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A robust immersed boundary method for semi-implicit discretizations of the Navier–Stokes equations on
curvilinear grids is presented. No-slip conditions are enforced via momentum forcing, and mass conser-
vation at the immersed boundary is satisfied via a mass source term developed for moving bodies. The
errors associated with an explicit evaluation of the momentum forcing are analysed, and their influence
on the stability of the underlying Navier–Stokes solver is examined. An iterative approach to compute the
forcing term implicitly is proposed, which reduces the errors at the boundary and retains the stability
guarantees of the original semi-implicit discretization of the Navier–Stokes equations. The implementa-
tion in generalized curvilinear coordinates and the treatment of moving boundaries are presented, fol-
lowed by a number of test cases. The tests include stationary and moving boundaries and curvilinear
grid problems (decaying vortex problem, stationary cylinder, flow in 90� bend in circular duct and oscil-
lating cylinder in fluid at rest).
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1. Introduction

Immersed boundary (IB) methods have become an established
approach for modelling complex and moving geometries. The main
advantage and the popularity of these methods are due to their
simplicity and efficiency. Unlike body-conforming methods which
require a body-fitted grid and remeshing in moving boundary
problems, a structured Cartesian grid is adopted for the IB method.
The effect of the body surface is included through the addition of
boundary forces in the Navier–Stokes equations. Use of structured
grids greatly simplifies the task of grid generation, particularly for
moving bodies and leads to more efficient computational algo-
rithms with better convergence and stability properties. The pre-
sent work focuses on the use of IB in the context of semi-implicit
Navier–Stokes solvers, which are commonly adopted in simula-
tions of moderate- and high-Reynolds number flows.

IB methods can be grouped into continuous forcing and discrete
forcing approaches [1]. The first immersed boundary method was
developed by Peskin [2] and was applied to elastic boundaries
moved by the fluid. Modifications to this approach for use with
rigid boundaries were proposed by Beyer and Leveque [3] and
Goldstein et al. [4] and employed feedback forcing to drive the
velocity at the boundary to rest. However, these methods
produced spurious oscillations and were subject to severe stability
constraints. Another drawback of continuous forcing methods is
the fact that a sharp representation of the boundary cannot
be obtained since smoothing functions are used to transmit the
forcing to the fluid, effectively spreading the location of the
boundary. This is undesirable, especially when modelling
high-Reynolds-number flows in which thin boundary layers need
to be resolved accurately.

Mohd-Yusof [5] proposed a discrete derivation of the forcing
term, in what is now commonly referred to as direct forcing.
Other discrete forcing approaches exist, such as immersed inter-
face methods (IIM) and Cartesian grid methods. However, the
direct forcing approach remains most popular due to its simplicity
and enhanced stability compared to other immersed boundary
methods. Many variants of direct forcing methods have therefore
appeared in the literature [6–13] and have been implemented in
the framework of the fractional step algorithm which is commonly
employed for solving the Navier–Stokes equations [7–9,14].

The accuracy and stability of direct forcing approaches used in
conjunction with fractional step depend on the formulation of
the fractional-step method, the computation of the forcing term
and the treatment of mass conservation at the boundary. The
two implementations of the fractional step method, referred to
as the p-form, which neglects the pressure term in the
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intermediate velocity equation, and the Dp-form, which includes
the pressure term from the previous time step, are both used
extensively. However, only IB conditions applied in conjunction
with the Dp-form are second-order accurate in time, whereas the
p-form is only first-order accurate. The computation of the forcing
term should be viewed relative to the temporal discretization of
the governing equations. Explicit schemes for the solution of the
Navier–Stokes equations are straightforward to implement, how-
ever they are limited by the viscous stability constraint.
Therefore, most fractional step methods apply a semi-implicit
approach where the diffusive terms are treated implicitly – these
are the focus of the present work. In this context, implicit evalua-
tion of the IB forcing term is not straightforward unless a simplified
interpolation is adopted, for example the one used by Fadlun et al.
[7]. Kim et al. [8] proposed an alternate approach where they pro-
visionally advance the velocity field explicitly in order to compute
the forcing term and then add it to the semi-implicit momentum
equations. Their method has a clear advantage in terms of algorith-
mic efficiency. However, this approach can potentially reduce the
stability limit of the numerical scheme due to the mismatch in
the temporal discretization of the IB forcing and the governing
equations.

In the present study, the errors in the computation of the forc-
ing term are analysed and a stable second-order accurate direct
forcing method is proposed. The current method consists of an iter-
ative approach which decreases the errors at the boundary and
enhances stability. The proposed method has been developed for
use in a generalized curvilinear system allowing a wide range of
complex geometries to be modelled efficiently on structured grids.
The treatment of moving boundaries is also presented for com-
pleteness, and builds on the recent literature.

Sharp-interface IB methods are known to suffer from spurious
force oscillations (SFOs) in moving body problems [15–20]. Lee
et al. [18] identified two main sources of spurious oscillations: (i)
The first source is the temporal discontinuity in the velocity which
arises as a point from the fluid becomes solid and its velocity is
suddenly changed to satisfy the no-slip condition at the IB. (ii)
The second source is the spatial discontinuity in the pressure field
which arises due to the momentum forcing and which contami-
nates the fluid field when a point from the solid becomes fluid.
Seo and Mittal [19] found the major source of oscillations to be
the violation of mass conservation near the immersed boundary.
In order to suppress spurious oscillations, Yang and Balaras [16]
proposed a field-extension approach in which the pressure and
velocity at solid points becoming fluid were extrapolated from
the surrounding fluid. Uhlmann [15] combined the direct forcing
approach at Lagrangian points with discrete delta functions [2].
Lee et al. [18] showed that the addition of a mass source/sink
inside the solid equally suppressed the SFOs, and Seo and Mittal
[19] applied a cut-cell method to improve local mass conservation
and reduce spurious oscillations. In the present method, an exten-
sion of the mass source term by Kim et al. [8] for use with moving
boundaries is applied. Recently, a similar method applied to cells
cut by the boundary was presented by Lee and You [20], and the
differences will be discussed.

In summary, the stability of explicit and implicit forcing meth-
ods in the semi-implicit discretization of the Navier–Stokes equa-
tions is examined. An iterative implicit scheme is proposed,
which is shown to have favourable stability properties. The method
is capable of handling complex geometries on curvilinear grids and
moving body problems. The paper is organized as follows: In
Section 2, the governing equations and discretization scheme are
presented. The accuracy of the IB boundary conditions in the frac-
tion step method is discussed. In Section 3, the stability of explicit
and implicit forcing methods is examined. An error analysis of
explicit forcing methods is performed and the proposed implicit
forcing approach is then presented. The stability of both methods
is studied for flow over a stationary cylinder. The implementation
of the immersed boundary conditions, the modifications required
for extension onto curvilinear coordinates, and the treatment of
moving boundaries are described in Section 4. In Section 5, numer-
ical tests which validate the accuracy of the method are presented.
Finally in Section 6, some conclusions are drawn.

2. Governing equations and semi-implicit discretization

In order to satisfy both the no-slip and no-penetration condi-
tions at the immersed boundary, a momentum forcing, f i, and a
mass source term, q, are applied to the Navier–Stokes equations,
similar to the method by Kim et al. [8]. The forcing term sets the
velocity at points surrounding the boundary, which are referred
to as IB points, to a particular value such that the velocity at the
surface of the immersed body satisfies the boundary conditions.
Cells containing the immersed boundary do not satisfy mass con-
servation without appropriate treatment. Therefore a mass source
is added in order to ensure that mass is conserved [8].

The governing equations for unsteady incompressible flow are
the momentum and continuity equations given below

@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@2ui

@xjxj
þ f i; ð1Þ

@ui

@xi
� q ¼ 0; ð2Þ

where xi are the Cartesian coordinates, ui are the corresponding
velocities, p is the pressure, f i are the momentum forcing compo-
nents and q is the mass source term. The flow equations are solved
on a staggered curvilinear grid using a volume flux formulation
[21]. The equations are spatially discretized by a second-order
finite-volume scheme and advanced in time with a second-order
semi-implicit fractional step method that uses Adams–Bashforth
for the convective terms and Crank–Nicolson for the diffusive
terms. The flow solver has been extensively validated and adopted
in direct numerical simulations of transitional and turbulent flows
[22–24].

A number of approaches can be adopted for transformation of
the governing equations from Cartesian to curvilinear coordinates,
each with different methods of discretization, choice of dependent
variables and grid layouts. For example, Cartesian velocities, con-
travariant velocities or volume fluxes, could be chosen as the
dependent variables. While volume fluxes are used in our work,
for generality and in keeping with the literature on IB methods,
the discretized equations will be shown in Cartesian coordinates.
Extension of the direct forcing method to curvilinear grids is inde-
pendent of the coordinate transformation used and will be dis-
cussed in Section 4.1.

The fractional step method decouples the solution of the
momentum equations (Eq. (1)) from that of the continuity equa-
tion (Eq. (2)) by solving them separately in two steps. An interme-
diate velocity field which is not divergence-free is computed first
and subsequently corrected with a pseudo-pressure, /, such that
continuity is satisfied.

The discretized equations are given by

ûi � un�1
i

Dt
¼ 1

Re
aLðûiÞ þ bLðun�1

i Þ
� �

� Gpn�1 � cNðun�1
i Þ

� dNðun�2
i Þ þ f n

i ; ð3Þ

DG/n ¼ 1
Dt

Dû� qnð Þ; ð4Þ

un
i ¼ ûi � DtG/n; ð5Þ

pn ¼ pn�1 þ /n; ð6Þ
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where Nðun
i Þ is the discrete form of the convective term, L is the dis-

crete Laplacian operator, D is the discrete divergence operator, G is
the discrete gradient operator and the weighting coefficients
depend on the numerical scheme adopted (a ¼ b ¼ 1=2 for Crank–
Nicolson, c ¼ 3=2; d ¼ �1=2 for Adams–Bashforth and c ¼ 1; d ¼ 0
for Euler).

Two slightly different forms of the fractional step method
exist. The first, referred to as the p-form [25,26], neglects the
pressure term in Eq. (3) and then solves the Poisson equation
for pressure. The method adopted here, the Dp-form, includes
the pressure term from the previous time step when computing
the intermediate velocity field and then determines the pressure
difference from the Poisson equation [27,28]. Although the distinc-
tion may seem subtle, the appropriate form of the immersed
boundary conditions differs for the two variants of the fractional
step method. Note that in direct forcing methods the forcing
term, f i, is constructed such that ûi satisfies the immersed bound-
ary conditions rather than un

i . Following the analysis by Kim and
Moin [26], enforcing ûC ¼ Un

C on the immersed boundary C,
where Un

C is the boundary velocity, is second-order accurate when
the Dp-form of the equations is used. The same condition is only
first-order accurate in the p-form, but has nonetheless been used
in the literature (e.g. [29,14]). Following a similar analysis to Kim
and Moin [26], a second order accuracy can be achieved in the
p-form by enforcing the immersed boundary condition,
ûC ¼ Un

C þ DtG/n�1
C (the derivation is deferred to Appendix A). In

this work, we adopt the Dp-form of the fractional step method,
and ensure second-order accuracy by enforcing ûC ¼ Un

C on the
immersed boundary.
3. Stability of explicit and implicit forcing methods

3.1. Explicit forcing

The evaluation of the momentum forcing, f n
i in Eq. (3), must be

consistent with the temporal evaluation of the intermediate veloc-
ity equation. Any disparity can introduce errors near the immersed
boundary. In this section, explicit evaluation of f n

i is examined
when the intermediate velocity equation is also advanced explic-
itly in time and, after, for the more common case of a
semi-implicit discretization of the momentum equation.

Consider a fractional step algorithm where the intermediate
velocity equation is discretised with an explicit scheme (instead
of the semi-implicit scheme provided in Eq. (3)). In this case the
intermediate velocity, ûiðexÞ is governed by,
ûiðexÞ � un�1
i

Dt
¼ 1

Re
cLðun�1

i Þ þ dLðun�2
i Þ

� �
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� dNðun�2
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iðexÞ: ð7Þ

Both f n
iðexÞ and ûiðexÞ are unknown, but the velocity field ûiðexÞ at

non-IB points can be computed since, at these points, f n
iðexÞ ¼ 0.

Replacing ûiðexÞ by the target velocity at IB points, Un
IB, the forcing

term is obtained from:
f n
iðexÞ ¼

Un
IB � un�1

i

Dt
� 1

Re
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i Þ þ dLðun�2
i Þ

� �
þ Gpn�1

þ cNðun�1
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i Þ at IB points;

f n
iðexÞ ¼ 0 elsewhere; ð8Þ

and added to Eq. (7) to solve for the intermediate velocity field.
Substituting Eq. (8) into Eq. (7) shows that the scheme is consistent,
and no error is introduced at the boundary,
ûiðexÞ ¼ Un
IB at IB points;

ûiðexÞ ¼ un�1
i � 1

Re
ðcLðun�1

i Þ þ dLðun�2
i ÞÞ þ Gpn�1 þ cNðun�1

i Þ
�

þ dNðun�2
i Þ

�
Dt elsewhere: ð9Þ

Since explicit schemes are limited by the viscous stability con-
straint, fractional step methods often apply a semi-implicit
approach, in which the diffusive terms are treated implicitly (Eq.
(3)). Evaluating the forcing term is less straightforward because
ûi at non-IB points, which are required to enforce ûi ¼ Un

IB at the
IB points by interpolation, now depend on ûi at the IB points.
This dependence comes through the second-order derivatives in
the implicit diffusive terms. The solution proposed by Kim et al.
[8] was to obtain the forcing by provisionally discretizing the inter-
mediate velocity equation (Eq. (3)) explicitly in order to find an
approximation, ~ui, of ûi,

~ui � un�1
i

Dt
¼ 1

Re
cLðun�1

i Þ þ dLðun�2
i Þ

� �
� Gpn�1 � cNðun�1

i Þ � dNðun�2
i Þ

þ f n
iðexÞ: ð10Þ

The velocity ~ui at non-IB points is no longer dependent on ~ui at IB
points. The latter can be set via interpolation (~ui ¼ Un

IB) and used
to evaluate the forcing term, as in Eq. (8). The error introduced by
the explicit forcing term can be viewed from two perspectives:
The error in f itself which was examined by Kempe and Fröhlich
[30]. Alternatively, here we focus on the error in the intermediate
velocity which can be derived by substituting Eq. (8) into Eq. (3).
This yields the following expression at the immersed boundary,

ûi ¼ Un
IB þ

Dt
Re

aLðûiÞ þ bLðun�1
i Þ � cLðun�1

i Þ � dLðun�2
i Þ

� �
: ð11Þ

Due to the implicit treatment of the diffusive term in the inter-
mediate velocity equation, this error also affects neighbouring
non-IB points. The error due to the explicit treatment of the diffu-
sive terms in the calculation of f n

i can render the scheme unstable
in two scenarios: (i) in low-Reynolds-number flows; (ii) in turbu-
lent flows where the resolution near boundaries can render the vis-
cous stability constraint more restrictive [7].

The stability of two explicit schemes for the computation of the
forcing term is compared in Section 3.3: (i) Explicit 1, where the
diffusive terms in Eq. (8) for f n

iðexÞ are discretised using the Euler
method (c ¼ 1; d ¼ 0) and (ii) Explicit 2, where the diffusive terms
are discretised using the Adams–Bashforth scheme
(c ¼ 3=2; d ¼ �1=2).

3.2. Implicit forcing

In order to avoid introducing errors by the IB forcing in the con-
text of the semi-implicit fractional step method, implicit evalua-
tion of f n

i is required,

f n
i ¼

Un
IB � un�1

i

Dt
� 1

Re
aLðûiÞ þ bLðun�1

i Þ
� �

þ Gpn�1 þ cNðun�1
i Þ

þ dNðun�2
i Þ: ð12Þ

If interpolation at the immersed boundary is performed along a
grid line, the forcing term can be recast in such a way that only the
intermediate velocity equation needs to be inverted [7]. However,
for arbitrary complex geometries, interpolation is generally per-
formed along the normal to the boundary in order to remove any
ambiguity over the direction of interpolation. For interpolation
along the surface normal, the method by Fadlun et al. [7] leads
to a large sparse matrix, which adds substantially to the computa-
tional cost [9,16]. An extension to curvilinear coordinates presents
a similar challenge to this scheme.
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An alternative solution for the implicit calculation of the
momentum forcing is to adopt an iterative strategy [20,31]. Here
we propose an iterative approach which can be derived by splitting
the intermediate velocity equation into two steps which fully
recover Eq. (3),

~ui � un�1
i

Dt
¼ 1

Re
aLð~uiÞ þ bLðun�1

i Þ
� �

� Gpn�1 � cNðun�1
i Þ

� dNðun�2
i Þ þ f n�1

i ; ð13Þ

ûi � ~ui

Dt
¼ a

Re
LðûiÞ � Lð~uiÞð Þ þ df n

i : ð14Þ

In the first step, an approximation, ~ui, of the intermediate velocity is
determined. This velocity field does not satisfy the exact boundary
conditions at the immersed boundary since the forcing applied is
that from the previous time step. In the second step, the forcing is
updated and the no-slip constraint at the immersed boundary is
satisfied.

The exact expression for df n
i is obtained from Eq. (14) by apply-

ing the no-slip constraint at the immersed boundary ðûi ¼ Un
IB at IB

points):

df n
i ¼

Un
IB � ~ui

Dt
� a

Re
LðûiÞ � Lð~uiÞð Þ: ð15Þ

Since the diffusive term, LðûiÞ, in Eq. (15) is unknown, an iterative
method is required to solve for ûi and df n

i implicitly. An approxima-
tion to LðûiÞ is made by setting

ûi ¼ Un
IB at the forcing points;

ûi ¼ ~ui elsewhere: ð16Þ

The first term in the forcing (Eq. (15)) drives the velocity at the
boundary to the target value (i.e. it enforces the no-slip boundary
constraint) while the second term ensures that the diffusive term
at the boundary and, hence, the velocities ûi at surrounding
non-IB points are correct.

The algorithmic implementation for the method is given below
and, in the following section, the stability of the proposed scheme
(Implicit) is compared to that of the explicit forcing methods
(Explicit 1 and Explicit 2) given in Section 3.1.

Algorithm 1. Implicit iterative scheme for the evaluation of the
forcing term

f n;0
i ¼ 0 or f n

iðexÞ

for k ¼ 1 to nk do

~uk
i ¼ un�1

i þ Dt a
Re Lð~uk

i Þ þ
b
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�cNðun�1
i Þ � dNðun�2

i Þ þ f n
i

�

In order to verify the spatial and temporal accuracy of the cur-
rent IB method, simulations of a 2D unsteady flow are performed.
We consider a decaying vortex problem [32], given by

uðx; y; tÞ ¼ � cosðpxÞ sinðpyÞe�2p2t=Re;

vðx; y; tÞ ¼ sinðpxÞ cosðpyÞe�2p2t=Re; ð17Þ
in a square domain of length ð�1:5L 6 x 6 1:5L;�1:5L 6 y 6 1:5LÞ
with the immersed boundary located at ðx ¼ �L; y ¼ �LÞ, where L
is the size of the vortex (see Fig. 1). The Reynolds number based
on the maximum velocity and the size of the vortex is Re ¼ 500.
The initial field and the velocities at the domain boundaries and at
the immersed boundary are prescribed using the analytical solution.

For the spatial accuracy test, a grid refinement study is per-
formed using five uniform Cartesian grids f132;252;492;972g. In
order to test the temporal accuracy of the scheme, various compu-
tational time steps are examined f10;5;2:5;1:25;0:625g � 10�3 on
the finest grid. The number of iterations in the implicit forcing
scheme is set to nk ¼ 5. The L2 and L1 norms of the u and v veloc-
ities, measured relative to the exact solution, are computed at time
t ¼ 0:1 everywhere in the fluid enclosed by the immersed bound-
ary as well as on the immersed boundary itself. The error norms
are given by

L2 ¼
1

N2

XN

i¼1

XN

j¼1

unum
i;j � uexact

i;j

� �2
" #1

2

; L1 ¼max junum
i;j � uexact

i;j j: ð18Þ

Fig. 2a and b show the spatial and temporal convergence of the
two norms, alongside reference lines displaying first and
second-order rates of convergence. The results demonstrate that
the IB scheme is second-order accurate in both space and time,
and hence preserves the order of accuracy of the numerical method
used for the solution of the Navier–Stokes equation.

In order to verify the convergence of the iterative scheme, the
error in the intermediate velocity at the immersed boundary is
evaluated. The L2 and L1 error norms are plotted versus number
of iterations in Fig. 3, where zero iterations corresponds to the con-
ventional explicit forcing. The error at the boundary diminishes
rapidly with iterations. After four iterations, the error is approxi-
mately five orders of magnitude smaller than that due to the expli-
cit IB method.
3.3. Stability

The stability of the explicit and the proposed implicit forcing
schemes is examined for flow around a stationary circular cylinder.
In all cases the intermediate velocity equation is discretized using
Adams–Bashforth for the convective terms and Crank–Nicolson for
the diffusive terms. The three schemes described in Sections 3.1
and 3.2 for the evaluation of the forcing term are compared: (i)
Explicit 1, (ii) Explicit 2 and (iii) Implicit. A uniform Cartesian grid
with 7692 points is employed on a 4D� 4D domain, where D is the
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cylinder diameter, with the cylinder located at the centre. Free-slip
is applied at the top and bottom boundaries and the simulations
are performed at Reynolds numbers ReD ¼ f20;40g, based on the
diameter of the cylinder, D, and the far-field velocity, U1.
Different time steps are examined in order to determine the max-
imum allowable Dt for stability for each scheme.
Table 1
Stability of the IB methods at different time steps for flow over a stationary cylinder at
ReD ¼ f20;40g.
The test cases reported in Table 1 are specifically designed to
test the viscous stability limit of the forcing methods, without
approaching the CFL limit for convective instability. The motiva-
tion is to determine whether the inconsistency in the discretization
of the viscous term in the intermediate velocity equation and in the
expression for the forcing term can lead to instability. Below is a
summary of the results:

1. Stability depends on the discretization scheme used for the dif-
fusive terms in the equation for f n

i . The implicit iterative
method remains stable for larger Dt than the explicit methods.
Compared to the explicit method of Kim et al. [8], the implicit
approach remains stable up to approximately 2.5 times larger
Dt, and up to four times the maximum allowable Dt of the
Adams–Bashforth explicit method.

2. Stability is limited by the viscous stability constraint rather
than the convective CFL, since errors are introduced in the dif-
fusive terms (see Eq. (11)). The implicit method remains stable
for Dt < 2:0ReDx2. The explicit forcing methods lower the sta-
bility of the overall algorithm even though forcing is only
applied in a small region of the flow. Explicit method 1 remains
stable for Dt < 0:75ReDx2 and explicit method 2 is stable for
Dt < 0:5ReDx2.

In this example, only one iteration was performed for the eval-
uation of the implicit forcing term, which reduced the errors at the
immersed boundary by two to three orders of magnitude and only
required an additional 50% of the computational cost required for
the evaluation of an This added cost is insignificant for two rea-
sons: First, it becomes marginal when normalised by the overall
cost of the time step, where the most expensive element is the
solution of the pressure equation. Second, the added cost is easily
offset by the enhanced stability of the scheme. For example, the
results in Table 1 show that the implicit force evaluation can
increase the simulation Dt by 2.5 times relative to the explicit forc-
ing scheme.

Next, errors in u and v velocities around the cylinder are exam-
ined at ReD ¼ 40 in order to verify the source of the instability.
Since there is no exact solution for this flow, the solution obtained
with the implicit iterative method using the smallest time step is
used as the benchmark. Fig. 4 shows line contour plots of the u
and v errors for the three methods with Dt ¼ 0:001. Flood contours
of the wall-normal diffusive terms from the benchmark case have
also been plotted and demonstrate that the errors leading to insta-
bility occur in regions where the diffusive terms are largest, which
reaffirms the role of the viscous term in the instability of the expli-
cit forcing scheme.
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In order to validate our findings, we examined the stability of a
one-dimensional unsteady heat diffusion problem. Starting with
zero initial condition, the temperature was suddenly increased to
unity at one boundary. In addition, we applied a forcing term to
set the temperature at a given point in the domain to a prescribed
value. The spacial discretization was a second-order central differ-
encing scheme and time advancement was performed using
Crank–Nicolson. Without the forcing term, a Crank–Nicolson dis-
cretization is unconditionally stable. Explicit forcing by Euler
method was benign in this simple problem. However, explicit forc-
ing by Adams–Bashforth reduced the stability boundary. The case
of the Navier–Stokes equations is clearly more complex and the
explicit forcing was demonstrated to reduce the finite stability
region of the Crank–Nicolson discretization of the viscous terms.
surface point and interpolation points used for calculation of the mirror point
velocity.
4. Implementation in curvilinear coordinates and for moving
boundaries

The complete description of the iterative IB method presented
in Section 3 requires two further considerations: implementation
in curvilinear coordinates and treatment of moving boundaries.
Both elements are presented in this section, and are followed by
test cases for validation.

The immersed boundary is represented as a three-dimensional
triangulated surface. Velocity points are classified into fluid or solid
via a ray tracing algorithm which establishes whether a point lies
inside or outside the geometry based on the number of times a
ray starting from the point and passing by an arbitrary point in
the domain intersects the surface. Solid points with at least one
neighbour in the fluid are classified as IB points where the forcing,
f i, is to be applied. The cells cut by the immersed boundary are
classified as IB cells.

In order to calculate the forcing term at an IB point, the velocity
Un

IB such that the immersed boundary conditions are satisfied must
be determined. The evaluation of Un

IB uses linear extrapolation from
the velocity at the mirror point, uM , and the velocity at the surface
point, Un

C:

Un
IB ¼
ðaþ bÞ

a
Un

C �
b
a

uM: ð19Þ

Here, a and b are the distances of the mirror and the IB points to the
surface respectively (see Fig. 5). The location of the mirror point is
determined following a similar approach to that by Mittal et al.
[33], which ensures the method works with highly complex geome-
tries, and the mirror point velocity is computed by interpolation of
the eight surrounding velocity points.

4.1. Implementation in curvilinear coordinates

Certain geometries are better-suited to curvilinear rather than
Cartesian grids. Curvilinear IB methods are particularly useful in
bioflow problems which often involve complex geometries, e.g.
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Fig. 7. The geometry and the grid for pulsatile flow in a circular 90� pipe bend.
Every fourth gridline of the coarse grid has been plotted.
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flow in a mechanical heart valve [34] or flow in the respiratory air-
ways [35]. A curvilinear grid can improve efficiency by minimising
the number of grid points outside the fluid domain, can have a
more natural alignment with the streamlines which is desirable
for the accuracy of the solution, and might provide a better
wall-normal resolution than a Cartesian grid. This last advantage
is particularly beneficial in simulations of turbulent flows.

The main issues when applying IB methods on a curvilinear grid
are (i) the identification of the host cell for a particular point of
interest and (ii) the interpolation method. On a Cartesian grid,
identification of host cells is a trivial procedure. On a curvilinear
grid, however, there is no explicit relation between a physical posi-
tion and the grid cell that contains it. Therefore a search algorithm
is required in order to determine the cell location of the mirror
points. The algorithm is based on ‘tetrahedrization’, whereby each
cell is split into six tetrahedrons (or two triangles in 2D) [36]. The
cell search is confined to ten surrounding cells in each dimension
in order to speed up the algorithm. This approach is particularly
advantageous in moving boundary problems since it avoids global
search for host cells as the IB and mirror points move through the
flow.

The second required modification is in the interpolation scheme
for the evaluation of the velocity at the mirror points. Trilinear
interpolation can be applied on curvilinear grids by mapping the
grid points from physical space to a rectilinear computational
space. Alternatively, an inverse distance weighting scheme can
be adopted in physical space directly, where the weights of the
eight surrounding velocity points are calculated as a function of
the Euclidean distances, di, to the mirror point. In this case, the
velocity at the mirror point uM is given by,

uM ¼
PN

i¼1
ui=d2

iPN

i¼1
1=d2

i

if di > � for all interpolation points;

ui if di < � for one interpolation point;

8<
:

ð20Þ

where ui is the velocity at an interpolation point and � is the mini-
mum tolerance for di. When the distance between the mirror point
and an interpolation point is very small, the computational error
becomes significant as di � 0. Therefore if a distance is less than �,
the velocity is set to that of the interpolation point and all other
interpolation points are given zero weighting [37].

When all the surrounding points are in the fluid, the interpola-
tion to the mirror point is straightforward. If any of the points is in
the solid, it can be ignored, but the interpolation accuracy
(a) (

(a) (b)

Fig. 6. 2D schematic of the mass source te
deteriorates. Instead, the interpolation point within the solid is
replaced by the nearest surface point. This approach would not
be feasible with a standard trilinear interpolation scheme.

The method presented is capable of handling complex geome-
tries on curvilinear grids. For example, we have applied the IB
scheme in simulations of the flow in realistic extrathoracic airways
[35]. However, for validation purposes, canonical test cases which
can be reproduced by the readers are presented in Section 5.

4.2. Treatment of moving boundaries

The two main challenges encountered with moving boundaries
are the treatment of freshly-cleared cells and the spurious force
oscillations. Freshly-cleared cells arise when the moving boundary
withdraws from the fluid and cells which were inside the solid at
the previous time step are relocated in the fluid. The flow variables
at these points do not have a valid time history, and therefore spe-
cial treatment is required for the momentum equation in these
cells. In order to ensure the correct flow field around a moving
boundary, the intermediate velocity in the freshly-cleared cells is
obtained by interpolation between the immersed boundary and a
point in the fluid.
b) (c)

(c)

rm for moving immersed boundaries.
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In order to reduce spurious force oscillations at the boundary, a
mass source/sink is applied inside the solid [8]. The mass source
term proposed by Kim et al. [8] can be formulated for moving body
problems [18]. This expression can also be extended in order to
take into account the solid fractions of the cell faces,

qn ¼ 1
DV

X6

i¼1

xbsðû� Un
CÞ þ wbsðû� Un

CÞ
� 	

� nDSi; ð21Þ

where DV is the cell volume, DSi is the area of each cell face, n is the
unit normal vector outward at each cell face and bs is the fraction of
the cell face inside the solid. The coefficient x ¼ 1 for IB points and
0 otherwise, and w ¼ 1 for fluid points and 0 otherwise.
(a)

(b)

(c)

(d)

θ

θ

θ

θ

θ

θ

θ

θ

Fig. 8. Pulsatile flow in a circular 90� pipe bend. Streamwise velocity profiles normalised
257� 129� 129 grid; body-fitted data [34]; � experimental measurements [40]. (
of bend curvature, and Ri and Ro are the inner and outer radius of the bend, respectivel
In the present work, a variant of the mass source approach is
adopted for use with moving boundaries. The mass source term
is given by

qn ¼ 1
DV

X6

i¼1

bsû � nDSi þ Un
C � nCDC

 !
; ð22Þ

which is equivalent to

qn ¼ 1
DV

X6

i¼1

bsðû� Un
CÞ � nDSi; ð23Þ

where nC and DC are the surface outward unit normal vector (point-
ing towards the fluid), and the area of the boundary within the cell,
θ

θ

θ

θ

by the median bulk velocity. –�–�129� 97� 97 grid; ––– 129� 129� 129 grid; —
a) t ¼ 0; (b) t ¼ T=4; (c) t ¼ T=2; (d) t ¼ 3T=4. R is the radial distance from the centre
y.
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respectively. For the two-dimensional example shown in Fig. 6, the
mass source terms in the three cells are

qi;j ¼
1

DxDy
uiþ1;j

Dysi;j

Dy
� v i;j

Dxsi;j

Dx
þ UC � nCi;j

DCi;j

 !
;

qiþ1;j ¼
1

DxDy
�uiþ1;j

Dysi;j

Dy
þ uiþ2;jDy� v iþ1;jDxþ v iþ1;jþ1

Dxsiþ1;j

Dx

 

þUC � nCiþ1;j
DCiþ1;j

!
;

qiþ2;j ¼
1

DxDy
�uiþ2;jDyþ uiþ3;jDy� v iþ2;jDxþ v iþ2;jþ1Dx
� �

: ð24Þ

The first term on the right-hand-side of Eq. (22) mimics the
cut-cell/virtual cell-merging technique [19] without requiring con-
struction of new polyhedral cells. It ensures that the continuity
equation is satisfied for the fraction of the cell inside the fluid by
excluding the contribution from the solid region. Since two
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Fig. 9. In-line oscillating cylinder in a fluid at rest at four different phase angles: (a) 0�; (b
0.09. At right, spanwise vorticity contours from �26.0 to 26.0 with intervals of 0.95. —,
neighbouring cells which share a common face have the same
value of the surface flux, but with opposite signs, the global contri-
bution of this term vanishes [8]. The second term in Eq. (22)
ensures that the continuity equation is satisfied for moving body
problems by including the flux at the boundary. Eq. (22) can be
interpreted as an expression of the source term from a
grid-based reference frame. Cast in the form (23), it can be inter-
preted as the source term relative to the moving body.

While the mass source term (Eq. (22)/(23)) appears similar to
that by Huang and Sung [38] for stationary boundaries or by Lee
and You [20] for moving bodies, two important differences should
be noted, and they relate to global mass conservation and the sup-
pression of spurious force oscillations on staggered grids. The first
notable distinction is that the method by Lee and You [20] was
developed for collocated grids, on which the mass source term
was applied in IB cells only. This is not the case in our method
for staggered grids, where the mass source term in Eq. (22) (or
(23)) is applied to IB cells (cut by the boundary) as well as any
-2 0 -1 1 2 

x/D

(e)

(f)

(g)

(h)

) 96�; (c) 192�; (d) 288�. At left, pressure contours from �1.1 to 0.6 with intervals of
positive; –––, negative.
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adjacent cells that share the IB fluxes at their common cell face, in
order to satisfy global mass conservation. Second, unlike Huang
and Sung [38] and others who compute the source term at IB
points only, the present approach applies the forcing and mass
source terms throughout the solid region. Specifically, the first
term in Eq. (22) is evaluated at all solid and IB cell faces, as shown
in Eq. (24). This requirement avoids a temporal discontinuity in the
velocity of solid points suddenly becoming IB points, which we
demonstrate in Appendix B. The benefit of the present approach
has been remarked in some previous studies: For example, Kim
and Choi [39] reported that this choice improved the stability of
their simulations at high-Reynolds-number; Liao et al. [17] showed
that applying the forcing term throughout the solid reduces the
otherwise large spurious oscillations that arise when the forcing
is applied on the immersed boundary only.
F
D

tUmax/D

Fig. 10. Temporal evolution of the drag force on an oscillating cylinder with grid-
size Dx ¼ Dy ¼ 0:02D: , momentum forcing without a mass source; ,
momentum forcing with a mass source. Symbols are boundary-fitted data [42]: �,
total drag force; �, pressure component; M, shear component.

(a)
∆x = 0.04D

∆x = 0.02D

∆x = 0.01D

tUmax/D

F D
F D

F D

Fig. 11. Temporal evolution of the drag force on an oscillating cylinder: (a) on different g
Dx ¼ Dy ¼ 0:02D. , momentum forcing without a mass source; , momentum forc
5. Numerical examples

5.1. Pulsatile flow in 90� circular bend

Pulsatile flow in a circular duct with a 90� bend is simulated in
order to validate the immersed boundary method on curvilinear
coordinates. The non-dimensional parameters that characterize
this flow are the Reynolds number, Red ¼ UD

m , the Womersley

parameter, a ¼ D
2

X
m

� �1
2, and the curvature ratio, d ¼ D

2Rc
, where D is

the pipe diameter, U is the instantaneous bulk velocity, m is the
kinematic viscosity, X is the angular frequency and Rc is the radius
of curvature of the pipe axis.

A sinusoidally varying flow rate (200 < Red < 800;a ¼ 7:8) is
applied at the inlet of the pipe with curvature ratio, d ¼ 1

6, for com-
parison with available body-fitted and experimental data from the
literature [34,40]. The velocity profile at the inlet, x ¼ 0, is com-
puted from the Womersley solution for fully-developed pulsatile
flow in a circular pipe given by

uinletðr; tÞ ¼ 2 1� r2� 	
þ A0

q
1
iX

1�
J0 ari3=2
� �

J0 ai3=2
� �

2
4

3
5eiXt ; ð25Þ
A0 ¼ Q max
4q
pD2 iX 1� 2

i3=2a
J1ðai3=2Þ
J0ðai3=2Þ

" #�1

e�iXtmax ; ð26Þ

where A0 is the amplitude of pulsation; J0 denotes the Bessel func-
tion of the first kind and order zero; r is the normalised radial dis-
tance from the pipe centre; q is the fluid density; Qmax is the flow
rate at the maximum bulk velocity or, equivalently, the maximum
Reynolds number [41].

Simulations were performed on three successively finer curvi-
linear grids: 129� 97� 97;129� 129� 129 and 257� 129� 129
in the streamwise, n, and transverse, g and z, directions. The grids
are stretched in the streamwise direction in order to provide a
higher resolution inside the bend. The geometry and the grid are
(b)

∆tUmax/D = 0.01

∆tUmax/D = 0.005

∆tUmax/D = 0.0025

tUmax/D

F D
F D

F D

rid resolutions with time step Dt ¼ 0:005; (b) for different time steps with grid size
ing with a mass source.
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shown in Fig. 7. The pulsatile flow cycle is divided into 2000 time
steps, corresponding to CFLmax ¼ f0:51;0:63;0:82g on the coarse,
medium and fine grid, respectively.

Profiles of the streamwise velocity normalised by the median
bulk velocity are shown in Fig. 8, at three different locations along
the bend, h ¼ f0�;45�;90�}. Four different time instants are shown,
t ¼ f0; T=4; T=2;3T=4g. The results are plotted alongside
body-fitted data [34] and experimental measurements [40]. The
figures demonstrate excellent agreement between our IB results
and the body-fitted data even on the coarsest mesh, and establish
the accuracy of our IB method in complex, 3D curvilinear flow
simulations.

5.2. Oscillating cylinder in fluid at rest

In order to demonstrate the ability of the proposed immersed
boundary method to handle moving boundaries, simulations of a
cylinder oscillating in a fluid at rest are presented and compared
to both numerical and experimental results from the literature.
In this configuration, the flow parameters are the Reynolds num-
ber, ReD ¼ UmaxD=m ¼ 100, and Keulegan–Carpenter number,
KC ¼ Umax=fD ¼ 5, where Umax is the maximum velocity of the
cylinder, D is the diameter of the cylinder, m is the kinematic vis-
cosity of the fluid, and f is the frequency of oscillation. The stream-
wise location of the cylinder is given by xðtÞ ¼ �A sinð2pftÞ, where
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Fig. 12. In-line oscillating cylinder in a fluid at rest at three different phase angles: (a
—, current IB method; –––, body-fitted results [42]; symbols are experimental data [42
A is the amplitude of the oscillation. The cylinder is located at the
centre of a 50D� 50D domain. A 512� 512 non-uniform Cartesian
grid is employed, with a minimum local spacing
Dxmin ¼ Dymin ¼ 0:02D in the vicinity of the cylinder.

Pressure and spanwise vorticity contours around the oscillating
cylinder at different phase angles are shown in Fig. 9. The contours
are in good qualitative agreement with the results reported by
Dütsch et al. [42] and thus demonstrate good prediction of the gen-
eral flow characteristics. As the cylinder starts to move to the left,
two boundary layers are formed at the top and bottom of the cylin-
der (see Fig. 9e). These boundary layers later shed, forming two
counter-rotating vortices behind the cylinder (Fig. 9f). The cylinder
then begins to move in the opposite direction, breaking the exist-
ing vortices apart (Fig. 9g) while at the same time developing
new boundary layers which shed on the other side of the cylinder
(Fig. 9h).

In order to assess the accuracy of the IB method near the mov-
ing boundary and the ability of the proposed mass source term to
suppress spurious force oscillations, the drag force acting on the
cylinder is examined. The pressure force and skin friction are com-
puted using the pressure and velocity gradients at the centres of
the surface triangles, which are obtained by linear extrapolation
from the outer fluid along the surface normal. Fig. 10 shows the
time evolution of the total drag force along with its constituent
pressure and shear contributions predicted by the present IB
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method with and without mass source term. Without a mass
source, larger spurious oscillations in the drag force can be
observed. The SFOs are due to the pressure component of the drag,
while the shear force remains smooth. With the mass source term,
a smoother solution of the pressure drag is obtained. Very good
agreement with boundary-fitted data from the literature [42] is
observed, which demonstrates the ability of the current IB method
to accurately predict the body forces on a moving object.

The effect of grid spacing on the magnitude of the SFOs is exam-
ined on three different Cartesian grids f2572;5132;10252g with
local spacing in the vicinity of the cylinder equal to 0:04D;0:02D
and 0:01D respectively. The time step is fixed to DtUmax=D ¼
0:005, which corresponds to CFLmax ¼ f0:29;0:44;0:76g. As shown
in Fig. 11a, the magnitude of oscillations rapidly decreases as the
grid is refined. In addition, smaller oscillations are observed with
the mass source term. The effect of time step on the SFOs is also
examined using three different time steps f0:0025;0:005;0:01g
on the 5132 grid, where CFLmax ¼ f0:21;0:44;0:85g. The results
are shown in Fig. 11b. A decrease in spurious oscillations is
observed with increasing time-step, which is consistent with the
behaviour reported in the literature [18–20]. For all time-step
sizes, the solution obtained with the mass source term is much
smoother.

Finally, the velocity profiles are plotted across the cylinder at
various streamwise locations and three different phase-angles,
alongside the body-fitted results and experimental data of
Dutsch et al. [42] (see Fig. 12). Very good agreement is observed
between the profiles obtained with the immersed boundary
method and the results from the literature.
6. Summary

In the present study, the accuracy and stability of direct forcing
methods used in conjunction with the fractional step algorithm are
shown to depend on the variant of the fractional step method and
the computation of the forcing term. An iterative scheme is pre-
sented and shown to have favourable stability properties com-
pared to explicit forcing in the semi-implicit discretization of the
Navier–Stokes equations. The method is also effective for station-
ary and moving boundary problems, and is applicable on curvilin-
ear grids.

A mismatch in the temporal discretization of the momentum
equation and the forcing term is shown to introduce errors near
the immersed boundary which can destabilise the scheme. In the
semi-implicit fractional step method, the implicit discretization
of the viscous terms in the Navier–Stokes equations requires an
implicit forcing term. Otherwise, the stability of the scheme can
be compromised. An implicit iterative scheme is proposed that
decreases the errors at the boundary and, as a result, enhances
stability.

A variant of the mass source approach [8] is adopted for use
with moving boundaries, which improves local mass conservation
near the IB and suppresses spurious force oscillations in moving
body problems. The momentum forcing and mass source terms
are applied throughout the solid region in order to satisfy mass
conservation in cells cut by the boundary and remove the incom-
pressibility constraint inside the solid. This requirement avoids
temporal discontinuities in the velocity which can otherwise arise
when solid points suddenly become IB points as a result of the
boundary movement.

The IB method presented can be applied in generalized curvilin-
ear systems, which facilitates efficient simulations of a wide range
of complex geometries. The convergence, second-order accuracy
and enhanced stability of the method are demonstrated through
a number of test cases.
Acknowledgements

The authors would like to acknowledge the financial support
from the UK Engineering and Physical Sciences Research Council
(EPSRC).

Appendix A. Immersed boundary method in fractional step
algorithm: p versus Dp-form

Using the same analysis as that performed by Kim and Moin
[26], and introducing a forcing term on the right-hand-side of
the intermediate velocity equation, ûi is regarded as an approxima-
tion of the continuous function, u	i , that satisfies:

@u	i
@t
¼ �

@u	i u	j
@xj

� a
@p	

@xi
þ 1

Re
@2u	i
@xjxj

þ f 	i ;

u	i ðx; tn�1Þ ¼ uiðx; tn�1Þ; ðA:1Þ

where a ¼ 0 for the p-form of the fractional step method, and a ¼ 1
for the Dp-form. Therefore,

ûi � u	i ðx; tn�1 þ DtÞ

¼ u	i ðx; tn�1Þ þ Dt
@u	i
@t
þ 1

2
Dt2 @

2u	i
@t2 þ OðDt3Þ

¼ u	i ðx; tn�1Þ þ Dt �
@u	i u	j
@xj

� a
@p	

@xi
þ 1

Re
@2u	i
@xjxj
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 !

þ 1
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�
@u	i u	j
@xj

� a
@p	

@xi
þ 1

Re
@2u	i
@xjxj

þ f 	i

 !
þ OðDt3Þ: ðA:2Þ

Since u	i ðx; tn�1Þ ¼ uiðx; tn�1Þ, the above equation becomes,

ûi¼uiðx;tn�1ÞþDt �@uiuj

@xj
�a

@p
@xi
þ 1

Re
@2ui

@xjxj
þ f i

 !
þOðDt2Þ

¼uiðx;tn�1ÞþDt
@ui

@t
þð1�aÞ @p

@xi

� �
þOðDt2Þ

¼uiðx;tnÞþð1�aÞDt
@p
@xi
þO Dt2

� �
: ðA:3Þ

Eq. (A.3) demonstrates that the immersed boundary conditions,
which are applied on ûi rather than uiðx; tnÞ, are second-order accu-
rate in the Dp-form, ûi ¼ uiðx; tnÞ þ O Dt2

� �
, but only first-order accu-

rate in time in the p-form, ûi ¼ uiðx; tnÞ þ Dt @p
@xi
þ O Dt2

� �
.

Kim and Moin [26] demonstrated that if boundary conditions
are inconsistent with the governing equations the solution can
incur considerable numerical errors. For global boundaries, they
proposed the appropriate treatment of the boundary conditions
for the intermediate velocity field, ûi ¼ un

i þ DtG/n�1, in order to
maintain second-order accuracy. Similarly, a second-order accu-
rate IB method in the p-form of the fractional step method would
therefore require the intermediate velocity at the immersed
boundary to be computed according to,

ûC ¼ Un
C þ DtG/n�1

C ; ðA:4Þ

where UC and /C are the velocity and pseudo-pressure at the
immersed boundary, respectively.

Appendix B. Forcing and mass source terms for moving
boundaries

We demonstrate, using a simple example, the need to apply the
forcing and mass source terms throughout the solid region in order
to avoid a temporal discontinuity in the velocity of solid points
suddenly becoming IB points. First, we consider the case where
the mass source terms are computed from IB fluxes only
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Fig. B.13. Mass conservation for cells near moving boundary: (a) at time tn; (b) at time tnþ1.
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(Fig. B.13). This approach can lead to a temporal discontinuity in
the velocity of solid points that suddenly become IB points due
to the boundary motion. The temporal velocity discontinuity sub-
sequently leads to spatial oscillations in the pressure near the
boundary and SFOs.1 In Fig. B.13a, the continuity equations at time
tn are given by,

un
2Dy� un

1Dyþ vn
2Dx� vn

1Dx� qn
1DxDy ¼ 0 in cell 1; ðB:1Þ

un
3Dy� un

2Dyþ vn
4Dx� vn

3Dx� qn
2DxDy ¼ 0 in cell 2; ðB:2Þ

where qn
1 ¼ 1

DxDy un
2Dyþ bsvn

2Dx� bsvn
1Dx� Un

CDy
� �

and

qn
2 ¼ 1

DxDy �un
2Dy� vn

3Dxþ vn
4Dx

� �
are the source terms in those

cells,2 and bs ¼ Dxs=Dx. The continuity equations reduce to,

Un
CDy� un

1Dyþ vn
2Dxf � vn

1Dxf ¼ 0 in cell 1; ðB:3Þ
un

3Dy ¼ 0 in cell 2: ðB:4Þ

At the next time step (Fig. B.13b), solid point u3 becomes an IB
point and its velocity is set to satisfy the no-slip condition at the
boundary via a second-order interpolation:

unþ1
3 ¼ Unþ1

C þ OðDx2Þ: ðB:5Þ

The velocity u3 therefore jumps from u3ðtnÞ ¼ 0 to
u3ðtnþ1Þ � Unþ1

C þ OðDx2Þ. This simple example demonstrates the
temporal discontinuity in velocity that takes place when the mass
source term is computed from IB fluxes only.

The temporal discontinuity in u3 is eliminated by including all
IB and also all solid fluxes in the mass source term in Eq. (22). In
the above example, at time tn (Fig. B.13a), the source term and
the continuity equation for the IB cell 1 are unchanged from above:

qn
1 ¼

1
DxDy

un
2Dyþ bsvn

2Dx� bsvn
1Dx� Un

CDy
� �

;

un
2Dy� un

1Dyþ vn
2Dx� vn

1Dx� qn
1DxDy ¼ 0 in cell 1:

In the solid cell 2, however, the source term should be
qn

2 ¼ 1
DxDy un

3Dy� un
2Dy� vn

3Dxþ vn
4Dx

� �
. In terms of the fractional

step method, this source term explicitly balances the divergence
in that cell,

Dû� qn
2 ¼ 0; ðB:6Þ

and the pressure Poisson equation reduces to,
1 Note that the source of SFOs here is different from that reported by Lee et al. [18].
In that work, the temporal discontinuity arises from enforcing the no-slip condition
on fluid points that become IB points.

2 Note that the velocities un
i are unknown until Eqs. (4) and (5) are solved, therefore

the intermediate velocities ûi are used to compute the mass source instead, without
affecting the second-order accuracy of the scheme [8].
DG/n
2 ¼ 0: ðB:7Þ

By virtue of the staggered grid arrangement, the same treat-
ment carries over to all adjacent solid cells. The above expression
for the solid cells can equivalently be described as eliminating
the incompressibility constraint from those cells (but not from IB
cell 1). Finally, note that the momentum forcing is also applied
to all solid points to set their velocities to the body velocity. If
the forcing term is evaluated explicitly, this step is only approxi-
mate. However, in the implicit forcing method described above,
the intermediate velocity inside the solid is set exactly to the body
velocity. As a result, the divergence-free constraint is automatically
satisfied in solid cells away from the boundary and the mass source
term in those cells vanishes. The mass source term is only non-zero
in (a) cells cut by the boundary (e.g. cell 1 in Fig. B.13) in order to
satisfy the continuity equation in the fluid fraction of the cell; and
(b) adjacent solid cells (e.g. cell 2 in Fig. B.13) in order to explicitly
balance the divergence in that cell and remove the incompressibil-
ity constraint as in the rest of the solid.

Note that approaches (21) and (22)/(23) yield different mass
source terms in the solid cells adjacent to the boundary, e.g. cell
2 in Fig. B.13. In this cell, the source term (21), is equivalent to
enforcing the incompressibility constraint, un

3Dy� Un
CDy ¼ 0.

With the herein proposed method (Eq. (22)/(23)), the source term
annuls the continuity constraint entirely since qn

2 
 Dû. This cell is
therefore consistent with the treatment of the remaining solid
region.

The above discussion is further supported by a numerical exam-
ple of flow around an oscillating cylinder. Two approaches are con-
sidered: In the first, the momentum forcing and the mass source
term take into account IB points only, which is expected to lead
to pressure oscillations. In the second, the forcing and the mass
source given by Eq. (22)/(23) are implemented at IB cells and
throughout the solid, which is expected to eliminate SFOs. The
Reynolds number is ReD ¼ UmaxD=m ¼ 100, and the Keulegan–
Carpenter number is KC ¼ Umax=fD ¼ 5, where Umax is the maxi-
mum velocity of the cylinder, D is the diameter of the cylinder, m
is the kinematic viscosity of the fluid, and f is the frequency of
oscillation. The streamwise location of the cylinder is given by
xðtÞ ¼ �A sinð2pftÞ, where A is the amplitude of the oscillation.
The cylinder is located at the centre of a 50D� 50D domain. A
5132 Cartesian grid is employed, with local spacing of 0:02D in
the vicinity of the cylinder, and the time step is set to
DtUmax=D ¼ 0:005.

Fig. B.14 shows the pressure coefficient along the surface of the
cylinder at three consecutive time steps for the two cases. When
the mass source term only accounts for IB fluxes, a temporal dis-
continuity in the velocity arises resulting in spatial oscillations in



C
p

Fig. B.14. Pressure coefficient along the surface of an oscillating cylinder. Symbols
correspond to mass source applied only near the immersed boundary; lines
correspond to mass source applied everywhere in solid domain. tUmax=D ¼ 4:975
(�, —); tUmax=D ¼ 4:985 (�, –––); tUmax=D ¼ 4:995 (M, –�–�).
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the pressure. For this case, significant oscillations in the pressure
coefficient along the cylinder surface can be observed in
Fig. B.14. The temporal discontinuity in velocity is removed and a
smooth pressure coefficient is observed for the case where the
mass source and forcing terms are applied at IB cells and through-
out the solid region.
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