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We revisit the stability of a deformable interface that separates a fully-developed turbulent gas flow from
a thin layer of laminar liquid. Although this problem has received considerable attention previously, a
model that requires no fitting parameters and that uses a base-state profile that has been validated
against experiments is, as yet, unavailable. Furthermore, the significance of wave-induced perturbations
in turbulent stresses remains unclear. To address these outstanding issues, we investigate this problem
and introduce a turbulent base-state velocity that requires specification of a flow rate or a pressure drop
only; no adjustable parameters are necessary. This base state is validated extensively against available
experimental data as well as the results of direct numerical simulations. In addition, the effect of pertur-
bations in the turbulent stress distributions is investigated, and demonstrated to be small for cases
wherein the liquid layer is thin. The detailed modelling of the liquid layer also elicits two unstable modes,
‘interfacial’ and ‘internal’, with the former being the more dominant of the two. We show that it is pos-
sible for interfacial roughness to reduce the growth rate of the interfacial mode in relation to that of the
internal one, promoting the latter, to the status of most dangerous mode. Additionally, we introduce an
approximate measure to distinguish between ‘slow’ and ‘fast’ waves, the latter being the case for ‘critical-
layer’-induced instabilities; we demonstrate that for the parameter ranges studied, the large majority of
the waves are ‘slow’. Finally, comparisons of our linear stability predictions are made with experimental
data in terms of critical parameters for onset of wave-formation, wave speeds and wavelengths; these
yield agreement within the bounds of experimental error.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A linear stability analysis of small-amplitude waves on an
otherwise flat liquid film would provide a powerful tool in under-
standing and modelling the onset of droplet entrainment from a li-
quid layer by a shearing superposed turbulent gas flow, which has
numerous industrial applications (e.g. Hall-Taylor and Hewitt
(1970)). Furthermore, this would serve as a benchmark for direct
numerical simulations of two-layer flows, as in Boeck et al.
(2007), Valluri et al. (2008), Fuster et al. (2009), Valluri et al.
(2010) for laminar flows. Although various authors have worked
on this problem (Miesen and Boersma, 1995; Kuru et al., 1995),
several difficulties have arisen in these studies, preventing them
from being of direct use as benchmark tests for direct numerical
simulations of turbulent stratified channel flows and industrial
applications. First, a robust model for a base-state velocity profile
that has been tested against experiments and numerical simula-
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tions is not available, and its detailed modelling turns out to be
important. Second, the base state should not require specification
of any fitting parameters: merely the flow rate or imposed pressure
drop (along with the physical and geometrical properties) should
suffice. Previous models lack at least one of these aspects; the
base-state model proposed here satisfies all of these criteria. A sec-
ond motivation for this study is to ascertain the role of perturba-
tions in turbulent stresses, which are caused by the presence of
waves. These could potentially feed back to the growth rate and
speed of the wave even in a linear analysis.

In previous work, a ‘lin-log’ base-state profile has been used in a
boundary-layer setting, and either the friction velocity U⁄ or the
friction factor Cf was guessed (Miesen and Boersma, 1995). Others
have adopted an empirical profile, the validity of which is unclear
(Kuru et al., 1995). Here, we derive a base-state model that con-
tains no free parameters: the friction velocity is determined as a
function of Reynolds number. We develop our base state starting
from a rigorously validated model (that of Biberg (2007)), and gen-
eralise it in order to take account of the near-interfacial zone. This
is an important step since this region is significant for instabilities
driven by viscosity contrasts Yih (1967); as will be shown below,
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this is the dominant mode for our system over the range of param-
eters studied in the present work. We compare the resulting model
with direct numerical simulations and experiments. Furthermore,
our model contains no logarithmic singularities: full modelling of
the viscous sublayers is provided, in contrast to the model of Bi-
berg (2007).

To explain the second motivation for the present study, we
summarise the averaging technique presumed herein. Consider
a large ensemble of realisations of a three-dimensional pres-
sure-driven turbulent channel flow. The velocity field contains
perturbations due to turbulence, and due to the presence of
small-amplitude waves. At any time, a Fourier decomposition
can be taken of the interface height and, simultaneously, of the
velocity and pressure fields. These Fourier-decomposed velocity
and pressure fields can be averaged over the ensemble of realisa-
tions (as well as over the spanwise direction). These ensemble-
averaged velocity and pressure fields are not uni-directional,
but are distorted due to the presence of the corresponding (nor-
mal mode) interfacial wave. Example fields that have been ob-
tained in conceptually the same manner from DNS (albeit for
turbulent flow over a wavy wall) can be found in the paper of
Sullivan et al. (2000). In the present study, results are presented
(and compared) from several RANS models. A significant issue
here is that such wave-induced perturbation stresses may, in
principle, affect the growth rate and speed of waves. Questions
concerning the importance of these stresses have been much de-
bated in the literature (Miles, 1957; Belcher and Hunt, 1993; Bel-
cher et al., 1994; Kuru et al., 1995; Janssen, 2004). Previous
studies on sheared liquid films have not accounted for these ef-
fects, hence the significance of these stresses is not known at
present. The present study does at last provide convincing evi-
dence that these are indeed not important in the determination
of wave speed and growth rate for sheared thin films. The linear
stability analysis and assessment of the significance of perturba-
tion turbulent stresses (perturbed turbulent stresses) are the sub-
ject of Section 3.

At least four mechanisms have been reported to generate insta-
bility in a laminar liquid layer sheared by an external turbulent gas
flow. The first kind, called the critical-layer instability, was identi-
fied by Miles (1957). The transfer of energy from the mean flow
into the wave perturbations is governed by the sign of the second
derivative of the base-state flow at the critical layer – the height
where the wave speed and the base-state velocity match. Another
kind of instability, called the viscosity-contrast mechanism, was
identified by Yih (1967), alluded to above: here, the instability
arises due to the jump in the viscosity across the interface. In addi-
tion, instability can occur because of direct forcing by turbulent
pressure oscillations in the gas (Phillips, 1957). The so-called inter-
nal mode (Miesen and Boersma, 1995; Boomkamp and Miesen,
1996) is observed when the bottom layer is laminar. This mode de-
rives its energy both from the interface, and from conditions in the
bulk of the bottom layer. Thus, this mode persists even when the
upper layer is void (Miesen and Boersma, 1995) and has the char-
acteristics of a Tollmien–Schlichting wave, depending sensitively
on the viscosity contrast. Belcher and Hunt (1993) proposed that
the turbulent stresses could produce the same effect, although in
this paper, we find that the viscous stresses are dominant in the
creation of the instability, at least under the thin-film parameter
regime studied here. Finally, we note here that approximate mech-
anisms such as those identified in Kelvin–Helmholtz-type theories,
although perhaps relevant in large-amplitude waves, do not arise
in the full linearised problem wherein viscous effects are fully ac-
counted for Boomkamp and Miesen (1996).

The paper is organised as follows. The base-state (flat interface)
model is presented in Section 2. In Section 3, we carry out preli-
minary linear stability calculations to investigate the stability of
the flat interface, and to assess the importance of the perturbed
turbulent stresses. The implications of our stability analyses are
discussed in Section 4: we investigate the source of the instability,
the possibility of mode competition, and the importance of interfa-
cial roughness. We validate the linear stability against experimen-
tal evidence, and find good agreement in Secion 5. Concluding
remarks are in Section 6.
2. Base-state formulation

Given a flat-interface base state of a two-layer, pressure-driven
channel flow (Fig. 1), the growth rate of small-amplitude waves on
the interface depends sensitively on the details on the base state.
We therefore focus on deriving an accurate description of the base
state. The resulting velocity profile, including the interfacial shear
stress, are determined by a prescribed external pressure drop,
without the need to introduce any ad hoc parameters. Our start-
ing-point is the model of Biberg (2007), although we develop this
model further by accounting for the presence of near-wall and
near-interface viscous sublayers. The resulting model compares
very favourably with direct numerical simulations (DNS) and with
experiments, as we outline below. We begin by considering the
case of a flat interface, before considering a base state with interfa-
cial roughness in Section 2.2.

2.1. Flat interface

Here, we consider a base state characterised by a steady, spa-
tially-uniform, interface separating a turbulent layer overlying a
thin, laminar one in a rectangular channel; both layers are as-
sumed to be fully-developed. We use a Cartesian coordinate sys-
tem, (x,z), to examine this two-dimensional flow, wherein the
lower and upper layers occupy the regions �dL 6 z 6 0 and
0 6 z 6 h, respectively; the flat interface is located at z = 0 and
the upper and lower walls at z = h and z = �dL, respectively. For
ease of comparison with experiments, the focus of this paper is
on laminar–turbulent systems; the generalisation to turbulent–
turbulent layers is straightforward. Furthermore, the parameter
ranges investigated below are characteristic of air–water systems,
hence for the remainder of this paper, we will refer to the upper
and lower layers as the ‘gas’ and ‘liquid’ layers, respectively.

In the base state, the flow is uni-directional in the horizontal, x-
direction. In the gas layer, near the gas–liquid interface and the
gas–wall boundary, the flow profile is linear, and the viscous scale
exceeds the characteristic length scale of the turbulence (Monin
and Yaglom, 1971; Pope, 2000); this is indicated in Fig. 1. In the
bulk of the gas region, the flow possesses a logarithmic profile
(Monin and Yaglom, 1971; Pope, 2000). We assume that the gas–
liquid interface is smooth, although the model can account for
interfacial roughness; this will be discussed in Section 2.2.

2.1.1. Liquid layer
In the liquid film, the Navier–Stokes equations reduce to the fol-

lowing standard balance law between pressure and viscous forces:

lL
@2U0

@z2 �
@P0

@x
¼ 0; ð1Þ

where U0(z), P0, and lL denote the liquid mean flow velocity, pres-
sure, and viscosity, respectively. We integrate Eq. (1) and apply the
following boundary conditions, which correspond, respectively, to
continuity of tangential stress at the interface, z = 0, and no-slip at
the channel bottom wall, z = �dL:

lL
@U0

@z

����
z¼0
¼ si ¼ qGU2

�i; U0ð�dLÞ ¼ 0; ð2Þ



Fig. 1. A schematic representation of the base flow. The liquid layer is laminar, while the gas layer exhibits fully-developed turbulence, described here by a Reynolds-
averaged velocity profile. A pressure gradient in the x-direction drives the flow.
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where we have assumed that the pressure gradient does not depend
on z. In Eq. (2), qG denotes the gas density, si is the interfacial stress
and U⁄i is the interfacial friction velocity on the gas side. An expres-
sion for U⁄i in terms of @P0/@x will be obtained below. Application of
the boundary conditions (2) yields the following relation for U0:

U0ðzÞ ¼
1

2lL

@P0

@x
z2 � d2

L

� �
þ si

lL
ðzþ dLÞ: ð3Þ

We nondimensionalise on the scale Up, where

Up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
qG

@P0

@x

���� ����
s

; ð4Þ

this scale is characteristic of a flow driven by a pressure gradient.
The rescaling gives

eU0 ¼
1
m
�1

2
Reð~z2 � d2Þ þ Re2

�
Re
ð~zþ dÞ

" #
; d ¼ dL

h
; ð5Þ

in which the tildes denote dimensionless quantities:eU ¼ U=Up; ~z ¼ z=h, and m = lL/lG is a viscosity ratio. The Reynolds
numbers

Re ¼ qGUph
lG

; Re� ¼
qGU�ih

lG
;

are based on Up and U⁄i, respectively, the latter being a characteris-
tic, interfacial frictional velocity. Note also the following relation for
the dimensionless, base-state interfacial streamwise speed, which
we will use below in deriving the base-state profile in the upper
layer:

eU0ð0Þ ¼
1
m

1
2

d2Reþ Re2
�

Re
d

 !
: ð6Þ
2.1.2. Gas layer
In the gas layer, the RANS equations reduce to the following:

lG
@U0

@z
þ s0 ¼ si þ

@P0

@x
z; ð7Þ

where U0(z) is the base-state velocity in the gas, lG is the gas viscos-
ity, and s0 = �qGhu0w0i is the turbulent shear stress due to the aver-
aged effect of the turbulent fluctuating velocities, u0 and w0. In
channel flows, it is appropriate to model this term using an eddy-
viscosity model (Monin and Yaglom, 1971). In mixing-length the-
ory, the eddy viscosity depends on the local rate of strain (Brad-
shaw, 1974), which means that the turbulent shear stress
depends on the square of the rate of strain. Instead of this standard
mixing-length theory, we introduce an interpolation function for
the eddy viscosity, based on the work of Biberg (2007), which mim-
ics the ordinary mixing-length theory near the interface and near
the wall, and transitions smoothly from having a positive slope near
the interface, to having a negative slope near the wall. Thus, the tur-
bulent shear stress is linear in the rate of strain, and

s0 ¼ lT
@U0

@z
; lT ¼ jqGhU�wGð~zÞwið~zÞwwð1� ~zÞ; ð8Þ

where lT is the eddy viscosity, U⁄w is the friction velocity at the upper
wall ~z ¼ 1, and where Gð~zÞ; wið~zÞ, and wwð1� ~zÞ are functions to be
determined; j is the von Kármán constant, taken as to 0.4. Here wi

and ww are interface and wall functions respectively, which damp
the effects of turbulence to zero rapidly near the interface and the wall,
while G is an interpolation function designed to reproduce the ‘law of
the wall’ near the interface and the upper wall. The precise choices for
G and the wall functions, given below, are confirmed by the agreement
between our predictions of the base state and experiments and numer-
ical simulation, as will be discussed later in this paper.

To generate a closure for U0, we substitute Eq. (8) into Eq. (7)
and integrate with respect to z:

U0ðzÞ ¼ U0ð0Þ þ sih
Z z=h

0

1þ h
si

@P0
@x s

� �
ds

lG þ jqGhU�wGðsÞwiðsÞwwð1� sÞ ;

¼ U0ð0Þ þ sih
Z z=h

0

1þ h
si

@P0
@x s

� �
ds

lG þ
jqGhU�iffiffiffiffi

jRj
p GðsÞwiðsÞwwð1� sÞ

;

ð9Þ

where R = si/sw. We nondimensionalise Eq. (9) and make use of Eq.
(6) to obtain

eU0ð~zÞ ¼
1
m

1
2

Red2 þ Re2
�

Re
d

 !
þ Re2

�
Re

Z ~z

0

1� Re2

Re2
�

s
� �

ds

1þ jRe�ffiffiffiffi
jRj
p GðsÞwiðsÞwwð1� sÞ

:

ð10Þ

The ratio R can be obtained in closed form as follows. Since

sðzÞ ¼ si þ
@P0

@x
z;

¼ �sw þ
@P0

@x
ðz� hÞ;

these formulas can be equated to give

si ¼ �sw �
@P0

@x
h;

or,

�sw

si
¼ 1þ @P0

@x
h
si
¼ 1� Re

Re�

� �2

;
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hence,

jRj ¼ 1� Re
Re�

� �2
�����

�����
�1

:

To determine Re⁄, we make use of the no-slip condition at the upper
channel wall, ~z ¼ 1; eU0ð1; Re�Þ ¼ 0:

1
m

1
2

d2Reþ Re2
�

Re
d

 !

þ Re2
�

Re

Z 1

0

1� Re2

Re2
�

s
� �

ds

1þ jRe�ffiffiffiffi
jRj
p GðsÞwiðsÞwwð1� sÞ

8<:
9=;
jRj¼ 1� Re

Re�ð Þ
2

�� ���1

¼ 0: ð11Þ

Solution of this equation yields a relationship between Re⁄ and Re, d,
and m.

We now select G as follows:

GðsÞ ¼ sð1� sÞ s3 þ jRj5=2ð1� sÞ3

R2ð1� sÞ2 þ Rsð1� sÞ þ s2

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}�

¼VðsÞ

; 0 6 s 6 1: ð12Þ

We show below that this function reproduces a logarithmic velocity
profile near the gas–liquid interface and upper channel wall. For the
wall functions, wi and ww, we use standard van Driest-type rela-
tions (Pope, 2000):

wiðsÞ ¼ 1� e�sn=Ai ; wwð1� sÞ ¼ 1� e�ð1�sÞn=Aw ; ð13Þ

where n, Ai, and Aw are input parameters. These parameters will be
fixed below and will not be adjusted in order to maximise agree-
ment between modelling predictions and experimental data.

2.1.3. Limiting behaviour
Based on the derivation detailed above, we have the following

velocity profile in the base state:

eU0ð~zÞ ¼

1
m � 1

2 Reð~z2 � d2Þ þ Re2
�

Re ð~zþ dÞ
h i

; �d 6 ~z 6 0;

1
m

1
2 d2Reþ Re2

�
Re d

� �
þ Re2

�
Re

R ~z
0

1�Re2

Re2
�

s

� �
ds

1þjRe�ffiffiffi
jRj
p GðsÞwiðsÞwwð1�sÞ

; 0 6 ~z 6 1:

8>>><>>>:
ð14Þ

To examine the limiting behaviour of the gas velocity profile in the
viscous sublayers near the gas–liquid interface, ~z ¼ 0, and upper
channel wall, ~z ¼ 1, we first note that the functions wi and ww tran-
sition rapidly from wi(0) = 0 and ww(1) = 0 to unity, across a width
given by

dv

h
¼ mG

hU�i
¼ 1

Re�
; and

dv;w

h
¼ mG

hU�w
¼ jRj

Re�
; ð15Þ

respectively; here, the value of Ai(Aw) is related to the width of
wi(ww). Thus to determine the behaviour of U0 near the gas–liquid
interface, that is, for 0 � ~z� 1=Re�, we make use of the fact that,
in this region, wi � 0, ww � 1 � exp(�1/Aw), and G � 0, hence

eU0 �
1
m

1
2

d2Reþ Re2
�

Re
d

 !
þ Re2

�
Re

Z ~z

0
ds

¼ 1
m

1
2

d2Reþ Re2
�

Re
d

 !
þ Re2

�
Re

~z: ð16Þ

Similar arguments demonstrate the existence of another linear
layer near the upper channel wall, which is the appropriate behav-
iour one expects in viscous sublayers adjacent to boundaries.
Next, we determine the behaviour of eU0 in regions that lie out-
side the viscous sublayers, located near ~z ¼ 0 and ~z ¼ 1, but still far
from ~z ¼ hm=h,

hm ¼ h
Re2
�

Re2 ; ð17Þ

where hm/h denotes the midpoint of the region 0 6 ~z 6 1 at which

@ eU0

@~z
/ 1� Re2

Re2
�

~z ¼ 0: ð18Þ

Thus, for regions sandwiched between the viscous sublayer near the
gas–liquid interface and ~z ¼ hm=h, that is, for

1
Re�
� ~z� Re2

�

Re2 ;

we have G � jRj1/2z, (wi,ww) � 1. Substitution of these results into
Eq. (14) yields

eU0 �
1
m

1
2

d2Reþ Re2
ast

Re
d

 !
þ Re2

�
Re

Z ~z ds
jRe�s

¼ 1
m

1
2

d2Reþ Re2
�

Re
d

 !
þ Re�

jRe
lnð~zÞ: ð19Þ

A similar calculation near ~z ¼ 1 establishes the existence of a log
layer close to the upper channel wall, which, once again, is the
appropriate behaviour one expects in the transition region between
viscous sublayers and the channel core. The expression for G, Eq.
(12), was first derived by Biberg (2007) and is generalised here by
accounting for the dynamically important viscous sublayers ne-
glected in that work. This is essential in order to avoid the logarith-
mic singularities that would have otherwise arisen near ~z ¼ ð0;1Þ.

2.1.4. Determination of the model constants
We establish the values of Ai,w and n in Eq. (13). By combining

Eqs. (8) and (13) in a Taylor expansion near ~z ¼ 0, we obtain the
following form for the Reynolds stress:

s0

qGU2
p

� j
Re3
�

Re2

~znþ1

Ai
:

A good approximation to the interface in two-phase turbulence
with a large density contrast is, in fact, a solid wall (Fulgosi et al.,
2002). Thus, we set n = 2, the value appropriate for wall-bounded
turbulence (Pope, 2000). In a similar manner, we fix Ai and Aw with
reference to single-phase theory, wherein there is a one-to-one cor-
respondence between the values of Ai and Aw and the additive con-
stant B in the single-phase log-law. With j = 0.4, the specification

Ai;w ¼ e6:3Re�2
�i;w ð20Þ

corresponds to the known value B = 5.3. It is this relationship that
we use throughout our study. Thus, the values of n and Ai,w

have been fixed and will not be adjusted in the rest of the paper,
particularly when comparing our predictions with experimental
observations.

We plot in Fig. 2 the base-state velocity profile, eU0, for
Re = 1000, for which the corresponding superficial Reynolds num-
ber based on the gas flow rate is approximately 12,000. The
near-interfacial viscous and logarithmic layers are visible in
Fig. 2b. Using Eq. (11), we can determine the friction Reynolds
number, Re⁄, as a function Re, which we treat as a ‘control param-
eter’; this relation is shown in Fig. 3a. We can also determine the
dependence of a ‘liquid Reynolds number’, defined as

ReL ¼
qLdLUi

lL
; Ui ¼

sidL

lL
ð21Þ
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Fig. 2. Base-state profiles for the parameter values (lL/lG,qL/qG,dL/h): = (m,r,d) = (100,1000,0.1), and Re = 1000. (a) The mean velocity profile; (b) the mean velocity profile in
wall units, showing the logarithmic and viscous layers (the viscous layer has a wall-unit thickness of approximately 5); (c) the Reynolds-stress profile corresponding to the
basic velocity.
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on Re; this is shown in Fig. 3b. The relationship shown in Fig. 3a is
approximately linear, a consequence of the very small velocities in
the liquid, compared with the maximal gas velocity. Thus, the gas
layer closely resembles single-phase channel flow, and the condi-
tion U0(0)� Umax mimics the zero interfacial-velocity condition in
the single-phase channel. The channel midpoint where @U0/@z = 0
is thus approximately equal to half the gas-layer depth hm � h/2.
Using this guess in Eq. (17) gives Re� � Re=

ffiffiffi
2
p

, which is close to
the slope calculated in the figure. Having now fully characterised
the smooth, flat-interface base state (Figs. 2 and 3), we discuss a
way to model the scenario wherein the interface possesses a small
amount of roughness generated by the turbulence.
2.2. Interfacial roughness

In the preceding exposition, we have been concerned with flow
profiles where the interface is perfectly smooth. Now, we allow for
interfacial roughness by modifying the eddy-viscosity law (8) and
(12). The work of Lin et al. (2008) gives one possible explanation
for the generation of such roughness. This indicates that the so-
called Phillips mechanism (Phillips, 1957) may be important,
whereby instantaneous turbulent pressure fluctuations lead to a
regime of linear wave growth. This is later followed by an expo-
nential growth regime, which is primarily governed by the distur-
bances in the flow induced by the waves themselves. In the present
context, we regard the interfacial roughness as a consequence of
0 200 400 600 800 1000
0

200

400

600

800

Re

R
e *

Re
*

 Re
*
=0.69Re+4.6

Fig. 3. The dependence of Re⁄ and ReL on Re (circles) shown in (a) and (b), respectively, wi
the gas-phase turbulence, which then acts on the interfacial waves,
thereby modifying the growth in the wave amplitude.

To model interfacial roughness, we use an eddy-viscosity model
like that of Biberg (2007). Such a model has the effect of shrinking
the viscous sublayer near the interface. In our formalism, this is
achieved by altering the form of the mixing length near the inter-
face: before it was

L � zwiðz=hÞ; as z! 0;

where wi(z/h) is the damping function that operates in the near-
wall region z [ 5U⁄i/mG; now, instead, we propose the behaviour

L � ‘i; as z! 0:

Thus,

s0

qGU2
p

¼ jffiffiffiffiffiffi
jRj

p ½~zþ Kð1� ~zÞ�ð1� ~zÞwwð1� ~zÞVð~zÞd
eU0

d~z
; ~z ¼ z=h;

¼ jffiffiffiffiffiffi
jRj

p Gð~z; KÞwwð1� ~zÞd
eU0

d~z
; ð22Þ

where K = ‘i/(jh) is the nondimensional interfacial roughness
parameter. In all but one subsection of the paper, we focus on the
case wherein the base-state interface is smooth; only in Section
4.4 do we investigate the effects of interfacial roughness on the lin-
ear stability of the two-phase interface.
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Table 1
Table of parameter values used to estimate the wave
speed.

Symbol Numerical value, S.I. Units

lG 1.8 � 10�5 Pa s
m = lL/lG 55
qG 1 Kg m�3

r = qL/qG 103

dL 10�3–10�2 m
d = dL/h 0.1
g 9.8 ms�2

r 0.074 Nm�1

Fig. 4. The plot (cest/Up)Re = (cest/U⁄ i)Re⁄ provides an estimate of the boundary
between slow and fast waves.For very thin films (dL = 1 mm), slow waves are
guaranteed at almost all Reynolds numbers, while for thicker films (dL = 10 mm) the
waves are faster for all but the highest Reynolds numbers.
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2.3. Slow and fast waves

Our model gives a way of predicting the values of (Re,dL) for
which the critical-layer instability could be relevant. This mecha-
nism depends sensitively on the shape of the base state in the
gas layer, and causes a tiny wave-like perturbation at the interface
to grow in time when ðd2U0=dz2Þz¼zc

< 0, where the critical height
zc is the root of the equation UG(z) = c, and where c is the wave-
propagation speed (tildes over nondimensional quantities are
omitted).

First, we describe the wave speeds for which the critical-layer
mechanism plays no role. Our discussion is based on the fact that
if the critical layer lies inside the viscous sublayer, which is five
interfacial units in extent, then the curvature of the mean profile
therein is negligible, and the critical-layer mechanism is unimpor-
tant. Thus, in order for the critical-layer mechanism to play no role,

zþc ¼ Re�zc 6 5:

In this limiting case, the velocity profile in the vicinity of the critical
layer is linear:

UðzcÞ � U0ð0Þ þ
Re2
�

Re
zc ¼ U0ð0Þ þ

Re�
Re

zþc ; ð23aÞ

We solve the critical-layer equation U0(zc) = c in the limiting regime
(23a). The result is

zþc ¼
Re
Re�
ðc � U0ð0ÞÞ;

which is true provided the right-hand-side never exceeds five wall
units. Thus, there is an exact criterion for the waves to be slow:
zþc 6 5, or

c � U0ð0Þ 6
5Re
Re�

: ð23bÞ

Eq. (23b) gives a formal definition of a ‘slow’ wave. We use the thin-
film approximation Re� � Re=

ffiffiffi
2
p

and redimensionalise the slow-
wave criterion; this condition then reduces to

c � U0ð0Þ
Up

K 5ffiffiffi
2
p ¼ Oð1Þ: ð23cÞ

Next, we estimate the wave speed c, which we denote by cest, using
the formula for gravity-capillary waves on a quiescent free surface
(recall that the tilde is used to denote dimensionless variables)
(Acheson, 1990):

cest

Up
¼ 1

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh

ðlG=qGhÞ2
r � 1
r þ 1

1
~a
þ 1

r þ 1
r

l2
G=qGh

~a

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð~adÞ

q
: ð24Þ

This formula holds exactly only for inviscid fluids with an infinite
upper layer (the prefactor 1/Re is due to the choice of nondimensi-
onalisation). However, we have tested the accuracy of the formula
in a number of cases (see Section 4.1), where it gives an order-of-
magnitude prediction of the wave speed. The true value of the wave
speed and the estimate agree at short wavelengths, which is pre-
cisely the limit where interfacial waves show inviscid behaviour. Fi-
nally, we substitute the values from Table 1 into Eq. 24 and obtain a
graphical description of the boundary between slow and fast waves,
as a function of the parameters (dL,d,Re,a) (Fig. 4). When cest/
Up� 1, we expect the critical-layer mechanism to be unimportant.
This is precisely the regime of small dL-values and high Reynolds
numbers, which is the subject of this report. According to the clas-
sification of Boomkamp and Miesen (1996), the other two mecha-
nisms of instability that exist for two-phase flow are the
viscosity-contrast instability, and the liquid internal mode. We
must therefore be on the lookout for these instabilities in any linear
stability based on the velocity profile derived herein.
2.4. Comparison with experiments and DNS

To validate our model for the base state, we compare it with
other studies of both single- and two-phase flow. A further com-
parison with studies of single-phase flow over a wavy wall (Zilker
et al., 1976; Abrams and Hanratty, 1985 is provided in Appendix A.
We first of all characterise the single-phase version of our model.
This is obtained by setting U0(0) = 0 and by ignoring the liquid
layer. We compare with the experimental work of Willmarth
et al. (1987), for single-phase pressure-driven channel flow. In
the experiment, the input parameter is the Reynolds number based
on the friction velocity, Re⁄ = 1.143 � 103. In the single-phase ver-
sion of our model, Eq. (17) reduces to Re �

ffiffiffi
2
p

Re�. Thus, the input
parameter for the model is Re ¼

ffiffiffi
2
p
� 1:143� 103. From this mod-

el input, we derive a Reynolds number based on the mean velocity
in the model:

Rem ¼
qG

lG

Z h

0
U0ðzÞ dz:

The mean Reynolds number in the experiment was
Rem = 2.158 � 104; we compute Rem to be 2.13 � 104, close to the
experimental value. A plot of the profile is shown in Fig. 5: the mod-
el and the experimental data are in excellent agreement.

To validate the two-phase version of our model, we compare it
with the work of Akai et al. (1980, 1981) who studied two-phase
turbulence for an air-mercury system, where m = 77 and
r = 1.120 � 104 at room temperature. The liquid Reynolds number,
based on the liquid-layer depth and the mean liquid velocity is set
to Rem,L = 8040 throughout the experiments. Because the liquid is
no longer laminar, we apply the turbulence model Eq. (8) to both
layers; the result is the following equation pair:
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Fig. 5. A comparison with the work of Willmarth et al. (1987) for single-phase
channel flow for Rem = 2130 � 104.
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eU0ð~zÞ ¼

Re2
�

Re0

R ~z
�d

1�
Re2

0
Re2
�

s

� �
ds

mþ jRe�drffiffiffiffiffiffi
rjRB j
p GBð�s=dÞwBðsÞ

;

�d 6 ~z 6 0;

Re2
�

Re0

R 0
�d

1�
Re2

0
Re2
�

s

� �
ds

mþ jRe�drffiffiffiffiffiffi
rjRB j
p GBð�s=dÞwBðsÞ

þ Re2
�

Re0

R ~z
0

1�
Re2

0
Re2
�

s

� �
ds

1þjRe�ffiffiffi
jRj
p GðsÞwðsÞwð1�sÞ

;

0 6 ~z 6 1;

8>>>>>>>>>>><>>>>>>>>>>>:
ð25Þ

where

RB ¼ �
si

sw;B
¼ � 1

1þ Re2
0

Re2
�
d
;

GBðsÞ ¼ sð1� sÞ s3 þ jRBj5=2ð1� sÞ3

R2
Bð1� sÞ2 þ RBsð1� sÞ þ s2

" #
; 0 6 s 6 1;

wBðsÞ ¼ 1� e�ðsþdÞn=Avd;B ;

and where Re⁄ is determined as the root of the equationeUð1; Re�Þ ¼ 0. In the experiment, the input parameters are the
gas-layer Reynolds number based on the mean gas velocity, and
the liquid-layer Reynolds number:

Rem;G ¼
qG

lG

Z h

0
U0ðzÞ dz; Rem;L ¼

qL

lL

Z 0

�dL

U0ðzÞ dz:

For all the experiments, the liquid-layer Reynolds number is kept
constant: Rem,L = 8040, while Rem,G varies; we study the cases where
Rem,G = 2340 and 3690. The input parameters for the model are d
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Fig. 6. A comparison with the work of Akai et al. (1980, 1981). Subfigures (a) and (b) show
denotes the liquid-phase velocity half-way between the bottom wall and the interface.
and Re. We obtain the d-value that corresponds to Rem,L by an auto-
mated iteration procedure, wherein a trial value of Re⁄ is used to
compute a trial value of d, which in turn is used to compute a
new value of Re⁄. The iteration terminates when the refined value
of d corresponds to Rem,L = 8040. Finally, the input parameter Re is
obtained by trial-and-error, such that the value of Re corresponds
to the correct value of Rem,G. The implementation of this second step
leaves the liquid-layer Reynolds number unchanged at Rem,L = 8040.
The results of this comparison are shown in Fig. 6, where excellent
agreement is obtained, particularly in the gas phase. The agreement
between the model and the experiments is as good as in the paper
of Biberg (2007). This is not surprising, since our model is designed
to replicate his in the log-law regions of the flow, and in the core
regions. Indeed, we conclude from the near-exact agreement be-
tween our predictions and those of Biberg that our model inherits
all the results he obtained from experimental comparisons. The
added advantage of our model is that it can be continued down to
the wall and interfacial zones.

Finally, to validate the near-interface region of the model, we
compare it with the DNS results of Solbakken and Andersson
(2004) for two-phase lubricated channel flow. To compare with
their results, we take d = 1/34, m = 2, r = 1 (hence qL = qG = q), and

Res ¼
qðhþ 2dLÞUs

2lG
¼ qðhþ 2dLÞ

2lG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ 2dL

2q
@P0

@x

���� ����
s

¼ 180:

To connect the model input parameter Re to the simulation input
parameter Res, we use the formulas

Up

Us
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2dþ 1

r
;

Re
Res
¼ 2

2dþ 1

� �3=2

:

Furthermore, we take

zþ ¼ z
h

2Res

2dþ 1
; Uþ ¼ U

Up

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2dþ 1

r
:

The results of the comparison are shown in Fig. 7. There is excellent
agreement, in particular near the interface. Further, comparisons for
air–water flow (Adjoua and Magnaudet, 2009), and flow past wavy
walls (Zilker et al., 1976; Abrams and Hanratty, 1985) are given in
Appendix A.

In conclusion, we have formulated a model of two-phase inter-
facial flow where the upper layer is fully-developed and turbulent.
The model requires no fitting parameters that are introduced. In
particular, the model provides a correlation between the pressure
drop and the interfacial shear stress. The agreement between our
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the comparison for Rem,G = 2340; (c) shows the result for Rem,G = 3690. Here U(1/2)
In both cases, Rem,L = 8040.
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Fig. 7. Comparison with the results of Solbakken and Andersson (2004). (a) Broken-line: model velocity profile; solid line: DNS. (b) Reynolds-stress profile (the scaling of the
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model and experiments and DNS is convincing and inspires confi-
dence in its use as a base state for the linear stability analysis
which we now perform.

3. Linear stability analysis

In this section, we carry out a linear stability analysis based on
the flat-interface base state derived above. We discuss in detail the
modelling of the Reynolds stresses in the perturbation equations,
the choice of physical parameters appropriate for modelling thin
films in two-phase channel flow, and assess the importance of
the Reynolds stresses in this scenario. Throughout this section,
we work with a smooth-interface base state; only in Section 4.4
do we consider base states with interfacial roughness. We base
the dynamical equations for the interfacial motion on the Rey-
nolds-averaged Navier–Stokes (RANS) equations. We start by list-
ing the relevant equations without assigning distinguishing
decoration to designate the different phases; appropriate subscript
notation is then introduced for the gas and liquid phases as
appropriate.

3.1. Governing equations

The turbulent velocity is decomposed into an averaged compo-
nent (U,W), and fluctuations. The averaged components depend on
space and time through the RANS equations:

q
@Ui

@t
þ U 	 rUi

� �
¼ � @P

@xi
þ
@TðvÞij

@xj
þ
@T ðtÞij

@xj
; sum over j; ð26aÞ

r 	 U ¼ 0; ð26bÞ

where

T ðvÞ ¼
2lUx lðUz þWxÞ

lðUz þWxÞ 2lWz

� �
; T ðtÞ ¼

r1 s
s r2

� �
ð26cÞ

represent the viscous and turbulent stress tensors in which s de-
notes the turbulent shear stress, and r1 and r2 the turbulent normal
stresses; here, the symbol r should not be confused with that used
to denote surface tension in the previous section. We have already
used these equations to model the flat-interface base state of the
two-phase system shown in Fig. 1. To understand the waves that
develop on such an interface, we introduce a small disturbance that
shifts the flat interface at z = 0 to z = g (the dimensionless wave ele-
vation), where jgj � 1:

ðU;W; PÞ ¼ ðU0ðzÞ þ duðx; z; tÞ; dwðx; z; tÞ; P0ðxÞ þ dpðx; z; tÞÞ;
ðr1;r2; sÞ ¼ ðr01 þ dr1;r02 þ dr2; s0 þ dsÞ;
where we denote base-state quantities by a subscript zero and the d
quantities are infinitesimally small disturbances; here, d is not to be
confused with the dimensionless film thickness. Since the flow is
turbulent, and since the perturbations take the form of a wave with
speed c, they must satisfy the RANS equations for a wave, @/
@t = �c@/@x:

q ðU0 � cÞ @
@x

duþ dU0

dz
dw

	 

¼ � @

@x
ðdp� drzÞ þ l @2

@x2 þ
@2

@z2

 !
du

þ @

@x
drþ @

@z
ds;

qðU0 � cÞ @
@x

dw ¼ � @

@z
ðdp� drzÞ þ l @2

@x2 þ
@2

@z2

 !
dwþ @

@x
ds;

@

@x
duþ @

@z
dw ¼ 0:

where dr = dr1 � dr2. Using the streamfunction representation (du,
dw) = (@//@z, � @//@x), and the normal-mode decomposition (/
,p,r,s)(x,z, t) / eia(x�ct) the perturbed RANS equations reduce to a
single equation following the elimination of the pressure. In non-
dimensional form, the equation governing the streamfunction in
the gas phase is given by

ia ðU0 � cÞðD2 � a2Þ/G �
d2U0

dz2 /G

" #

¼ 1
Re
ðD2 � a2Þ2/G þ iaDdrþ ðD2 þ a2Þds; ð27aÞ

where D = d/dz, and, as in the previous section, subscript ‘G’ desig-
nates gas-phase quantities. The analogous equation for the liquid
reads

iar ðU0 � cÞðD2 � a2Þ/L �
d2U0

dz2 /L

" #
¼ m

Re
ðD2 � a2Þ2/L: ð27bÞ

Eqs. (27) represent an Orr–Sommerfeld type of system (M’F Orr,
1907a,b; Orszag, 1971; Yiantsios and Higgins, 1988), with turbulent
stresses in the gas that are additional to those that arise from vis-
cous contributions. The problem of modelling these stresses in Eq.
(27a) has received considerable attention in the literature (Belcher
and Hunt, 1993, 1998; Belcher et al., 1994; Townsend, 1972; Ierley
and Miles, 2001). In this section, we use two ‘stationary’ turbulent
models from this literature to describe these stresses in which the
eddy turnover frequency U⁄i/(jz) exceeds the advection frequency
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ajUG(z) � cj (Belcher and Hunt, 1993; Belcher et al., 1994; Janssen,
2004) in the gas phase. The use of such models is appropriate for
‘slow’ waves because the dynamically important region for the
instability is located very close to the interface, on the gas side.
These ‘stationary’ models are discussed next.

3.2. The visco-elastic model

This turbulence model is a ‘stationary’ one whose starting-point
is the following standard description for the perturbation-induced
turbulent kinetic energy (TKE) (Pope, 2000):

@

@t
þ U0

@

@x

� �
dkþ dw

dk0

dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Advection

¼ lT þ
1
Re

� �
r2dkþ dlT

dz
@

@z
dk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Transport

þ r0
@

@x
duG þ s0

@

@z
duG þ

@

@x
dwG

� �
þ dsdU0

dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Production

� dE|{z}
dissipation

; ð28Þ

where k0 and dk denote the base-state and perturbation TKE, dE is
the dissipation of TKE due to turbulence, and r0 = r01 � r02. The
functional form of the dissipation term is unknown and must be
modelled. Here, we assume it to be linear in dk: dE ¼ ðRe2

�=ReÞdk.
This is an approximation (other closure laws will be investigated
in detail in future work), and is convenient from a mathematical
point of view: in this form, the dissipation rate is well-behaved in
the dynamically-important interfacial zone, unlike other models
(Townsend, 1972, 1980; Ierley and Miles, 2001; Biberg, 2007) that
fail to resolve this zone, and possess logarithmic singularities.

We substitute (duG,dwG) = (@/G/@z, � @/G/@x) / eia(x�ct), where
subscript G denotes gas-phase quantities, along with
(dk,ds)(x,z, t) / eia(x�ct) into Eq. (28), and allow molecular viscosity
to dominate its turbulent counterpart in the interfacial region
where the latter is negligible (Townsend, 1972, 1980; Ierley and
Miles, 2001). Thus, Eq. (28) reduces to the following:

iaðU0 � cÞ þ Re2
�

Re

" #
dk ¼ 1

Re
ðD2 � a2Þdkþ ds

dU0

dz
þ s0ðD2 þ a2Þ/

þ iar0D/G þ ia
dk0

dz
/G: ð29aÞ

The ‘visco-elastic’ aspect of the model comes from the manner in
which the unknown stress ds is constituted. Such models have been
used by Townsend (1972, 1980), and by Ierley and Miles (2001). The
model described here fits into the framework of the latter paper,
with slight modifications: the base-state quantities are computed
according to the formalism in the previous section. Thus, to close
the system, the following constitutive relations are posed:

ds� s0

k0
dk ¼ 0; dr� r0

k0
dk ¼ 0; ð29bÞ

with the base-state stress, s0, given by Eq. (8), andr0 set equal to the
base-state kinetic energy: r0 = k0; the latter is consistent with the
DNS results of Spalart (1988). (29b) are consistent with the state-
ment that the tensor TðtÞij =k maintains its equilibrium (base-state)
value (Ierley and Miles, 2001; Pope, 2000).

Finally, the base-state turbulent kinetic energy must be mod-
elled. Instead of writing down a transport equation for the base-
state kinetic energy, and invoking a closure assumption for the
base-state dissipation, we use the following model:

~k0 ¼
k0

qGU2
p

¼ 1
C2

Re2
�

Re2 wð~zÞwð1� ~zÞ; ð29cÞ

where C is a constant, here taken to be 0.55, which is the value
appropriate for the logarithmic region of the mean velocity in a
boundary layer. This form is desirable because it captures both
the log-layer behaviour of the turbulent kinetic energy, and the
asymptotic behaviour near the upper channel wall and near the
interface: for instance, ~k0 � ~z2 as ~z! 0.

3.3. The zero-equation model

In the formalism associated with the so-called ‘zero-equation’
model, the stresses dr and ds are not related directly to the TKE.
Rather, the normal stresses are set to zero, dr = 0, and the shear
stress is modelled as

ds ¼ lTðD
2 þ a2Þ/G; ð30aÞ

where

lT ¼
jRe�ffiffiffiffiffiffi
jRj

p
Re

Gð~zÞwið~zÞwwð1� ~zÞ; ð30bÞ

viz. Eq. (8). This is a rather basic model of the eddy viscosity,
although Belcher and co-workers (Belcher and Hunt, 1993, 1998;
Belcher et al., 1994) have used a similar model to Eqs. (30), with
the aim of capturing the physics of the equilibrium turbulence.

3.4. Interfacial conditions

To close Eqs. (27), continuity of velocity and tangential stress is
imposed at the interface z = 0, while the jump condition in the nor-
mal stress is also applied. These are standard conditions (Chandra-
sekhar, 1961), with slight modification for the presence of
turbulent stresses, dr and ds, on the gas side:
/L ¼ /G; ð31aÞ

D/L ¼ D/G þ
/G

c � U0
U00ð0

þÞ � U00ð0
�Þ

� �
; ð31bÞ

mðD2 þ a2Þ/L ¼ ðD2 þ a2Þ/G þ dsG �
/G

c � U0
r0; ð31cÞ

m D3/L � 3a2D/L

� �
þ iarReðc � U0ÞD/L þ iarRe U00ð0

�Þ/L

� iarRe
c � U0

ðFr þ a2SÞ/L

¼ D3/G � 3a2D/G

� �
þ iaReðc � U0ÞD/G þ iaRe U00ð0

þÞ/G

þ iadrþ Dds: ð31dÞ

where Fr and S correspond to the Froude and inverse Weber num-
bers, respectively:

Fr ¼ gh

ðlG=qGhÞ2
r � 1
Re2 ;

S ¼ r
l2

G=qGh
1

Re2 :

ð32Þ

Next, the no-slip conditions are applied at z = �d and z = 1:

/Lð�dÞ ¼ D/Lð�dÞ ¼ /Gð1Þ ¼ D/Gð1Þ ¼ 0;

and, when the ‘visco-elastic’ model is used, the following conditions
are applied to the TKE:

dkð0;1Þ ¼ 0: ð33Þ

Note that if the ‘visco-elastic’ model is adopted then (dr,ds) � dk so
(dr,ds) ? 0 as z ? (0,1) since dk ? 0 in these limits; this is also true
for the ‘zero-equation’ model since, in that case, dr = 0 identically,
and ds � lT ? 0 as z ? (0,1) since (G,wi,ww) ? 0 in these limits.
Thus, the turbulent stress contributions in Eqs. (31c) and (31d)
vanish leaving the ‘standard’ interfacial conditions unaltered. The
vanishing of these terms occurs only because we have carefully
formulated the assumptions concerning the turbulent base state,
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highlighting yet again the importance of modelling the flat-inter-
face state accurately. The Orr–Sommerfeld (27b) and the turbulence
models reduce to an eigenvalue problem in the eigenvalue c. This is
solved numerically according to a standard method, described and
validated elsewhere by the current authors in the context of abso-
lute and convective instabilities in laminar two-phase flows (Valluri
et al., 2010; Ó Náraigh and Spelt, 2010).

4. Results

In this section, we begin by examining the validity of certain
simplifying assumptions that involve the neglect of the turbulent
stresses in the linear stability analysis; this is followed by a brief
study of the effect of varying Re on the stability characteristics
and the establishment of a critical Re which will form the basis
for comparisons with experiments. In the remainder of the section,
we perform an energy-budget decomposition to identify the dom-
inant mechanism for instability, and investigate the possibility of
mode competition. Finally, we assess the possibility that mode
competition can be generated by large amounts of interfacial
roughness.

4.1. Quasi-laminar hypothesis

Here, we compare the predictions of the turbulence models of
the perturbed turbulent stresses against the so-called quasi-lami-
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Fig. 8. Dispersion curves showing a comparison of the predictions of the various models
(dashed lines), ‘visco-elastic’ model (dotted lines), denoted by ‘QL’, ‘EVM’ and ‘VEM’ in the
is the parametric dependence of the growth rate on the Reynolds number for (a) Re =
d = 0.05.
nar hypothesis. This hypothesis states that the turbulence makes it-
self felt primarily through the base state and, consequently, that
the perturbed turbulent stresses are to be ignored. We demon-
strate that this approximation is sufficient to capture the dominant
features and essential physics of the interfacial instability. To do so,
we carry out a stability analysis based on the values in Table 1,
with dL = 2.5 mm and d = 0.05. The inverse Froude and inverse We-
ber numbers are computed as

Fr ¼ ð3:7809� 106Þ r � 1
Re2 ; S ¼ 1:1420� 107

Re2 : ð34Þ

We select a Reynolds number, Re, that produces substantial shear in
the liquid, but is such that the liquid remains laminar. Thus,
Re = 1000, and ReL = sidL/lL � 460. (We verify a posteriori that the li-
quid remains laminar, in the sense that no unstable modes associ-
ated with the liquid exhibit positive growth.)

In Fig. 8, we obtain dispersion curves, describing the depen-
dence of the growth rate kr = aci on the wavenumber a using three
models: the basic Orr–Sommerfeld equation without the perturbed
turbulent stresses (i.e. the quasi-laminar approach), the visco-elas-
tic model (29), and the zero-equation model (30b), to which we re-
fer below as the ‘eddy-viscosity model’. Over a large range
of Reynolds numbers ðRe ¼ 500—5000; ReUmax ¼ qGUmaxh=lG ¼
103 ��105Þ, the growth rates for the different models differ only
quantitatively. In particular, the differences between the quasi-
laminar calculation and the eddy-viscosity one are small: the shift
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0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

λ r

0

0.5

1

1.5

2

α

c r−
U

in
t

c
r
 (Numerics)

c
r
 (Free surface)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

c r−
U

in
t

Fr
0
/10

Fr
0
/10 (FS)

Fr
0

Fr
0
 (FS)

10Fr
0

10Fr
0
 (FS)

Fig. 9. A comparison of the wave speed cr computed as part of the solution of the eigenvalue problem with the predictions of Eq. (24) for free-surface waves. In panel (a), the
same parameters were used as those in Fig. 8b, while in panel (b), the comparison is shown over a range of Fr at fixed Reynolds number Re = 1000. (Fr0 is the reference value
given by Eq. (34).) Also shown in (a) is the dispersion curve from Fig. 8b in dotted lines.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

α

λ r

Re=866
Re=1000
Re=2000
λ

r
=0

0 10 20 30 40
−0.04

−0.02

0

0.02

0.04

0.06

0.08

α

λ r
Re=866
Re=790
Re=707
λ

r
=0

Fig. 10. The effects of varying Re on the dispersion curves using the quasi-laminar assumption. We have set (m,r,d) = (55,1000,0.05); Fr and S are given by Eq. (34).

Table 2
Energy budget for the most dangerous mode a = 20 at Re = 1000 (hence ReL � 460).
Here m = 55, r = 1000, and d = 0.05; Fr and S are given by Eq. (34).

KING KINL REYL REYG DISSL DISSG NOR TAN

0.18 0.82 2.34 �11.90 �4.28 �57.42 �2.73 74.99
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Fig. 11. The phase shift between the viscous shear stress at the interface, dTG,xz, and
the perturbed interface location g(x) for the most dangerous mode a = 20. The
parameters have the same values as those in Table 2.
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in the maximum growth rate upon including the perturbed turbu-
lent stresses is less than 10% in the cases considered here, while the
cutoff wavenumbers are virtually unchanged. The differences be-
tween the quasi-laminar calculation and the visco-elastic calcula-
tion are slightly larger, increasing with Re. In particular, the
cutoff wavenumber is shifted to a higher value in the Re = 5000
case (Fig. 8d). Nevertheless, the shift in the maximum growth rate
upon including the terms associated with the visco-elastic model is
a little over 10% for the largest Re considered in Fig. 8. The minor
discrepancy in behaviour between the visco-elastic model and
the other two models is due to the simplicity in modelling the ki-
netic-energy dissipation function, here assigned the simple linear
form ðRe2

�=ReÞdk. Accurate modelling of this term will be the sub-
ject of future work.

Our conclusion from the small differences evinced by these
comparisons is that we are justified in considering the quasi-lam-
inar approximation for the rest of this work. Physically, the mar-
ginality of the perturbed turbulent stresses is explained as
follows. Any difference in the stability results between the models
is driven by the presence of extra terms in the perturbation equa-
tions for the bulk flow, and by the existence of extra terms in the
interfacial conditions. In our case, the additional terms in the bulk
equations scale as jRe⁄/Re, which for thin layers is approximately
j=

ffiffiffi
2
p

, and thus has a small effect. Moreover, in our case, the addi-
tional interfacial terms are turbulent in nature, and are thus
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damped to zero in the viscous sublayer, and vanish at z = 0. Hence,
this second contribution to the modified growth rate is identically
zero. Thus, in the case of equilibrium turbulence considered here,
the effects of turbulence are felt almost entirely through the choice
of base state. The only possibility for the effects of turbulence to
enter through the perturbed turbulent stresses is when the criti-
cal-layer instability is present, in which case the perturbed turbu-
lent stresses and the critical layer may interact. However, the
discussion of ‘slow’ and ‘fast’ waves in Section 2.3 suggests that
thin-layer waves are ‘slow’, and, therefore, not susceptible to the
critical-layer instability. In conclusion, we are satisfied that the
perturbed turbulent stresses are of marginal importance; there-
fore, for the rest of the paper, we focus only on the quasi-laminar
model.

Finally, in Fig. 9, we investigate the extent to which the wave
speed cr agrees with the free-surface formula (24). Inspection of
panel (a) of this figure suggests that the agreement is good in the
limit of large a, deteriorating with decreasing a, although it re-
mains a useful order-of-magnitude estimate (for which it is used
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Fig. 12. The appearance of two unstable modes for sufficiently large Re, Re = 2000.
Here (m,r,d) = (55,1000,0.05), and Fr and S are given by Eq. (34).

Table 3
Energy budget of the two unstable modes shown in Fig. 12 at a = 25. Here we have set
(m, r,d,Re) = (55,1000,0.05, 2000);Fr and S are given by Eq. (34).

a kmax KING KINL REYL REYG DISSL DISSG NOR TAN

25 0.77 0.85 0.15 0.45 �9.57 �0.41 �36.96 �1.17 48.67
25 0.15 0.15 0.85 3.80 �9.98 �0.80 �26.46 �0.18 34.62
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Fig. 13. (a) The streamfunction for the internal and interfacial modes, normalised such
wave Reynolds-stress function for the internal and interfacial modes, swrs, normalised s
here). Fig. 9b also shows that the agreement is reasonable over a
range of Fr values.

4.2. The critical Reynolds number

We investigate the effect of varying Re on the structure of the
dispersion curves, using the quasi-laminar assumption; emphasis
is placed on the variation of the cutoff wavenumber and maximum
growth rate with Re. The results shown in Fig. 10 demonstrate that
the maximum growth rate increases monotonically with Re. Fur-
thermore, upon decreasing Re, the lower critical wavenumber
shifts from acl = 0 to a finite value acl > 0, suggesting that for a gi-
ven parameter set (m,r,d,Re2,S,Fr), there is a critical Reynolds
number for stability. This is exemplified by Fig. 10, where the crit-
ical Reynolds number is Rec � 750. The existence of the critical
Reynolds number provides a means of comparing our models with
experiments (Section 5). First, however, we examine some further
properties of the eigenvalue problem, which characterises the qua-
si-laminar model.

4.3. Energy-budget decomposition and identification of unstable
modes

In this subsection, we use an energy budget to classify the insta-
bilities observed. The linearised dynamical equations associated
with the Orr–Sommerfeld equations possess an energy

1
2

Z 0

�d
dz
Z 2p=a

0
dxjduLj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼EL

þ1
2

Z 1

0
dz
Z 2p=a

0
dxjduGj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼EG

;

where rL = r and rG = 1, which grows or decays in time according to
the stability of the base state. By matching the time change in the
kinetic energy KINj = dEj/dt(j = G,L) with the inputs of power into
the perturbations, an energy budget is obtained (Hooper and Boyd,
1983; Kelly and Goussis, 1989; Boomkamp and Miesen, 1996):

KING þ KINL ¼ DISSG þ DISSL þ REYG þ REYL þ NORþ TAN;

where DISSG,L denotes energy loss through viscous dissipation,
REYG,L denotes wave-Reynolds-stress terms that correspond to
transfer of energy from the mean flow into the perturbations in
the bulk parts of the two phases; NOR and TAN denote energy deliv-
ered by the normal and tangential stresses at the interface. For the
quasi-laminar model, the perturbed turbulent stresses, being of
marginal importance, are ignored. Of particular interest in the pres-
ent application are the terms
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uch that maxswrs = 1.
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REYL ¼
Z 0

�d
dzsL;wrsðzÞU00ðzÞ; sL;wrsðzÞ ¼ �r

Z 2p=a

0
dxduLdwL; ð35Þ

REYG ¼
Z 1

0
dzsG;wrs zð ÞU00ðzÞ; sG;wrs zð Þ ¼ �

Z 2p=a

0
dxduGdwG; ð36Þ

and

TAN ¼
Z 2p=a

0
dx½ðduL � duGÞdTG;xz�z¼0; ð37Þ

where dTG,xz is the off-diagonal component of the viscous stress ten-
sor in the gas layer. Using this decomposition, we characterise the
instability in Fig. 9a, for which m = 55, r = 1000, d = 0.05, and
Re = 1000. The most dangerous mode is at a � 20, which equates
to a wavelength 2p/a � dL. The energy budget of this mode is given
in Table 2. The results in this table indicate that it is the TAN term
that is the main source of the instability. To understand this term
in more depth, we apply the kinematic condition

duL � duG ¼ g U00ð0
þÞ � U00ð0

�Þ
� �

¼ gU00ð0
�Þðm� 1Þ; on z ¼ 0;

to the tangential term (37), to obtain

TAN ¼ ðm� 1ÞRe2
�

Re

Z 2p=a

0
dxgðxÞdTG;xzðx; z ¼ 0Þ: ð38Þ

Thus, TAN > 0 is consistent with m > 1, provided the phase shift be-
tween the interfacial height g(x) and the disturbance stress
dTG,xz(x,z = 0) is small. Specifically, the phase shift must be in the
range � p

2 ;
p
2

� �
; see Fig. 11. This means that the interface destabilises

through the viscosity-contrast mechanism (also called the Yih mode
(Yih, 1967)). Similar results hold over a range of parameter values
1000 6 Re 6 10,000, 0.1Fr0 6 Fr 6 10Fr0, and 0.1S0 6 S 6 20S0,
where (Fr0,S0) represent the reference values used in Table 2. This
confirms the dominance of the viscosity-contrast mechanism in
destabilising the interface in the thin-film case considered.

We now examine a second unstable mode which appears for
sufficiently large Re; an example of this is shown in Fig. 12 for
Re = 2000. The energy budget of the two unstable modes is shown
in Table 3. The first mode, associated with the eigenvalue branch
that has interested us until now, derives all but a small fraction
of its destabilising energy from the TAN term, which as was men-
tioned above, owes its existence to work done by the tangential
stress on the interface. This term is positive when m > 1, and we
designate this mode the ‘interfacial’ mode. The second, less unsta-
ble mode derives the majority of its destabilising energy from this
source too, although the magnitude of the term REYL is larger for
this mode. Thus, the transfer of energy from the mean flow to
the perturbation in the liquid is destabilising. This mode is com-
monly called the ‘internal’ one (e.g. Miesen and Boersma, 1995).

Fig. 13a shows the streamfunction for these two modes. The
streamfunction of the internal mode possesses a large non-zero
component in the liquid, in contrast to that of the interfacial mode.
This produces significant flow in the liquid, and hence gives an
important contribution to the wave-Reynolds-stress term, REYL.



Table 4
Comparison of our model predictions with the work of Cohen and Hanratty (1965) (see text for definition of ReCH). The sub-table is an energy-budget decomposition related to
experiment (3), with a = 5.5; the other parameters are chosen to match those in the experiment.

Experiment dL (mm) ReCH ReCH (exp) cr=UG cr=UG (exp) 2p/a (in.) 2p/a (in.,exp)

(1) 1.89 3810 4050 0.13 0.08 1.1 0.9
(2) 3.54 2650 2760 0.15 0.15 0.7 1.2
(3) 4.91 1930 1980 – 0.19 0.9 –

a KING KINL REYL REYG DISSL DISSG NOR TAN

5.5 0.99 0.01 4.58 1.91 �21.32 �31.44 �1.55 48.82
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Fig. 16. Theoretical calculation based on the parameters in experiment (5) of Cohen and Hanratty. (a) The streamfunction; (b) the wave-Reynolds stress.

Table 5
Comparison with Table 1 (p. 375) and Table 2 (p. 378) in the work of Craik (1966). The
Reynolds number ReCr is defined with respect to the gas density and viscosity, the
channel height, and the interfacial velocity.

Experiment dL (mm) ReCr ReCr (exp)

(1.1) 0.128 20 30
(1.2) 0.230 68 61
(1.3) 0.218 66 71
(1.4) 0.355 110 140
(1.5) 0.307 94 140

Experiment dL (mm) ReCr ReCr (exp) cr/Uint cr/Uint (exp)

(2.1) 0.535 35 94 1.1 1.75
(2.2) 0.665 50 89 1.0 1.9
(2.3) 0.820 56 91 1.1 1.8
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The development of such a term is shown in Fig. 13, where we plot
the wave-Reynolds-stress, swrs in the liquid and the gas (Eqs. (35)
and (36)) for both modes; this function is non-zero throughout the
liquid layer in the internal-mode case, confirming the importance
of the dynamics in the bulk of the liquid for the development of
this less unstable mode.

The existence of a second unstable mode implies the possibility
of mode competition, in which the most dangerous mode changes
type, from being interfacial to internal. We have verified that this
competition can be effected by decreasing m, which decrease the
importance of the interfacial mode relative to the internal mode.
A similar modal competition has been observed in two-phase mix-
ing layers by Yecko et al. (2002), where the mode competition is
also a function of the viscosity contrast. Instead of pursuing this
mechanism of competition in detail, we turn instead to the varia-
tions in the interfacial roughness, which can also engender modal
competition.

4.4. Modelling interfacial roughness

We examine the effect of interfacial roughness on the internal
and interfacial modes. We use the model described in Section
2.2, where the eddy-viscosity contains an explicit roughness
parameter K = ‘i/(jh), and where ‘i is the mean height of the rough-
ness elements. In view of the success of the quasi-laminar hypoth-
esis in describing the linear stability of smooth base states, its use
is extended to the surface-roughened case considered here. Fig. 14
shows the effect of varying the roughness parameter K on the dis-
persion curves. As K increases, the maximum growth rate of the
interfacial mode shrinks dramatically, while the maximum growth
rate of the internal mode increases slightly. This change is suffi-
cient to promote the maximum wavenumber-growth-rate pair
on the internal branch, (amax,int,kmax,int), to the status of most dan-
gerous mode. This crossover occurs for K J 0.001, as shown in
Fig. 14b.
In Fig. 14c, the dispersion curve of the internal mode possesses
a local minimum near a � 20. To verify that this is not due to a
crossover between the second and third modes, we have plotted
the three least negative modes for K = 0.005 in Fig. 15a. The second
and third least negative modes are well separated and a crossover
effect is thus ruled out. Fig. 15b and c is plots of the wave speed for
the internal and interfacial modes: the continuity of these curves
confirms that no crossover effect is taking place. Note, however,
that the wave speeds of the second and third most dangerous
modes intersect close to the point where the internal mode has
its local minimum. Such phenomena often occur in modal coales-
cence (Shapiro and Timoshin, 2005). The difference cr � Uint is neg-
ative for the internal mode, which shows that the critical layer is in
the liquid for the internal mode. Note finally that although the
roughness-modified eddy viscosity has been rigorously validated
by Biberg (2007), and although (Morland and Saffman, 1993) have
explained previously how interfacial roughness can reduce the
growth rate of the wave, our interfacial roughness results must
be confirmed, ultimately, by experiments or DNS, data which, to



Table 6
Theoretical energy-budget calculations related to experiments (1.5) and (2.1) of Craik (1966). The instability is viscosity-induced, and there are no other contributions to the
instability, unlike in the Cohen data.

a KING KINL REYL REYG DISSL DISSG NOR TAN

(1.5) 0.3 1.00 0.00 0.00 �165.56 �2.47 �1359.25 �0.09 1528.37
(2.1) 0.02 1.00 0.00 0.00 �45.06 �3.23 �701.34 �0.14 750.76
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our knowledge, are not yet available. In the next section we turn to
an aspect of our investigations for which experimental data are
available, namely the thin-layer, flat-interface base state.
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Fig. 17. A comparison of our predictions with the ‘viscous’ Kelvin–Helmholtz model
(see (B) for details), labelled ‘VKH’, and the experimental data of Craik (1966). We
have plotted the Reynolds number ReGmax = qGUGmaxdG/lG against the liquid film
thickness dL.
5. Comparison with experiments and other models

We compare our results with some of the experimental data
from the literature, in particular the work of Cohen and Hanratty
(1965) and Craik (1966). We also compare our findings with a
model that is frequently used in practical applications to predict
flow-regime transitions, namely the ‘viscous’ Kelvin–Helmholtz
theory.

5.1. Comparison with experiments

Cohen and Hanratty (1965) report critical Reynolds numbers for
millimetre-thick water films forced by air. They observe the devel-
opment of two-dimensional waves above a critical Reynolds num-
ber. They call these waves ‘fast’, in the sense they move at a
velocity that exceeds the interfacial velocity. These waves are,
however, in our classification, ‘slow’ (or on the boundary between
‘slow’ and ‘fast’), since the theoretical values computed are cr/
Up J 1, and thus the viscosity-contrast instability is expected.
We show a comparison between the theoretical predictions of
our model and the measurements of Cohen and Hanratty in Table
4. Our estimates for the critical Reynolds number ReCH ¼ qGhUG=lG

are in close agreement with the experimental values, well within
the margin of error in the experiments, reported to be in the range
of 10–20%. We have also compared our theoretical model with the
measurements of the critical wavelength and wave speed. There is
reasonable agreement between the theoretical and experimental
values for the wave speed. The spread in values of the critical
wavelength is larger, although this is acceptable, in view of the
large error attached to the experimental measurements. The en-
ergy budget in Table 4 is based on a calculation, with parameters
taken from experiment (3). Specifically, Re = 207.3, r = 873.9,
m = 50.45, d = 0.2350, Fr = 346,100, S = 5,258,000. The correspond-
ing streamfunction and the wave-Reynolds stress function are pre-
sented in Fig. 16. The instability is confirmed to be due to the
viscosity-contrast mechanism, with additional, inertial contribu-
tions from the liquid and gas phases.

Craik (1966) performs a similar experiment with liquid films
thinner than those found in Cohen and Hanratty (1965) and reports
critical conditions for instability. The trend in the data in Table 5
agrees with that in our calculations, although the quantitative
agreement deteriorates with increasing film thickness (see sub-ta-
ble containing runs (2.1)–(2.3); we do not compare our results
with runs (2.4) and (2.5) in Craik (1966) wherein our model pre-
dicts laminar gas flow). Craik explains that waves are observed
for film thickness below that quoted in experiment (1.1), although
the uniform thin film of liquid is difficult to maintain under these
conditions. It is possible that the thinness of the film inhibits pre-
cision in the measurement at film thickness above this lower
bound too. Craik also explains that accurate measurements of wave
speed were difficult owing to the long wavelengths of the observed
waves (compared to the channel length). These are sources of error
that explain why there is only qualitative agreement between the
theoretical and experimental data. Finally, the energy budget in Ta-
ble 6 is based on a theoretical calculation, with parameters taken
from experiments (1.5) and (2.1). The instability is controlled en-
tirely by the viscosity-contrast mechanism; the contributions from
the bulk phases seen in the previous case (Tables 4 and 5) are ab-
sent here, since the liquid film is much thinner.
5.2. Comparison with ‘viscous’ Kelvin–Helmholtz theory

In this section, we compare our predictions with those obtained
using viscous Kelvin–Helmholtz theory (Barnea, 1991). This is a
simplified theory for the interfacial instability of two-phase turbu-
lent flow, and takes account of turbulence in either or both phases.
It is commonly used in one-dimensional models for large-scale
stratified and slug-flow predictions. The velocity field enters only
through the liquid- and gas-averaged values, uL and uG, while the
cross-sectional area fractions �L = dL/(dL + dG) and �G = dG/(dL + dG)
also play a role. Then, the complex frequency x is obtainable from
a quadratic equation, the details of which can be found in Appen-
dix B.

We plot the stability boundary predicted by this theory in
Fig. 17, and compare the results with Craik’s data for experi-
ment-set 1 (a 6-in. channel) (Table 5), and with a curve fit based
on a number of points obtained from our calculations. The viscous
Kelvin–Helmholtz model overpredicts the critical Reynolds num-
ber compared with both the data of Craik (1966) and our theoret-
ical model by an order of magnitude (Fig. 17). This casts severe
doubts on the usefulness of such a depth-averaged model. Our
model gives better agreement with the data of Craik (1966),
although we are mindful of the experimental error associated with
these data. Nevertheless, both our theoretical calculations and the
experimental data demonstrate the unstable–stable–unstable
transition that arises when the film depth is increased, holding
the Reynolds number fixed. This is the statement that our theoret-
ical curve in Fig. 17 is non-monotonic (the non-monotonicity in the
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model curve is masked somewhat by the large scale necessary to
show the viscous Kelvin–Helmholtz results in the same figure).

In conclusion, the model predictions of the critical Reynolds
number agree reasonably well with experiments, and inspire con-
fidence in our base-state formulation. To obtain this agreement, no
parameter tuning was required: we simply backed out the pressure
drop from the experimental papers and used our model for these
cases. This is in contrast to (for example) the work of Miesen and
Boersma (1995), wherein the authors encountered some difficulty
in matching up the model parameters with the experimental con-
ditions. Furthermore, the poor agreement between the predictions
of the viscous Kelvin–Helmholtz theory and experimental data
(and our model predictions) calls into question the validity of this
depth-averaged model, at least for the kind of thin-film waves
studied here.
1 We thank S. Kalliadasis and D. Tseluiko for suggesting the application of this
coordinate system to the problem.
6. Conclusions

In this paper, we have investigated the linear stability of an ini-
tially flat interface separating a thin, primarily laminar liquid layer
(although cases wherein this layer is turbulent are also considered
briefly) from a turbulent gas in a rectangular channel. A base-state
model for the flow is derived, which is a generalisation of the mod-
el of Biberg (2007). In this model, both phases are assumed to be
steady and fully-developed, and a modified mixing-length theory
is employed in which an interpolation function is used for the eddy
viscosity; this function is capable of reproducing the ‘law of the
wall’ near the gas–liquid and gas–solid interfaces. The model also
employs standard van Driest functions that damp the effects of tur-
bulence as these interfaces are approached. This model has also
been extended to include effects of interfacial roughness, which
may be brought about physically by pressure fluctuations in the
turbulent phase. Crucially, the model does not contain any ‘adjust-
able’ or ‘fitting’ parameters. Yet, in spite of this feature, the predic-
tions of this model are in excellent agreement with the results of
experimental data as well as direct numerical simulations. This is
one of the two main achievements of this paper (the other, related
to linear stability, will be summarised below): to the best of our
knowledge, no such base-state model exists in the literature.

In order to investigate the linear stability of the base state, we
have started from the linearised Reynolds-averaged Navier–Stokes
equations in the turbulent phase, and the linearised Navier–Stokes
equations in the laminar phase. We then considered different mod-
els for the perturbed turbulent stresses: one in which these stres-
ses are directly related to the turbulent kinetic energy, and another
in which they are related to the turbulent velocity field with a sim-
ple eddy-viscosity model. In both cases, the perturbed turbulent
stresses are damped to zero at the gas–liquid interface.

The linear stability of smooth interfaces was then examined via
numerical solution of the linearised eigenvalue equations, which
correspond to a generalised Orr–Sommerfeld problem. The effects
of the perturbed turbulent stresses on the linear stability were
shown to be negligibly small. This is the second main finding of
this paper: the influence of perturbed turbulent stresses on inter-
facial instabilities had been an unresolved issue in the literature
prior to the present work. On the basis of these findings, the
remaining results in the paper were generated in the ‘quasi-lami-
nar’ hypothesis according to which the turbulence enters the prob-
lem through the base state only.

A decomposition of the energy associated with the most dan-
gerous mode was also carried out, which revealed that, in the
majority of the cases considered, the interface is destabilised as a
result of a viscosity mismatch; this gives rise to ‘interfacial’ modes.
Cases wherein additional, ‘internal’ Tollmien–Schlichting-type
modes are also destabilised have also been studied; in these cases,
the ‘internal’ modes are sub-dominant to the ‘interfacial’ modes.
Competition between these modes was demonstrated only for
the case where significant interfacial roughness is considered. It
is hoped that the latter result can lead to experimental work aimed
at validating our predictions.
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Appendix A. Further validation of the base state

For further validation of the base state discussed in Section 2,
we compare our turbulence modelling with the numerical simula-
tions of Adjoua and Magnaudet (2009), and the experiments of Zil-
ker et al. (1976) and Abrams and Hanratty (1985). First, we
consider the work of Adjoua and Magnaudet (2009). This involves
a large-eddy simulation (LES) of an air–water system where the
bottom layer (a thin film of water) is laminar. A pressure gradient
drives the turbulence in the gas, and is absent in the liquid. A sym-
metry condition is imposed at the gas boundary: thus, the geome-
try of the system is identical to that described by Solbakken and
Andersson (2004). The liquid Reynolds number, based on the film
height and film superficial velocity, is ReL = 4. The gas Reynolds
number, based on the interfacial friction velocity and the gas-layer
depth, is Re⁄,G = 500. To agree with our model, we choose Re0 such
that Re⁄,G = 1000; this is twice the value given in the numerical
study because we solve for the flow in the entire domain. The re-
sults of this calculation are shown in Fig. 18. The agreement be-
tween the LES data and our model is good: our model reproduces
the logarithmic layer and the viscous sublayer accurately. These
features are captured well but not perfectly in the data; this could
be due to an excessively large filter width in the LES. Nevertheless,
the agreement is good, in particular in the dynamically important
viscous and buffer layers. Furthermore, a key assumption of our
model is validated by the LES data of Adjoua and Magnaudet
(2009). Namely, and on average, the upper layer ‘sees’ the bottom
layer, which is much denser and more viscous, as a solid wall mov-
ing at the mean interfacial velocity.

Next, we compare our turbulence modelling with experimental
data for flow past a wavy wall, obtained from the papers of Zilker
et al. (1976) and Abrams and Hanratty (1985). In this set of exper-
iments, the amplitude a of the corrugation of the lower wall is fi-
nite, but the slope aa is assumed infinitesimal. The curvilinear
coordinates necessary in such a scenario were first introduced by
Benjamin (1958)1:

n ¼ x� iaU;

g ¼ z� aU; U ¼ e�azeiax: ðA:1Þ
If the streamfunction has the form

/ ¼
Z g

0
U0ðsÞdsþ aFðgÞeian

(where U0 is the single-phase version of the base state in Eq. (14)),
then the momentum-balance equation for F is
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ia @2
g � a2

� �
FðgÞ � U000ðgÞFðgÞ

h i
þ C ¼ 1

Re
@2

g � a2
� �2

FðgÞ þR;

ðA:2aÞ
where C is the curvature-related term

C ¼ 2ia2U00ðgÞU0ðgÞe�ag þ 1
Re

e�ag 4a2U000ðgÞ � 2aU0000 ðgÞ
� �

; ðA:2bÞ
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and R is the Reynolds-stress term:

R ¼ 2e�ag as000ðgÞ � a2s00ðgÞ
� �

; s0ðgÞ ¼ lTðgÞU
0
0ðgÞ; ðA:2cÞ

where we work with the quasi-laminar approximation. We solve
Eqs. (A.2) subject to the boundary conditions F = F0 = 0 on g = 0
and on g = 1, which are no-slip conditions on the perturbation F.
Although the no-slip condition on the upper boundary is at z = 1,
not g = 1, these planes are close to one another: the physical bound-
ary z = 1 corresponds to an g-value 1 � ae�aeiax, which is close to
unity for large a-values. Thus, for simplicity, we impose a boundary
condition at g = 1.

The solution of the boundary-value problem facilitates a com-
parison with experimental data. In this comparison, we use the
quasi-laminar assumption, wherein the turbulence enters only
through the shape of the base state U0. To make an accurate com-
parison between the experiments and Eqs. (A.2) we study the shear
stress at the interface:

ds ¼ Re�1ð/zz � /xxÞg¼0

¼ aeian

Re
F 00ð0Þ þ a2Fð0Þ þ 2a Re2

�=Re
� �h i

: ðA:3Þ

We also study the phase shift between this stress function and the
wave surface aR½eian�. We examine the situation described by Fig. 5
in the work of Zilker et al. (1976), for which

a=H ¼ 0:003; aH ¼ 13:3; Re� ¼ 2270; ðA:4Þ

where H = 5.08 cm is the channel depth. We also look at Fig. 4 in the
work of Abrams and Hanratty (1985), where

a=H ¼ 0:007; aH ¼ 2p; Re� ¼ 1110; ðA:5Þ

where H is the same is in the Zilker experiment.
A comparison between theory and experiment is shown in

Fig. 19. Fig. 19a and b shows the results of a comparison for the
experiment described by Eq. (A.4). Fig. 19a is a plot of the total
shear stress at the interface,

Re�1U00ð0Þ þ dsðxÞ
h i.

Re�1U00ð0Þ
h i

;

wherein the theoretical curve is compared with the data from the
experiment. Reasonable agreement is obtained for the amplitude.
Excellent agreement is obtained for the phase shift of the shear
stress relative to the wavy wall: the data predicts a phase shift of
approximately 50�, while our model predicts a phase shift 52.6�.
The wavy wall is shown in the figure for comparison, albeit with
an exaggerated amplitude. The parameter a/Re⁄ has the value
0.0059, while aa = 0.04. Fig. 19b provides theoretical curves for
the shape of the streamfunction and the stress distribution
Re�1ð/zz � /xxÞx¼x0

, where x0 is some reference value. The plots in
Fig. 19c and d are similar; these are for the experiment described
by Eq. (A.5).

To conclude, the wavy-wall scenario described here serves as an
adequate testbed for verifying the turbulence modelling of our
base state. However, it is an incomplete model of two-phase flow,
since it assumes that the wave speed is a parameter. For that rea-
son, we have focussed on genuine two-phase flow in the main part
of the paper.
Appendix B. Application of the viscous Kelvin–Helmholtz theory

In this section, we review the viscous Kelvin–Helmholtz theory
(Barnea, 1991) used in the comparison in Section 5.2. This is a sim-
plified theory for the interfacial instability of two-phase turbulent
flow, and takes account of turbulence in either or both phases. It is
commonly used in one-dimensional models for large-scale strati-
fied and slug-flow predictions. The velocity field enters only
through the liquid- and gas-average values, uL and uG, while the
cross-sectional area fractions �L = dL/(dL + dG) and �G = dG/(dL + dG)
also play a role. Then, the complex frequency x is obtainable from
a quadratic equation:

x2 � 2ðx0a� x1iÞxþ x2a2 � x3a4 � ix4a

 �

¼ 0;

where

q� ¼
qL

�L
þ qG

�G
;

x1 ¼
1
q�

qLuL

�L
þ qGuG

�G

� �
;

x2 ¼ �
Si

2q�A
1
�L
þ 1
�G

� �
1
�G

@si

@uG
� 1
�L

@si

@uL
þ 1
�L

@siL

@uL
� 1
�G

@siL

@uG

� �
;

x3 ¼
1
q�

qLu2
L

�L
þ qGu2

G

�G
� gðqL � qGÞðdL þ dGÞ

	 

;

x4 ¼
r
q�
ðdL þ dGÞ;

x5 ¼
Si

q�A
@siL

@�L
� @si

@�L
þ uG

�G

@siL

@uG
� uG

�G

@si

@uG
� uL

�L

@siL

@uL
þ uL

�L

@si

@uL

� �
;

and where the viscous stresses are modelled as

sL ¼
1
2

fLqLu2
L ; f L ¼ CL

DLuL

mL

� ��nL

; DL ¼ 4dL;

sG ¼
1
2

fGqGu2
G; f G ¼ CG

DGuG

mG

� ��nG

; DG ¼ 2dG;

si ¼
1
2

fiqGðuG � uLÞjuG � uLj;

siL ¼
sL�G � sG�L

�L þ �G
:

The coefficients CG and CL both take the value 0.046 for turbulent
flow and 16 for laminar flow, while nL and nG both take the value
0.2 for turbulent flow, and 1.0 for laminar flow. Finally, the interfa-
cial friction factor fi is assumed to be constant and equal to 0.0142
(see Barnea (1991)).
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