitude of
the Weissenberg number. These equations may be combined and written in the
form of an inhomogeneous confluent hypergeometric equation, and the leading-order
streamfunction is

ψ0(y) = E0ye−ky + F0yeky

+G0e−kyU
(
(1− β)(1− iγ̇W)

β
,

2(1− β)
β

, 2
(

ky+ 1
iγ̇Wβ

))
+H0e−kyM

(
(1− β)(1− iγ̇W)

β
,

2(1− β)
β

, 2
(

ky+ 1
iγ̇Wβ

))
, (4.22)

where U and M are Kummer’s functions (Abramowitz & Stegun 1964). After
discarding exponentially growing terms and applying the boundary conditions at the
lower wall, we obtain ψ0(y) = −hγ̇ ye−ky, which is identical to the leading-order
Newtonian solution in the deep-viscous regime reported by Charru & Hinch (2000).
The polymer does not have an effect on the flow field to leading order for any value
of W provided Σ� 1.
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The above result is simple to understand in the limit of fast polymer relaxation,
W � 1. As noted in § 3.1, in this limit the polymer behaves like additional solvent,
Φ0 ∼ (1/2W)(d2

y − k2)ψ0. The flow is therefore dominated by vorticity diffusion, and
the streamfunction satisfies the biharmonic equation (d2

y − k2)2ψ0 = 0.
Some additional explanation is required in the high-Weissenberg-number limit,

where it is not obvious why the flow response should appear unaffected by the large
base-state stress. If W� 1, we may approximate (4.21) by

0=
(

d2

dy2
− k2

)
Φ0 =−X0, (4.23a)

ikγ̇ yΦ0 =−2k2γ̇ 2ψ0, (4.23b)

where X0 = χ0/W is the scaled polymer torque. The dominant balance is analogous
to the large-W limit of the long-wave equations (4.6). According to (4.23b), polymer
forces are generated by displacement of the highly tensioned mean-flow streamlines,
similar to the flow in the shallow-elastic regime. However, without the influence of the
upper wall, there is no reason for a rapid flow adjustment and the Orr–Sommerfeld
equation (4.23a) indicates that the irrotational polymer force field decays exponentially
in y. This results in a perturbation flow which has the same form as the Newtonian
deep-viscous regime.

4.3. Transcritical flow
The terminology ‘transcritical’ is associated with flows where α > Σ and Σ . 1.
These criteria correspond to the existence of a critical layer inside the flow domain
and whose height, y = Σ or y∗ =√2νpς , is within one wavelength from the lower
wall. Across this critical layer, the base-flow velocity changes from subcritical to
supercritical relative to the vorticity longitudinal wave speed. It is the same surface
across which Yoo & Joseph (1985) find a change in type in the equations for an upper
convected Maxwell fluid. Here, the focus is the mechanism for vorticity amplification
at this layer.

The spanwise-vorticity perturbation and associated streamfunction that are induced
by the wavy wall are reported in figure 9 for three transcritical conditions. The critical
layer height, Σ , is held constant, and the bulk Reynolds and Weissenberg numbers
are varied. In each case the spanwise vorticity is amplified around y = Σ . The ω-
perturbation field close to y=Σ is arranged in stripes of positive and negative vorticity
which are tilted forward with the shear and which become progressively stronger as
R and W are increased.

In figure 10, α is varied while the bulk flow parameters are held fixed, which
corresponds to a fixed vorticity wave speed. As a result, the dimensional y∗-location
of the critical layer is unchanged. However, relative to the roughness length scale, the
critical layer height, y = Σ , increases with α and figure 10 captures the transition
between the transcritical and deep-elastic regimes. As Σ increases, the vorticity decays
with height in y .Σ and amplification at y=Σ is much less effective.

In order to examine the vorticity generation at the critical layer, the high-
Weissenberg-number limit of the governing equations (2.7) will be derived. In this
limit only the effects of the kinematic torque amplification mechanism and streamwise
normal stress remain in the polymer-torque equation. The kinematic amplification is
interpreted in terms of the polymer forces, before the equations for ω and χ are
combined to form an ‘elastic-Rayleigh’ equation for the spanwise vorticity. In this
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FIGURE 9. Vortical perturbations (top) induced by the wavy wall (bottom) in transcritical
flows with constant α= 10 and Σ = 2.45. Filled contours are the spanwise vorticity, lines
are the streamfunction. The polymer viscosity is fixed at β = 0.5 and the bulk Reynolds
and Weissenberg numbers are varied: (a) R = 250, W = 15; (b) R = 500, W = 30; (c)
R= 1000, W = 60.
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FIGURE 10. Vortical perturbations (top) induced by the wavy wall (bottom) in transcritical
flows with constant vorticity wave speed,

√
2W(1− β)/R = 0.24 (R = 500, W = 30,

β = 0.5), with varying α. Filled contours are the spanwise vorticity, lines are the
streamfunction. (a) α = 5; (b) α = 10; (c) α = 15.

equation the torque kinematics appear as a forcing term, and the efficacy of this term
to generate vorticity is shown to depend on the relative values of two frequencies:
the frequency at which the lower wall appears to oscillate relative to an observer
moving with the shear and the frequency of a streamwise-travelling elastic vorticity
wave with wavenumber k. We demonstrate that there is a resonance between these
two frequencies at the critical layer, before developing an approximate solution for
the perturbation streamfunction using matched asymptotic expansions. The solution
provides explicit expressions for the critical layer thickness and the level of vorticity
amplification due to the resonance at y=Σ .

The vorticity amplification in the transcritical regime is increasingly pronounced at
large Weissenberg numbers. Therefore, the small parameter, ε ≡ 1/W� 1, is defined
and an asymptotic expansion is adopted,

ψ(y; ε)=ψ0(y)+ εψ1(y)+ · · ·, (4.24a)
Φ(y; ε)=Φ0(y)+ εΦ1(y)+ · · ·, (4.24b)
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where Φ = εϕ is the scaled polymer potential. The leading-order approximation of
(2.7) is

ikγ̇ y
(

d2

dy2
− k2

)
ψ0 = Σ

2

2

(
d2

dy2
− k2

)
Φ0, (4.25a)

and
ikγ̇ yΦ0 =−2k2γ̇ 2ψ0. (4.25b)

Again, the high-Weissenberg-number limit means that polymer forces are primarily
generated by an induced curvature in the tensioned mean-flow streamlines. In this
particular regime, it is instructive to write (4.25) in terms of the vorticity, ω, and
polymer torque, χ (cf. equation (2.9)),

ikγ̇ yω0 = Σ
2

2
X0, (4.26a)

ikγ̇ yX0 = 2ikγ̇
dΦ0

dy︸ ︷︷ ︸
S

−2k2γ̇ 2ω0, (4.26b)

where X ≡ εχ = −(d2
y − k2)Φ. The term labelled S corresponds to the kinematic

mechanism for polymer-torque amplification,

S ≡ 2ikγ̇
dΦ0

dy
= γ̇

(
ikf̃x − df̃y

dy

)
, (4.27)

and f̃i ≡ εfi are the scaled polymer forces. The relative realignment of streamwise
layers of varying polymer force by the mean shear generates a perturbation torque
at a point.

Combining (4.26) into a single equation yields

($ 2(y)− k2c2
ω)ω0 =−ikcωΣ

dΦ0

dy
, (4.28)

where $(y)≡ kγ̇ y is the apparent frequency at which the vorticity source (lower wall)
appears to oscillate relative to an observer travelling with the mean flow at a height y,
while cω≡ γ̇ Σ is the dimensionless speed of a streamwise-travelling vorticity wave in
the viscoelastic flow. The kinematic torque amplification appears as a forcing term on
the right-hand side. Equation (4.28) is known as the elastic-Rayleigh equation (Azaiez
& Homsy 1994; Rallison & Hinch 1995; Ray & Zaki 2014, 2015).

In equation (4.28), kcω represents the frequency of an elastic vorticity with
wavenumber k and appears as the natural frequency. At the critical layer, y = Σ ,
a travelling observer sees the wall as a vorticity source sweeping by at the elastic
wave speed. Or, equivalently, the critical layer is the height where a travelling
observer sees perturbations oscillating with a frequency that matches the frequency
of an elastic wave of the same wavelength. The resulting resonance at the particular
location in the flow corresponds to a singular point in the elastic-Rayleigh equation,
and the torque amplification mechanism becomes most effective.

While equation (4.28) identifies the mechanism for vorticity amplification around
y = Σ , the thickness of the critical layer is unknown. Furthermore, the level of
vorticity amplification at the critical layer cannot be deduced from (4.28), in
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which y = Σ is a singular point. In order to address these issues, a solution to
the viscoelastic Orr–Sommerfeld system (2.7) is now constructed using matched
asymptotic expansions with ε≡ 1/W� 1 as the small parameter.

Bulk solution: the leading term in an expansion in powers of ε satisfies the elastic-
Rayleigh equation derived above (4.28), which determines the perturbation field in the
bulk of the channel. In terms of the streamfunction, ψ0, this equation is,

d2

dy2

(
ψ0

y

)
+ 2y
(y2 −Σ2)

d
dy

(
ψ0

y

)
− k2

(
ψ0

y

)
= 0. (4.29)

Equation (4.29) has regular singular points at y=Σ and y=−Σ , the second of which
lies outside of the flow domain. The solution may therefore be sought as a Frobenius
series around y = Σ (Bender & Orszag 1978). Above the critical layer, y > Σ , the
expression for ψ0(y) is

ψ+0 (y)= A+0 y
∞∑

j=0

bj (y−Σ)j + B+0 y

( ∞∑
j=1

cj (y−Σ)j +
∞∑

j=0

bj(y−Σ)j log|y−Σ |
)
.

(4.30a)
The series coefficients, bj and cj, are provided in appendix A. Below the critical layer
the streamfunction is written

ψ−0 (y)=A−0 y
∞∑

j=0

bj(y−Σ)j+B−0 y

( ∞∑
j=1

cj(y−Σ)j +
∞∑

j=0

bj(y−Σ)j(log|y−Σ | − iπ)

)
,

(4.30b)
where the branch chosen for the logarithm is not arbitrary, but is motivated by the
solution in the critical layer which is constructed below. Note that the series (4.30)
have a radius of convergence which extends only as far as the next singular point of
the elastic-Rayleigh equation (4.29), which is at y = −Σ . Therefore, the expression
for ψ+0 (y) (4.30a) only converges below y = 3Σ . However, the present focus is the
behaviour around the critical layer, y=Σ , and we do not attempt to patch this series
to an expression valid for large y.

Critical layer: the kinematic amplification mechanism is most effective at the
critical layer. At this location a resonance occurs between the oscillation frequency
of the wall vorticity, as measured by an observer travelling with the base flow, and
the frequency of an elastic wave with wavenumber k. This behaviour corresponds to
a singular point in the elastic-Rayleigh equation (4.29) and motivates an examination
of the Orr–Sommerfeld system (2.7) in the vicinity of the critical layer. We assume
an internal boundary layer at y = Σ of thickness δc(ε) and adopt the rescaling
η≡ (y−Σ)/δc(ε). In terms of η the bulk Frobenius solutions (4.30),

ψ+0 (η)∼ A+0 Σ + B+0 Σ(log|η| + logδc)+ · · ·, (4.31a)
ψ−0 (η)∼ A−0 Σ + B−0 Σ(log|η| − iπ+ logδc)+ · · ·, (4.31b)

which suggests an inner expansion of the form

ψ(η)= log δcψ−1(η)+ψ0(η)+ · · ·, (4.32)

where ψ(η) = ψ(y) is the streamfunction expressed in terms of the critical layer
coordinate and the term appearing at O(log δc) is an eigensolution required for
matching.
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In terms of the stretched coordinate, η, the full Orr–Sommerfeld system (2.7)
becomes,

ikγ̇ (Σ + δcη)

(
1
δ2

c

d2

dη2
− k2

)
ψ = Σ

2

2

[
βε

(1− β)
(

1
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c

d2

dη2
− k2

)2

ψ +
(

1
δ2

c

d2

dη2
− k2

)
Φ

]
,

(4.33a)

ikγ̇ (Σ + δcη)Φ + εΦ =
[
−2k2γ̇ 2 + 2ikγ̇

ε

δc

d
dη
+ ε2

(
1
δ2

c

d2

dη2
− k2

) ]
ψ, (4.33b)

where Φ(η)=Φ(y) is the scaled polymer potential. If δc>ε, then according to (4.33b)
the polymer potential Φ is dominated by the effects of the normal stress, T11, similar
to the bulk flow (4.30). This balance implies that ikγ̇ (Σ + δcη)Φ ≈−2k2γ̇ 2ψ , which
is substituted into (4.33a) and yields,

ikγ̇ (Σ + δcη)
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1
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c
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dη2
− k2

)
ψ

≈ Σ
2
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Σ
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dη2
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)(
ψ − δcη

Σ
ψ + · · ·
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︸ ︷︷ ︸

Φ

]
,

(4.34)

As anticipated, the leading term in Φ on the right-hand side cancels with the leading
advection term on the left-hand side. The dominant balance between advection,
diffusion in the solvent and polymer potential due to T11 then suggests a critical layer
thickness

δc =
(

εβΣ2

4γ̇ k(1− β)
)1/3

, (4.35)

where the factor of 4 is introduced for convenience. In dimensional variables
δ∗c = (νs/2γ̇ ∗k∗)1/3, which is a diffusion length in the solvent. The scaling is also
consistent with the original assumption regarding the relative importance of the
base-state stresses in the critical layer: T12 appears at O(ε2/3) in (4.33b).

The dominant balance between advection, polymer torque generated by T11 and
solvent diffusion in (4.34) leads to

d4ψ i

dη4
− d

dη

(
iη

dψ i

dη

)
= 0, (4.36)

which is satisfied by the two leading terms in the inner expansion (4.32). Equation
(4.36) can be written as an inhomogeneous Airy equation for the derivative dηψ0,
although it is more convenient to express the solutions in integral form,

ψ i(η) = Ai + Bi

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
− isη

)
ds

+Ci

∫ ∞
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(
1
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)
exp

(
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3
+ sη(

√
3+ i)
2

)
ds

+Di

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
+ sη(−√3+ i)

2

)
ds, (4.37)
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where the limit σ → 0 should be taken and the constant Ai contains terms which
eliminate the logarithmic divergence associated with this limit (see appendix A). This
statement is made explicit below, where ψ(η) is matched to the elastic-Rayleigh
solutions in the bulk.

Assuming that the critical layer and the wall are well separated, Σ� δc, solutions
which are exponentially growing as η→±∞ must be discarded. The critical layer
streamfunction thus takes the form,

ψ i(η)= Ai + Bi

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
− isη

)
ds. (4.38)

In appendix A the method of steepest descents is applied to the integral appearing
in (4.38) to obtain the behaviour of the inner streamfunction as η→±∞,

ψ i(η→∞)∼ Ai + Bi

(
−γ − iπ

2
− log σ − log|η|

)
, (4.39a)

ψ i(η→−∞)∼ Ai + Bi

(
−γ + iπ

2
− log σ − log|η|

)
, (4.39b)

where γ = 0.5772 . . . is the Euler–Mascheroni constant and there is a phase change
of π across the critical layer. Matching these expressions to the bulk streamfunction
near y = Σ (4.31) reduces the number of unknown constants in the system to two.
Across the critical layer, the constants in the expressions for the bulk streamfunction
(4.30) are unchanged,

A+0 = A−0 ≡ A0,

B+0 = B−0 ≡ B0.

}
(4.40)

The constants appearing in the critical layer solution are,

A−1 =ΣB0, B−1 = 0;
A0 =ΣA0 +ΣB0

(
−γ − iπ

2
− log σ

)
, B0 =−ΣB0.

 (4.41)

The O(log δc) term in the critical layer is therefore a constant, and the inner
streamfunction is

ψ(η)=ΣB0 log δc+ΣA0+ΣB0

(
−γ − iπ

2
− log σ

)
−ΣB0

∫ ∞
σ

(
1
s

)
exp
(
−s3

3
− isη

)
ds.

(4.42)
In the limit σ → 0 the term −ΣB0 log σ eliminates the logarithmic divergence
associated with the lower limit of the integral.

The solutions to the elastic-Rayleigh equation (4.30) automatically satisfy the no
penetration condition at the lower wall, ψ−0 (y = 0) = 0. One of the two remaining
constants, A0 and B0, can be eliminated by applying the slip condition on the
streamwise perturbation velocity, dyψ

−
0 (y = 0) = −γ̇ h. In deep channels, α � 1,

the final constant would be chosen to enforce boundedness of the streamfunction
far above the critical layer. In the present formulation, the series solutions to the
elastic-Rayleigh equation only converge below y= 3Σ , and so this condition cannot
be enforced without patching ψ+0 (y) to solutions valid for large y. However, our focus
is the vorticity amplification at the critical layer, while above y≈Σ the perturbation
decays. Therefore, we instead impose the artificial condition ψ+0 (y = 8Σ/3) = 0



414 J. Page and T. A. Zaki

0 0.5–0.5 0 0.5–0.5 0 0.5–0.5

5

 0

–2 0 2 –2 0 2 –2–4 0 2 4

y

0

4

–4

(a)

(b)

FIGURE 11. Comparison of numerical (grey) and asymptotic (black) solutions in
the transcritical regime. (a) Composite streamfunction formed from solutions to the
elastic-Rayleigh (4.30) and critical layer (4.42) equations. (b) Critical layer vorticity, ω.
From left to right: α = 10, Σ = 2.5, with R = 500, W = 30, β = 0.5; α = 10, Σ = 2.5,
with R= 1000, W = 60, β = 0.5; α = 10, Σ = 2.24, with R= 2000, W = 100, β = 0.5.

in order to determine the final unknown constant. In domains where α < 3Σ , we
may enforce the no-penetration condition at the top wall, ψ+0 (y = α) = 0. This
approach introduces a small slip velocity, which could be eliminated by examining
the perturbations in a thin solvent boundary layer at y = α, similar to the approach
taken in the shallow-elastic regime (see § 4.1).

A composite asymptotic solution is formed by combining the bulk (4.30) and inner
(4.42) solutions and subtracting their overlapping values. It is compared to numerical
solutions for three parameter sets in the transcritical regime in figure 11(a). The
asymptotic solution compares favourably with the numerics, and becomes increasingly
accurate as the Weissenberg number is increased.

The critical layer vorticity computed from the inner solution (4.42) is also compared
to the numerical solution in figure 11(b), with increasingly good agreement at higher
W. Furthermore, the vorticity at the critical layer may be estimated explicitly,

ω0(y=Σ) = −ΣB0

δ2
c

∫ ∞
0

s exp
(
−s3

3

)
ds,

= −ΣB03−1/3

δ2
c

Γ

(
2
3

)
≈−0.9389ΣB0

δ2
c

. (4.43)

Numerical calculations of B0 over a range of Σ (not shown) demonstrate a
dependence B0 ∝

√
Σexp(−Σ) and so the vorticity ω0 ∝ Σ3/2exp(−Σ)/δ2

c . The
exponential decay with Σ reflects the weakened propensity for vorticity amplification
as the critical layer is moved farther from the wall due to decay in y < Σ , as was
remarked in connection with figure 10. The dependence on the solvent diffusion
length is intuitive: increasingly sharp gradients are generated across thinner critical
layers.
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The transcritical regime, α > Σ and Σ . 1, is perhaps the most intriguing in
the phase diagram because the maximum vorticity is observed in the bulk of the
fluid, away from the bottom topography. This non-local vorticity amplification was
explained using the elastic-Rayleigh equation which shows that when curvature acts
onto the base-state T11 stresses, it generates polymer torque. This torque then acts
as forcing on the right-hand side of the vorticity equation, and its effectiveness
at generating vorticity depends on the difference between two frequencies: (i) the
frequency of oscillation of the vorticity source, or the undulating wall, relative to an
observer travelling with the mean flow; (ii) the frequency of a streamwise-travelling
elastic vorticity wave with wavenumber k, which is a property of the viscoelastic flow
configuration. When the two frequencies match, resonance occurs at the critical layer
y =Σ , and the kinematic mechanism becomes most effective at generating vorticity.
The critical layer thickness scales with the solvent diffusion, δ∗c ∼ (νs/γ

∗k∗)1/3 and
the vorticity in this layer can be estimated by ω=O(Σ3/2exp(−Σ)/δ2

c ).

5. Localized roughness
The detailed analysis of the three regimes of vorticity generation above a harmonic

wall topography provides the foundation for examining the flow response to general,
small-amplitude surface topography. In this section the flow response to localised
wall roughness is examined numerically. The phenomenology observed in these
computations are then interpreted based on the analyses in § 4.

5.1. Gaussian wall bump
By exploiting the linearity of the problem, we herein extend our earlier analyses to
more realistic, localized surface topographies using Fourier synthesis. We consider the
flow response to a Gaussian wall bump,

H ∗(x)= h∗e−|x
∗|2/l∗2x , (5.1a)

where l∗x is now used as the reference length. The corresponding non-dimensional
wall disturbance is H ′(x)= he−|x|2/l2x , where lx = 1 is retained for clarity. The Fourier
transform of this wall bump is also Gaussian

H (k)=
∫ ∞
−∞

H ′(x)e−ikx dx= hlx
√

π e−l2x k2/4, (5.1b)

and we adopt the normalization h = 1. Note that the zeroth wavenumber, k = 0,
corresponds to a mean-flow correction and is omitted from the energy and enstrophy
spectra presented in this section.

While the spectral make-up of the wall disturbance (5.1b) includes waves for which
the channel will appear shallow (k→ 0) and infinitely deep (k→∞), it is helpful to
introduce the parameters,

αl ≡ d
l∗x
, Σl ≡

√
2νpς

l∗x
, (5.2a,b)

in order to relate the present results to the earlier discussion of the wavy wall. These
parameters are the normalized channel depth and ratio of the critical layer depth to
the bump length scale, respectively.
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FIGURE 12. Vortical perturbations (top) induced by Gaussian wall bump (bottom) in
shallow flow with αl = 0.5. Filled contours are the spanwise vorticity, lines are the
streamfunction. (a) Newtonian flow with R= 1. (b) Viscoelastic flow with Σl= 3.16 with
β = 0.5, W = 40, R= 1.
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FIGURE 13. Streamwise energy (a) and enstrophy (b) spectra in a shallow channel with
αl = 0.5. Here R= 1, β = 0.5. Grey solid line, Newtonian flow; black solid line, W = 20;
dashed line, W = 40; dot-dashed line, W = 80.

The flow response to the Gaussian wall disturbance in a shallow channel, αl < 1,
is reported in figure 12 for both Newtonian and Oldroyd-B fluids. Inertial effects
are weak, which places the Newtonian flow in the ‘shallow-viscous’ regime. In the
viscoelastic fluid, the high Weissenberg number places the critical layer outside of the
flow domain, Σl >αl, and the flow response can be classified as ‘shallow elastic’.

In the Newtonian fluid the Gaussian bump produces an upward distortion of the
streamlines, symmetric about the bump centre, x = 0. This inertialess behaviour
corresponds to a single vortex in the perturbation field directly above the bump. In
the viscoelastic fluid the flow response is not symmetric with respect to the bump
centre. Instead, a second counter-rotating vortex is formed upstream of the bump.
This second vortex is attached to a region of positive spanwise vorticity extending
down from the top wall where the vorticity magnitude is maximum.

The response of a viscoelastic fluid to the Gaussian bump in a shallow channel
is further examined in figure 13, where streamwise energy and enstrophy spectra
are reported for increasing values of the Weissenberg number. In the Newtonian
fluid, both the energy and enstrophy are monotonically decreasing with increasing
streamwise wavenumber. In contrast, the Oldroyd-B results show peaks in the energy
and enstrophy spectra at k ∼ 1. The peak in the energy spectral density is enhanced
with increasing W.
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FIGURE 14. Streamwise enstrophy spectra for a shallow-elastic channel with αl = 0.5,
while Wl is varied. Here R = 1 and (a) β = 0.8; (b) β = 0.5; (c) β = 0.2. The solid
lines identify the contour levels {1, 2, 3, 10, 20}.
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FIGURE 15. Vortical perturbations (top) induced by Gaussian wall bump (bottom) in
a deep channel with αl = 10. Filled contours are the spanwise vorticity, lines are the
streamfunction. (a) Newtonian flow with R= 1000. (b) Viscoelastic flow with Σl = 1.73
with β = 0.5, W = 30, R= 1000.

These results can be understood in the context of our earlier analysis of the
shallow-elastic regime. It was demonstrated that, for long waves, a significant
amplification of the vorticity at the upper wall was possible provided that W ≡
k∗U0ς � 1. In those cases, the bulk flow response was shown to be ‘elastic’ with
a constant vorticity, while a large vorticity disturbance was generated at the upper
wall due to rapid adjustment in a solvent boundary layer to satisfy the no-slip
condition. This is consistent with the present results for the localized disturbance,
where enstrophy amplification is most pronounced in long waves, 1/k & αl. Further
evidence is provided in figure 14 where contours of streamwise enstrophy spectra
are provided for varying Wl ≡ αlW. Significant amplification is limited to modes
with a local kWl� 1, consistent with our expectation from the monochromatic wall
oscillation. The upper wall vorticity generation is increasingly effective as the solvent
viscosity is reduced.

The flow response to a Gaussian wall bump in a deep channel is reported in
figure 15 for both a Newtonian and an Oldroyd-B fluid. In the Newtonian case a
patch of negative spanwise vorticity is generated directly above the bump, with a
weaker region of positive vorticity downstream. The vorticity field is tipped forward
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FIGURE 16. Streamwise energy (a) and enstrophy (b) spectra in a deep channel with
αl=10. Here R=1000, β=0.5. Grey solid line, Newtonian flow; black solid line, W=15;
dashed line, W = 30; dot-dashed line, W = 60.

with the shear due to the strong inertial effects, θl ≡ (α2
l /R)

1/3 < 1, and the flow
lies in the ‘inviscid regime’ according to the criteria by Charru & Hinch (2000).
This vorticity disturbance, while localized at the wall, induces a much larger scale
potential flow. The vorticity field in the viscoelastic case is strikingly different and
is dominated by non-local effects: in addition to a response at the wall, there is a
significant amplification of vorticity at the critical layer, y = Σl, where the vorticity
is arranged in stripes of opposite signs. This non-local vorticity, generated by the
kinematic torque amplification mechanism examined in § 4.3, drives the formation
of an upstream vortex with opposite circulation. The proximity of the critical layer
to the wall allows us to classify the flow as ‘transcritical’ using the terminology
developed in § 3.2.

In figure 16 the influence of elasticity on the streamwise energy and enstrophy
spectra is examined for deep channels with a fixed bulk Reynolds number. The
Newtonian flow shows a monotonic decay in the spectral energy density with
increasing streamwise wavenumber, while the enstrophy peaks at k∼ 1. At moderate
Weissenberg number (W = 15) there is amplification in both energy and enstrophy
across the range of streamwise wavenumbers well beyond the levels recorded for
the Newtonian reference case. As the Weissenberg number is increased, the energy
and enstrophy in the low wavenumbers are enhanced appreciably while being slightly
attenuated for larger values of k. These results can be explained by considering the
height of the critical layer of each constituent wavelength in the Fourier decomposition
of the Gaussian bump. This connection is explored further in figure 17, where
contours of the streamwise enstrophy are reported for three deep flows (αl= 10) with
W = {15, 30, 60}. The bulk Reynolds number is varied to change the critical layer
height, y = Σl. All three flows show peaks in their enstrophy spectra around k ∼ 1
when Σl∼ 1, where the vorticity response to the bump shows a strong amplification at
the critical layer. As Σl increases, enstrophy in the higher wavenumbers is attenuated
first, similar to the behaviour reported in figure 16, before the spectra in all three
cases reach a similar state as Σl → ∞. This phenomenon can be interpreted in
terms of a transition between ‘transcritical’ and ‘deep-elastic’ regimes: in the Fourier
decomposition, each constituent wavenumber has its own critical layer. These critical
layers all lie at the same dimensional y∗ location, but their normalized height relative
to each individual wavelength, Σ , increases linearly with k. For a particular choice of
Σl, part of the spectrum will be transcritical, while above a critical k &Σl, the waves
can be classified as deep elastic. Therefore, as Σl increases, more of the bump’s
spectrum can be classified as deep elastic and is unable to generate vorticity using
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FIGURE 17. Streamwise enstrophy spectra for a deep channel with αl = 10, while Σl is
varied. Here β = 0.5 and (a) W = 15; (b) W = 30; (c) W = 60. The solid lines identify
the contour levels {1, 2, 3, 10, 20}.

the transcritical amplification mechanism. When Σl crosses a threshold value, the
entire spectrum is no longer influenced by the critical layer and the perturbation field
achieves the same state regardless of the Weissenberg number or solvent viscosity.

In summary, the results for the localized bump display evidence of the three
regimes examined in detail in § 4. Whether the dominant behaviour is shallow elastic,
transcritical or deep elastic depends on both the normalized channel height, αl, and the
critical layer height relative to the bump length scale, Σl. For localized bumps in the
shallow-elastic regime, αl < 1, Σl >αl, a second vortex of opposite sign is generated
upstream of the bump by the large vorticity in the upper wall solvent boundary layer.
For transcritical flows, vorticity is generated at the critical layer through the kinematic
torque amplification mechanism, and the perturbation flow takes the form of a pair
of counter-rotating vortices. Both of these behaviours contrast with the Newtonian
flows, where a single vortex forms directly above the bump. Note that the interesting
phenomenology reported in these computations is most pronounced at high values
of the Weissenberg number, W. Therefore, it is important to examine the impact of
finite polymer extensibility on vorticity penetration into the flow.

5.2. The effect of finite extensibility
As was remarked in § 2, Oldroyd-B fluids model the dissolved polymer chains
as infinitely extensible dumbbells, and this simplification can generate unphysical
behaviour. Perhaps the most well-known failure of the Oldroyd-B model is its
prediction of infinite stresses in extensional flows. Therefore, it is important to verify
that the behaviours examined in this work are relevant when the finite extensibility
of the polymer is taken into account. In this section, the influence of a wall bump
on viscoelastic FENE-P fluid is evaluated numerically in order to assess whether
the same regimes reported in § 5.1 remain relevant when the polymer extensibility
is finite.

The FENE-P model replaces the Hookean dumbbells of the Oldroyd-B fluid with
nonlinear springs (Bird et al. 1987),

T∗ij =
1
ς
(FCij − δij), (5.3a)

where

F= L2 − 3
L2 −Ckk

, (5.3b)
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FIGURE 18. Streamwise energy (a) and enstrophy (b) spectra in a FENE-P fluid with
αl = 0.5, R= 1, W = 40, β = 0.5. Grey solid line, Oldroyd-B; black solid line, L= 1000;
dashed line, L= 100; dot-dashed line, L= 50.
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FIGURE 19. Streamwise energy (a) and enstrophy (b) spectra in a FENE-P fluid with
αl= 10, R= 1000, W= 30, β= 0.5. Grey solid line, Oldroyd-B; black solid line, L= 1000;
dashed line, L= 100; dot-dashed line, L= 50.

is the Peterlin function and L is related to the maximum extensibility of the polymer
chains L2 = L2

max + 3. In the present configuration, the nonlinear-spring law influences
the perturbation field in two ways: (i) a weakening of the base-state normal stress as
W/L increases (see appendix B) and (ii) a new form of stress perturbation,

τ ∗ij =
F
ς

(
cij + 1

L2 −Cll
Cijckk︸ ︷︷ ︸

N

)
, (5.4)

which is labelled N . The full perturbation equations for the FENE-P fluid are provided
in appendix B.

Streamwise energy and enstrophy spectra for the FENE-P fluid are reported in
figures 18 and 19 for a shallow and a deep channel respectively. Note that the
parameter sets correspond to the Oldroyd-B cases considered in figures 13 and 16.
For the largest extensibility, L = 1000, the results are indistinguishable from the
Oldroyd-B cases. For the more realistic values, L = {50, 100}, the FENE-P results
exhibit the same qualitative trends as the Oldroyd-B fluids. In the shallow-elastic
flow (figure 18) the energy and enstrophy are damped slightly across the full range
of wavenumbers. In the transcritical flow (figure 19), the kinematic amplification
mechanism remains active across a band of wavenumbers. The spectra are similar in
shape to the Oldroyd-B results, although the peak in both the energy and enstrophy
spectra is shifted to higher wavenumbers.



Viscoelastic shear flow over a wavy surface 421

 0.5

 0

5

 0

y

–2–4–6 0 2 –10 0 5 10–5

x x

–5 0 5 10 2–1–2(a) (b)

FIGURE 20. Vortical perturbations (top) induced by Gaussian wall bump (bottom) in a
FENE-P channels with L = 100. Filled contours are the spanwise vorticity, lines are the
streamfunction. (a) αl= 0.5 with β= 0.5, W= 40, R= 1. (b) αl= 10 with β= 0.5, W= 30,
R= 1000.
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FIGURE 21. Contours of polymer stretch perturbations, ckk/L2, in Couette flow of a FENE-
P fluid with L= 100. (a) Shallow channel with αl= 0.5, W = 40, R= 1, β = 0.5. (b) Deep
channel with αl= 10, W= 30, R= 1000, β= 0.5. Lines are contours of the streamfunction.

In figure 20 the flow response to the Gaussian bump is reported for the flows
examined in figures 18 and 19 for the realistic value L = 100. The important flow
features from the Oldroyd-B results remain: in the shallow-elastic channel, the
vorticity maximum is located at the upper wall and a weak secondary vortex is
formed upstream of the bump. In the transcritical channel, there is a strong non-local
response in the vorticity at the critical layer, which takes the form of stripes tipped
forward with the shear.

Finally, the polymer stretch field associated with each flow is examined in figure 21.
In the shallow-elastic flow, the polymer is most strongly stretched directly above the
wall bump, while a small ‘jet’ of polymer stretch protrudes downstream along the
lower wall. For the transcritical flow, the polymer is stretched in a thin region between
the two induced vortices, as anticipated from the vorticity field.

6. Conclusion
The flow response to surface waviness in a viscoelastic Couette flow was examined

using linear theory. For an Oldroyd-B fluid at high Weissenberg number, the induced
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vorticity perturbations can be classified using a phase diagram in a similar manner
to the Newtonian problem (Charru & Hinch 2000). The viscoelastic phase diagram is
parameterized by two quantities: the ratios of the channel depth and of the critical
layer height to the length scale of the surface undulation, α≡ k∗d and Σ ≡ k∗

√
2νpς .

The phase diagram was divided in three regions: (i) when α < 1 and Σ > α, the
flow is termed ‘shallow elastic’; the surface waves are long relative to the channel
depth and the critical layer is outside of the flow domain. The bulk flow response
is a constant vorticity generated by a distortion of the highly tensioned mean-flow
streamlines. There is a substantial spanwise vorticity generated in a solvent boundary
layer at the top wall where the flow adjusts to satisfy the top boundary conditions.
(ii) When α > 1 and Σ & 1, the flow is labelled ‘deep elastic’; neither the top wall
or the critical layer influence the perturbation field. The vortical perturbations are not
affected by the elasticity in this regime. (iii) When α > Σ and Σ . 1, the critical
layer is inside the flow domain, and lies within one wavelength from the lower wall.
This behaviour is termed ‘transcritical’, and is characterized by generation of vorticity
at the critical layer, which is driven by a kinematic amplification mechanism for the
polymer torque.

The analysis of a single wall wavelength was followed by a computational study
of the flow response to localized disturbances using Fourier superposition. In shallow-
elastic flows, the large vorticity generated at the upper wall leads to the formation
of a second vortex upstream of the bump. In deep channels a significant vorticity
is generated at the critical layer, and this has attached an associate pair of counter-
rotating vortices. Calculations of the flow response to isolated bumps using the more
realistic FENE-P model showed the same qualitative behaviour in both shallow and
deep channels.

Future work should extend the analysis to finite-amplitude wall roughness, where
the secondary instability of the curved streamlines in shallow channels may present
a pathway to elastic turbulence. The influence of wall undulations on drag-reduced
turbulent flows at high Reynolds numbers is also of interest since, in that regime,
critical layers can be established in close proximity to the lower wall.
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Appendix A. Further details on the transcritical regime
A.1. Solution of the elastic-Rayleigh equation

In the bulk of the channel, the streamfunction satisfies the elastic-Rayleigh equation,

d2

dy2

(
ψ0

y

)
+ 2y
(y2 −Σ2)

d
dy

(
ψ0

y

)
− k2

(
ψ0

y

)
= 0. (A 1)

A solution is sought in the form of a Frobenius series about y=Σ (Bender & Orszag
1978) and takes the form,

ψ±0 (y)= A±0 y
∞∑

j=0

bj(y−Σ)j + B±0 y

( ∞∑
j=1

cj(y−Σ)j +
∞∑

j=0

bj(y−Σ)j log(y−Σ)
)
.

(A 2)
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The branch of the logarithm for ψ−0 (y) is chosen as log(y − Σ) = log|y − Σ | − iπ.
The series coefficients in (A 2) are

b1 = 0,

b2 = k2b0

4
,

bj>3 =− ( j− 1)bj−1

2Σ j
+ k2bj−2

j2
+ k2bj−3

2Σ j2
,

c1 =− b0

2Σ
,

c2 =−b2 − c1

4Σ
,

cj>3 =−2bj

j
− (2j− 1)bj−1

2Σ j2
− ( j− 1)cj−1

2Σ j
+ k2cj−2

j2
+ k2cj−3

2Σ j2
,



(A 3)

where b0 = 1 and c0 = 0.
Close to the critical layer the solution (A 2) is expressed in terms of the critical

layer coordinate η≡ (y−Σ)/δc and the leading terms are,

ψ+0 (η)∼ A+0 Σ + B+0 Σ(log|η| + logδc)+O(δc), (A 4a)
ψ−0 (η)∼ A−0 Σ + B−0 Σ(log|η| − iπ+ logδc)+O(δc). (A 4b)

This suggests an inner expansion

ψ(η)= log δcψ−1(η)+ψ0(η)+ · · ·. (A 5)

The equations satisfied by the inner variable ψ(η)=ψ(y) are solved below.

A.2. Solution in the critical layer
In the critical layer the balance between advection, polymer force generated by T11
and solvent diffusion leads to

d4ψ i

dη4
− d

dη

(
iη

dψ i

dη

)
= 0, (A 6)

where η ≡ (y−Σ)/δc(ε) is the shifted coordinate scaled by the viscous length scale
in the solvent, δc = (εβΣ2/4γ̇ k(1− β))1/3. Note that this equation is satisfied by the
O(log δc) eigensolution, ψ−1(η) and the O(1) component, ψ0(η). Solutions are sought
in the form of Laplace contour integrals,

ψ i(η)=
∫

C
f (ζ )eηζ dζ , (A 7)

where C is a yet unspecified contour in the complex-ζ plane.
Substituting (A 7) into (A 6) and differentiating under the integral sign,∫

C
(ζ 4 − iηζ 2 − iζ )f (ζ )eηζ dζ = 0. (A 8)
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(a) (b)

FIGURE 22. Possible integration contours in the complex ζ -plane that define the linearly
independent solutions of (A 6).

Integrating by parts yields,∫
C

[(
ζ 4 + iζ

)
f + iζ 2 df

dζ

]
dζ − iζ 2f (ζ )eηζ

∣∣∣∣
C︸ ︷︷ ︸= 0, (A 9)

where the term identified with an underbrace is evaluated at the end points of the
contour. After solving for f (ζ ), linearly independent solutions for the streamfunction
are

ψ
j
i(η)=

∫
Cj

(
1
ζ

)
exp

(
iζ 3

3
+ ηζ

)
dζ , (A 10)

where the contours Cj must satisfy

ζexp
(

iζ 3

3
+ ηζ

) ∣∣∣∣
Cj

= 0. (A 11)

Valid integration contours are illustrated in figure 22. Contours can encircle the origin.
They may also start and end at the origin or in one of the sectors in which exp(iζ 3/3)
is decaying at ζ→∞, which are indicated in grey in figure 22. Each contour yields
a solution of (A 6), but four contours may not be chosen arbitrarily. For example,
contours C0, C1, C2 and C3 do not produce four independent solutions, since C1, C2

and C3 can be joined at infinity to produce C0.
Numerically satisfactory solutions can be constructed using integration contours

Ci; i ∈ [0, 4, 5, 6]. The integration around C0 encloses a simple pole, and the
solution is a constant. The other paths are parameterized with ζ = seiθ , with
θ = {π/6, 5π/6, 3π/2}. The solution is therefore

ψ i(η) = Ai + Bi

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
− isη

)
ds

+Ci

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
+ sη(

√
3+ i)
2

)
ds

+Di

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
+ sη(−√3+ i)

2

)
ds. (A 12)
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–1

0

1

–2
10 2–1

FIGURE 23. Contours of the altitude A (colours and dashed lines) and phase P (solid
lines) of the function g(ϑ). The original integration contour, L0, is identified with the
white dashed line. The solid white lines are those on which the phase P =−σλ−1/3 and
P =−√2/3 and the labels L1 and L2 identify the path of steepest descent.

These expressions are valid in the limit σ→ 0. This limit results in divergent integrals
in (A 12). The constant Ai can eliminate this effect, and this becomes apparent when
(A 12) is matched to the elastic-Rayleigh equation below. For now, the dependence
on σ is retained, and the limit σ→ 0 will be taken once the unknown constants have
been determined.

A.3. Matching with the elastic-Rayleigh equation
Discarding solutions which are exponentially growing as η→±∞, the critical layer
streamfunction is,

ψ i(η)= Ai + Bi

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
− isη

)
ds. (A 13)

In order to match this expression to the elastic-Rayleigh solutions in the bulk of the
channel we examine the integral in the limits η→±∞. Here we provide details of
the limit η→∞.

The integral in (A 13) is highly oscillatory as η → ∞. In order to obtain
approximate expressions in this limit we use the method of steepest descent and
deform the integration contour so that the phase in the exponent is constant (Bender
& Orszag 1978). The dominant contributions to the integral in the limit η→∞ then
come from regions of maximum altitude or saddle points.

The exponent in the integral in (A 13) has moveable saddle points in the complex
s-plane. Therefore, the change of variable s = √ηϑ is adopted. The integral to be
approximated may then be written

I(λ)=
∫ ∞
σλ−1/3

eλg(ϑ)dϑ
ϑ

, (A 14)

where λ≡ η3/2 and g(ϑ)=−ϑ3/3− iϑ .
Contours of both the altitude, A (ϑ)≡Re(g(ϑ)), and phase, P(ϑ)≡ Im(g(ϑ)), are

plotted in figure 23 in the complex-ϑ plane. The original integration contour, L0, is
along the real axis. The contour is deformed such onto L1+ L2, along each of which
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P = constant. The steepest descent paths L1 and L2 meet as ϑ→∞. Along L1 the
phase P =−σλ−1/3, while along L2 the phase P =−√2/3.

The dominant contributions to the integral I(λ) as λ → ∞ are from the saddle
point on L2 and the end point ϑ = σλ−1/3 on L1, which is the point of maximum
altitude. The contribution from the saddle point is exponentially small in comparison
to the end point contribution, and is not presented here. At the end point the path,
L1 is parameterized, ϑ − σλ−1/3 = reiθ . As λ→∞ the exponent g(ϑ) may thus be
approximated,

g(ϑ) ≈ −σ
3

3λ
− iσ
λ1/3
+
(
− σ

2

λ2/3
− i
)

reiθ + · · ·,

≈ −r− iσ
λ1/3

. (A 15)

The approximation to I(λ) is therefore,

I(λ)=
∫ ∞
σλ−1/3

eλg(ϑ)dϑ
ϑ

≈
∫

L1

eλg(ϑ)dϑ
ϑ

,

≈
∫ ∞

0

exp(−λ(r+ iσλ−1/3))

r+ iσλ−1/3
dr. (A 16)

With a change of variable this expression can be written as a generalized exponential
integral (Abramowitz & Stegun 1964),

I(λ) ≈
∫ ∞

iση

e−w dw
w

,

= E1(iση)=−γ − iπ
2
− log σ − log|η| −

∞∑
j=1

(−1)j(iση)j

jj! , (A 17)

where γ = 0.5772 . . . is the Euler–Mascheroni constant. In the limit σ → 0 the
algebraic contribution can be ignored and the streamfunction as η→∞ is

ψ i(η→∞)∼ Ai + Bi

(
−γ − iπ

2
− log σ − log|η|

)
. (A 18a)

Similar considerations as η→−∞ result in

ψ i(η→−∞)∼ Ai + Bi

(
−γ + iπ

2
− log σ − log|η|

)
. (A 18b)

Matching these expressions to inner limit of the elastic-Rayleigh solutions (A 4)
reveals A+0 = A−0 ≡ A0, B+0 = B−0 ≡ B0 and determines the constants for the inner
solution,

ψ(η) = ΣB0 log δc +ΣA0 +ΣB0

(
−γ − iπ

2
− log σ

)
−ΣB0

∫ ∞
σ

(
1
s

)
exp

(
−s3

3
− isη

)
ds. (A 19)

In the limit σ→ 0 the logarithmic term regularizes the lower limit of the integral.
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Appendix B. Flow equations for a FENE-P fluid
B.1. Base state

In a FENE-P fluid the polymer stress is related to the conformation tensor through a
nonlinear-spring law,

T ij = 1
W
(FCij − δij), (B 1)

where F is the Peterlin function,

F= L2 − 3
L2 −Ckk

. (B 2)

In simple shear, U= γ̇ y, the base-state polymer stresses for a FENE-P fluid can be
related to the Oldroyd-B values (Sureshkumar, Beris & Handler 1997),

T11

T∞11
= 1

F2
,

T12

T∞12
= 1

F
, (B 3a,b)

where the superscript ∞ identifies the Oldroyd-B result. The Peterlin function depends
on the parameter %≡ γ̇W/L,

F(%)=
√

6%
2sinh(q/3)

, with q= sinh−1(3
√

6%/2). (B 4)

The function F is monotonically decreasing with increasing % (Ray & Zaki 2014).
Therefore, the polymer stresses are always attenuated by finite extensibility. For the
parameters of interest in this paper, %=O(1) and the Oldroyd-B scaling remains, T11=
O(Wγ̇ 2), T12 =O(γ̇ ) (Page & Zaki 2015).

B.2. Linear perturbation equations
The continuity and momentum equations are,

iku+ dv
dy
= 0, (B 5a)

ikγ̇ yu+ γ̇ v =−ikp+ α
2

R

[
β

(
d2

dy2
− k2

)
u+ (1− β)

(
ikτ11 + dτ12

dy

)]
, (B 5b)

ikγ̇ yv =−dp
dy
+ α

2

R

[
β

(
d2

dy2
− k2

)
v + (1− β)

(
ikτ12 + dτ22

dy

)]
. (B 5c)

For a FENE-P fluid, perturbations in the stress are related to stretch perturbations by

τij = F
W

(
cij + 1

L2 −Cll
Cijckk

)
. (B 6)

The relevant components of the conformation tensor evolve according to,

ikγ̇ yc11 + 1
W
τ11 = 2ikC11u+ 2C12

du
dy
+ 2γ̇ c12, (B 7a)

ikγ̇ yc12 + 1
W
τ12 = ikC11v +C22

du
dy
+ γ̇ c22, (B 7b)
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ikγ̇ yc22 + 1
W
τ22 = 2ikC12v + 2C22

dv
dy
, (B 7c)

ikγ̇ yc33 + 1
W
τ33. (B 7d)
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HODA, N., JOVANOVIĆ, M. R. & KUMAR, S. 2008 Energy amplification in channel flows of

viscoelastic fluids. J. Fluid Mech. 601, 407–424.
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