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The mechanisms by which turbulent shear flow causes waves on a gas–liquid interface
are studied analytically, with a critical assessment of the possible role played by wave-
induced Reynolds stresses (WIRSs). First, turbulent flow past a corrugated surface of
a small slope is analysed; the surface can either be stationary or support a travelling
wave. This problem serves as a useful model because direct numerical simulation
(DNS) and experimental data are available to test the analysis, and because this picture
is itself a model for the fully coupled two-layer problem. It is demonstrated that the
WIRSs play no significant role in shear-driven turbulent flow past a moving wavy
wall, and that they alter the structure of the flow only in a quantitative fashion in
the pressure-driven case. In the shear-driven case in particular, excellent agreement is
obtained with previously reported DNS results. Two closure assumptions are made in
our model: the first concerns the wave-induced dissipation of turbulent kinetic energy;
the second concerns the importance of rapid distortion. The results of our calculations
are sensitive to the assumptions used to close the wave-induced dissipation but are
insensitive to the details of the rapid-distortion modelling. Finally, the fully coupled
two-layer problem is addressed in the setting of waves of small amplitude, where it is
demonstrated that the WIRSs do not play a significant role in the growth of interfacial
waves, even at relatively high Reynolds numbers. Again, good agreement is obtained
between data from experiments and DNS.

Key words: gas/liquid flow, instability, wave–turbulence interactions

1. Introduction

The study of turbulent flow over liquid layers is of importance in a wide range
of fields, including wave generation by wind (e.g. Janssen 2004), and as a route to
slug flow and droplet entrainment in stratified and annular flows in oil/gas transport
and heat exchangers (Hewitt & Hall-Taylor 1970). Although the linear instability
and governing mechanisms in the laminar-flow case are well understood based on
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the temporal (Yiantsios & Higgins 1988) and spatio-temporal (Valluri et al. 2010)
analyses, this is true only to a limited degree in the case of turbulent systems.
Various possible mechanisms for instability have been identified (for a review, see
Boomkamp & Miesen 1996). Good agreement with oceanographic experimental data
has been obtained with the model of Miles (see, for example, Janssen 2004). However,
the liquid layer is represented in that model as a moving wavy wall. In fact,
several detailed experimental and direct numerical simulation (DNS) studies have
been reported on this idealized problem. In this setting, the wave-induced perturbation
in the gas flow is not coupled with its counterpart in the liquid. This limitation
may be important: in reality, the wave speed should follow from a full analysis
and not be imposed. Moreover, since the Miles model is inviscid, it cannot account
for the viscosity-contrast mechanism (Yih 1967). This mechanism has been found
to be dominant in the instability of thin liquid films sheared by turbulence in two-
layer channel flow, and linear stability analyses compare well with experimental data
(Miesen & Boersma 1995; Kuru et al. 1995; Ó Náraigh et al. 2011). Finally, the Miles
model does not include wave-induced Reynolds stresses (WIRSs) that can feed back
into the wave growth, by mechanisms such as rapid distortion.

We herein develop a comprehensive model, which accounts for the WIRSs in
three distinct but overlapping scenarios. First, we study turbulent flow past a solid,
undulating wall, and we compare our model with the experiments of Hanratty and
coworkers (Thorsness, Morrisroe & Hanratty 1978; Zilker, Cook & Hanratty 1976;
Hanratty 1983) (the paper of Thorsness et al. 1978 also contains a significant amount
of modelling work that is discussed further in § 3.1 below). Next, we study turbulent
flow past moving wavy walls, which we compare in detail with DNS data. Finally, we
study the fully coupled two-layer problem with infinitesimal wave heights, and allow
for the viscosity-contrast mechanism. Our aim is to bring these strands together. We
start with a review of the literature pertaining to the generation of interfacial waves by
a turbulent flow.

In early works, the Reynolds stress terms that enter into the stability equations
were ignored, although the turbulent nature of the gas flow was otherwise taken into
account through the prescription of a logarithmic mean profile in the gas (Miles
1957, 1959, 1962; Benjamin 1959). This shortcoming was rectified by several authors.
Hanratty and coworkers (Hanratty 1983; Abrams & Hanratty 1985) and van Duin &
Janssen (1992) pursued an eddy-viscosity approach. In a series of papers, Belcher and
coworkers studied the interfacial stability of a sheared two-fluid interface, specializing
to an air–water system for oceanographic applications (Belcher & Hunt 1993; Belcher,
Harris & Street 1994; Belcher & Hunt 1998). They focused on describing the structure
of the turbulent shear stresses in the problem through the use of scaling arguments
and a truncated mixing-length model. This is representative of an approximation of
a Reynolds-averaged ensemble of realizations of the turbulent flow for a given phase
of a small-slope interfacial wave. Hence, an eddy viscosity was formulated in terms
of the typical scale of a turbulent eddy, which depends on the distance between the
eddy itself and the air–water interface. Far from the interface, the turbulent eddies
are advected quickly over an interfacial undulation, and have insufficient time to
equilibrate, and so-called rapid-distortion theory (Townsend 1972, 1980) is needed.
This region is modelled in a minimal way by Belcher and coworkers using the
Rayleigh equation. Thus, the mixing-length is truncated: it is a simple function of
the vertical coordinate close to the interface, and is set to zero far from the interface.

We propose instead to follow the approach of Townsend (1980) and Ierley & Miles
(2001): not only do we interpolate between the turbulent domains, which is a common
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factor between all of these papers, but we also explicitly model the rapid-distortion
region. This approach can be regarded as a ‘one-and-a-half-equation model’, since the
single differential equation for the turbulent kinetic energy (TKE) is supplemented
with an algebraic closure for the WIRSs. The algebraic equation is based on the
linearized closure model of the Reynolds-averaged equations pioneered by Launder,
Reece & Rodi (1975). While the latter model is a multi-equation one, Ierley & Miles
(2001) found that the one-and-a-half-equation approach was sufficient. In particular,
it compared well with numerical simulations of the complete second-order model for
turbulent shear flow over a moving wavy wall (Mastenbroek et al. 1996; Meirink &
Makin 2000). In order not to be restricted to asymptotic regimes, as is the case in
most of the work cited above, the problems studied herein are solved using eigenvalue
analysis, and a linear-algebra package. This analysis also enables us to reconstruct the
velocity and pressure fields.

In § 2 we first develop a theory for turbulent flow past a small-slope undulation,
and past a moving wavy wall. This facilitates a comparison with experiments (Zilker
et al. 1976; Thorsness et al. 1978; Abrams & Hanratty 1985) and DNS (Sullivan,
McWilliams & Moeng 2000; Kihara et al. 2007). Our theory uses Reynolds-averaged
Navier–Stokes (RANS) models of increasing complexity in order to close the WIRSs:
a quasi-linear model that ignores the WIRSs completely; an eddy-viscosity model
(EVM); a one-equation viscoelastic model (VEM); and a model that accounts for
rapid distortion of turbulence in the far field of the wall (rapid-distortion theory
(RDT)). Equipped with these insights, we revisit the description of the interaction
between small-amplitude waves and turbulent flow over a deep liquid layer at high
Reynolds number (§ 5). This extends our previous work on thin films sheared by
turbulent gas flow (Ó Náraigh et al. 2011). Here, the perturbation in the gas layer
due to an interfacial wave is fully coupled with its counterpart in the liquid. Special
care is taken to prescribe a detailed base-state velocity profile that enables us also
to capture a possible viscosity-contrast instability as well as, for instance, the Miles
mechanism. Moreover, our prescription does not contain the logarithmic singularities
present in other models (Biberg 2007) when the velocity is evaluated at the upper
boundary and the interface. This regularization is accomplished by using a viscosity
function that transitions smoothly between the log layer and the viscous near-wall
and near-interfacial regions. The method used here has been tested extensively against
previous work and experimental data for the corresponding problem of a thin liquid
film sheared by a turbulent gas flow in pressure-driven channel flow (Ó Náraigh et al.
2011).

2. Turbulent flow past a moving wavy wall: modelling and analysis

We consider turbulent flow past a corrugated surface that supports a travelling wave
(figure 1). In the laboratory frame, the upper wall (z = H) moves at a speed Umax

and drives the turbulence. We also use a frame that moves with the wave, wherein
the Reynolds-averaged flow variables appear stationary. In this moving frame, the
streamwise fluid velocity at the wavy wall takes the value �c. The slope of the
sinusoidal undulation of the bottom wall is assumed to be infinitesimally small, i.e.
a↵ ⌧ 1. Note, however, that in this section there is no requirement for the wave
amplitude a to be infinitesimally small. This framework enables us to compare our
results with previously reported simulations and experiments.
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FIGURE 1. Schematic description of flow past a wavy wall.

2.1. Base-state averaged velocity profile

We first of all consider the case where the bottom wall is flat and stationary (a = 0,
c = 0). We derive the unidirectional mean velocity U0(z) from the stationary RANS
equations with eddy viscosity µT(z):


1
Re

+ µT(z)
�

dU0

dz
= Re2

⇤
Re2 , (2.1)

where we work in units with µG = 1, ⇢G = 1, and H = 1. The subscript on these
parameters denotes a gas phase. This notation becomes useful later in § 5 when
we study two-phase gas–liquid flow. The control parameter is the Reynolds number
Re = ⇢GUmaxH/µG, of which the friction Reynolds number Re⇤ = ⇢GU⇤H/µG is
a function. The eddy viscosity is prescribed in a standard fashion (Biberg 2007;
Ó Náraigh & Spelt 2010)

µT(z) = Re⇤
Re

z(1 � z)f (z; CA)f (1 � z; CA), (2.2)

where f is an interpolating function such that the velocity profile and the turbulent
shear stress have the correct scaling behaviour as z ! 0, 1:

f (z; CA) = 1 � e�(zRe⇤)2/CA . (2.3)

If we specify CA = e5.9, (CA = e6.3 for the corresponding pressure-driven case), then the
thickness of the viscous sublayers near the walls is five wall units. Thus, the model
velocity is

U0(z) = Re2
⇤

Re

Z z

0

ds
1 + Re⇤s(1 � s)f (s)f (1 � s)

, 0 6 z 6 1, (2.4)

where the friction velocity Re⇤ is determined by the upper-plate condition
U0(1;Re⇤) = 1, i.e.

Re2
⇤

Re

Z 1

0

ds
1 + Re⇤s(1 � s)f (s)f (1 � s)

= 1. (2.5)

Results for a test case are shown in figure 2, together with a comparison with DNS.
Figure 2(a–c) validates our model: the only parameter that is adjusted is CA, and that
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FIGURE 2. Solid lines: model base-state profiles for shear-driven single-phase turbulence
(flat bottom, c = 0). Dots: the model is validated against the simulations of Sullivan et al.
(2000) (Figures 6–7 therein). The Reynolds number is Re = 8000, based on the upper-plate
velocity. (a) The base-state velocity profile, across the entire channel width; (b) semilog
plot of the velocity profile, showing the log layer near the bottom wall; (c) the base-state
Reynolds-stress profile; (d) base-state TKE.

is chosen such that the laminar sublayer is five wall units; this is known a priori and
is therefore not a fitting parameter.

The balance law for the base-state TKE k0 is

0 = d
dz

✓
Re�1 + µT

�K

◆
dk0

dz

�
+ ⌧0 (z)

dU0

dz
� E0, (2.6)

where �K is an empirical prefactor which we henceforth set equal to unity (Pope
2000), ⌧0 = µTU0

0, and where E0 is the dissipation function to be determined. In
contrast to the standard treatment, wherein a specification of E0 fixes k0, we specify a
solution k0, which then fixes the dissipation E0. Thus, we approximate k0 by

k0 = 1
C2

K

Re2
⇤

Re2 f (z; CB)f (1 � z; CB), (2.7)

where CK is an O(1) constant and the slope CB is chosen such that the kinetic energy
is within 1 % of its maximum value at 20 wall units from the wall (Pope 2000). We
take C = 0.83 for shear-driven flow, to agree with the DNS database of Sullivan et al.
(2000), and C = 0.55 for pressure-driven flow, as in the work of Pope (2000). The
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advantage of such an approach is that the TKE has the correct asymptotic behaviour,
k0 ⇠ z2 as z ! 0. Other work (Boomkamp & Miesen 1996) demonstrates that this
region has a critical effect on interfacial instability, and such asymptotic behaviour
is therefore not ignorable. A comparison between this approximate functional form
and DNS for shear-driven single-phase channel flow is shown in figure 2(d). Our
functional form (2.7) should only be regarded as a ‘fit’, and the loose agreement
between the two descriptions is adequate for our purposes. Having now constituted the
turbulent base state, we turn to an analysis of small perturbations around this state, and
the wave-turbulence interactions evinced by these perturbations.

2.2. Flow decomposition

To understand the averaging method presumed herein, consider a flow domain that
comprises periodic copies of the basic domain in figure 1, which extends indefinitely
in the x-direction. For definiteness, we work in a frame moving with the wave,
although the decomposition carries over into the laboratory frame by a simple
Galilean transformation. Periodic boundary conditions are imposed in the y-direction.
In Cartesian coordinates, the instantaneous velocity (ucart, vcart, wcart) is decomposed
into mean and fluctuating parts:

ucart(x, y, z, t) = ucart(x, z) + u0
cart(x, y, z, t),

vcart(x, y, z, t) = v0
cart(x, y, z, t),

wcart(x, y, z, t) = wcart(x, z) + w0
cart(x, y, z, t),

9
>=

>;
(2.8)

where, for any signal A(x, y, z, t), the Reynolds averages A(x, z) and hAi(z) are defined
as

A(x, z) = lim
T!1 lim

N!1
1
T

1
(2N + 1)

1
Ly

NX

n=�N

Z T

0
dt
Z Ly

0
dy A(x + n�, y, z, t), (2.9)

hAi(z) = 1
Lx

Z Lx

0
dx A(x, z). (2.10)

In the z-direction, the bottom boundary is located at z = h0(x) in the moving frame.
In boundary-fitted coordinates ⌘ = z � ae�↵zei↵x and ⇠ = x � iae�↵zei↵x, the bottom
boundary is given by ⌘ = 0. Here, the real part of the expressions is assumed
implicitly. The total Reynolds-averaged field A(x, z) is re-expressed as A(⇠, ⌘), and
is then decomposed further into a part associated with the mean, streamwise flow and
a wave-induced variation:

A(x, z) = A0(⌘) + A(⌘, ⇠), A0(⌘) = 1
L⇠

Z
d⇠ A(⌘, ⇠), (2.11)

where L⇠ is an appropriate scale factor. Further discussion of these coordinates is given
in § 2.3. In the present case, where a↵ is small, it is appropriate to assume that the
system responds linearly to the presence of the wavy wall. Thus, (2.11) becomes

A(x, z) = A0(⌘) + aei↵⇠ Â(⌘). (2.12)

Note finally that in the moving frame, the Reynolds average A(x, z) appears
stationary; however, upon transforming back into the laboratory frame, a wavelike time
dependence is introduced, A(x, z) ! A(x�ct, z). This result is of particular relevance to
§ 4, where we compute the time change of the kinetic energy in the laboratory frame.
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We now apply these averaging concepts to the average velocity profile generated by
the wavy wall and the turbulence in figure 1.

2.3. Undulation-induced perturbations

In order to determine the wave-induced fields, which are finite, we use boundary-
fitted coordinates in the frame of reference moving with the wave. This enables a
linear analysis for small-slope waves a↵ ⌧ 1. Specifically, we use the boundary-layer
coordinates advocated by Benjamin (1959) and others (Belcher et al. 1994; Tseluiko
& Kalliadasis 2011). Note that the coordinates used by Hanratty and coworkers (Zilker
et al. 1976; Abrams & Hanratty 1985) give similar results. Here, we introduce the
transformations

⇠ = x � ia�, ⌘ = z � a�, � = e�↵zei↵x. (2.13)

By definition, the direction vectors associated with this coordinate system are
e⇠ = @x/@⇠ and e⌘ = @x/@⌘. To order ↵a, these are orthogonal and equal to

e⇠ = (1 � a↵�, ia↵�), (2.14a)
e⌘ = (�i↵a�, 1 � a↵�), (2.14b)

while the lowest-order expansion for the scale factors h⇠ = |e⇠ | and h⌘ = |e⌘| is given
by

h := h⇠ = h⌘ = 1 � ↵a�. (2.15)

The disturbance due to the wavy wall is determined in a frame of reference moving
with the wave. The total stream function corresponding to the two-dimensional
Reynolds-averaged velocity field is written in the following form, according to the
decomposition (2.12):

 =
Z ⌘

0
[U0(s) � c] ds + aei↵⇠ F̂(⌘). (2.16)

Throughout this paper, we use U0(·) to denote the non-wave-induced, average
streamwise velocity in the laboratory frame. Hence, the Reynolds-averaged velocity
components in the directions e⇠ and e⌘ are

u(⌘, ⇠) = h�1 ⌘ = U0(⌘) � c + aei↵⇠ [↵e�↵⌘(U0(⌘) � c) + F̂0(⌘)], (2.17a)

w(⌘, ⇠) = �h�1 ⇠ = �i↵aei↵⇠ F̂(⌘). (2.17b)

Note, however, that the velocity components in the Cartesian directions are the
following:

ucart(⌘, ⇠) =  z = U0(⌘) � c + aei↵⇠ [↵e�↵⌘(U0(⌘) � c) + F̂0(⌘)], (2.18a)

wcart(⌘, ⇠) = � x = �i↵aei↵⇠ [F̂(⌘) � (U0(⌘) � c)]. (2.18b)

To make the correspondence between these results and the averaging concept in § 2.2
explicit, we re-write these equations as

ucart(⌘, ⇠) = U0(⌘) � c + ũ(⌘, ⇠), (2.19a)
wcart(⌘, ⇠) = w̃(⌘, ⇠). (2.19b)



364 L. Ó Náraigh, P. D. M. Spelt and T. A. Zaki

By applying this formalism, we write down an equation for momentum balance,
expressed in the stream function  , and the curvilinear coordinates (2.13):

� 1
h⇠h⌘


@ 

@⇠

@

@⌘
1 � @ 

@⌘

@

@⇠
1 

�
= 1

Re
12 + Reynolds-stress contributions. (2.20)

Later on, we use this equation to write down an explicit equation for F̂(⌘). Before
doing so, we determine the boundary conditions on F̂(⌘), and characterize the
Reynolds-stress contributions in (2.20).

2.4. Boundary conditions

The boundary conditions at the top wall z = 1 are linearized onto the surface ⌘ = 1,
with an error that is O(ae�↵). Thus, F̂ = F̂0 = 0 there. At ⌘ = 0, the F̂ boundary
conditions take either of the following forms, according to the nature of the wavy wall.
We work in a frame moving with the wave.

(a) Stationary wavy wall:

ucart = 0, wcart = 0, hence F̂0(0) = 0, F̂(0) = 0. (2.21)

(b) The bottom mimics an Airy wave (Acheson 1990):

ucart = �c + ↵acei↵x, wcart = �i↵acei↵x, hence F̂0(0) = 2↵c, F̂(0) = 0. (2.22)

Condition (b) corresponds to � = �↵c in the discussion by Benjamin (1959); to lowest
order, it satisfies the free-surface condition

wcart = ucart
@h0

@x
, (2.23)

where z = h0(x) is the location of the wavy wall. The wall shear stress is equal to
the off-diagonal term in the viscous stress tensor Tij (Benjamin 1959), and is therefore
given by

Txz(⌘ = 0) = Re�1( zz �  xx)⌘=0,

= Re�1U0
0(0)Re�1aei↵⇠

⇥ [(@2
⌘ + ↵2)F̂(⌘) + 2↵U0

0(⌘)e
�↵⌘ � 2↵2(U0(⌘) � c)e�↵⌘]⌘=0,

= Re�1U0
0(0) + fTxz(⌘ = 0). (2.24)

To obtain appropriate boundary conditions on the turbulence intensity, we recall the
decomposition (2.8) of the instantaneous Cartesian velocities into mean and fluctuating
components. Near the wall ⌘ = 0, the following Taylor expansions hold:

u0 ⇠ a1 + a2⌘ + a3⌘
2 + · · · , (2.25a)

v0 ⇠ b1 + b2⌘ + b3⌘
2 + · · · , (2.25b)

w0 ⇠ c1 + c2⌘ + c3⌘
2 + · · · . (2.25c)

The flow assumes its mean value on the walls, hence u0 = v0 = w0 = 0 on ⌘ = 0, and
a1 = b1 = c1 = 0. Since (⌘, ⇠, y) are independent coordinates, it also follows that

@u0

@⇠
= @v0

@⇠
= @w0

@⇠
= 0 on ⌘ = 0, (2.26)
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and that

@u0

@y
= @v0

@y
= @w0

@y
= 0 on ⌘ = 0. (2.27)

Hence, the continuity equation for the turbulent fluctuations, u0
x + v0

y + w0
z = 0, reduces

to

@u0

@⌘

@⌘

@x
+ @w0

@⌘

@⌘

@z
= 0 on ⌘ = 0. (2.28)

In other words,

�i↵a�
@u0

@⌘
+ @w0

@⌘
(1 + a↵�) = 0 on ⌘ = 0. (2.29)

Hence,

c2 = ia2a↵�. (2.30)

Using this information, we deduce that the intensity vanishes quadratically as ⌘! 0:

1
2 u02 + v02 + w02 ⇠ 1

2 a2
2 + b2

2⌘
2 := 1

2(A0 + aei↵⇠A1)⌘
2, ⌘! 0. (2.31)

This can be re-written as

k̃(⌘, ⇠) ⇠ 1
2 aei↵⇠A1⌘

2, ⌘! 0. (2.32)

In a similar manner, we deduce that the Reynolds stress vanishes quadratically:

�u0w0 ⇠ �a1b1⌘
2 = �ia↵�a2

2⌘
2, ⌘! 0, (2.33)

or

�u0w0 ⇠ �ia↵�k0(⌘), ⌘! 0. (2.34)

We decompose �u0w0 into a mean part and a wave-induced part: �u0w0 = ⌧0(⌘) +
⌧̃ (⌘, ⇠). Since ⌧0(⌘) ⇠ ⌘3 as ⌘! 0, it follows that

⌧̃ (⌘, ⇠) / �ia↵�k0(⌘), ⌘! 0. (2.35)

Thus, the appropriate boundary condition on ⌧̃ (⌘ = 0) is the vanishing one, with an
imposed phase shift of ⇡/2 relative to the wavy wall. Finally, and in the same manner,
the dissipation

E = 1
Re

s0
ijs0

ij, s0
ij =

1
2

✓
@u0

i

@xj
+ @u0

j

@xi

◆
(2.36)

decomposes into mean and wave-induced parts, near ⌘ = 0:

E0(⌘) + Ẽ (⌘, ⇠) ⇠ 1
Re

k00
0(⌘) + 1

Re
[@2
⌘ k̃ + 2a↵k00

0(⌘)e
�↵z] as ⌘! 0. (2.37)

We now turn to the modelling of the turbulent stresses and intensity in the bulk flow.

2.5. Reynolds-stress contributions

We continue to work in a frame moving with the wave. Several models for the
Reynolds stress tensor Rij are appended to the vorticity (2.20) in the following
coordinate-free manner:

Reynolds-stress contributions = �ŷ · [curl(div R)], (2.38)
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where ŷ is the unit vector perpendicular to the (x, z) plane. In order of complexity,
these models are: a quasi-laminar (QL) model wherein turbulence is only accounted
for in the specification of the base-state profile; an EVM; a viscoelastic description
which uses a one-equation turbulence model; and a rapid-distortion model. We
summarize these below, and omit details that rely on standard results (a separate
document, describing in detail these calculations, and those of the energy budget in § 4,
is available upon request from the corresponding author).

2.5.1. The QL model

The QL formalism was first used by Miles (1957). In this approach, the effects of
the turbulence appear only through the base state, and the WIRSs are simply set to
zero. Miles (1957) ignored molecular viscosity. Here, however, it is included. Thus, we
solve the stream function equation in curvilinear coordinates, linearized to include only
the fundamental mode:

i↵[(U0(⌘) � c)(@2
⌘ � ↵2)F̂(⌘) � U00

0 (⌘)(⌘)F̂(⌘)] + C

= 1
Re

(@2
⌘ � ↵2)2F̂(⌘), (2.39)

where C is the curvature-related term

C = 2i↵2U0
0(⌘)(U0(⌘) � c)e�↵⌘ + 1

Re
e�↵⌘[4↵2U00

0 (⌘) � 2↵U000
0 (⌘)]. (2.40)

2.5.2. The EVM

In this model, there is still only a single equation to solve, namely the momentum
equation, and the WIRSs are modelled as being proportional to the rate of strain, the
constant of proportionality being the base-state eddy viscosity. Thus,

i↵[(U0(⌘) � c)(@2
⌘ � ↵2)F̂(⌘) � U00

0 (⌘)F̂(⌘)] + C

= 1
Re

(@2
⌘ � ↵2)2F̂(⌘) + R, (2.41)

where C is the curvature term, and R is the Reynolds-stress term:

R = (@2
⌘ + ↵2){µT(⌘)[(@2

⌘ + ↵2)F̂(⌘) + 2e�↵⌘(↵U0
0(⌘) � ↵2(U0(⌘) � c))]}

+ 2e�↵⌘[↵⌧ 00
0 (⌘) � ↵2⌧ 0

0(⌘)], ⌧0 = µTU0
0. (2.42)

2.5.3. The viscoelastic model

The following formulation is similar to that given by Ierley & Miles (2001). We
base the description of the Reynolds stresses on the Cartesian anisotropy tensor

nij = u0
iu0

jX

`

u0̀ u0̀ = �Rij

2k
= � 1

2k

 
�x ⌧

⌧ �z

!
. (2.43)

The turbulence is assumed to tend quickly to equilibrium, and the nij take their
constant value (Ierley & Miles 2001). Thus,

fn12 = 0, (2.44)

hence ]�⌧/k = 0, and

⌧̃ = ⌧0

k0
k̃ = ⌧0

k0
aei↵⇠ Q̂(⌘). (2.45)
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Here Q̂(⌘) is the wave-induced component of the TKE. As in standard treatments
of shear turbulence (Belcher & Hunt 1998; Pope 2000), we focus only on the off-
diagonal stress terms, and assume equipartition of turbulent energy throughout the
flow, hence fn11 � fn22 = 0. Thus, the Reynolds-stress contribution in the vorticity (2.20)
becomes

R = (@2
⌘ + ↵2)

✓
⌧0

k0
Q̂
◆

+ 2e�↵⌘
✓
↵

d2⌧0

d⌘2
� ↵2 d⌧0

d⌘

◆
. (2.46)

Next, we formulate an equation for the wave-induced TKE. The governing equation
for k0 + k̃ can be written in coordinate-free form as

(@t + u ·r)(k0 + k̃) = div[(Re�1 + µT(⌘))grad(k0 + k̃)] + P � E . (2.47)

Here the left-hand side represents the advection of the energy, and the first term on
the right-hand side is the energy flux. In Townsend (1972, 1980) and Ierley & Miles
(2001), the energy flux was ignored, since turbulent transport is negligible in the bulk
gas flow. It is important, however, near the wavy wall, where molecular viscosity
dominates; that is why it is included here. The production function P is available in
closed form through the contraction of two Cartesian tensors:

P = Rij
@ui

@xj
. (2.48)

Next, we decompose the dissipation into equilibrium and wave-induced parts:

E = E0(⌘) + Ẽ = E0(⌘) + aei↵⇠ Ê (⌘). (2.49)

For the wave-induced part, we assume that the dissipation of TKE depends on the
energy itself. In other words, we assume that Ẽ / k̃, with a constant of proportionality
that is given by the inverse of the large-eddy time scale. Dimensional analysis
suggests that we take this inverse time scale to be CDU0

0, where CD is an O(1)
constant, selected such that the production never exceeds the dissipation (Pope 2000),
CD = max(⌧0/k0):

Ê (⌘) = CDU0
0Q̂ + Boundary terms. (2.50)

This prescription is equivalent to a mixing-length formalism: the mixing length `0

associated with the dissipation function (2.50) is given by k1/2
0 /`0 = CDU0

0. Recasting
the closure hypothesis in this way highlights the similarities between our approach
and that of other authors (Ierley & Miles 2001; Townsend 1972, 1980). The
boundary terms relate to the value assumed by the wave-induced dissipation at the
boundary (2.37). Thus, we estimate @2

⌘ Q̂(0) as ↵k00
0(0), and, with reference to (2.37),

we take

Ê (⌘) = CDU0
0Q̂ + Re�1[1 � f (z; CB)]3↵k00

0(0). (2.51)

Combining these facts, we obtain the following kinetic-energy equation in curvilinear
coordinates:
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i↵[(U0(⌘) � c)Q̂(⌘) � F̂(⌘)k0
0(⌘)]

= [Re�1 + µT(⌘)](@2
⌘ � ↵2)Q̂(⌘) + µ0

T(⌘)Q̂0(⌘)

+ 2↵e�↵⌘{[Re�1 + µT(⌘)]k00
0(⌘) + µ0

T(⌘)k0
0(⌘)} + ⌧0(⌘)U0

0(⌘)Q̂(⌘)

k0(⌘)

+ ⌧0(⌘){(@2
⌘ + ↵2)F̂(⌘) + 2e�↵⌘[↵U0

0(⌘) � ↵2(U0(⌘) � c)]}
� CDU0

0Q̂ � Re�1[1 � f (z; CB)]3↵k00
0(0). (2.52)

2.5.4. The complete rapid-distortion model

Rapid distortion exists as a limiting case wherein the transport equation for the
Reynolds stresses becomes linear as a consequence of strong mean strain. This regime
of turbulence has been implicated in the formation of waves in turbulent stratified flow
(Belcher & Hunt 1993; Belcher et al. 1994; Belcher & Hunt 1998). By dividing the
turbulence layer into distinct domains (Belcher & Hunt 1998; Cohen & Belcher 1998),
our model can be modified to take account of this effect.

The turbulence is characterized by two time scales: the eddy turnover time scale
and the advection time scale. The eddy turnover or turbulent time scale is the time
required for a typical turbulent eddy to interact with the surrounding fluid and come
into equilibrium. An estimate of this time scale, at a distance z from the wavy wall,
is Tt(z) = (dU0/dz)�1. The advection time scale is the time needed for the flow to
advect an eddy over a wave crest. This flow distorts the turbulence and moves it away
from equilibrium. An estimate of this time scale is Ta = [↵|U0(z) � c|]�1, where ↵ is
the wavenumber and c is the (possibly complex) wave speed. Near the wavy wall, Tt

is small compared with Ta: this is the region of near-equilibrium where by definition
eddy viscosity and one-equation turbulent closures are expected to be appropriate.
Far away from the wavy wall, Tt is large compared with the advection time scale
(at least for the large, most energetic turbulent structures): this is the region where
rapid-distortion theory is expected to apply. Crossover of domains occurs at z = zt, for
which Tt(zt) = Ta(zt).

In the rapid-distortion domain, and in Cartesian coordinates, the Reynolds-stress
equation is

@

@t
(�Rij) + @

@xk
[uk(�Rij) + Tkij] = Pij + S (r)

ij , (2.53)

where Tkij and Pij represent transport and production, respectively, and where S (r)
ij

represents the correlation between the rapid pressure, and the rate of strain (Pope
2000). For waves, the shear rate ↵(U0 � c) enters into the advection term in (2.53). In
the rapid-distortion domain, this rate is large, and thus advective transport dominates
over pressure-driven transport. We therefore omit the pressure transport term in (2.53),
which now simplifies further:

✓
@

@t
+ u ·r

◆
(�Rij) = Pij + S (r)

ij . (2.54)

The rapid pressure rate of strain tensor S (r)
ij has been modelled accurately by Launder

et al. (1975) (see also Pope 2000). They use the following form:

S (r)
ij = �CR(Pij � 1

2Pkk�ij), (2.55)



Turbulent flow over a liquid layer revisited: multi-equation turbulent modelling 369

where CR is a constant that can be determined from DNS databases (we use CR = 0.6,
as suggested by Pope 2000). This description has the property of linearity in Rij,
which is desirable in any rapid-distortion theory (Pope 2000). Linearizing (2.54)
and (2.55) around a base state (n(0)

11 , n(0)
22 , n(0)

12 ) gives the following balance law for
fn12 in Cartesian coordinates:

✓
@

@t
+ u ·r

◆
fn12 = [2(n(0)

12 )2 � (1 � CR)n
(0)
11 ] @
@x
gucart

+ [2(n(0)
12 )2 � (1 � CR)n

(0)
22 ] @
@z
gucart

+ 2n(0)
12 (n(0)

11 � n(0)
22 )

@

@x
gwcart. (2.56)

In curvilinear coordinates, this becomes

i↵

(
(U0 � c)fn12 � ei↵⇠ F̂(⌘)

dn(0)
12

d⌘

)

= ei↵⇠ [↵1i↵F̂0(⌘) + ↵2F̂00(⌘) + ↵3↵
2F̂(⌘)]

+ ei↵⇠ {e�↵⌘[i↵↵1(↵(U0 � c) � U0
0(⌘))

+↵2(2↵U0
0(⌘) � ↵2(U0 � c)) � ↵3↵

2(U0 � c)]}, (2.57)

where

↵1 = 2(n(0)
12 )2 � (1 � CR)n

(0)
11 ,

↵2 = 2(n(0)
12 )2 � (1 � CR)n

(0)
22 ,

↵3 = 2n(0)
12 (n(0)

11 � n(0)
22 ) = 0.

9
>=

>;
(2.58)

Next, we identify

⌧̃ = aei↵⇠ ⌧̂ (⌘), (2.59)

and interpolate between the algebraic stress model (2.56) in the far field and the
equilibrium description fn12 = 0 (2.45) in the near field. Thus, we introduce the
following hybrid stress model involving an interpolation function I (⌘):

i↵(U0 � c)
✓

� ⌧̂ (⌘)
2k0

+ ⌧0

2k2
0

Q̂(⌘)

◆
I (⌘) + [1 � I (⌘)]

✓
� ⌧̂ (⌘)

2k0
+ ⌧0

2k2
0

Q̂(⌘)

◆

= I (⌘)

"
i↵F̂(⌘)

dn(0)
12

d⌘
+ ↵1i↵F̂0(⌘) + ↵2F̂00(⌘) � ↵3↵

2F̂(⌘)

#

+ e�↵⌘I (⌘)[i↵↵1(↵(U0 � c) � U0
0(⌘)) + ↵2(2↵U0

0(⌘) � ↵2(U0 � c))

+↵3↵
2(U0 � c)], (2.60)

where I (⌘) is an interpolating function that is zero at ⌘ = 0 and asymptotes to
I = 1, with a characteristic length scale zt. We take

I (s) = 1 � e�(s/zt)2
(2.61)
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because this respects the near-wall condition that ⌧̃ and its derivative should vanish at
⌘ = 0. Further manipulation yields an equation for ⌧̂ :

⌧̂ (⌘) = k(⌘)
⌧0

k0
� A (⌘)

"
i↵F̂(⌘)

dn(0)
12

d⌘
+ ↵1i↵F̂0(⌘) + ↵2F̂00(⌘) + ↵3↵

2F̂(⌘)

#

� e�↵⌘A (⌘)[i↵↵1(↵(U0 � c) � U0
0(⌘)) + ↵2(2↵U0

0(⌘) � ↵2(U0 � c))

�↵3↵
2(U0 � c)], (2.62)

where

A (⌘) = 2k0(⌘)I (⌘)

I (⌘)[i↵(U0 � c) � 1] + 1
. (2.63)

The term

i↵F̂(⌘)
dn(0)

12

d⌘
(2.64)

vanishes in the far field; thus, we take the stress equation to be

⌧̂ (⌘) = Q̂(⌘)
⌧0

k0
� A (⌘)[↵1i↵F̂0(⌘) + ↵2F̂00(⌘) + ↵3↵

2F̂(⌘)]
� e�↵⌘A (⌘)[i↵↵1(↵(U0 � c) � U0

0(⌘)) + ↵2(2↵U0
0(⌘) � ↵2(U0 � c))

�↵3↵
2(U0 � c)]. (2.65)

We supplement this algebraic equation with the previously developed transport
equations for Q̂ and F̂. Now, however, the Reynolds-stress term R in the momentum
equation is given by

R = (@2
⌘ + ↵2)⌧̂ + 2e�↵⌘

✓
↵

d2⌧0

d⌘2
� ↵2 d⌧0

d⌘

◆
. (2.66)

We call the first three models stationary models because the Reynolds stresses are
constituted in terms of mean quantities, that is, they are computed diagnostically. In
the last case the Reynolds stresses are transported and strained, and are therefore
computed as prognostic variables.

Having derived our turbulence model, we proceed to validate it against a database of
experiments conducted for flow past a wavy wall.

3. Pressure-driven channel flows: comparison with experiments and

simulations

In this section, we compare our theoretical models with the experimental results
of Hanratty and coworkers (Zilker et al. 1976; Thorsness et al. 1978; Abrams &
Hanratty 1985) for stationary walls (c = 0). These experimental papers form a rigorous
challenge for the models of § 2, since they involve a wide range of Reynolds numbers.
We also compare our modelling efforts with the DNS paper of Kihara et al. (2007).
Throughout this section, the base flow is driven by a constant pressure drop in the
streamwise direction; we modify the base-state model in § 2 accordingly.
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3.1. Comparisons with experiments

The computation in the QL EVM cases is straightforward and follows from § 2. For
the other models, we take

n(0)
12 = ⌧0

2k0

����
z=1/2

⇡ 1
2

C2, (3.1)

together with n(0)
11 = n(0)

22 = 1/2 (varying these parameters has little effect on the results
of this section). To close the model, we use the mixing-length theory for the wave-
induced dissipation (2.50) and (2.51). A more detailed closure model that describes
the effects of the wavy wall on the choice of mixing length ` can be found in
the papers of Hanratty and coworkers (‘Model D’, Thorsness et al. 1978). Although
such an approach gives very close agreement with the experimental results, this is
not adopted here for a number of reasons. First, Model D involves a ‘relaxation’ of
the wave-induced mixing length to its equilibrium value, a process whose physical
mechanism is unclear. Second, Model D involves a fitting parameter, which must be
chosen a posteriori. The value of this fitting parameter might change as we pass over
to shear-driven single-phase flow, or to two-phase flow, and the model is therefore
of limited applicability to the present paper. For these reasons, we maintain with the
theoretical modelling described in § 2. This approach produces reasonable agreement
with the experimental predictions, as we now demonstrate.

We compare the zero-equation models with the experiments of Abrams & Hanratty
(1985), wherein the phaseshift between the wave-induced shear stress, and the wavy
wall is calculated, as a function of friction Reynolds number, for a given wavy
wall ↵H = 2⇡ (figure 3a). For small friction Reynolds numbers, the models shown
in the comparison curve agree with one another, suggesting that at small Reynolds
numbers, the QL approach is valid. Note also that our QL model and that of
Abrams & Hanratty (1985) agree closely; any minor differences are due to differences
between the coordinate systems. We have favoured the Benjamin coordinates for their
simplicity, and because other authors have shown them to be valid in comparisons with
experiments (Tseluiko & Kalliadasis 2011). At higher Reynolds numbers, however, the
experimental curve exhibits a large local maximum in the phaseshift, which none of
the zero-equation models predicts very well. We therefore turn to the viscoelastic
description. We apply the mixing-length theory (2.50) and (2.51) for the wave-
induced dissipation and obtain the associated phaseshift curve (figure 3b). This curve
reproduces the sharp maximum in the phaseshift seen in the experiments. Furthermore,
in figure 4, we plot the magnitude of the wall shear stress as a function of the friction
Reynolds number. The viscoelastic model again gives a good qualitative description
of the dependence. Although our results are superior to those produced by the ab
initio theories developed by Hanratty and co-workers, the lack of precise quantitative
agreement is to some degree disappointing. Thus, we systematically review the causes
of this lack of agreement.

First, we investigate whether the inclusion of rapid distortion in the description of
the turbulence improves the accuracy of the model with respect to the experimental
data. We determine the length scale in the interpolation function I (⌘) = 1 � e�(⌘/zt)2

as the boundary between two domains, which is determined by equating a time scale
for advection of a turbulent eddy past one wavelength with an eddy decay time, i.e. by
the root-finding equation

U0
0(zt) = ↵U0(zt). (3.2)
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FIGURE 3. Comparison of the phaseshift (in degrees) between the models and the
experiment of Abrams & Hanratty (1985). (a) Zero-equation models; (b) the viscoelastic
model, with the wave-induced dissipation determined by the mixing-length theory (2.50)
and (2.51).
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FIGURE 4. The magnitude of the wave-induced interfacial shear stress (2H|cTxz|/⇢GU2
0)/Re⇤,

as a function of the friction Reynolds number.

The phaseshift study in figure 5 suggests that the inclusion of the rapid distortion
does not improve the model predictions. Moreover, the rapid-distortion stream function
possesses oscillations that propagate throughout the flow domain (figure 6). Although
these oscillations are also present in the model of Ierley & Miles (2001), they have
not been observed in any of the numerical or experimental studies we consider
here. In Appendix we demonstrate that these oscillations are generic to the class
of rapid-distortion model considered here, if the decay scale in the function I is
not sufficiently long, by using a toy model. In other words, a possible reason for the
occurrence of oscillations in the RDT predictions is that the value for zt obtained from
equating the eddy turnover and advection time scales, Tt(zt) = Ta(zt), is too small. In
fact, since this is only obtained from a scaling argument, a more general but equally
valid requirement would be Tt(zt) = �Ta(zt), where � is an O(1) constant. Rather
than trying to find an optimum value for � that would just suppress the oscillations,
we note that the predictions for the phaseshift in the wall stress obtained with the



Turbulent flow over a liquid layer revisited: multi-equation turbulent modelling 373

 

 

 
 

Re*

0

10

20

30

40

50

60

70

80

90

 

10–4 10–3 10–2 10–1

VEM
RDT
AH–EXPT

FIGURE 5. The effects of rapid distortion on the phaseshift of the shear stress relative to the
wavy wall. The experimental data shown for comparison come from the paper of Abrams &
Hanratty (1985).
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FIGURE 6. Rapid-distortion model: sensitivity study of the effect of the decay length scale of
I on the stream function (Re⇤ = 1200). Solid line, R(F̂); broken line, =(F̂). (a) The length
scale zt is set according to (3.2); (b) the length scale is given by zt = 1, that is, we have
returned to the viscoelastic picture.

viscoelastic and RDT models are in reasonable agreement, and therefore concentrate
on the viscoelastic model for the remainder of the paper.

In the viscoelastic model, the only two terms for which closure hypotheses are
invoked are the wave-induced dissipation and the viscoelastic relation, wherein ⌧̃ is
related linearly to k̃. Our assumption for the wave-induced dissipation (2.50) and (2.51)
is an approximation based on dimensional analysis; better agreement between theory
and experiment can be obtained by modifying this form (e.g. figure 7). Although the
viscoelastic relation ⌧̃ = (⌧0/k0)k̃ is based on a standard treatment, such an approach
is valid only in the equilibrium layer of the turbulence, wherein the mean state is
characterized by the logarithmic profile. There is no reason to assume that it holds in
the limit as ⌘! 0. Thus, the correct viscoelastic relation ought to read

⌧̃ =
✓
⌧0

k0
k̃
◆
 (⌘;↵,Re⇤), (3.3)
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estimate for the mixing length `0 > d⇤ = ⌫/U⇤. The intermediate form corresponds to the
dissipation function Ẽ = CDU0

0(⌘)k̃. The correct form of the dissipation function is unknown,
and the results demonstrate great sensitivity to this function.

where

lim
⌘!0

 (⌘) / e�i⇡/2, (3.4)

to agree with (2.35), and where

lim
⌘!1 (⌘) = 1. (3.5)

This concept is similar to the notion in ‘Model D’ that the characteristics of the
turbulent stresses change abruptly in the viscous sublayer. We have experimented
with several forms for  and better agreement between theory and experiment can
be obtained for the quantities plotted in figure 3. However, instead of focusing on
optimizing fitting parameters, we note that our unadjusted model gives good qualitative
agreement with the experiments of Hanratty and co-workers, and is superior to the
other ab initio theories developed therein (eddy viscosity, frozen turbulence, k–✏
model). Further improvement to the model results could also be obtained by using
a second-order closure scheme for the WIRSs, as in the work of Meirink & Makin
(2000). However, this approach is cumbersome to implement analytically, and we
therefore persevere with the simpler method, which gives approximate agreement with
the experiments.

3.2. Comparison with numerical simulations

We demonstrate, by comparison with DNS, that the viscoelastic model correctly
predicts the magnitude of the WIRSs. The comparison is based on the numerical
study of Kihara et al. (2007), who provide such statistics. We start with the following
moving-frame momentum-balance equation

L (u ·ru) = �@p
@x

+ @Tix

@xi
+ @⌧

@z
, (3.6)

and we examine the importance of the wave-induced advection, viscous and Reynolds-
stress terms relative to the wave-induced pressure term. Here L represents the
linearization of the advective term such that no harmonics are present, and Tij is
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FIGURE 8. Comparison with the work of Kihara et al. (2007): vertical profiles of the
magnitude of the wave-induced contributions to the streamwise momentum equation,
normalized relative to the wave-induced pressure gradient. Solid line: advective term; dashed
line: viscous term; dotted line: WIRSs.

the viscous stress tensor. We plot the absolute value of the wave-induced terms,
normalized by the wave-induced pressure gradient. The results are shown in figure 8.
Unlike in other sections (§§ 3.1 and 4), it is not possible to implement direct
comparisons with the DNS: Kihara et al. (2007) do not explain how they pass from
boundary-fitted coordinates to Cartesian coordinates, and we are therefore unable to
map our results directly on to theirs. Nevertheless, a qualitative comparison between
figure 8 and figure 12 of the work of Kihara et al. (2007) is possible. Our model
predicts well the relative importance of the WIRSs, as well as the location of the
maxima and minima of this contribution, relative to the critical-layer height. The exact
details are not predicted very well: as in § 3.1, our closure model contains several
approximations and is inexact. Finally, the model predicts the sign and magnitude
of the form drag, compared with the DNS; this is discussed in more detail in the
context of shear-driven channel flow. In the context of shear flow again, we discuss the
accuracy with which our model predicts the mean, wave-induced flow.

4. Shear-driven channel flows: comparison with simulations

We examine the work of Sullivan et al. (2000), who carried out DNS in a shear-
driven channel at Re = 8000. First, we examine the DNS values of the phaseshift of
the wall shear stress and the pressure relative to the wavy wall, using a hierarchy
of models. These quantities are important, since the stresses acting on the wavy wall
will provide a source of energy to the wave-induced perturbations, if the phaseshifts
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c/U⇤ DNS QL EVM VEM RDT c/U⇤ DNS QL EVM VEM RDT

0 0.5 0.7 0.7 0.7 0.7 0 2.9 2.8 2.8 2.8 2.8
3.9 0.6 0.9 0.9 0.9 0.9 3.9 0.9 1.7 1.8 1.5 1.5
7.8 2.1 2.0 1.9 1.9 1.9 7.8 2.2 2.2 2.0 2.2 2.2
11.5 2.3 2.3 2.3 2.3 2.3 11.5 2.6 3.1 2.9 2.9 2.9
22.0 2.4 2.3 2.4 2.2 2.2 22.0 3.1 3.1 3.1 3.1 3.1

TABLE 1. Parametric study as a function of wave speed c/U⇤ for ↵/Re⇤ = 0.0262 with
the DNS results of Sullivan et al. (2000). The study shows a comparison of the predicted
phaseshift 1' = ↵1x between (left) the viscous stress at the wall and the wavy wall;
(right) the pressure at the wall and the wall itself.

take certain values. In two-phase flow (§ 5), these energy sources become a route to
instability. The wall shear stress is given by (2.24), while the wave-induced pressure
can be calculated from the stream function F̂(⌘) in a standard fashion. Although the
DNS results show a nonlinear response, the first harmonic clearly dominates, and
this comparison is justified: we compute a phaseshift by measuring the distance 1x
between the global minimum of the stress and the global minimum of the wall height.
We compute the phaseshift for the four models: the results are shown in table 1.
The comparison between the DNS and the theory is excellent for the wall shear
stress, where the response of the flow to the wavy wall is linear. The comparison
is spoiled somewhat in the case of the pressure response, where the response of
the pressure to the wavy wall exhibits contributions from higher-order harmonics. To
understand the structure of the wave-induced flow, we compare our results for the
total stream function (2.16) in boundary-fitted coordinates with figure 16 of Sullivan
et al. (2000) (figure 9). We use the QL version of our model; the other variants
yield similar patterns and are not reported here. Very good qualitative agreement
is obtained between the theoretical results and the DNS. Next, we study the wave-
induced velocities (figures 10–13), which can be compared in a quantitative way
with figures 17–20 in Sullivan et al. (2000). These figures show good agreement
between the theoretical results and the DNS. These results are insensitive to the
turbulent closure hypothesis, and the other models (EVM, VEM etc.) produce similar
behaviour. Any small discrepancies between the theoretical and numerical curves can
be explained by the nonlinear nature of the simulations.

To explain the fact that all models yield similar results, we examine the relative
importance of the advective, viscous and Reynolds-stress terms in the streamwise
momentum equation, compared with the pressure gradient, in the VEM framework.
A comparison between DNS and our model for the pressure-driven case has already
yielded good qualitative agreement (§ 3.2), and suggests that our model is effective
in estimating the magnitude of the Reynolds-stress terms. Figure 14 shows the model
prediction for the magnitude of the WIRSs. This term contributes very little to the
momentum balance, at all wave speeds. Increasing the Reynolds number to a value
exceeding that in the DNS (Re = 105, Re⇤ = 2186, ↵/Re⇤ = 0.0022) does little to
change this balance. Thus, in contrast to the pressure-driven case, where the WIRS is
comparable in magnitude to the advective term, in the shear-driven case, the WIRS is
relatively unimportant, even at large Reynolds numbers and high wave speeds.

In the preceding figures (figures 10–13), we have indicated the location of the
critical layer U0(zc) = c. Sullivan et al. (2000) argued on the basis of stream function
plots akin to figure 9 that the Miles mechanism may be important at the intermediate
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value of c/U⇤ = 7.8, as a cat’s eye pattern appeared at the critical height and the
critical height is only in the gas and not far removed from the wall at this intermediate
case. The present analysis allows us to re-examine this issue rigourously, by writing
down an energy decomposition for the wave. Because the QL description agrees so
well with the DNS data, we restrict ourselves to this case. We work in the laboratory
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frame: we take the dot product of the velocity u with the linearized RANS equations
and integrate over the periodic cell. The result is the following balance law:

KIN + DISS = REY + FIN + TURB + NOR + TAN

� �

Z 1

0
d⌘U0

0(⌘)⌧0(⌘) + �⇢GU2
⇤, (4.1a)

where �= 2⇡/↵ and

KIN = 1
2
@

@t

Z �

0
dx
Z 1

h0(x�ct)
dz ⇢Gu

2, (4.1b)

DISS = 1
Re

Z �

0
dx
Z 1

h0(x�ct)
dz[2u2

x + 2w2
z + (uz + wx)

2], (4.1c)

REY = �
Z 1

0
d⇠
Z 1

0
d⌘ ũw̃U0

0(⌘), (4.1d)
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FIN = �
Z 1

0
d⇠
Z 1

0
d⌘[U0(⌘)w̃(f@zu +g@xw) � 2a↵U0(⌘)U0

0(⌘)R(�)ew], (4.1e)

TURB = �a↵
Z 1

0
d⇠
Z 1

0
d⌘ ũ�⌧ 0

0(⌘) + 4a2↵2
Z 1

0
d⇠
Z 1

0
d⌘[R(�)]2U0(⌘)⌧

0
0(⌘), (4.1f )

NOR = �c
Z �

0
dx
@h0

@x


p̃ + 2

Re
g@xxu
�

, (4.1g)

TAN = �1
2

a2↵2

Re
cU0

0(0) � ↵c
Z �

0
dxfTxzh0(x), (4.1h)

where the boundary conditions correspond to an Airy wave. The term KIN represents
the change in the system’s kinetic energy. The sources of energy into the system
(e.g. shear at the upper plate, or a streamwise pressure drop) balance with the
molecular dissipation (described by the term DISS). Hence, the time average of
KIN is zero. The quantity REY represents a transfer of energy from the mean
flow into the wave-induced flow, associated with motions in the bulk. The term FIN
has a similar interpretation, and arises from the finite amplitude of the waves. The
second contribution to this term occurs because the volume element itself has multiple
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c/U⇤ 0 3.9 7.8 11.5 22

REY �0.0321 �0.0341 �0.0098 0.0108 0.0311
FIN 0.1645 0.3109 0.4273 0.0138 0.0013
TURB �0.0044 �0.0038 0.0016 0.0019 0.0013
TAN 0 �0.0095 0.0055 0.0215 0.1573
NOR 0 �0.0710 �0.1436 �0.0057 0.0726

TABLE 2. Energy budget for the shear-driven case, QL model. Significant contributions to
the budget are underlined.

contributions:

dx dz = {1 � 2↵aR(�) + 4↵2a2[R(�)]2} d⇠ d⌘. (4.2)

Finally, NOR and TAN represent the transfer of energy into the wave-induced flow
as a result of normal and tangential stress at the bottom wall. The results of the
decomposition are shown in table 2. The dominant source of energy balancing the
dissipation varies as a function of wave speed c/U⇤. For c 6= 0, the terms REY ,
FIN and TAN are of particular interest. The term REY is unimportant for all but
the intermediate value c/U⇤ = 11.5. The term TAN is initially negative but becomes
positive, and dominates as an energy source for large c/U⇤ values, c/U⇤ > 11.5.
For the intermediate c/U⇤ values, the terms REY and FIN when taken together,
dominate as the energy source. In the context of interfacial instability of waves of
infinitesimally small amplitude, the dominance of the term REY is the signature of a
critical-layer or Miles-type instability (Boomkamp & Miesen 1996): its pre-averaged
form has a large contribution at the critical layer, associated with energy transfer
into the perturbations. Although this scenario is distinct from the situation considered
here (waves of infinitesimally small slope), the positivity of REY suggests that the
critical layer is playing a role as an energy source. This parallelism between interfacial
instability and the flow disturbance past a wavy wall is strengthened by consideration
of the functions

⌧wrs(⌘) = �
Z �

0
d⇠ ũw̃, (4.3a)

⌧fin(⌘) = �
Z �

0
d⇠


U0

U0
0
w̃(f@zu +g@xw) � 2a↵U0R(�)e⌘

�
, (4.3b)

such that

REY =
Z 1

0
d⌘ ⌧wrs(⌘)U0

0(⌘), FIN =
Z 1

0
d⌘ ⌧fin(⌘)U0

0(⌘). (4.3c)

(The subscript ‘wrs’ denotes the wave Reynolds stress.) For infinite Reynolds numbers,
it is known that the function ⌧w(⌘) possesses a jump across the critical layer
U0(⌘c) = 0, signifying an energy source (Miles 1957; Benjamin 1959). For the finite
Reynolds numbers considered here, we expect ⌧wrs(⌘) to change sign near ⌘ = ⌘c,
again signifying an energy input (Boomkamp & Miesen 1996). This is visible clearly
in figure 15: for intermediate c/U⇤ values (c/U⇤ = 3.9, 7.8, 11.5), the wave Reynolds
stress is positive below the critical layer, indicating a net input of energy into the
waves; the function has a zero at ⌘ = ⌘c and beyond ⌘ = ⌘c, the wave Reynolds stress
is negative.
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Note that the critical-layer mechanism acts only at intermediate c/U⇤ values: if c/U⇤
is small, the critical layer lies close the surface, the mean-flow curvature is negligible,
and the mechanism does not operate (Miles 1957); If c/U⇤ is large, then the critical
layer lies far from the surface, and it cannot interact with the wave-induced flow.
These results highlight the central role of the critical layer in the generation of energy
inputs to the perturbations, and underscore the contention of Sullivan et al. (2000)
that the critical layer is dynamically important. As c/U⇤ increases, the contribution to
the energy sources from the interfacial terms TAN and NOR become important, until
at c/U⇤ = 22, it is the TAN term that dominates. Again, this is consistent with our
knowledge of the instability of genuine interfaces (as opposed to wavy walls): for
several canonical instabilities, it is this term that provides a net source of energy into
the system (Boomkamp & Miesen 1996).

We comment on the lack of involvement of the so-called ‘form drag’

Dp =
Z �

0
dx p

@h0

@x
(4.4)

in this calculation. The coefficient Dp can be brought into the calculation by
rearrangement of the energy budget (4.1):

cDp =
⌧
REY + FIN + TAN + TURB � 2cRe�1

Z �

0
dxg@xxu � DISS

�

� �

Z 1

0
d⌘U0

0(⌘)⌧0(⌘) + �⇢GU2
⇤, (4.5)

where the ensemble average h·i herein reduces to a time average, such that hKIN i = 0.
This re-arrangement sheds no light on the mechanisms by which energy is delivered
into the wave-induced flow: all terms in the energy budget are necessary to this
understanding. This conclusion is especially relevant to genuine interfacial instability,
in which case we must also solve the stability problem in the liquid and so determine
the growth rate. This is the subject of § 5.
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Although we have demonstrated the unimportance of the form drag in pinpointing
the source of instability, it is helpful to use it in validating our theories against DNS.
Thus, we compute Dp and show comparisons with the DNS in figure 16. There is little
difference between the QL and viscoelastic descriptions. Both descriptions provide for
a negative value of � at large wave speeds. This is consistent with the DNS but
inconsistent with the purely inviscid Miles theory. Thus, it is the ordinary molecular
viscosity, and not the contribution of turbulent stresses, that plays a role in generating
negative Dp-values at large wave speeds. This is consistent with Benjamin’s theory of
viscosity-induced non-separated sheltering (Benjamin 1959) (but see also the paper of
Boomkamp et al. 1997).

In view of these considerations, the approximate agreement between DNS and
theory obtained in this section is satisfactory. We therefore pass over to turbulent flow
in the case of genuine two-phase flow, where we examine the dynamics of both the
liquid and the gas layers.

5. Deep-water waves

Having analysed turbulent flow over a moving wavy wall, we now proceed to extend
this study to turbulent gas flow over a liquid layer, resolving the wave-induced flow in
the liquid as well as in the gas. Unlike in previous sections, we consider herein waves
of infinitesimally small amplitude. In practical applications (Cohen & Hanratty 1965;
Craik 1966; Hewitt & Hall-Taylor 1970), the wave speed is not a parameter and must
be determined by solving an eigenvalue analysis. This analysis is based on solving
an equation for the stream function in both phases and applying matching conditions
at the interface. We focus on the shear-driven case, with coupling to a deep liquid
layer. We expect the WIRSs to be of marginal importance; nevertheless, we continue
to investigate this issue, using the viscoelastic formulation. The physical scenario just
described has been investigated previously (Miesen & Boersma 1995; Boomkamp &
Miesen 1996; Özgen, Degrez & Sarma 1998), without the modelling of the WIRSs.

We study the case of a shear-driven turbulent gas, coupled across an interface to a
liquid flow. Thus, the flow is confined by a flat plate at z = H, a large distance from
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the interface. This plate moves at velocity Umax relative to the interface. Thus, the
basic velocity is unchanged from (2.4), the Reynolds number is based on the upper-
plate velocity Re = ⇢GUmaxH/µG, and the friction Reynolds number Re⇤ = ⇢GU⇤H/µG

is fixed by the condition

Re2
⇤

Re

Z 1

0

ds
1 + Re⇤s(1 � s)f (s)f (1 � s)

= 1. (5.1)

The flow in the gas is coupled to a non-dimensional flow profile in the liquid:

U0(z) = A(eBz � 1), z < 0, (5.2)

where A and B are constants to be determined. This model has been used before by
(Boomkamp & Miesen 1996) and by Zeisel, Stiassnie & Agnon (2007). Equation (5.2)
contains only one free parameter, since the continuity of tangential stress requires

mU0
0(0�) = U0

0(0+), z = 0, (5.3)

where m = µL/µG is the viscosity ratio. Hence, mAB = Re2
⇤/Re, and there remains a

single free constant A whose value is fixed with reference to the literature (Boomkamp
& Miesen 1996), U0(0)/U⇤ = O(1), hence A = Re⇤/Re. Thus,

U0(z) = Re⇤
Re


exp

✓
zRe2

⇤
mARe

◆
� 1
�

, z < 0. (5.4)

Next, we focus on the wave-induced component of the velocity, in a manner similar
to § 2. Now, however, we assume an infinitesimal wave amplitude. Thus, in a standard
fashion (Valluri et al. 2010), the wave-induced stream function in liquid layer (e L)
obeys

i↵r[(U0 � c)(@2
z � ↵2)e L � U00

0
e L] = mRe�1(@2

z � ↵2)2 e L, z 6 0, (5.5a)

where ⇢ = ⇢L/⇢G is the density ratio. The wave-induced stream function in gas layer
(e G) obeys

i↵[(U0 � c)(@2
z � ↵2)e G � U00

0
e G] = Re�1(@2

z � ↵2)2 e G + (@2
z + ↵2)e⌧ . (5.5b)

The equation for the TKE is

[i↵(U0 � c) + CDU0
0]ek = (Re�1 + µT)(@2

z � ↵2)ek + µ0
T@z
ek + µ00

T
ek

+ U0
0e⌧ + ⌧0(@

2
z + ↵2)e G + i↵k0

0
e G, (5.5c)

and the stress e⌧ is accounted for either by the viscoelastic theory, or the rapid-
distortion theory discussed in § 2. Across the interface, the stream function satisfies the
conditions of continuity of velocity and tangential stress, and the jump condition in the
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normal stress:
f L = f G, (5.6a)

@zf L = @zf G +
f L

c � U0(0)
[U0

0(0+) � U0
0(0�)], (5.6b)

m(@2
z + ↵2)f L = (@2

z + ↵2)f G + Re e⌧ , (5.6c)

m(@3
z
f L � 3↵2@zf L) + i↵r Re[c � U0(0)]@zf L + i↵r ReU0

0(0�)f L

= (@3
z
f G � 3↵2@zf G) + i↵ Re[c � U0(0)]@zf G + i↵ ReU0

0(0+)f G

+ @ze⌧ + i↵r Re
c � U0(0)

(Fr + ↵2S)f G, (5.6d)

where we have introduced the inverse Froude and inverse Weber numbers, respectively,

Fr = g(⇢L � ⇢G)H
⇢GU2

max

, S = �

⇢GU2
maxH

. (5.7)

Here g and � denote gravity and surface tension, respectively. The TKE equation
is second order, and therefore requires only two boundary conditions. We apply
the conditions k0 + k̃ = 0 on the small-amplitude free surface and on z = 1, the
non-dimensional vertical extent of the gas layer. These conditions are based on the
assumption that the gas-phase turbulence ‘sees’ the interface as a solid wall. The
validity of this assumption is examined below. Upon linearization on to the surface
z = 0, these kinetic energy conditions are

ek = 0 at z = 0, and at z = 1. (5.8)

Consequently, ⌧̃ = 0 in (5.6c), and the interfacial conditions (5.5) reduce to the
standard form seen in laminar flow (Valluri et al. 2010). Finally, at the top of the
gas domain z = 1, we have the requirement that the perturbation velocities should
vanish:

f G = @zf G = 0. (5.9)

Thus, we obtain a total of 10 conditions, which provides sufficient information to
close the system of equations (f L,f G,ek, e⌧ ). No conditions are required on e⌧ , since
it appears only in an algebraic way in the model. We solve (5.4)–(5.9) using a
Chebyshev collocation method, which is augmented to include the kinetic energy
and the stress (for a description and validation of this method, see Valluri et al.
2010). Following standard practice, we modify the number of collocation points until
convergence is achieved: for Re = 105, 300 collocation points in the liquid (NL) and
150 points in the gas (NG) are sufficient for convergence to four significant figures for
R(↵c) and two significant figures for =(↵c).

We carry out a linear stability analysis around the base state just described, for the
following parameter values:

m = 55, r = 1000, Re = 105, S = 0 (5.10)

and for various Fr numbers. Our parameter choices are based on values relevant
to the generation of waves by wind in oceanographic applications (Boomkamp &
Miesen 1996). We vary Fr around a reference value Fr0 = 500 because we have
found elsewhere that the value of Fr controls the wave speed (Ó Náraigh et al. 2011).
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Some results concerning the growth rates and wave speeds are shown in figure 17.
The value of the inverse Froude number is made to vary around the reference value
Fr0 = 500. This is close to the threshold value for which the system becomes stable
at all wavenumbers. The dispersion curves for the zero-equation QL and one-equation
models are shown in the figure. We focus on the one-equation viscoelastic model (the
rapid distortion introduces negligible changes relative to the viscoelastic results: the
difference between these curves is so small that we do not show it here). The results
for the QL and one-equation models are similar in their behaviour, and the quantitative
differences are small.

The results of figure 17 are based on the assumption that the gas ‘sees’ the
interface as though it were a solid wall. This is a reasonable assumption for small-
amplitude waves in two-phase flows with large density contrasts, as various numerical
simulations imply (Lombardi, Angelis & Banerjee 1995; Fulgosi et al. 2002; Lin et al.
2008). Thus, in our base-state model k0 ⇠ z2 as the interface z = 0 is approached, in
accordance with wall flows. Nevertheless, these works clearly point out that the actual
value of k0(0) at the interface, while small, is not zero. To understand the effects
of such coupling on the stability results, we have extended the viscoelastic model to
the liquid phase, and linked the turbulence in the different phases by prescribing a
non-zero value for k0(0) at the interface. This value cannot be determined a priori, and
is therefore treated as a free parameter, which we vary. Specifically, we take

k0(0) = "⇢Gu2
⇤G, (5.11)

and we investigate the effects of this varying " on the stability analysis. We retain the
interfacial condition k̃ = 0: numerical studies suggest that the diagonal component of
the Reynolds stress tensor vanishes rapidly as the interface is approached (Lombardi
et al. 1995; Fulgosi et al. 2002; Lin et al. 2008), hence ⌧̃ = 0 at the interface, and we
are thus forced to retain the interfacial condition ⌧̃ = (⌧0/k0)k̃ = 0. The results of the
implementation of this modified model are shown in figure 18. They do not differ very
much from the results in figure 17. This consistency between the basic model and the
modified one reinforces the robustness of our whole approach. Nevertheless, when we
go beyond the assumption of wall–interface interchangeability in the modelling of the
turbulent WIRS, we are unable to derive the precise scaling laws for k0 ⇠ k0(0) + zp1

and ⌧0 ⇠ zp2 . It can therefore be said that the modified viscoelastic model discussed
herein represents the absolute limit of linear modelling, and that the next necessary
step in the description of wave generation by turbulent winds must involve numerical
simulations.

The energy-budget analysis for small-amplitude waves in two-phase flow has been
developed elsewhere (Boomkamp & Miesen 1996), and is similar to that described
in § 4. Such analysis, applied to the cases in figure 17, pinpoints two destabilizing
influences:

REYG =
Z 1

0
dz ⌧wrs(z)U0

0(z), ⌧wrs(z) = �
Z �

0
dx ũw̃, (5.12)

and

TAN =
Z �

0
dx[( euL �fuG)fTxz]z=0 = (m � 1)

Re2
⇤

Re

Z �

0
dx ⌘(x)fTxz(x, z = 0). (5.13)

The term REYG picks up a large contribution close to the critical layer U0(z) = cr,
where the function ⌧wrs(z) attains its maximum value. The term TAN is positive if
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FIGURE 17. Growth rates �r = ↵ci of the linear stability analysis, with reference inverse
Froude number Fr0 = 500; the other parameters are determined by (5.10). Left column,
growth rates; right column, wave speeds. Across the top, Fr = 0.5Fr0; middle row, Fr = Fr0;
across the bottom Fr = 3Fr0.

m > 1, and if the absolute value of the phase shift between the free surface and the
wave-induced viscous stress is less than ⇡/2. This underscores the importance of the
phaseshift study in any linear stability analysis. In both cases, it is the first term that
dominates (see table 3). This is entirely consistent with the finite-amplitude, wavy-wall
calculations carried out in § 4. Similar also to § 4 is the functional form of the total
stream function, shown at maximum growth in figure 19: there are ‘cat’s eyes’ at the
crest of the wave, which is linked to the dominance of the critical-layer mechanism.
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KIN L KING REY L REYG DISSL DISSG TURBG NOR TAN

QL 0.99 0.01 �1.70 103.75 �21.63 �102.45 0 �48.24 71.26
VEM 0.98 0.02 �1.50 74.52 �15.00 �62.62 �15.55 �39.41 59.06

TABLE 3. Energy budget for ↵ = 39, Fr = Fr0.

The results of a more detailed parametric study are shown in figure 20, wherein we
see the effects of the inverse Froude number on the linear stability upon decreasing
the inverse Froude number away from criticality (recall that the results in figure 17
are near criticality). The results are similar for the zero- and one-equation models (QL
and VEM): decreasing the inverse Froude number is destabilizing and leads to slower
waves. The slow waves are in evidence in figure 20(c). The change in the stability
characteristics is mirrored in the energy budgets, whose values we tabulate for the
QL case in table 4. To highlight further the change in the stability characteristics,
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FIGURE 21. Wave Reynolds stress function at maximum growth for (a) Fr = Fr0; (b) Fr =
Fr0/20. In (a) the stress function is maximal near the critical layer, zc = 0.0021, suggesting
that the critical layer plays a role in the instability; in (b) the stress function is maximal at
the interface, suggesting an interfacial instability, due to the mismatch in viscosity across the
interface.

we study the wave Reynolds stress function at maximum growth for the two extreme
cases, Fr = Fr0 and Fr = Fr0/20 (see figure 21). The wave Reynolds stress changes
form: in the former case the critical-layer mechanism is clearly important, since the
stress function has a maximum close to this point, while in the latter case, this
mechanism appears to be unimportant, since the stress function is maximal directly
at the interface, underscoring the importance of the TAN term in the energy budget,
and demonstrating that we have achieved a transition from the critical-layer to the
interfacial instability. According to (5.13), this interfacial instability is driven by the
mismatch in the viscosity across the interface.

A comparison between our theoretical predictions and experimental results is
possible by examination of the quantity

� = Maximum growth rate
Frequency at maximum growth rate

= ci(↵max)

cr(↵max)
. (5.14)

A review of the experimental data for the generation of wind by waves (Plant 1982)
suggests the following empirical bound for �:

0.02
✓

U⇤
cr

◆2

6 � 6 0.06
✓

U⇤
cr

◆2

, (5.15)
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Fr REY L REYG DISSL DISSG TURB NOR INT

Fr0 �0.02 1.10 �0.36 �1.19 0.00 �0.40 1.00
(1/2)Fr0 �0.01 0.42 �0.32 �0.74 0.00 �0.17 1.00
(1/5)Fr0 0.00 0.07 �0.19 �0.72 0.00 �0.04 1.00
(1/10)Fr0 0.00 �0.02 �0.14 �0.74 0.00 �0.04 1.00
(1/20)Fr0 0.00 �0.07 �0.09 �0.77 0.00 �0.05 1.00

TABLE 4. Energy budget at maximum growth detailing the transition from critical-layer to
viscosity-stratified waves, as a function of gravity number, where Fr0 = 500 and Re = 105.
The budgets have been normalized such that TAN = 1 in each case. In the first table, we
have included the WIRSs; in the second table, they are set to zero.
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FIGURE 22. Comparison between our models and the experimental correlation of Plant
(1982) (dashed lines) and the DNS results of Lin et al. (2008) (squares).

where U⇤ is the interfacial friction velocity. The DNS results of Lin et al. (2008)
for two-phase interfacial turbulence imply a growth rate � that is within, or slightly
above this range (those authors use a model of shear-driven turbulence similar to
the model used here). Thus, we plot � as a function of U⇤/cr in figure 22, using
both the zero- and one-equation models of turbulence. The results in both cases are
within, or close to the formula (5.15) proposed by Plant. Our growth-rate results are
also close to the numerical predictions of Lin and coworkers. This close agreement
between our theories and the empirical results inspires confidence in our model. It
also highlights the marginal role of the WIRSs in general, and rapid distortion in
particular, in the generation of waves by wind. The concurrence underscores the
crucial role played by the critical layer and the viscosity contrast in the creation
of interfacial instabilities. This conclusion is consistent with the recent work of
wind–wave interaction (Hristov, Miller & Friehe 2003), whose empirical measurements
support the critical-layer mechanism as the means for generating waves on the ocean
surface.

6. Conclusions

We have formulated a one-equation model of interfacial turbulence with special
emphasis on modelling the interaction between the turbulent stresses and interfacial
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Source System ↵/Re⇤ Model

Zilker et al. (1976) Wavy wall, c = 0 High QL model suffices
Abrams & Hanratty (1985) Wavy wall, c = 0 Low One-equation model,

dissipation of
TKE dominates

Sullivan et al. (2000) Wavy wall, c > 0 High QL model suffices
This study Interfacial flow, Low QL model and

infinitesimal one-equation model
waves have give similar results
amplitude

TABLE 5. Summary of the systems studied and the applicable models.

undulations. We have applied the model to a variety of test cases (involving both
a wavy wall and genuine two-phase flow). These are summarized in table 5, where
we also summarize the performance of the models relative to DNS and experiments.
In all cases considered, the effects of rapid distortion do not appear to be relevant.
In the wavy-wall case (at finite wave amplitude, but small wave slope), the WIRSs
play no role at all at low Reynolds numbers, while at higher Reynolds numbers, they
are necessary in order for the experimental and theoretical values of the wall shear
stress to agree. However, approximate qualitative agreement is possible within the QL
framework, even at these higher Reynolds numbers. The solution of the fully coupled
two-layer problem (albeit at infinitesimal wave amplitudes) supports this conclusion.
More analysis and data are required in order to address the finite-amplitude, small-
slope, fully coupled problem. However, given the results on display here, it is unlikely
that the WIRSs will play a significant role in the generation of interfacial instability
in this more general case. That a cat’s eye stream function is visible in both the
wavy-wall (finite amplitude) and wavy-interface (infinitesimal amplitude) cases at
certain values of the wave speed supports the conclusion that the Miles mechanism
of interfacial instability is important. This conclusion appears to be supported by the
most recent experimental and theoretical results (Hristov et al. 2003; Janssen 2004).
Moreover, the stream function information generated in the two-phase case may be of
use as a testbed for future DNS studies.
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Appendix. Strange oscillations are generic to rapid-distortion models

As mentioned in § 3, the rapid-distortion theory as constituted in this paper, and
in the work of Townsend (1972, 1980) and Ierley & Miles (2001), contains bulk
oscillations that are inherent in the model. These oscillations can be damped to zero by
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a careful choice of parameters. To understand this in more detail, we consider a simple
two-fluid toy model, wherein analytical solutions are possible. This model possesses as
its solution the oscillatory far-field structures visible in figure 6.

The toy model consists of the following base state

U =

8
><

>:

mz, �1 6 z 6 0,

z, 0 6 z 6 b,

b, z > b,

(A 1)

together with the following Orr–Sommerfeld and WIRS equations (cf. (5.4) and (5.5)):

i↵r(mz � c)(@2
z � ↵2)f L = mRe�1(@2

z � ↵2)2f L, �1 6 z 6 0, (A 2a)

i↵(z � c)(@2
z � ↵2)f G = Re�1(@2

z � ↵2)2f G, 0 6 z 6 b, (A 2b)

i↵(b � c)(@2
z � ↵2)f L = Re�1(@2

z � ↵2)2f L + (@2
z + ↵2)⌧̃ , z > b, (A 2c)

i↵(U0 � c)⌧̃ = �q1(�1@
2
z
f G + �2↵

2f G + i↵�3@zf G), (A 2d)

where q1 is the constant TKE in the far field. Furthermore, we have

�1 = 2(n(0)
12 )2 � (1 � CR)n

(0)
22 , (A 3a)

�2 = 2n12(n11 � n22), (A 3b)

�3 = 2(n(0)
12 )2 � (1 � CR)n

(0)
12 . (A 3c)

Given a set of boundary and interfacial conditions, it is possible to obtain a closed-
form solution to this set of equations (Abramowitz & Stegun 1965; Drazin & Reid
1981). Our goal here, however, is simply to elucidate the oscillatory nature of the
solution found in the full analysis. To that end, we take a characteristic value of the
wave speed c, and obtain a solution to the system (A.2) in the far field z > b. There,
the solution is f G = e� z, where � solves a fourth-order polynomial equation:

(1 + i�1 Req)(� /↵)4 � �3Req(� /↵)3 + [i(�1 + �2)Req � 2 � iReb](� /↵)2

��3Req(� /↵) + iReq�2 + 1 + iReb = 0, (A 4)

where

Req = Re q1
↵(b � c)

, Reb = Re(b � c)
↵

. (A 5)

When b � |c|, we have the condition |Reb| � |Req|, and we can treat |Req |�1 as
a small expansion parameter. The lowest-order solution of (A 4) is then � 2 = ↵2 or
↵2 + i↵Re(b � c), and the rapid-distortion effects appear at first order. In fact,

� =

8
>><

>>:

�1 = �↵


1 + q1
(b � c)2

(�1 + �2 � i�3)

�
,

�2 = �↵piReb


1 + q1

(b � c)2

�1Reb

2

�
, |Reb| � 1.

(A 6)

Note, however, that the rapid-distortion effects appear non-perturbatively in �2 for
sufficiently large values of |Reb|q1. The exact condition is �1q1Reb/(b � c)2 = O(1),
which equates to

↵ . �1q1Re
|b � c| . (A 7)
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FIGURE 23. Far-field stream function in the toy model with typical parameter values
Re = 10 000, cr = 0.1, q1 = 10�3 and ↵ = 2⇡. Solid line, R(e ); broken line, =(e ). The
coefficients �1, �2 and �3 are taken from § 3. (a) b = 0.1; (b) b = 0.3. The oscillations are
damped when the rapid-distortion domain is moved away from the interface.

Thus, the range of wavenumbers across which rapid distortion induces oscillations
in the stream function is controlled by b. As b ! 1, the rapid-distortion domain
is pushed further and further away from the interface, and the oscillations appear
in a narrower and narrower band of the spectrum. This analysis is confirmed by
the stream function plots in figure 23, where we plot the rapid-distortion stream
function for different b-values. There is a clear difference between the two cases
shown: the oscillation is damped at higher b-values (figure 23b). Although our review
of the experimental evidence has not evinced any support for these oscillations,
they are similar to those obtained by Zaki & Saha (2009) in their study of the
interaction between disturbances in the free stream and the boundary layer, wherein
the continuous-spectrum Orr–Sommerfeld equation was used.
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