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Statistical analysis of transitional boundary layers in pressure gradients is performed
using the flow fields from direct numerical simulations of bypass transition.
Laminar–turbulent discrimination separates the streaky laminar flow from turbulent
regions. Individual streaks are identified and tracked in the flow field in order to
obtain statistics of the amplitude of the streak population. An extreme value model is
proposed for the distribution of streak amplitudes. It is also possible to differentiate
those streaks which break down into turbulent spots from innocuous events. It
is shown that turbulence onset is due to high-amplitude streaks, with streamwise
perturbation velocity exceeding 20 % of the free stream speed. The resulting turbulent
spots are tracked downstream. The current analysis allows for the measurement of
the lateral spreading angles of individual spots and their spatial extent and volumes.
It is demonstrated that the volumetric growth rate of turbulent spots is insensitive to
pressure gradient.
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1. Introduction

Boundary-layer transition to turbulence is often described in terms of the initial
amplification of a primary instability wave, a secondary instability and ultimately
nonlinear breakdown into localized turbulent spots. This description originally emerged
for the study of orderly transition, where the primary stage is the amplification of
classical Tollmien–Schlichting (TS) waves (Kleiser & Zang 1991). A similar view
has emerged for bypass transition, which takes place in the presence of appreciable
background disturbances (Durbin & Wu 2007). In this case, the primary disturbances
are elongated boundary-layer streaks, which reach high amplitude prior to their
secondary instability. While the transitional boundary layer is laden with streaks, only
a few undergo a localized secondary instability, which subsequently develops into a
turbulent spot. The turbulent spots spread as they convect downstream and merge,
thus forming a fully turbulent boundary layer. The sporadic and localized nature of
transition onset is both intriguing and challenging to study.

In this work, direct numerical simulations (DNS) of bypass transition are performed
for four different pressure gradients. Conditional sampling of the spatially and
temporally resolved flow fields is performed in order to determine the distribution
of streak amplitude as well as the threshold for emergence of turbulent spots. The
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ensuing turbulent spots are also tracked in space and time, and their growth rates
contrasted under different pressure gradients.

1.1. Klebano� streaks

Streaks are ubiquitous features of boundary layers subject to elevated levels of free
stream turbulence. They were originally described as breathing modes, because they
are accompanied by thickening and thinning of the instantaneous boundary-layer
edge (Klebanoff 1971), and were later termed Klebanoff modes by Kendall (1991).
These low-frequency perturbations extend the length of the pre-transitional boundary
layer, and are characterized by their high-amplitude streamwise velocity disturbance, u0

(Jacobs & Durbin 2001). An important measure of a streak intensity is its amplitude
Au, which is the local maximum in the u perturbation profile. In the cross-flow plane,
the streak size is of the order of the boundary-layer thickness in both span and
height. The mechanism for the generation and amplification of boundary-layer streaks
has received a great deal of attention in the literature (Taylor 1923; Landahl 1975;
Goldstein & Wundrow 1998; Matsubara & Alfredsson 2001).

Many of the characteristics of boundary-layer streaks have been explained using
linear analysis. Rapid distortion theory explains their long streamwise extent (Phillips
1969). The analysis of Hultgren & Gustavsson (1981) shows linear growth of the
disturbance amplitude in time, and its subsequent decay due to viscous dissipation.
Andersson, Berggren & Henningson (1999) computed the optimal streak disturbance
in a spatial boundary layer. Their analysis predicts the experimentally observed
spanwise spacing of the streaks. They also showed linear spatial amplification of
streak amplitude, which is also consistent with experiments. Zaki & Durbin (2006)
investigated the influence of pressure gradient. Using linear analysis and DNS,
they demonstrated that adverse (favourable) pressure gradient enhances (reduces) the
amplitude of the streaks, and hence promotes (delays) transition to turbulence. In
addition, linear analyses were also performed to predict the threshold of the streak
secondary instability (Vaughan & Zaki 2011).

Streaks are observed to be complicit in the accelerated breakdown to turbulence
in bypass transition (e.g. the flow visualizations by Matsubara & Alfredsson (2001)
and Mans et al. (2005)). Their role has been empirically described based on DNS of
transition in flat-plate boundary layers (Jacobs & Durbin 2001; Liu, Zaki & Durbin
2008a), downstream of different leading-edge geometries (Nagarajan, Lele & Ferziger
2007), and in more complex flow configurations such as compressor passages (Zaki
et al. 2009). One principal breakdown mechanism is the secondary instability of
lifted low-speed streaks, when they are buffeted by the high-frequency, free stream
disturbances (Jacobs & Durbin 2001; Zaki & Durbin 2005). The simulations of
Nagarajan et al. (2007) also predicted transition onset near the edge of the boundary
layer when the leading-edge geometry was slender. However, a blunt leading edge
yielded a new breakdown mechanism via near-wall wavepackets.

In analogy to the work of Swearingen & Blackwelder (1987) on Görtler vortices,
secondary instability analysis has been applied to streaky boundary layers (e.g.
Andersson et al. 2001; Liu, Zaki & Durbin 2008b). Recently, Vaughan & Zaki (2011)
were able to explain the empirical observations of Nagarajan et al. (2007). Their
secondary instability analysis predicted two modes of instability. The first is an outer
mode that causes breakdown of the lifted streaks near the edge of the boundary layer.
The second mode is an ‘inner instability’ that leads to the formation of wavepackets,
which precede full nonlinear breakdown to turbulence.
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It is clear from both experimental and numerical studies that not all streaks undergo
secondary instability and breakdown to turbulence. In fact, the majority of streaks
are innocuous. Time-averaged statistics such as the root mean square velocity (r.m.s.)
are frequently cited as an indication of streak intensity. However, such statistics mask
the distribution of streak amplitudes in transitional boundary layers, and the rare,
unique events that lead to breakdown to turbulence. This point was highlighted by
the experiments of Hernon, Walsh & McEligot (2007) and Nolan, Walsh & McEligot
(2010), who reported peak amplitudes of greater than 30 % of the free stream velocity.

In this work we examine the population of streaks from DNS databases of bypass
transition in a pressure gradient. Individual streaks are identified and tracked in space
and time. The evolution of a particular streak can thus be treated as a single event and
statistics of the population of these events evaluated.

1.2. Turbulent spots

Emmons (1951) coined the term ‘turbulent spot’ and proposed the concept of
intermittency to describe the flow as it locally switches between laminar and turbulent
states. Beyond their initial local inception, spots rapidly grow in size as they
convect downstream. The intermittency factor therefore increases from zero in the
pre-transitional region where there is no turbulence to unity as the flow becomes
increasingly turbulent, culminating in a fully turbulent boundary layer. Emmons
supposed a conical growth of a two-dimensional spot in time and proposed a spot
spreading angle from the point of inception to the spanwise tips of the growing
structure.

Schubauer & Klebanoff (1955) used a spark-generating apparatus to repeatedly
trigger ‘artificial’ turbulent spots in a Blasius boundary layer for interrogation
using hot-wire anemometry. The flow visualization by Gad-El-Hak, Blackwelderf &
Riley (1981) clearly identified the leading-edge overhang, the trailing-edge ‘calmed’
region and the distinctive arrowhead shape of the turbulent spots. Cantwell, Coles
& Dimotakis (1978) applied a conical transformation to measurements of artificial
spots and demonstrated the similarity of the spot-structure during its evolution. Further
experiments on artificial spots have considered the effects of pressure gradient on
spot growth and spreading angle (Wygnanski, Sokolov & Friedman 1976; Seifert
& Wygnanski 1995). Since much of the work on artificial spots is based on a
disturbance introduced at the wall, Jacobs & Durbin (2001) remarked that there may
be a difference in the structure of ‘top-down’ versus ‘bottom-up’ spots, since their
reported breakdown mechanism is found to occur at the edge of the boundary layer
and not at the wall.

Other researchers have probed turbulent spot structure and growth by measuring
spots evolving naturally in boundary layers using laminar–turbulent discrimination
techniques (Hedley & Keffer 1974; Volino & Pratt 2003). The flow is separated
into its constituent laminar and turbulent components and the statistics for each
considered separately. Dhawan & Narasimha (1958) showed that several boundary-
layer parameters may be obtained by the linear combination of their laminar and
turbulent components weighted on the local Emmons intermittency factor. Ching &
LaGraff (1995) measured the propagation rates of naturally occurring spots under
moderate levels of free stream turbulence and found similar leading- and trailing-edge
velocities as those reported for artificially generated spots. Anthony, Jones & LaGraff
(2005) employed a novel experimental technique using hot-film arrays to image the
surface heat flux on a flat plate subject to free stream turbulence. Similarities with the
simulations of Jacobs & Durbin (2001) were reported. Abu-Ghannam & Shaw (1980)
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investigated the effect of pressure gradient on bypass transition. They demonstrated
that, with increasingly favourable pressure gradient, transition onset is delayed and the
length of the transition region extended. Most recently, Park et al. (2012) highlighted
the similarity in the flow statistics within the turbulent patches, which they identified
using an enstrophy-based criterion, and fully turbulent boundary layers.

Using laminar–turbulent discrimination techniques, herein we identify the inception
location of turbulent spots in the DNS database of bypass transition. Furthermore, we
evaluate the growth rates of individual turbulent spots in the simulations and examine
the influence of pressure gradient.

2. Direct numerical simulations

DNS of boundary-layer transition beneath free stream turbulence were performed
for four pressure gradient conditions. The details of the numerical algorithm and
the set-up of the simulations are described in this section. The Navier–Stokes
equations were discretized on a curvilinear staggered grid using the local volume flux
formulation (Rosenfeld, Kwak & Vinokur 1991; Wu & Durbin 2001). A fractional step
procedure was used to advance a provisional velocity field, which was projected onto
the divergence-free solution using the updated pressure. The convective terms were
advanced using the Adams–Bashforth method; the pressure and diffusive terms were
treated using implicit Euler and Crank–Nicolson scheme, respectively. The algorithm
has previously been used in a number of studies of breakdown to turbulence, including
simulations of bypass transition in pressure gradients, separation-induced transition and
breakdown due to Görtler instability (Zaki et al. 2010; Schrader, Brandt & Zaki 2011).

The computational set-up is similar to the DNS of bypass transition by Jacobs &
Durbin (2001). The parameters of the current simulations are summarized in table 1.
(The four simulation cases represent favourable, zero, adverse and strongly adverse
pressure gradient, and are hereafter referred to as FPG, ZPG, APG and APGstrong,
respectively.) The flow domain starts at x = x0, which is located downstream of the
leading edge. At the inlet, the Reynolds number is Re ⌘ U1�0/⌫ = 800 based on
the inflow free stream velocity U1, the 99 % boundary-layer thickness �0 = �(x = x0)
and the kinematic viscosity ⌫. All subsequent results are normalized by U1 and �0

unless otherwise stated. The domain height at the inlet is Ly = 40 and the spanwise
size is Lz = 30. The streamwise extent was chosen such that transition was complete
within the computational domain. Therefore, a relatively short domain length was
sufficient for the adverse pressure conditions, Lx = 600, while longer domains were
required for the zero and favourable pressure gradient simulations, Lx = 900 and 1200,
respectively. The grid resolution was based on the final simulations by Jacobs &
Durbin (2001), who performed a detailed grid refinement study. The grid spacing is
uniform in the streamwise and spanwise directions, where a finer resolution is adopted
in the current work. In the wall-normal direction, the grid was clustered inside the
boundary layer using a hyperbolic tangent function, with the cell size at the wall
1y+

w ⌘ 1ywu⌧/⌫ < 0.40, where u⌧ is the friction velocity.
The top boundary of the computational domain is contoured in order to provide

a desired streamwise pressure gradient. The top boundary condition is free-slip,
similar to the work by Zaki & Durbin (2006). Four different free stream acceleration
parameters � were simulated, where U1(x) = Kx�/(2��). These can be directly related
to the pressure gradient parameter �✓ ⌘ (✓ 2/⌫) dU1/ dx, where ✓ is the momentum
thickness. The resulting streamwise development of the free stream velocity, U1(x),
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FIGURE 1. (a) Streamwise development of free-stream velocity, U1, and (b) decay of
turbulence intensity for each case: FPG (dotted); ZPG (solid); APG (dash-dotted); APGstrong
(dashed).

Case �✓ � Lx nx ⇥ ny ⇥ nz dt

APGstrong �0.04 �0.14 600 2048⇥192⇥192 0.05
APG �0.02 �0.08 600 2048⇥192⇥192 0.05
ZPG 0 0 900 3072⇥192⇥192 0.05
FPG 0.02 0.11 1200 4096⇥192⇥192 0.03125

TABLE 1. Summary of simulation parameters, respectively, pressure gradient design
parameter, Falkner–Skan parameter, domain length, grid size, and simulation time step.

is shown in figure 1. The slopes of the fitted lines match the design values for �
(table 1).

The inflow condition is identical among all the simulations presented herein. It is
a superposition of a Blasius mean velocity profile and free stream turbulence with an
intensity of Tu = 3 %. The free stream turbulence is synthesized from Fourier modes
in time and the periodic spanwise direction, and Orr–Sommerfeld and Squire modes
in the wall-normal direction, as described by Jacobs & Durbin (2001) and Brandt,
Schlatter & Henningson (2004). A von Kármán energy spectrum is assumed for the
free stream turbulence condition,

E() = T2
u E0() = T2

u

(L)4

C[1 + (L)2]17/6 , (2.1)

where  is the length of the three-dimensional wavenumber vector,  =
q

k2
x + k2

y + k2
z .

The expressions for C and L were given by Jacobs & Durbin (2001). The
normalization constant C is determined by ensuring that

R 1
0 E0() d = 3/2, and

the turbulence length scale L is given by L = 55C/9⇡L11, where L11 is given by
L11 ⌘ (1/T2

u )
R 1

0 [u(x)u(x + r)] dr. The downstream decay of free stream turbulence
intensity is plotted in figure 1 for each pressure gradient case.

For each flow condition, the initial transient was removed and statistics were
collected during approximately 8000 time units. This period corresponds to a
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FIGURE 2. (a) Skin friction, normalized by local free-stream velocity, for all cases: FPG
(dotted); ZPG (solid); APG (dash-dotted); APGstrong (dashed); laminar and turbulent Cf
predictions for zero pressure gradient (grey). (b) First derivative of the mean velocity profile
at the streamwise location where Cf is minimum. A circle marks the wall-normal location of
the inflection point in the velocity profile for the adverse pressure gradient cases.

non-dimensional frequency, F ⌘ (!⌫/U2
1) ⇥ 106 ⇡ 1. For comparison, the lowest

disturbance frequency at the inflow was F ⇡ 228. Spanwise- and time-averaged
statistics were computed during the simulations. In addition, a database of 4000
subdomain snapshots comprising every other point of the velocity field was created for
further analysis. Snapshots were separated by two convective time units. Throughout
the results, upper-case symbols or an overbar denote mean quantities, and the prime
denotes perturbation quantities, for example u

0 = u � U .
The average skin friction for each case is plotted in figure 2 versus streamwise

distance, x � x0, where x0 is the domain inlet. Also shown are predictions for laminar
and turbulent flow given by CfLAM = 0.664/Re0.5

x and CfTURB = 0.455/ln2(0.06Rex). The
skin friction is fixed by the inflow Blasius profile and then adjusts according to
the downstream pressure gradient. Transition onset is indicated by the skin friction
minimum, and downstream Cf steadily approaches the higher turbulent level where
the boundary layer becomes fully turbulent. Transition is early and abrupt for the
strong adverse pressure gradient, but occurs further downstream and is longer with
the increasingly favourable flows. The adverse pressure gradient velocity profiles are
inflectional at transition onset as indicated on the right side of figure 2.

The maximum of urms in the wall-normal direction, figure 3, shows similar variation
with pressure gradient. For all cases, a rapid increase is observed in the pre-transitional
region, i.e. prior to the minimum in skin friction, which represents the growing
amplitude of the boundary-layer streaks. This initial growth is followed by a ‘shoulder’
region where the growth rate slows before a significant secondary growth and peak
in the middle of the transition region, corresponding to where the skin friction is
midway between laminar and turbulent states. As the skin friction approaches the
turbulent level, the data in figure 3 collapse to a consistent level of about 12 %. The
initial linear growth and streamwise peak show a dependence on pressure gradient.
The curves, however, collapse in the pre-transitional region when plotted against Re✓ .
The wall-normal position of maximum urms is also shown in figure 3. It approaches the
wall monotonically from the inlet until transition onset, thereafter levelling off at the
same level for all cases, consistent with a turbulent boundary layer.
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FIGURE 3. (a) Maximum of urms in the wall-normal direction normalized by the local
free-stream velocity, U1(x), for all cases: FPG (dotted); ZPG (solid); APG (dash-dotted);
APGstrong (dashed). (b) Wall normal location of maximum urms.

3. Conditional sampling

Typically, statistics gathered from transitional flows contain contributions from both
laminar streaks and turbulent spots, such as the peak urms distributions in figure 3.
Conditional sampling of the flow fields can be used to separate turbulent regions from
the streaky laminar flow. This allows the growth and subsequent decay of the streaks
to be measured independently. In addition, turbulence statistics within the turbulent
spots may be collected. The pronounced peak in urms in figure 3 and the overshoot
in skin friction towards the end of transition suggest that fluctuations in turbulent
spots are more energetic than typically found in fully turbulent flows. Statistics of spot
propagation speed and growth rate may also be evaluated for comparison with the
literature.

3.1. Laminar–turbulent discrimination

The laminar–turbulent discrimination technique used herein is adapted from the
methods discussed by Hedley & Keffer (1974). These typically involve the careful
thresholding of an input signal, such as a time trace from a hot-wire probe, to identify
turbulent regions. Often some form of sensitization is required to prepare the signal
for accurate discrimination such as the time derivative. The resulting detector function
is then lowpass-filtered and thresholded to obtain an indicator function, a logical
indicator of laminar or turbulent flow, which is zero for laminar flow and unity for
turbulent flow.

For the DNS flow fields, laminar–turbulent discrimination is applied to each
snapshot independently. Since streaks are predominantly confined to the streamwise
velocity component, and turbulence is manifest by significant fluctuation in all velocity
components, a suitable detector function is the sum of the absolute values of the wall-
normal v0 and spanwise w0 fluctuation fields, D ⌘ |v0| + |w0|. The detector function is
sensitized and lowpass-filtered in three-dimensional space by a local standard deviation
filter. The logical indicator function, � , is obtained by thresholding the filtered signal
at each wall-normal location using Otsu’s method (Otsu 1979) – a common technique
in machine vision and image analysis for efficient thresholding of bimodal inputs. A
common challenge in conditional sampling is robust threshold selection. Otsu’s method
identifies the optimum threshold suggested by Hedley & Keffer (1974) by minimizing
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FIGURE 4. Laminar–turbulent edge detection plotted for a plan view of the boundary layer
(y/�(x) ⇡ 0.5) from a single snapshot from the ZPG case: (a) u0 and (b) v0. The interface
between the laminar and turbulent regions is marked by a solid dark grey line.
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FIGURE 5. Time–space diagrams showing u0 flow history for each case at y/�0 = 0.7 and
z = 0 for (a) strongly adverse to (d) favourable pressure gradient. The interface between the
(light) laminar region and the (dark) turbulent region is marked in white.

the variance between laminar and turbulent events, but was unavailable to Hedley &
Keffer at the time. The algorithm achieves this by calculating all possible thresholds
and the resulting variances of each of the thresholded regions. The desired threshold is
achieved by minimizing this intra-class variance, i.e. the variance within the laminar
and turbulent zones. Otsu (1979) recognized that this could be achieved efficiently
by maximizing the inter-class variance, i.e. the variance between the laminar and
turbulent zones.

The output of the edge detection algorithm is shown in figures 4 and 5. Figure 4 is
a visualization of the instantaneous flow field and the result of the laminar–turbulent
discrimination. Here both the streamwise and wall-normal fluctuations are plotted. A
solid line indicates the demarcation between the laminar (� = 0) and the turbulent
(� = 1) regions. A distinct difference between the laminar and turbulent regions is
observed, in particular for the wall-normal perturbations, v0. Here the laminar region
appears smooth and shows little variation, while the turbulent region comprises high-
frequency fluctuations. Figure 5 shows the identification of several turbulent spots in
a time–space plot. This plot represents the time history of u0 along a streamwise
line at y = 0.7y/�0. Here spots appear at some streamwise location and grow in time,
tracing out a conical growth path. These regions eventually overlap and transition is
complete. Upstream of the onset of turbulence, variation in the laminar region due to
high-amplitude streaks is visible.
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FIGURE 6. (a) Spanwise averaged wall-normal intermittency profiles at regular intervals,
0.1�peak, throughout the transition region for the ZPG case. Line weight increases with
increased downstream location. (b) Peak intermittency distributions for all cases normalized
by the transition length, ⌘ = (x � xs)/(xe � xs), and compared to the expression �peak =
1 � exp(�5⌘3) by Abu-Ghannam & Shaw (1980) (grey curve). See figure 2 for legend.

The intermittency factor, � , is the probability that the flow at a point is turbulent.
Therefore, � is initially zero for the pre-transitional region and increases to unity for
the fully turbulent boundary layer. The intermittency can be evaluated from the mean
of the logical indicator function, � , according to

� (x, y, z) = 1
T

Z
� dt. (3.1)

In the current flow configuration, the intermittency is also averaged in the
homogeneous spanwise direction and therefore � = � (x, y).

3.2. Conditionally sampled flow statistics

The first statistic of interest is the intermittency factor, � . Figure 6(a) shows wall-
normal intermittency profiles for the zero pressure gradient case at a series of
streamwise locations corresponding to 10 % steps in the wall-normal maximum of the
intermittency, �peak. The value of �peak increases steadily in the streamwise direction
from zero in the pre-transitional region, to unity where transition to turbulence is
complete. The wall-normal profiles increase from zero at the wall and plateau at
y/� ⇡ 0.3 before they decay to zero at y/� ⇡ 1.5. This remains the case even when the
peak wall-normal intermittency is unity. The gradual decay in � towards zero in the
free stream is due to the irregular nature of the instantaneous turbulent boundary-layer
edge.

The streamwise variation in the peak wall-normal intermittency is shown in
figure 6(b), for all cases. As observed in the measurements of Abu-Ghannam &
Shaw (1980), the intermittency distributions are remarkably self-similar and fall
on �peak = 1 � exp(�5⌘3), where ⌘ is the transition length, ⌘ = (x � xs)/(xe � xs).
Subscripts s and e denote the start and end of transition, defined here as �peak = 0.005
and �peak = 0.995, respectively. The shape of the intermittency distribution follows a
sigmoid, which suggests an initial rapid growth followed by a much reduced growth
rate. This reduction can be attributed to the continuously diminishing non-turbulent
region for turbulent spots to occupy.
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FIGURE 7. Conditionally sampled skin friction for ZPG case: laminar-conditioned data
(dashed); turbulent-conditioned data (dash-dotted); laminar and turbulent predictions as in
figure 2 (grey).

Emmons (1951) proposed that time-averaged quantities in intermittent flows can be
considered as a combination of the contributions of the turbulent and non-turbulent
components, weighted on the local intermittency factor:

f = (1 � � )fLAM + � fTURB. (3.2)

Dhawan & Narasimha (1958) note that (3.2) is exact for the mean velocity and
therefore for skin friction, while it is approximate for the integral thicknesses and
shape factor.

The conditionally sampled skin friction for the zero pressure gradient case is plotted
in figure 7. The laminar-conditioned data start at the Blasius level at the inlet, and
slightly increase downstream due to the mean flow distortion by Klebanoff streaks. A
more pronounced increase in the laminar-conditioned skin friction is observed after
the onset of transition, and is explained below. The turbulent-conditioned data start
at a lower value than the turbulent correlation. This should be distinguished from the
results by Park et al. (2012), who computed their conditionally sampled turbulent skin
friction by averaging over the entire spot footprint. The behaviour of the laminar- and
turbulent-conditioned data in figure 7 is explained by considering the instantaneous
skin friction. An example is presented in figure 8. The upper panels show streamwise
and spanwise slices of a single turbulent spot observed in the ZPG case. The lower
panels plot the corresponding instantaneous skin friction across the spot.

The pronounced rise in laminar Cf is seen in the plot of the instantaneous skin
friction versus downstream distance, and is due to the ‘calmed’ flow trailing turbulent
regions. Within the turbulent spot, the skin friction curve fluctuates about the turbulent
correlation. However, at the spot periphery, i.e. the leading edge and the ‘wing tips’,
the skin friction, although oscillatory, is at a lower level than the turbulent value. As
a result, turbulent-conditioned skin friction near the onset of transition is on average
lower than the turbulent correlation. Further downstream, as the spots spread and
merge, the influence of their periphery diminishes and the skin friction increases.

The conditionally sampled integral displacement and momentum thicknesses, �⇤ and
✓ , are shown in figure 9, and are compared to those of the Blasius solution. The
decomposition into laminar and turbulent components reveals the relative contributions
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to the change in the boundary-layer thickness during transition. The laminar-
conditioned data, which correspond to the streaky flow surrounding turbulent spots,
follows the theoretical solution upstream of transition. In the case of the displacement
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FIGURE 10. Conditionally sampled shape factor H12 for the integral thickness in figure 9 for
(a) APGstrong, (b) APG, (c) ZPG and (d) FPG cases.

thickness, the laminar �⇤ reduces in the transition region. This behaviour is reflected
in the decreasing shape factor H12 from the Blasius state (H12 = 2.59) shown in
figure 10. Matsubara & Alfredsson (2001) report similar decay of shape factor in
their experiments. This decay is due to the distortion of the laminar boundary layer
by streaks, and is further enhanced in the transition region by the inclusion of the
high-speed calmed region trailing the turbulent spots in the laminar-conditioned data.
For the adverse pressure gradients, there is an initial growth in shape factor similar to
that reported by Abu-Ghannam & Shaw (1980). The turbulent-conditioned shape factor
rapidly and consistently approaches H12 ⇡ 1.4 for all cases.

3.2.1. Mean velocity profiles

The downstream evolution of the mean streamwise velocity U is shown in figure 11.
Plotted in wall coordinates, the unconditioned time-averaged velocity profiles, shown
in figure 11(a), gradually transition from a laminar to a fully turbulent profile as
they steadily approach the law of the wall, U+ = 1/ ln Y+ + B where  = 0.41 and
B = 5. For reference, a mean velocity profile from the turbulent boundary-layer DNS
of Schlatter et al. (2009) at a Reynolds number Re✓ = 670 is shown. This corresponds
to the end of the transition region in the present ZPG case (� = 0.9). The simulations
of Schlatter et al. (2009) achieve a fully turbulent flow by tripping the boundary
layer near the leading edge. Excellent agreement with wind tunnel experiments tripped
similarly was reported in their work. In the context of the present simulations, the fully
turbulent flow is achieved via bypass transition due to free stream buffeting of the
boundary layer. Very good agreement is observed nonetheless.

The laminar- and turbulent-conditioned mean velocities exhibit distinct laminar and
turbulent profiles, respectively. The laminar-conditioned velocity profiles (figure 11b)
do not approach a turbulent state even up to the end of transition and retain a
characteristic laminar shape, but are not self-similar due to the distortion by the streaks
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FIGURE 11. Mean velocity profiles for (a) time-averaged, (b) laminar-conditioned and
(c) turbulent-conditioned data at the same streamwise locations as in figure 6. Line weight
increases with increased intermittency. Symbols show the mean velocity profiles from the
turbulent boundary-layer profiles of Schlatter et al. (2009) at the same Reynolds number
(Re✓ = 670) corresponding to the end of transition.

and the calmed region that trails turbulent spots. On the other hand, the turbulent-
conditioned velocity profiles (figure 11c) immediately and consistently follow the law
of the wall throughout the transition region.

3.2.2. Reynolds stresses

The decomposition of the Reynolds stress into its constituent laminar and turbulent
components is given by the following expression (Pope 2001):

u0
iu

0
j = (1 � � )u0

iu
0
jLAM

+ � u0
iu

0
jTURB

+ � (1 � � )(uiTURB � uiLAM)(ujTURB � ujLAM). (3.3)

Equation (3.3) can be understood by considering the time series in figure 12, which
shows a record of the total velocity, u(t), close to the wall, for the ZPG case in
the transition region. This plot is similar to the recording by a hot-wire sensor
in an experiment. The indicator function, � , is also shown and identifies regions
of turbulent flow (� = 1), which are characterized by high-frequency fluctuations.
Turbulent regions have a high variance about the turbulent mean (indicated by the
upper dashed line and shaded region), unlike the quiescent laminar regions. However,
the unconditioned time-averaged data contain both laminar and turbulent regions, both
offset from the time-averaged mean (indicated by a dash-dotted line). The variance of
the unconditioned signal (indicated by a brace) as a whole may be greater than the
turbulent-conditioned data alone. In order to reconstruct the total signal variance from
the laminar and turbulent signals, the offset of these variances from the time average
must be taken into account using (3.3).

Conditioned and unconditioned velocity profiles are shown in figure 13 for the
ZPG case at �peak = 0.5, corresponding to the midpoint in the transition region. Here
the flow has an equal probability of being in a turbulent or non-turbulent state. The
conditional mean velocity profiles are computed using (3.2) while the conditional
Reynolds stresses are evaluated using (3.3). The unconditional and intermittency
weighted profiles show excellent agreement. The turbulent-conditioned u0u0 profile
exhibits a consistent turbulent shape, with an acute near-wall peak, similar to the time-
averaged data at the end of transition. However, it is noteworthy that the magnitude
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whole.
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FIGURE 13. Weighted velocity profiles for ZPG case at �peak = 0.5: time-averaged (solid
grey); laminar-conditioned (dashed); turbulent-conditioned (dotted); intermittency-weighted
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of the peak is decaying as transition progresses. The laminar-conditioned u0u0

profile differs in magnitude from the other Reynolds stresses due to the streamwise
dominance of the streaks.
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FIGURE 14. Conditionally sampled Reynolds shear stresses for each pressure gradient
plotted at regular peak intermittencies after figure 6. As above, increased line weight indicates
higher intermittency factor. Symbols show the corresponding Reynolds stress for the fully
turbulent boundary-layer simulations of Schlatter et al. (2009).

Conditionally sampled Reynolds shear stresses are plotted in figure 14 for a
range of intermittencies, 0.1 < �peak < 0.9. Both conditional and unconditional profiles
are shown for each pressure gradient. The time-averaged data show a smooth but
significant growth in magnitude across the transition region with good agreement with
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linearly with downstream distance. (c,d) The corresponding wall-normal location of the
maximum. Line types have the same meaning as in figure 3.

the simulations of Schlatter et al. (2009) for the ZPG case. The laminar-conditioned
data show limited growth compared to the u0u0 profiles observed in figure 14, due
to the streamwise dominance of the streaks. The turbulent-conditioned data are
consistently higher than the reference data of Schlatter et al. (2009). There is some
early growth in magnitude followed by a steady decay towards the turbulent boundary-
layer reference data. The apparent growth observed in the time-averaged data can
therefore be attributed to the weighting effect of the local intermittency as expressed
in (3.3).

3.2.3. Disturbance growth

The wall-normal peak of urms is reproduced in figure 15 with the conditionally
sampled data superimposed. This allows the growth in streak intensity, as estimated by
the laminar-conditioned urms, to be evaluated without contamination from surrounding
turbulent spots.

Considering the laminar-conditioned results, the inset in figure 15 shows the linear
energy growth in the early evolution of the streaks, consistent with previous studies
of bypass transition (e.g. Matsubara & Alfredsson 2001). In addition, the laminar-
conditioned urms curves do not exhibit the pronounced secondary growth that is
observed in the unconditionally sampled data. Instead, the laminar curves reach a
peak near the end of the laminar region. Should transition to turbulence not take place,
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it is expected that the streaks would decay due to viscous effects, in a manner similar
to that described by Zaki & Durbin (2006).

The turbulent-conditioned data follow a trend similar to that of the secondary peak
and therefore the shape may be attributed to the growth and subsequent maturation of
turbulent spots rather than streak amplitude. As in figure 14, the magnitude shows an
initial growth and is followed by a decay towards a fully turbulent level. Moreover,
while the turbulent-conditioned data follow the shape of the unconditional secondary
peak, they are somewhat lower in magnitude. This is related to the inclusion of mean
velocity terms in (3.3) as discussed above.

3.3. Quadrant analysis

Quadrant analysis allows the contributions to the Reynolds shear stress from different
events to be quantified. By splitting the conditionally sampled perturbation data into
quadrants, the effects of lift-up and the structure of turbulent spots on the boundary
layer may be investigated (figure 16). In turbulent channel flow, Wallace, Eckelmann
& Brodkey (1972) identified ‘ejections’ (Q2, �u0, +v0) and ‘sweeps’ (Q4, +u0, �v0)
as the primary characteristic of events that contribute to the wall-normal transport of
momentum. Sweeps were reported by Willmarth & Lu (1972) as predominant close to
the wall and ejections strongest at the edge of the turbulent boundary layer. Quadrant
analysis of conditionally sampled data can help to understand the type of structures
that make up turbulent spots.

A scatter plot of the distribution of fluctuations at a point in the transitional
boundary layer is presented in figure 16 (� = 0.5, y/�99 = 0.5). The laminar-
conditioned stresses, shown by black points, remain confined to streamwise
perturbations. The turbulent-conditioned data, shown by grey points, display significant
wall-normal perturbations, predominantly due to Q2 and Q4 events.

The contribution of each quadrant to the Reynolds shear stress, u0v0, is shown
in figure 17. The data correspond to the streamwise location �peak = 0.5, and are
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FIGURE 17. Quadrant decomposed u0v0 profiles at � = 0.5 for each case for (a) time-
averaged data, (b) laminar-conditioned data, and (c) turbulent-conditioned data: �, Q1;
4, Q2; ⇧, Q3; 5, Q4; total u0v0 shown by dashed line.

decomposed into laminar- and turbulent-conditioned data. For the unconditioned data,
it is observed that Q4 sweeps and Q2 ejections are predominant and contribute most
to the total Reynolds shear stress. Both sweeps and ejections grow significantly and at
similar rates as transition progresses. As previously noted, sweeps peak close to the
wall while ejections peak away from the wall. The wall-normal maxima move away
from the wall with increasingly adverse pressure gradient.

Based on figure 17 the laminar-conditioned Reynolds shear stress is relatively small,
although sweeps and ejections remain most dominant. The strongest adverse case
exhibits higher amplitudes than the other pressure gradients. The turbulent-conditioned
data in figure 17 are more interesting. Here, ejections show higher peak values than
sweeps. The same observation can be made at all stages through the transition region,
due to the fuller turbulent-conditioned mean velocity profile (not shown).
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3.4. Quadrant hole analysis

Quadrant hole analysis demonstrates how intermittent, but high-amplitude, events can
contribute significantly to the total Reynolds shear stress. A threshold is selected
based on multiples of constant shear stress, H(urmsvrms), and the contribution of data
exceeding this threshold to the shear stress is computed. Willmarth & Lu (1972) and
Nolan et al. (2010) describe the method in detail. Figure 16 shows lines of constant
shear stress. Data falling outside these curves exceed the prescribed threshold and are
described by an indicator function, Ii

H . The percentage time spent beyond the threshold
in quadrant i is called the duration fraction and is given by

Di
H = 1

N

NX

n=1

Ii
H,n, i = 1, . . . , 4, (3.4)

so that
4X

i=1

Di
H(H) + Dh

H(H) = 1. (3.5)

Here N is the number of samples and the superscript h refers to the data within the
hole region. The percentage contribution to the shear stress from the data exceeding
the threshold in quadrant i is defined as the stress fraction,

gu0v0
i(H)

u0v0 = 1
u0v0

1
N

NX

n=1

u0v0
i(t)I

i
H, i = 1, . . . , 4, (3.6)

so that
4X

i=1

gu0v0
i(H)

u0v0 +
gu0v0

h(H)

u0v0 = 1. (3.7)

Typically, rare events found at high thresholds can have significant contributions to
the Reynolds shear stress in fully turbulent boundary layers, as noted by Willmarth
& Lu (1972) (although their results potentially overestimated this contribution due to
their measurement probe). One advantage of the quadrant hole method is that the
laminar contribution is quickly filtered out as the threshold grows: as can be seen in
figure 16, the laminar data lie within the ‘hole’ region.

Figure 18 shows shaded contours of the stress fraction and contour lines of the
duration fraction for each pressure gradient condition. Based on the current results,
approximately 20 % of the Reynolds shear stress u0v0 results from less than 5 % of
the time. In addition, for large hole size, we observe that high-amplitude Q2 events,
although rare, still contribute appreciably to the Reynolds shear stress. There is a
strong similarity across all the pressure gradient cases throughout the transition region.
Ejections show the largest peak at the boundary-layer edge throughout. Close to the
wall, sweeps also show a strong peak. This behaviour was also reported in the particle
image velocimetry (PIV) measurements of Nolan et al. (2010).

4. Laminar streaks

The traditional statistical method for estimating streak amplitude is calculating urms,
as presented in figure 15. However, the r.m.s. does not differentiate between positive
and negative streaks, which led several researchers to propose using the maximum
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and minimum of the distribution of the perturbation history as an indicator of streak
amplitude (Wundrow & Goldstien 2001; Hernon et al. 2007; Nolan & Walsh 2012).
This approach, however, is wasteful of data and carries the risk of the data being
biased by a small number of observations, e.g. the peak of a particularly strong streak.

Another important consideration is that streaks are low-frequency events, of
large streamwise extent. As a result, single streaks may be sampled repeatedly in
both time and space when computing the r.m.s. These data are therefore highly
correlated. Consequently, the assumption of independent, identically distributed (i.i.d.)
observations, which may hold somewhat for sampling of high-frequency turbulent
flows, is not necessarily valid when estimating streak amplitudes from the distribution
of u0. In order to determine the influence of streaks on the breakdown to turbulence,
individual events must be considered. This requires the identification of individual
streaks in both space and time. The ability to identify and track a particular streak
event is also required in order to directly measure the critical streak amplitude for
breakdown to turbulence.

4.1. Streak detection

Lin et al. (2008) identified individual streaks in stereo PIV measurements of the
viscous sublayer of a turbulent boundary layer. Regions of high- and low-speed
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FIGURE 19. (a) Side and (b) plan views with the identification of positive (red) and negative
(blue) streaks. The side view is in the plane of symmetry of the turbulent spot, and the plan
view is located at y/�0 = 0.7. Shown also is the laminar–turbulent edge detection (black) and
the mean boundary-layer thickness (white).

fluid were isolated and properties such as spanwise angle, spacing and width were
catalogued. Marquillie, Ehrenstein & Laval (2011) utilized a skeletonization technique
to identify the centreline of individual streaks in their numerical simulations. Here we
present a robust algorithm to isolate individual streaks in the DNS velocity fields and
to extract the velocity perturbation along their streamwise extent, thus providing a true
measure of streak amplitude.

Boundary-layer streaks are dominated by the streamwise perturbation velocity, as
noted by Jacobs & Durbin (2001). Therefore, the first step in the streak detection
algorithm is identification of local extrema in the u0 perturbation field at every
streamwise plane. Local extrema that are attributed to the free stream turbulence,
and not to boundary-layer streaks, must be removed. This requires evaluation of the
instantaneous boundary-layer edge. Here the criterion u� = 0.95U1(x) is selected and a
spatial filter is applied to eliminate any isolated regions to retain a single contiguous
interface between the boundary layer and the free stream. All the local extrema beyond
the instantaneous boundary-layer edge are discarded. Neighbouring extrema that are
connected in successive streamwise planes are connected and are labelled as a unique
object. Figure 19 shows the typical output of the streak detection algorithm. Both
a wall-normal and a spanwise slice through an instantaneous ZPG field are shown.
The contours represent the u0 perturbation field. The laminar–turbulent discrimination
demarcates the interface between the streaky laminar boundary layer and the turbulent
flow. Red and blue lines indicate the spatial coordinates of the detected positive and
negative streaks, respectively. Negative streaks are observed to be lifted towards the
boundary-layer edge, while positive streaks remain close to the wall.

Streaks are tracked in time by cross-correlating the amplitude signature of each
streak in a snapshot with those in the following snapshot. Thus a temporal connection
table is created, which links instances of each unique streak throughout its evolution.
In this manner, streaks can be regarded as Lagrangian objects. For each streak, s, its
spatial coordinates are known as a function of time, x

s(t), and the streak amplitude
during its evolution is defined by

A s
u (xs, t) ⌘ u0(x = x

s, t). (4.1)
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FIGURE 20. (a) Side view showing a single positive streak’s temporal evolution. Streak
instances corresponding to every 20 convective time units are shown. The data are ‘coloured’
by streak amplitude, A s

u , from light to dark. (b) Plot of As
u obtained with (4.2) versus ys.

Shown also are the mean boundary edge (solid line) and the laminar conditioned boundary-
layer edge (dashed line).
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FIGURE 21. Temporal evolution of a negative streak as in figure 20.

Examples of the time history of a positive and a negative streak are presented in
figures 20 and 21, respectively. Panel (a) in each shows a side view of the streak
coordinates, ‘coloured’ by the amplitude, A s

u (xs, t). At every streamwise position, we
extract the maximum amplitude of the streak throughout its time history,

As
u(x) =

8
<

:

max
t,y,z

(A s
u (xs, t)) for A s

u > 0,

min
t,y,z

(A s
u (xs, t)) for A s

u < 0,
(4.2)

and the wall-normal position of this maximum,

ys(x) = y(As
u(x)). (4.3)
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FIGURE 22. (a,b) Averaged streak amplitude of isolated (a) positive and (b) negative streaks.
The urms profiles in figure 3 are also reproduced in grey. (c,d) Streamwise variation of ys for
each case. See figure 2 for legend.

Examples of ys(x) are shown in figures 20 and 21, respectively. The location of ys(x)
for the high-speed streak is near the wall, and closer to the boundary-layer edge for
the low-speed example.

4.2. Streak amplitude

The mean streak amplitude, Au, is shown in figure 22,

Au = 1
S

SX

s=1

As
u. (4.4)

It is evident that Au is significantly higher than urms, which is reproduced from
figure 3. In addition, adverse pressure gradient enhances the streak amplitude: Au

is approximately 30 % higher for the adverse pressure gradient cases compared to the
favourable case. Figure 22(c,d) show ys relative to the local boundary-layer thickness.
Unlike the wall-normal location of maximum urms (figures 3 and 15), which represents
where the most variance between streaks occurs, this represents the true position of
the streaks within the boundary layer. The figure demonstrates that adverse pressure
gradient displaces ys away from the wall – a result consistent with the observations by
Marquillie et al. (2011) in the context of turbulent channel flow with a curved lower
wall.
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of peak urms with fitted Gaussian distribution, and probability distributions of streak amplitude
with fitted type I GEV. The r.m.s. level is indicated by the dashed lines. (b) Streamwise
variation of the GEV distribution for the ZPG case. Contour lines are logarithmically spaced
between decades 10�0.25 to 10 in steps of 100.14. Data points indicate the positive and negative
streak amplitudes Au in closest proximity to the turbulent spot inception location.

A fuller representation of the streak population is presented in figure 23, where the
distribution of As

u is plotted at a fixed downstream location. The figure contrasts the
current results to conventional measurements of the perturbation field. The distribution
of u0 fluctuations and urms are all shown. The distribution of streak amplitudes can be
modelled using extreme value theory (Coles 2001). In an analogue to the central limit
theorem, the distribution of the maximum (or minimum) of i.i.d. random variables is
described by one of three possible distributions, which are often unified under the
generalized extreme value (GEV),

G(z : µ, �, ⇠) = exp

(
�


1 + ⇠

✓
z � µ

�

◆��1/⇠
)

, (4.5)

where ⇠ is the shape parameter, µ is the position parameter and � is the width
parameter.

Of these, the Gumbel distribution, ⇠ ! 0, is the limiting case of the exponential
parent distributions, such as the normal distribution. In the case of streak amplitude
(e.g. figure 23), the shape parameter tends to zero (⇠ ! 0), which results in a type I,
or Gumbel, distribution for As

u. The parent distribution for this outcome is a Gaussian,
which is consistent with the probability density function of u0.

The GEV models the maxima of the parent distribution and therefore only depends
on the shape of its tail. This reinforces that the use of urms as an indicator of streak
amplitude is inadequate because all positions in the streaks are sampled and the
standard deviation, while somewhat sensitive to long tails, may be biased. As such,
urms masks the probability of high-amplitude streaks (see figure 23).

Figure 23 also shows the streamwise development of the fitted GEV distributions
As

u. The streak amplitude initially grows quickly for both positive and negative streaks,
and the latter continue to grow steadily downstream. The width of the distributions
increases, with streak amplitudes reaching as high as 40 % of the local free stream
velocity.
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FIGURE 24. Distributions of each case at (a) x � x0 = 150 and (b) transition onset. Line
styles as in figure 1.
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FIGURE 25. Return plots of negative streak amplitude at transition onset for all cases:
APGstrong (⇧); APG (4); ZPG (�); FPG (⇤). Streak amplitude is normalized by the local
streamwise velocity, U1(x).

The effect of pressure gradient at a fixed position upstream of transition (x � x0 =
150) is shown in figure 24. The distribution of streak amplitudes shifts towards higher
magnitudes with increasingly adverse pressure gradient. A similar trend is observed at
the point of transition onset for each respective case.

It is informative to transform the results in the form of a return level plot (figure 25).
This plot recasts the GEV of streak amplitudes in the form of a return level and an
associated return period. The return level, zp, is the streak amplitude and the return
period, 1/p, is the elapsed time between consecutive events of this amplitude. The
expression for zp is obtained by inverting (4.5):

zp =

8
<

:
µ � �

⇠
[1 � {�log(1 � p)}�⇠ ] for ⇠ 6= 0,

µ � � � log[�log(1 � p)] for ⇠ = 0,
(4.6)

where

p = 1 � G(zp). (4.7)
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In the transitional boundary layer, the return level of interest is the streak amplitude
immediately upstream of breakdown to turbulence. Using the conditional sampling
techniques presented herein, both the coordinates of every incipient turbulent spot and
the amplitude of its host streak are identified. Superimposed on figure 23(b) are data
points representing the instantaneous amplitudes of both the low- and high-amplitude
streaks in closest proximity to turbulent spot inception. It is found that turbulence
onset is associated with As

u > 0.2, with the majority of breakdown events in the
vicinity of As

u ⇠ 0.3.
Assuming zp = 0.3, figure 25 illustrates that the associated return period decreases

with adverse pressure gradient. Therefore, if breakdown to turbulence is a result of
high-amplitude streaks, there should be a greater number of turbulent spots observed
with increasingly adverse pressure gradient.

5. Turbulent spots

The results of conditional sampling as shown in figure 5 are reproduced in figure 26
in the form of a time–space diagram. The figure is strikingly similar to the high-
density hot-film measurements of Anthony et al. (2005). Similar to that work, ‘faint
tracks’ are observed in the laminar region and are due to the streaks.

The current simulations illustrate that, while many spot breakdowns may appear
concentrated in a narrow streamwise window, there is a range of streamwise
positions within the transition length where spots are initiated. This is reaffirmed in
figure 26(b,c), which show histograms of spot inception locations and the intermittency
profiles. These distributions are calculated by removing the turbulent boundary layer
from the four-dimensional time–space data, of which figure 26 represents a slice, and
determining the apex of the cone traced out by the spots. This cone extends from
the point of spot inception to the point just prior to merging with the fully turbulent
boundary layer or with other spots.

The wall-normal location of spot inception is reported in figure 26(c). Apart from
the strong APG case, spot inception typically occurs in the outer half of the boundary
layer, which is consistent with the ‘top-down’ breakdown scenario (Jacobs & Durbin
2001; Zaki & Durbin 2005). Typically, the majority of spots form in the first half
of the transition region, as shown in figure 26(b). This is intuitive, as the remaining
non-turbulent space for spots to form diminishes downstream. In addition, the figure
clearly demonstrates a significant increase in the turbulent spot production rate with
adverse pressure gradient. As a result, the boundary layer is rapidly saturated with
turbulent spots and, therefore, the transition length is relatively short.

In the strong APG case, spots are initiated most frequently near the wall. The
presence of an outer and an inner instability of streaky boundary layers was explained
by Vaughan & Zaki (2011). The current results demonstrate the shift from outer
to inner breakdown due to a strong adverse pressure gradient. This trend was also
remarked upon by Marquillie et al. (2011) based on their stability analysis of streaks
that were extracted from DNS of a turbulent channel with a curved lower wall.

In order to relate the initiation of localized breakdown to the streak amplitude, the
results from figures 25 and 26 are combined in figure 27. The figure also serves
as a summary of the current findings for all the pressure gradients considered.
Firstly, the intermittency distribution and the histogram of spot inception count
(figure 26b) are reproduced. In addition, the return periods for selected streak
amplitudes (zp ± [0.1, 0.2, 0.3, 0.4]) are plotted versus downstream distance. For a
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FIGURE 26. (a) Time–space diagrams showing the u0 flow history for each case: adverse
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turbulent region is marked in white. (b) Normalized distributions of streamwise spot-inception
location for each case with intermittency distribution. (c) Distribution of wall-normal spot-
inception locations for each case.

return level of 0.1, the lowest curve, the return period quickly drops from a high value
at the inlet to order unity, signifying that streaks of this amplitude are ubiquitous.
Similar behaviour follows for larger-amplitude streaks but with increasingly longer
return periods.

It is evident from figure 27 that the highest frequency of spot inception is spatially
correlated with the minimum return period for high-amplitude streaks. This result
reaffirms the role of the highest-amplitude streaks in the bypass transition process – a
role previously masked by time-averaged statistics (e.g. urms).
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[0.1, 0.2, 0.3, 0.4] for positive (black) and negative (grey) streaks. Shown also is the
intermittency distribution as in figure 26.

5.1. Turbulent spot growth

The conical growth of a single turbulent spot from the APG case is shown in figure 28.
Outlines of the silhouette of the spot in each plane are shown for every 20th time unit.
Figure 28(a) shows a side view of the spot evolution: the point of inception is near
the free stream. In time, the spot fills the entire boundary-layer thickness, and extends
from the wall to beyond the boundary-layer edge. At the later stages, an overhang
develops at the leading edge of the spot. In figure 28(b), dotted lines mark the loci of
conical growth, which has a spreading angle of 12�. It has been reported that adverse
pressure gradient leads to wider spreading angles (Chong & Zhong 2005). This is
also found in the current data with spreading angles from 10 to 30� with increasingly
adverse pressure gradient. The dimensions and the volume of all observed turbulent
spots were recorded. Figure 29 shows the time evolution of spot length and spanwise
size for all pressure gradients and a linear fit of the data.

The growth rates in the streamwise and spanwise directions appear to have little
dependence on pressure gradient. While there is some scatter in the data due to
short-term erratic growth at spot extremities, all cases follow the same growth rate on
average, and quickly return to this growth rate after any sudden changes such as the
consumption of an additional streak breakdown adjacent to the spot.

Unlike the spreading angle, which is sensitive to the free stream velocity driving
the spot convection, the spanwise size Lz and its growth rate are simply a measure of
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the growth of the spot over time as it consumes surrounding laminar fluid. As can be
seen in figure 29, this has a consistent linear behaviour for all cases, dLz/dt ⇡ 0.11.
Hence with favourable (adverse) pressure gradient, the spreading angle of the spot
will decrease (increase) since the spot is swept downstream faster (slower) while its
spreading rate is independent of the pressure gradient.

Similarly, spot length Lx grows at a rate of dLx/dt ⇡ 0.46. The ratio of the spanwise
and streamwise growth rates gives a propagation parameter � = 0.24 similar to that
reported in the experimental literature (Mayle 1999). Spot area can then be expressed
as a simple geometric growth, area(t) = 0.46 ⇥ 0.11 ⇥ t2. This is shown in figure 30(a),
and is in good agreement with the spot projected area onto the wall.

The time dependence of the spot volume is plotted in figure 30(b). A power-law
fit with an exponent of 2.42 is fitted, volume / t2.42. The greater than quadratic
dependence on time can be accounted for by the wall-normal growth of the spot
as shown in figure 31. The area and volumetric growth rates exhibit considerably
less scatter than found for the spot size measurements in x, y and z, since integral
quantities are less sensitive to the instantaneous variation of the spot boundary. Most
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FIGURE 30. Maximum spot (a) footprint and (b) volume as functions of time for all cases.
Also shown is the power law area = 0.46 ⇥ 0.11 ⇥ t2 based on the geometric growth of the
spot footprint, and a power-law fit with an exponent of 2.42 for the spot volume.

importantly, the current results illustrate that the spot growth rates are independent of
pressure gradient – a valuable finding for transition modelling.

6. Discussion and conclusions

Conditional sampling of flow fields from DNS has yielded deeper insights into
bypass transition. Whereas the time-averaged statistics show a smooth transition of
the flow from a laminar to a fully turbulent state, the intermittency weighted statistics
yield a distinctly different picture. With the exception of streamwise distortion due to
streaks, the non-turbulent conditioned data retain laminar characteristics throughout the
transition region. The turbulent-conditioned data reproduce a fully turbulent velocity
profile, even from the onset of transition. The Reynolds stresses, however, initially
exceed the level of a fully turbulent flow, but steadily decay towards these levels over
the course of transition.
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Quadrant analysis confirms the significance of sweep and ejection events as the
primary contributors to wall-normal momentum transfer. The turbulent-conditioned
data identify ejections as the dominant event, being consistently 25 % higher in
magnitude than sweeps. Quadrant hole analysis provides an in-depth view of the
contributions to the Reynolds shear stress. Similar findings to Nolan et al. (2010)
are reported, with very large contributions due to ejection events resulting from short
periods of time at the mean boundary-layer edge. Similar behaviour is found for sweep
events near the wall.

By considering the role of individual streaks in the breakdown process, a better
understanding of the seemingly random nature of turbulent spot formation is possible.
In an attempt to understand why particular streaks undergo breakdown to turbulence,
an algorithm for isolating streaks and extracting their amplitude was developed.
The algorithm also tracks the spatial and temporal evolution of individual streaks.
Therefore each streak becomes a single event in our statistical treatment. This is
contrasted with simple time-averaging techniques where a streak is repeatedly sampled
in space and time.

The streak amplitudes are demonstrated to adhere to a generalized extreme value
distribution, which models local maxima of a dataset, and streak amplitudes fulfil this
criterion. The distribution of streak amplitude shows that the most probable events
are of the order of 10–15 % of the local free stream velocity in the transition region
(figure 23). However, the strongest streaks, which break down to turbulence, are less
frequent and can reach amplitudes up to 30–40 %. These streaks are more frequent
with adverse pressure gradient (figure 25). The spot inception rate is also increased
under these conditions (figure 26).

The location of spot inception and the subsequent growth rates of turbulent spots
were reported. The wall-normal location of spot inception for the FPG, ZPG and APG
cases is found to be distributed in the outer half of the boundary layer. This is in
agreement with the observations of Jacobs & Durbin (2001). However, the APGstrong

case is different, where spot inception occurs close to the wall.
The streamwise locations of spot inception are clustered in the early stages of

transition, 0 < � (x) < 0.5. Applying both the streak detection and laminar–turbulent
discrimination algorithms, the streak amplitude at the point of spot inception is
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generally found to exceed 20 % of the local free stream velocity. The return level
data show that streaks with amplitudes in excess of this threshold are frequent in this
region (i.e. have short return period).

Turbulent spot growth rates were reported for all pressure gradients. Unlike the
often cited spreading angle, which depends on the spot propagation rate, growth rates
of streamwise and spanwise extent were found to be insensitive to pressure gradient.
Consequently, the growth rate of the turbulent spot planform area for all spots grows
quadratically in time. The volumetric growth rate follows a power law, volume / t2.42,
for the investigated range of mean pressure gradient.
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