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The present study is motivated by the development of wall-based flow-state estimators for feedback
control of transient-growth disturbances in a laminar boundary layer. Such estimators have been
successfully demonstrated in recent numerical studies, but they rely on information that, while
available in simulations, is generally not accessible in the laboratory. Here, some physical aspects
of transient-growth modes and their relationship to the unsteady wall shear stress are examined to
guide the development of estimation methods that perform satisfactorily yet are practical to
implement. The usefulness of the resulting physical understanding for flow estimation is
demonstrated using a proper orthogonal decomposition mode estimator, applied to a direct
numerical simulation of boundary layer transition beneath free-stream turbulence. The results shed
light on the strengths and weaknesses of employing each of the streamwise and spanwise
wall-shear-stress components in estimating the disturbance wall-normal velocity and vorticity fields.
It is also found that the streamwise-elongated nature of transient-growth disturbances allows coarse
sampling of the wall-shear-stress information used in the estimation without substantially
deteriorating the estimation accuracy. This is particularly true for estimates based on the streamwise
shear stress. © 2010 American Institute of Physics. �doi:10.1063/1.3415220�

I. INTRODUCTION

A. Bypass transition

This work is motivated by the overarching goal of
implementing feedback control of transient growth in “by-
pass” boundary-layer transition. The latter refers to the tran-
sition scenario encountered in situations with strong back-
ground disturbances, such as that occurring beneath a
turbulent free stream. Unlike the classical transition path,
which begins with the exponential growth of two-
dimensional, Tollmien–Schlichting �TS� waves, bypass tran-
sition is initiated with the transient growth of three-
dimensional, streaky structures that are elongated, in the
streamwise �x� direction, and quasiperiodic in the spanwise
�z� direction. Early identification of these streaky structures
is credited to Klebanoff,1 who studied the growth of the as-
sociated disturbances in the wind tunnel beneath a free
stream with varying levels of turbulence intensity �a short
summary of Klebanoff’s experiment and key results can be
found in Kendall2�. Klebanoff �as well as the later investiga-
tions by Kendall,3 Westin et al.,4 and Matsubara and
Alfredsson5� found the peak root-mean-square �rms� stream-
wise disturbance velocity u�rms to grow in proportion to the
square root of the streamwise distance �i.e., the streamwise
energy of the streaks grows linearly, or algebraically, with
downstream distance�.

For sufficiently high Reynolds number, the streaks be-
come strong enough to trigger nonlinear effects or secondary

instabilities, which in turn lead to formation of turbulent
spots and subsequent transition to turbulence. Andersson
et al.6 found that a secondary inviscid instability of the
streaks takes place when the streak amplitude exceeds 26%
of the free-stream velocity. Recent direct numerical simula-
tion �DNS� studies by Jacobs and Durbin7 and Brandt et al.8

enabled examination of the physical mechanisms leading to
the streak breakup process. In addition, Zaki and Durbin9,10

provided physical insight into the role of low- and high-
frequency vortical disturbances in bypass transition, and the
influence of pressure gradient on the amplification of streaks
and subsequent transition to turbulence. For more details on
bypass boundary-layer transition, the reader is referred to the
recent review by Durbin and Wu.11

B. Feedback control of bypass transition

In recent years, there has been substantial progress in the
use of model-based, linear, control-theory approach for feed-
back flow control in computational studies, which is high-
lighted in the recent article by Kim and Bewley.12 Successful
examples of the use of this approach in the control of
laminar-turbulent transition in wall-bounded flows include
Hogberg and Henningson13 who employed optimal control
theory to control boundary layer transition, and Bewley and
Liu14 who utilized optimal and robust control theories to ef-
fectively reduce the disturbance response in a laminar, plane
channel flow. The latter authors also demonstrated that mod-
ern control theory significantly outperformed the classical
proportional-control-based methods.
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The success of the computational model-based control
studies summarized above is yet to be realized in the labo-
ratory. Experimental investigations of feedback control of
transient growth in a laminar boundary layer have generally
been rare, and mostly, ad hoc/intuition based. One of the
notable experimental investigations is by Jacobson and
Reynolds15 who were successful in controlling a pair of
streamwise vortices that was introduced in a controllable
manner in the boundary layer. The authors employed a wall-
flush, oscillating, cantilever-beam actuator downstream of
the vortex pair in order to minimize the spanwise average
and standard deviation of the wall-shear-stress downstream
of the actuators. More recently, Lundell16 demonstrated some
heuristic control of transiently growing disturbances in a
laminar boundary layer beneath a turbulent free stream. In
his approach, a single hot-wire shear-stress sensor was em-
ployed in conjunction with a suction hole downstream of the
sensor. The feedback control premise was quite simple: when
the shear stress dropped below a given threshold, suction
was applied at some time delay. Both the suction strength
and time delay were determined through calibration.

II. MOTIVATION AND OBJECTIVES

The premise of the feedback control of interest is based
on detecting the streaky disturbances during the linear �tran-
sient� growth phase and applying an appropriate control ac-
tion to nullify or weaken this growth. To achieve this, within
the context of model-based control, models are required for
estimating the disturbance velocity field from measurements
at the surface beneath the boundary layer. The need to con-
strain the sensing to the surface is motivated by the desire to
avoid intrusion into, and hence, modification of the flow. In
addition, for the purpose of real-time implementation of the
control, the estimation models must be efficient �i.e., low-
order�.

Given that the envisioned control targets the boundary
layer disturbances during the linear growth stage, it is in-
structive to examine the equations governing linear growth
of three-dimensional disturbances in a Blasius boundary
layer. It is well known that, in the parallel-mean-flow ap-
proximation, these equations may be cast in terms of the
wall-normal component of the disturbance velocity �v�� and
vorticity ����, the so-called Orr–Sommerfeld/Squire equa-
tions, as follows:
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where U is the mean streamwise velocity of the base flow, R
is the Reynolds number, � is the Laplacian operator, t is time
and x, y, and z are the streamwise, wall-normal, and span-
wise coordinates.

Inspection of Eq. �2� shows that v� acts as a forcing
function of ��. Physically, this may be explained through the
“lift-up” mechanism, an explanation of which was provided
by rapid distortion theory �Ref. 17�. The physical mecha-

nism, which was later described by Landahl,18 is as follows:
v� disturbances cause movement of fluid elements across the
mean-velocity gradient dU /dy. As a result, low-speed fluid is
pumped away from the wall, while high-speed fluid is moved
toward the wall, creating spanwise variation in the stream-
wise velocity, �u /�z, at a given y which in turn gives rise to
wall-normal vorticity. Alternatively, Butler and Farrell19

view the physical mechanism of forcing as tilting of the
spanwise vorticity of the mean flow into the wall-normal
direction by �v� /�z.

In the context of transition beneath a turbulent free
stream, �v� /�z on the right hand side of Eq. �2� may be
interpreted as resulting from free-stream disturbances that
are able to penetrate into the boundary layer. The subsequent
response of �� to this forcing gives rise to the transient
growth of u�, leading to the formation of the streaks. Zaki
and Durbin9 demonstrated exact resonance between v� and
�� and showed that, because of “shear-sheltering” �also see
Ref. 10 as well as Ref. 20�, only long-wavelength free-
stream disturbances are able to penetrate near the wall to
excite the boundary layer. This provides one explanation of
the elongated structure of the resulting streaks.

Based on the above discussion, it is apparent that, for
control purposes, it would be fruitful to provide feedback
information on v� and/or �� fields from surface measure-
ments. Since the former is the cause of the latter, knowledge
of v� might be advantageous in giving the controller an
“early warning” of subsequent transient growth �i.e., feedfor-
ward information�. On the other hand, since v� decays in
proportion to y2, while u� and w� decay in proportion to y as
the wall is approached, v� may not be inherently as observ-
able �i.e., detectable� from surface measurements as u� and
w� �as well as ��, since ��=�u� /�z-�w� /�x�.

Recently, success in wall-based estimation of the flow
field of transiently growing disturbances in a laminar channel
flow was accomplished in the study of Hoepffner et al.21

These authors used a Kalman-filter approach that coupled the
Orr–Sommerfeld/Squire equations with DNS “measure-
ments” of the wall shear stress and pressure. However, the
method, akin to numerical studies in general, employs an
approach in which surface measurements are utilized at full
simulation resolution, and shear stress as well as pressure
information at the same point on the wall is available simul-
taneously. Such methods, though elegant and feasible in
simulations, cannot be implemented in the laboratory �and
hence ultimately in applications�, given the practical chal-
lenge of sensing different quantities at the same point, the
limited number of sensors usable in practice, the actual tem-
poral and spatial resolution of sensors, realizable sensor
types, etc.

In the present study, physical insight is sought in the
relationship between linear, transiently growing disturbances
and the wall-shear-stress in a laminar boundary layer. Our
goal is to capitalize on this insight to develop an understand-
ing of the practical limitations on the estimation of the dis-
turbance field from surface shear stress measurements. For
the purposes of the study, a DNS of boundary layer transition
beneath a turbulent free stream �Ref. 22� is used. A subset of
this database is first analyzed using space-time correlations
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to establish the spatiotemporal relationship between v� and
�� disturbances on one hand, and the wall-shear-stress im-
print on the other.

To draw links between the outcome of the correlation
analysis and flow estimation, a proper-orthogonal-
decomposition �POD�-based estimator is implemented. It is
emphasized here that our selection of the POD estimator is
motivated by the convenience of applying this estimator to
the existing DNS. We do not necessarily advocate the use of
POD framework for feedback control of transient growth,
given some of its limitations that were recently brought into
focus by Ilak and Rowley.23 In particular, these authors dem-
onstrated that some of the leading �most energetic� POD
modes are not observable in laminar channel flow, and hence
are inappropriate for modeling the input/output dynamics of
transiently growing disturbances. Instead, they proposed the
use of a “balanced” POD method �BPOD; introduced by
Rowley24� in which the retained modes are the most observ-
able and controllable. BPOD seems to provide a good alter-
native to, for example, using Orr–Sommerfeld/Squire modes
for representing the flow, many of which were shown by
Kim and Bewley12 not to have a surface-shear-stress signa-
ture �i.e., to lack observability in wall-shear-based feedback�.
However, BPOD requires specific computations of the gov-
erning equations and their adjoint, and hence the method
cannot be implemented on an existing database. Further-
more, the present investigation is concerned with under-
standing how physical and practical factors, that are indepen-
dent of the specifics of the estimator, influence the accuracy
of the estimation, rather than with developing an estimation
method. To this end, we identify a significant, yet observable
POD mode �one that can be estimated from wall shear stress
with acceptable accuracy�, and examine how the accuracy of
estimating this mode would be altered by physical and prac-
tical limitations.

III. DESCRIPTION OF THE DNS DATABASE

Figure 1 depicts the computational domain of the data-
base employed here, which is generated using a simulation
similar to that reported by Jacobs and Durbin,7 and the asso-
ciated coordinate system. The domain extends 525�o, 40�o,
and 30�o in the streamwise, wall-normal and spanwise direc-
tions, respectively, where �o is the 99% boundary layer
thickness at the upstream end of the domain �in contrast, �
refers to the local boundary layer thickness�. At the same
streamwise location, the free-stream-turbulence intensity and

integral length scale are 3.5% and 1.8�o, respectively. A uni-
formly distributed grid is used in the x and z directions to
calculate the flow at 1793 and 193 nodes, respectively. On
the other hand, the y grid is nonuniform and contains 193
points extending from the wall, where the resolution is finest,
into the free stream, where the resolution is coarsest. A sub-
set of the database containing 897�97�97 grid points in
the x, y, and z directions, respectively, at twice the spatial
resolution of the original data set is employed in the present
analysis. Thirty snapshots separated by a time delay of
4�o /U� �U� is the free-stream velocity� of the three velocity
components �u, v and w in x, y, and z directions, respec-
tively� are available at each grid point. Together, the avail-
able fields span a time duration that would be taken by a
fluid particle to travel a distance of 120�o at the free-stream
velocity.

To compute statistical quantities, averaging is performed
in time as well as in the spanwise �homogeneous� direction.
This results in a sample size of 2910 points for single-point
statistics. Convergence tests at the streamwise location where
the analysis is focused shows that mean-velocity values con-
verge to better than 1%, while the fluctuating-velocity rms
convergence uncertainty is less than 10%.

IV. RESULTS

In order to identify the linear �algebraic� growth region
within the flow domain, the maximum energy of the stream-
wise fluctuating velocity at each streamwise location is plot-
ted versus the downstream distance in Fig. 2. The results
depict a region of linear growth from x /�o=20 to 60. Al-
though any location within this domain would be suitable for
the present analysis, a location at x /�o�50 �49.8� is se-
lected. The mean and rms streamwise velocity profiles at the
selected location are shown in Fig. 3. The mean velocity
profile compares well with the Blasius solution, providing
confirmation of the absence of nonlinear effects at the se-
lected x location. The 99% boundary layer thickness is ap-
proximately 1.6�o; while the peak u�rms fluctuation is about
5.8% of the free-stream velocity and is found at y /�o=0.69
�or y /��=1.23, where �� is the displacement thickness,
which compares closely with the experimental value of
y /��=1.3, reported by Matsubara and Alfredsson5 in the lin-
ear growth domain�. The dominance of the streaky structure
at this height is demonstrated in Fig. 4 where an instanta-
neous gray-shade contour map of u�x ,z� is displayed at
y /�o=0.69. Dark and light regions that are quasiperiodic in
the spanwise direction and elongated in the streamwise di-

FIG. 1. Sketch of the computational domain.
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FIG. 2. Streamwise evolution of the peak streamwise energy.
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rection reflect the streaky nature of the dominant u� distur-
bance. The characteristic spanwise wavelength of the streaks
��z� is found to be approximately 2.5�o from the spanwise
correlation function Ru�u���z� at y /�o=0.69: see Fig. 5.
Thus, the computational domain contains roughly 12 streaks
across the span.

A. Physical argument

Linear, optimal growth theory �Refs. 19, 25, and 26� has
shown that the disturbances whose energy grows the most
over a particular time or streamwise distance in wall-
bounded flows are associated with counter-rotating stream-
wise vortex pairs. Before examining if such vortex pairs are
found in the simulated flow, it is helpful to consider idealized
vortex pairs. This is shown in Fig. 6 along with the antici-
pated spanwise variation of the streamwise and spanwise
wall shear stress, ��x and ��z, at the wall, as well as u�, v�,
and ��, at the height of the vortex centers above the wall
�yc�. As seen from the figure, the largest ��z occurs directly
beneath the vortex center. This coincides with the spanwise
location of the peak �� magnitude at y=yc. On the other
hand the largest v� �and u�� disturbance location will be in-
between the vortex pair; i.e., offset from the peak ��z position
by 1

4 of the average streak spacing ��z�.
Although the model shown in Fig. 6 is idealized, and

disturbances leading to optimal growth do not necessarily
occur in the flow, two-point correlation results obtained from
the DNS data are in fact consistent with the vortex-pair
model. More specifically, at the streamwise location of the
analysis, x /�o�50, the largest correlation between ��z and
�� is found at a spanwise offset �z=0; and between ��z and
v� is seen at �z=�z /4=0.62�o. Furthermore, the actual in-
stantaneous flow structure does exhibit association of the
high/low-speed streaks with streamwise vorticity. This may
be seen from the two contour plots shown in Fig. 7 repre-
senting typical snap shots of the streamwise vorticity �x �de-

picted using white contour lines� superposed on top of the
streamwise-velocity disturbance field �shown using the gray-
shades flooded color contour map� in the plane normal to the
mean flow. Note that the shown vorticity contours are limited
to those falling in the range ��x�o /U��	0.04 �for reference
the peak rms value of the streamwise vorticity at x /�o�50
inside the boundary layer is �x,rms�o /U�=0.066�.

The top plot in Fig. 7 depicts an instant where counter-
rotating vortex structures �the cores of which are identified as
local peaks in the streamwise vorticity field that are num-
bered I, II, III, and IV� fall at the interface between low and
high streamwise-velocity regions. The spanwise separation
between vortices with the same sense of rotation is approxi-
mately equal to �z �2.5�o�. However, even though the basic
physical picture reflected in the top plot of Fig. 7 is qualita-
tively consistent with the essence of the idealized model de-
picted in Fig. 6, the organization of the actual flow structures
is far from idealized. In particular, the actual vortex struc-
tures possess random size and strength, their cores are lo-
cated at different heights above the wall, and their spanwise
spacing is not regular. Moreover, as reflected in the bottom
plot of Fig. 7, there are instants where a streamwise vortex
structure appears in isolation. Such an isolated vortex is still
associated with spanwise modulation of the streamwise ve-
locity as seen from the gray-shade contours of the bottom
plot in Fig. 7. Nevertheless, even in this case, the insight
based on the vortex-pair model in relation to the spanwise
offset between locations of high streamwise/spanwise wall
shear stress and high u�, v�, and �� disturbances, is useful.

A fuller picture of the correlation between ��z�x
�50�o , y=0,z , t� and ���x�50�o , y ,z+�z , t+�t�, de-
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FIG. 4. Instantaneous snap shot of the streamwise velocity at y /�o=0.69.
Light and dark shades correspond to velocities above and below the local
average velocity, respectively. The dashed line identifies the streamwise lo-
cation of the present analysis.
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noted by R��z��, for �z=0, and R��zv�
, for �z=0.62�o, is

shown in Fig. 8. The results are displayed in the form of a
flooded gray-shade contour plot depicting the dependence of
the correlation on the time offset ��t; abscissa� and the
height above the wall �ordinate�. Note that a positive �t in-
dicates a time lag of the disturbance field relative to the wall
shear stress and vice versa. Inspection of Fig. 8 shows that
the peak R��zv�

occurs at zero time delay at all heights in the
boundary layer. On the other hand, at the top of the analysis
domain, the peak in R��z�� occurs at �t=0 and shifts progres-
sively toward increasing values as the wall is approached.
These observations lead to an interesting conclusion:
whereas the occurrence of v� disturbance anywhere across
the boundary layer is associated with an immediate ��z sig-
nature, �� disturbances have a height-dependent phase lag
relative to ��z. Physically, these results may be interpreted as
follows: an elongated streamwise vortex structure originating
from the free-stream turbulence is able to penetrate the
boundary layer, inducing v� disturbance and leaving an in-
stant ��z imprint beneath the vortex center. The �v� /�z asso-
ciated with the vortex structure forces the �� field through
the right hand side term of Eq. �2�. The resulting �� response

is dictated by Eq. �2� and is such that the peak �� value is
attained at progressively large time delay as the wall is
approached.

Some understanding of the causes of the observed tem-
poral relationship between the transient growth disturbances
and the wall-shear-stress components may be gained through
examination of the governing equations. First, consider the
instantaneous link between v� and ��z: If streamwise varia-
tion of u� is ignored relative to wall-normal and spanwise
variation of v� and w�, respectively �as maybe justified on
basis of the streamwise-elongated structure of the u� field;
see Fig. 4�, the mass conservation equation yields

�v�

�y
+

�w�

�z
= 0. �3�

Taking the derivative with respect to y and applying at the
wall:

	 �2v�

�y2 	
w

= −
�

�z
	 �w�

�y
	

w

= −
1




�

�z
��z. �4�

For a given spanwise wavenumber, say corresponding to the
average streak spacing �z, the right hand side of Eq. �4� is
proportional to ��z /�z. Thus, one may write

��z 
 �z	 �2v�

�y2 	
w

. �5�

Now consider a Taylor-series expansion of v� versus y start-
ing from the wall. Both v��y=0� and �v� /�y�y=0� vanish
because of the no-slip condition. Hence,

v� =
1

2
	 �2v�

�y2 	
w

y2 + O�y3� . �6�

Equations �5� and �6� show that v� at a given height near the
wall is proportional to ��z /�z, consistent with the observed
instantaneous dependence between the spanwise wall-shear
stress and the wall-normal disturbance velocity. Physically,
one may interpret this result to be caused by the no-
penetration constraint imposed by the wall on v� distur-
bances. This constraint forces any v� disturbance to be turned
along the span �in the elongated streamwise disturbance
limit� causing a spanwise-shear-stress signature.

The high instantaneous correlation between v� and ��z
found here is consistent with the findings of Choi et al.27 in
the near-wall region of a turbulent channel flow. Employing
the leading order term in the Taylor series expansion of
v��y�, but without the assumption of elongated streamwise
disturbance as done above, Choi et al. could relate the near-
wall v� to both the streamwise and spanwise wall shear-
stress. However, because they found the correlation between
the former and v� to be small, they only employed the span-
wise wall shear stress in feedback control of drag in the
channel flow. As will become clear from consideration of
Fig. 10 below, the low correlation between v� and ��x �which
is also found here� is true when considering instantaneous
dependence between those two quantities. However, with the
incorporation of appropriate time delay, the correlation be-
tween v� and ��x could be just as high as between v� and ��z
at the same time instant.

y
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FIG. 6. A sketch of the streamwise vortex-pair model and associated quali-
tative variation in wall shear stress and disturbance field at y=yc along the
spanwise direction �mean flow direction is into the page, and the vertical
scale is arbitrary�.
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FIG. 7. Two snapshots of the instantaneous streamwise vorticity field �white
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0.02� with solid and broken lines corresponding to positive and negative
vorticity values, respectively. Top plot depicts four counter-rotating vortices
�labeled I, II, III, and IV�; bottom plot depicts an isolated vortex �labeled V�.
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On the other hand, the lag of �� development relative to
��z may be analyzed through examination of Eq. �2�, which
governs the response of �� to v� forcing. First, it is helpful to
consider the characteristic diffusion time scale: t�=�o

2 /�;
which as a ratio to the convective time scale, �o /U�, is the
Reynolds number based on the boundary layer thickness at
the inlet of the analysis domain t�U� /�o=U��o /��800.
Noting that this is more than an order of magnitude larger
than the largest observed correlation time delay ��tU� /�o

�20 at the wall; see left plot in Fig. 8�, it is clear that the
latter is related to dynamics that are independent of viscous
effects. Thus, ignoring the viscous term in Eq. �2�, and as-
suming elongated streamwise disturbances �i.e., ��� /�x�0�,
Eq. �2� reduces to

���

�t
= −

dU

dy

�v�

�z
, �7�

the solution of which is

�� = −
dU

dy
� �v�

�z
dt + IC, �8�

where IC is an initial condition. At a given y and for a dis-
turbance of wavenumber 2� /�z,

�� 

1

�z
� v�dt . �9�

The above integral imposes a � /2 phase delay of ��
relative to v� at a given angular frequency �. The corre-
sponding time delay is td=� /2�
1 /�. This suggests that
the lower the frequency �or the larger the time scale� of the
dominant disturbance at a given y, the longer is the time
delay of �� relative to v� �and ��z�. To determine the domi-
nant disturbance time scale at different y locations, the auto-
correlation of �� �R����� is computed and the outcome is
given in Fig. 9. The results show that the autocorrelation
becomes broader as y decreases, which gives evidence that
the time scale of the dominant �� disturbance does in fact
become progressively larger as the wall is approached. This
produces a corresponding larger time lag in the development
of �� relative to v� �and ��z� with decreasing y �based on the
above arguments�, which is consistent with the behavior of
R��z��.

Next, consider the correlation results involving the
streamwise wall shear stress ���x�. The left plot in Fig. 10
depicts the correlation between ��x and ��, for �z=0.62�o

�where the maximum correlation between these two quanti-
ties is found along the span� as well as between ��x and v�,
for �z=0. The axes are the same as in Fig. 8. Similar to the
R��z�� results, Fig. 10 shows a height-dependent phase differ-
ence between ��x and ��. Unlike the R��z�� results, however,
where the spanwise shear stress signature is found to lead the
wall-normal-vorticity field, ��x lags behind the �� field. It is
significant to note that this lag is quite large for the most
“dangerous” disturbance occurring at the height of the peak
u�rms �y /�o=0.69�. In particular, this delay is �tU� /�o�12,
which implies that at the time of measurement of ��x, the
associated �� disturbance at y /�o=0.69 would have traveled
7.5 boundary layer thicknesses �recall the local boundary
layer thickness is approximately 1.6�o: see Fig. 3� at the
free-stream velocity, or approximately 5� at the local mean
velocity.

The evolution of ��x signature is also found to lag behind
that of v� disturbances. This is reflected in the results of
R��xv� shown in the right half of Fig. 10. In particular, the
correlation peak is found to occur at �tU� /�o�−16 inde-
pendent of height above the wall. This implies that by the
time a ��x signature is detected at the wall, the associated v�
disturbance would have traveled approximately 7� at the lo-
cal mean velocity.

The observed delay between the occurrence of a v� dis-
turbance in the flow and the generation of a related ��x at the
same x location is three-dimensional in nature, and can be
identified through examination of the near-wall Taylor-series
expansion of v� without ignoring the streamwise-dependence
of the disturbance field. Referring to the work of Choi
et al.,27 who employed the series expansion in the near-wall
region of a turbulent channel flow as discussed above, v�
may be written as
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v� = −
y2

2
� �

�x
�x +

�

�z
�z + O�y3� . �10�

It is evident from Eq. �10� that at a given height, v� is
proportional to the streamwise derivative of the streamwise
wall shear stress. This causes the phase of v� disturbance to
lead that of the corresponding shear stress along the x coor-
dinate. Employing, a Taylor frozen-field argument, one can
see how such a spatial phase lead in x would produce a
similar phase offset in t. In fact, the same effect is embedded
in the temporal derivative of Eq. �9� above. This clarifies the
reason for the largest correlation between v� and ��x taking
place at a nonzero time delay, and that Choi et al. could have
perhaps made use of ��x in their feedback control of the
turbulent channel flow had they considered the correlation
with ��x at nonzero time delay.

The above findings are quite significant in guiding the
design of estimators based on the wall shear stress. In par-
ticular, they suggest that the use of ��x �the easiest and more
accurate of ��x and ��z to measure in practice� in a wall-
based-estimation scheme would result in a time delay in the
feedback of the flow state. A possible remedy to this issue in
control-system implementation is to locate the actuators
5–7� downstream of the wall-shear sensors such that by the
time ��x from a particular disturbance is detected, the distur-
bance will have convected downstream to the location where
the actuators reside. However, the effectiveness of the con-
trol is likely to be affected by changes in the disturbance
field caused by the following: �1� disturbance evolution as it
convects downstream; and �2� the development of new dis-
turbances over the streamwise stretch between the sensors
and actuators through additional forcing of the boundary
layer by free-stream turbulence.

In contrast, ��z seems to have several advantages for
flow-state estimation purposes. First, ��z signature occurs at
the same instant when the boundary layer is forced with v�
disturbance. Second, this signature appears to take place
4�o /U� ahead of the development of the strongest transient-
growth disturbances at y /�o=0.69, thus giving opportunity
for the control system to respond.

In the following, the insights developed in this section
are examined against the performance of a POD-based esti-
mator.

B. POD synthesis

Noteworthy POD studies of boundary layer transition
include Rempfer and Fasel28 and Rempfer29 who applied
POD to investigate boundary-layer transition initiated by TS
waves. Chapman et al.30 also conducted POD analysis on
signals obtained from arrays of wall-shear-stress sensors in a
laminar boundary layer undergoing cross-flow instability.
Here, focus is on obtaining POD representation of free-
stream-turbulence-induced transient-growth modes. To ob-
tain this representation of v��y ,z , t� at the selected x location,
the following synthesis equation is employed:31

v��y,z,t� = �
n=1

N

av
�n��t�v

�n��y,z� , �11�

where v
�n� is the nth POD eigenfunction or mode of the v�

field, av
�n� is the corresponding expansion coefficient and N is

the total number of POD modes. The POD modes are deter-
mined empirically from the snapshots of the v� field at the x
location of interest, and they form a complete set of basis
functions �i.e., any of the instantaneous realizations used in
obtaining the POD modes is exactly recoverable using Eq.
�11��. Note that the analysis is carried out for the scalar field
of the wall-normal velocity component rather than the veloc-
ity vector field. This is done since the latter is dominated by
u� �the strongest of the three velocity components� and hence
the associated POD modes would not be the most efficient in
capturing v�. Similarly, only the wall-normal vorticity com-
ponent �� of the vorticity vector field is considered in the
POD analysis. Furthermore, for simplicity, this paper focuses
on the estimation of the two-dimensional v� and �� field at a
fixed x location.

The number of POD modes equals the number of grid
points in the y-z plane of the analysis; therefore, Eq. �11�
does not immediately lead to low-order representation of the
velocity field. However, because the POD procedure maxi-
mizes the projection of the fields’ energy onto the empirical
modes, in an average sense, Eq. �11� converges quickly and
only a few modes are typically needed for satisfactory rep-
resentation of the instantaneous field. This is particularly true
for flows dominated by organized motions, or coherent struc-
tures, as in the current case.

Because the transitional boundary layer considered here
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FIG. 10. Two-point correlation between ��x and �� �left�, and �x� and v� �right� as a function of time delay �abscissa� and height above the wall �ordinate�. Note
that ��x and �� information are taken from locations that are offset along the span by 0.62�o. No such offset is employed for the ��x and v� correlation.
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is homogeneous in the spanwise direction, the POD eigen-
functions are sinusoidal, or Fourier modes, along the span.
Thus, one only needs to carry out the POD analysis along the
y direction after Fourier transforming the field in the span.
The one-dimensional POD expansion for a given spanwise
wavenumber, kz, may then be written as

Vkz�y,t� = �
n=1

N

Av,kz
�n� �t��v,kz

�n� �y� , �12�

where Vkz is the Fourier transform of v� in the spanwise
direction evaluated at wavenumber kz. The coefficients Av,kz

�n�

are obtained from an inner product of Vkz with the eigenfunc-
tions using

Av,kz
�n� �t� = �

0

yo

Vkz�y,t��v,kz
�n�*�y�dy . �13�

Note that superscript � indicates complex conjugation and
that the integration limits in Eq. �13� assume that the POD
domain extends from the wall up to a height yo above the
wall. Once the Av,kz

�n� are obtained for a particular realization,
a truncated version of Eq. �12� can be used to obtain a low-
order representation of Vkz. Subsequently, inverse Fourier
transformation of the latter along the span can be used to
synthesize the v� field from the POD and Fourier modes. Of
course, if the field is purely harmonic, or quasiperiodic in the
spanwise direction, only one or a few Fourier modes need to
be kept in the inverse transformation, and further reduction
in the order of the velocity-field representation is obtained.

To focus the analysis on the region that is most signifi-
cant to transient growth, the POD domain is taken from the
wall up to y /�o=1. This choice of the analysis domain pro-
duces a more compact POD representation of the disturbance
field than one that extends to the edge of the boundary layer.

Referring to Fig. 3, it is evident that the selected domain is
focused around the region where u�rms peaks. The POD
modes are obtained from the solution of the following eigen-
value problem:

�
j=1

ny

Wj�Vkz�l,t�Vkz
� �j,t���v,kz

�n� �j� = �kz
�n��v,kz

�n� �l� ,

�14�
l = 0,1, . . . ,ny

where � � denotes averaging over time and 3�32-point span-
wise records, Wj are integration factors, j and l are integers
representing y node locations, ny is the number of y nodes
within the selected analysis domain and �kz

�n� are the eigen-
values. Equation �14� yields a set of linear, algebraic equa-
tions with coefficient matrix of size ny�ny, which is solved
to obtain the eigenvalues and eigenvectors �POD modes�.

Figure 11 displays a flooded gray-shade contour plot of
the two-dimensional, eigenvalue spectrum of �� and v� POD
modes. Specifically, the plot gives the magnitude of the ei-
genvalue for every Fourier and POD mode pair. Since the
total fluctuation energy is the sum of all eigenvalues �divided
by the number of points used in the spanwise fast Fourier
transform �FFT��, Fig. 11 gives information concerning how
the energy is distributed among different modes. Note that
the eigenvalues have been normalized by the magnitude of
their largest, i.e., the contour values range from zero to one.
Because a 32-point FFT is used to obtain the Fourier modes,
mode 0 is the spanwise-uniform mode �which was subtracted
in the analysis�, mode 1 has 32 points per cycle, mode 2 has
16 points per cycle, and so on.

Figure 11 shows that for both �� and v�, the largest
energy is associated with Fourier mode number 4, corre-
sponding to eight points per cycle, or a wavelength of 2.5�o.
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This is the same as the average streak spacing obtained from
the spanwise correlation results in Fig. 5. In addition, it ap-
pears that most of the energy is concentrated within Fourier
modes 1 through 7 �out of 16 independent modes�. In com-
parison, out of 25 POD modes, only two modes are needed
to capture practically all the energy. The extremely fast POD
convergence can be seen more clearly by summing the ei-
genvalues over all wavenumbers and plotting the results ver-
sus the POD mode number in Fig. 12. As seen from the
figure, more than 80% of �� and v� fluctuation energy is
captured by mode 1, with practically all of the remaining
energy captured by mode 2. For reference, the magnitude
and phase of the leading POD modes of �� and v� may be
seen in Figs. 13 and 14 for the wavenumber corresponding to
the streak spacing �Fourier mode 4�.

C. Wall-based estimation of POD mode coefficients

The combined linear stochastic estimation and POD
�LSE/POD� method introduced by Bonnet et al.33 is used to
estimate the POD mode coefficients from the wall-shear-
stress information. Specifically, when using the spanwise
surface shear stress to estimate A�,kz

�n� and Av,kz
�n� , the following

linear relations are employed:

Ã�,kz
�n� �t� = K�,kz

�n� Tz,kz�t� , �15�

Ãv,kz
�n� �t� = Kv,kz

�n� Tz,kz�t� , �16�

where 
 indicates an estimated value, Tz,kz is the spanwise
Fourier transform of the spanwise wall shear stress, and K�,kz

�n�

and Kv,kz
�n� are the estimation coefficients of the �� and v�

POD coefficients, respectively. K�,kz
�n� and Kv,kz

�n� are calculated
such that the mean-squared error between the true and esti-

mated values of A�,kz
�n� �t� and Av,kz

�n� �t� is minimized. The pro-
cedure leads to the following forms for the LSE coefficients:

K�,kz
�n� =

A�,kz
�n� Tz,kz

Tz,kzTz,kz

, �17�

Kv,kz
�n� =

Av,kz
�n� Tz,kz

Tz,kzTz,kz

, �18�

where the overbar denotes averaging in time and along the
span. For estimation based on the streamwise shear stress,
Tz,kz is replaced by Tx,kz in the above equations.

Figure 15 shows a comparison between the estimated
and actual POD coefficients for the leading POD mode and
Fourier mode 4 at different times. The estimated data are
based on the spanwise wall shear stress. Overall, there is
good correspondence between the true and estimated values
for the estimation of the v� mode coefficient. In contrast, the
estimate of A�,kz

�n� �t� is not as good, where the estimate of both
the real and imaginary component show significant deviation
from the actual value. The quality of the estimation is as-
sessed by computing a coherence coefficient ��� between the
actual and estimated mode coefficients using the following
expression:

� =
�A�,kz

�n� Ã�,kz
��n��

�A�,kz
�n� A�,kz

��n��1/2�Ã�,kz
�n� Ã�,kz

��n��1/2
, �19�

where � denotes the magnitude of the complex number and
superscript � indicates complex conjugation. For the results
shown in Fig. 15 the coherence values are 0.63 and 0.79 for
the estimation of A�,4

�1� and Av,4
�1� , respectively. Since a perfect

estimate would yield a coherence value of unity, the esti-
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mates of the POD coefficients in Fig. 15 may be considered
as “noisy measurements” with the measurement of the ��
POD coefficient being more noisy than that of v�.

An improvement upon the accuracy of the estimates in
Fig. 15 can be accomplished through the utilization of a Kal-
man filter that incorporates a dynamical model of the POD
mode coefficients �e.g., based on Galerkin projection of Eqs.
�1� and �2� onto the POD modes�. An example of such an
approach applied to the Lorenz model and wall-mounted
cube in a channel flow is discussed by Mokhasi et al.34 This,
however, is outside the scope of the present study.

The correlation analysis in Sec. IV A provides a guide to
achieving better estimation accuracy of the POD coefficient
of ��. In particular, the analysis shows that the highest cor-
relation between �� and ��z occurs at time offset of �t
=4�o /U� and between �� �at y /�o=0.69 where peak u�rms is
found� and ��x occurs at time offset of �t=−12�o /U�. This
suggests that ��z values observed at time t yield the best
estimate of �� at time t+4�o /U�. Similarly, a ��x-based es-
timate of the strongest �� disturbances will be most accurate
for disturbances that occur 12�o /U� in time ahead of the
wall-shear values used in the estimation.

The results in Fig. 15 show the POD coefficients found
at the same time instant as the wall-shear values used in the
estimation. Similar results but incorporating the time offsets
discussed above are obtained for estimations based on the
streamwise as well as the spanwise wall shear stress. The
corresponding � values of these estimates are depicted in

Fig. 16. For reference, � values for �t=0 are also included
in the figure. Figure 16 contains two plots depicting results
for the estimation of A�,4

�1� �left plot� and Av,4
�1� �right plot�.

Focusing on the former, it is seen that consistent with the
correlation results, the estimation of A�,4

�1� using ��z does im-
prove when A�,4

�1� is estimated 4�o /U� into the future. The
improvement increases the coherence value from 0.63 �at
zero time offset� to 0.7. The most accurate estimate of A�,4

�1� is
accomplished based on the streamwise wall shear stress and
time delay of 12�o /U�. The corresponding coherence be-
tween the estimate and true values is 0.9. On the other hand,
the most accurate estimate of Av,4

�1� is based on concurrent
values of the spanwise wall shear stress. Overall, these re-
sults show that the accuracy of flow estimation is consistent
with the physical understanding gained through inspection of
the two-point correlation.

D. Effect of sensing density on estimation accuracy

A matter that is of importance to practical implementa-
tion of estimators is whether wall-sensor arrays can be
packed with sufficient density in actual experiments to
achieve the same estimation accuracy found in testing/
developing the estimator using numerical simulations. Gen-
erally, sensor density is limited by the physical sensor size,
intersensor interference, and the economy of covering large
surfaces �such as the wing of an airplane� by densely packed
sensor arrays. To further illustrate the point, A�,4

�1� and Av,4
�1� are

estimated using wall-shear-stress information sampled at
spanwise spacing coarser than the resolution of the DNS da-
tabase. At full resolution, eight wall-shear-stress data points
fit within the average streak spacing ��z�. Estimations based
on a coarser sampling rate of four and two data points per �z

are conducted, and the accuracy of the results is compared in
Fig. 17 to the full-resolution estimate. Note that no anti-alias
filtering of the wall-shear signature is implemented before
downsampling the data along the span. This is done in order
to mimic wall-shear sampling in practice where such filtering
is not possible. Also note that here, and for the remainder of
the paper, A�,4

�1� estimation is based on the streamwise wall
shear stress and time delay of 12�o /U�, while the estimation
of Av,4

�1� employs the spanwise wall shear stress and zero time
delay. As found from Fig. 16, these particular combinations
of the shear stress component and time delay yield the best
estimate of the POD coefficients. Inspection of Fig. 17 shows

FIG. 18. Schematic drawing depicting in-line �top� and staggered �bottom�
configurations for sampling the wall-shear-stress information.
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that substantial drop in the accuracy of the estimation is pro-
duced as a result of downsampling below eight points per
streak spacing. The coherence of the estimation decreases to
less than 0.4 for A�,4

�1� and 0.2 for Av,4
�1� . This result underscores

the fact that, whereas an estimation method may perform
satisfactorily in a numerical simulation, practical matters
such as limited sensor density, could lead to unsatisfactory
performance in the laboratory, and ultimately in applications.

Illustrated in Fig. 18 is an alternate sensor configuration
that can help address the sensor density requirements of
boundary-layer, transient-growth estimators in practice. At
the top of figure, the configuration that has been used for the
estimation results hitherto �referred to as “in-line” array� is
displayed. The alternate “staggered” array geometry �shown
at the bottom of Fig. 18� involves distributing the same num-
ber of sensors as the in-line configuration over a number of
rows covering a streamwise fetch of Lx, while maintaining
the same desired spanwise spacing �zsd between successive
sensors. In turn, this increases the spanwise spacing between
the sensors ��zs� at a given x location by a factor equal to the
number of rows in the stagger. For example, the sensor array
shown at the bottom of Fig. 18 is staggered over three rows,
allowing the intersensor spacing at a given x to triple. This
staggered geometry is motivated by the physical understand-
ing that the transient growth modes are elongated along the
streamwise direction. Thus, offsetting the sensors along x,

within reasonable limits, should result in a nonsubstantial
change in the wall-shear-stress signature. The configuration
is particularly helpful when the desired intersensor spacing is
limited by the physical size of the sensor.

Figure 19 depicts the coherence of A�,4
�1� and Av,4

�1� esti-
mates using a three-row staggered array configuration cover-
ing different streamwise fetch lengths. The case of Lx=0
represents the best estimate using an in-line array. As ob-
served in Fig. 19, the coherence of the A�,4

�1� estimate is barely
affected by staggering the sensor array over a streamwise
length of as much as approximately 4�z. On the other hand,
a noticeable decline in the accuracy of the Av,4

�1� estimate with
the increase in the streamwise extent of the staggered array is
evident. However, the estimate retains substantial coherence
�of approximately 0.7 or more� up to Lx�2�z. The coherence
of both A�,4

�1� and Av,4
�1� estimates drops to a similar value of

approximately 0.6 for Lx�15�z and 4�z, respectively. The

fair insensitivity of the A�,4
�1� estimate to staggering of the

sensor array over a relatively large streamwise domain stems
from the fact that the estimate is based on �x�, which is asso-
ciated with structures that are highly elongated in the x di-
rection. This may be seen from the left plot in Fig. 20. Simi-
lar elongated features are not found in the �z� field, which is
employed in estimating Av,4

�1�: see the right plot in Fig. 20.
The results presented in Fig. 19 correspond to a three-

row array stagger. If it is desired to increase the sensor spac-
ing �zs �e.g., for sensors that are big in size�, the number of
rows in the stagger need to be increased �in general, �zs

=number of rows in stagger��zsd�. To investigate the effect
of increasing the number of rows in the stagger, estimation of
the POD mode coefficients is done for staggered-array con-
figuration containing three, five and nine rows. The corre-
sponding Lx values are 0.94�z, 1.88�z, and 2.82�z. The co-
herence of the resulting estimates is given in Fig. 21, where
the case corresponding to one row of sensors represents the
best estimate based on an in-line array. It is noted here that
for the nine-row stagger, the sensor spacing at a fixed x lo-
cation �zs increases to 1.125�z, in comparison to 0.125�z for
the in-line sensor geometry. Notwithstanding this almost or-
der of magnitude increase in sensor spacing, the accuracy of
estimating A�,4

�1� barely changes. The coherence of the

estimate of Av,4
�1� , on the other hand, decreases but remains

above 0.6.
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FIG. 20. Sample instantaneous maps of the streamwise �left� and spanwise
�right� wall shear stress. The gray-shade bar on the right indicates the shear
stress value normalized by the peak value within the domain displayed. The
extent of the domain is 15�z along x and 4�z along z, and the broken white
line identifies the streamwise location of the analysis.
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V. CONCLUSIONS

The present study employs a DNS database of a laminar
boundary layer subjected to free-stream turbulence to inves-
tigate the relationship between transient-growth disturbances
in the boundary layer and the wall-shear-stress signature. The
study is motivated by understanding this relationship in order
to guide the development of accurate, yet practically imple-
mentable, estimation models of the disturbance field based
on surface-shear-stress information for feedback control of
boundary layer transition. To this end, two-point correlations
between the wall shear stress and the wall-normal velocity
�v�� and vorticity ���� are examined. The results of this ex-
amination are employed to arrive at the best performance of
an estimator based on linear stochastic estimation/proper or-
thogonal decomposition �LSE/POD�. It is found that the
most accurate estimate of the coefficient of the leading POD
modes �which capture more than 80% of the energy of each
of v� and ��� is achieved when using the spanwise wall shear
stress ���z� to estimate v� and the streamwise wall shear
stress ���x� to estimate ��. An interesting finding is that es-
timates based on ��z are in phase with or leading the evolu-
tion of the disturbances in the flow. On the other hand,
��x-based estimates lag behind the disturbance field. This
finding has important ramifications regarding the decision of
whether to select ��z or ��x for estimation as well as on the
relative placement of sensors and actuators in feedback con-
trol implementation. Finally, the sensitivity of the estimator
to the utilization of coarsely sampled wall-shear-stress infor-
mation is examined. The outcome indicates that a staggered
wall-shear-stress sensing configuration that makes use of the
streamwise-elongated nature of the transient-growth modes
allows for an appreciable increase in sensor spacing �up to
approximately twice the average spanwise spacing of the
transient-growth streaks� without substantial reduction in the
estimation accuracy. This finding is particularly true for es-
timations based on the streamwise wall shear stress.

ACKNOWLEDGMENTS

We are indebted to EPSRC �U.K.� for financial support,
grant reference �Grant No. GR/S82947�.

1P. S. Kelbanoff, “Effects of free-stream turbulence on a laminar boundary
layer,” Bull. Am. Phys. Soc. 10, 1323 �1971�.

2J. M. Kendall, “Experiments on boundary-layer receptivity to free-stream
turbulence,” AIAA Paper No. 98-0530, 1998.

3J. M. Kendall, “Experimental study of disturbances produced in a pre-
transitional laminar boundary layer by weak free-stream turbulence,”
AIAA Paper No. 85-1695, 1985.

4K. J. A. Westin, A. V. Boiko, B. G. B. Klingmann, V. V. Kozlov, and P. H.
Alfredsson, “Experiments in a boundary layer subjected to free stream
turbulence. Part 1. Boundary layer structure and receptivity,” J. Fluid
Mech. 281, 193 �1994�.

5M. Matsubara and P. H. Alfredsson, “Disturbance growth in boundary
layers subjected to free-stream turbulence,” J. Fluid Mech. 430, 149
�2001�.

6P. Andersson, L. Brandt, A. Bottaro, and D. S. Henningson, “On the
breakdown of boundary layer streaks,” J. Fluid Mech. 428, 29 �2001�.

7R. G. Jacobs and P. A. Durbin, “Simulations of bypass transition,” J. Fluid
Mech. 428, 185 �2001�.

8L. Brandt, C. Cossu, J.-M. Chomaz, P. Huerre, and D. S. Henningson, “On
the convectively unstable nature of optimal streaks in boundary layers,” J.
Fluid Mech. 485, 221 �2003�.

9T. A. Zaki and P. A. Durbin, “Mode interaction and the bypass route to
transition,” J. Fluid Mech. 531, 85 �2005�.

10T. A. Zaki and P. A. Durbin, “Continuous mode transition and the effects
of pressure gradient,” J. Fluid Mech. 563, 357 �2006�.

11P. Durbin and X. Wu, “Transition beneath vortical disturbances,” Annu.
Rev. Fluid Mech. 39, 107 �2007�.

12J. Kim and T. R. Bewley, “A linear systems approach to flow control,”
Annu. Rev. Fluid Mech. 39, 383 �2007�.

13M. Högberg and D. S. Henningson, “Linear optimal control applied to
instabilities in spatially developing boundary layers,” J. Fluid Mech. 470,
151 �2002�.

14T. R. Bewley and S. Liu, “Optimal and robust control and estimation of
linear paths to transition,” J. Fluid Mech. 365, 305 �1998�.

15S. A. Jacobson and W. C. Reynolds, “Active control of streamwise vorti-
ces and streaks in boundary layers,” J. Fluid Mech. 360, 179 �1998�.

16F. Lundell, “Reactive control of transition induced by free-stream turbu-
lence: An experimental demonstration,” J. Fluid Mech. 585, 41 �2007�.

17O. M. Phillips, “Shear-flow turbulence,” Annu. Rev. Fluid Mech. 1, 245
�1969�.

18M. T. Landahl, “A note on an algebraic instability of inviscid parallel shear
flows,” J. Fluid Mech. 98, 243 �1980�.

19K. M. Butler and B. F. Farrell, “Three-dimensional optimal perturbations
in viscous shear flow,” Phys. Fluids A 4, 1637 �1992�.

20T. A. Zaki and S. Saha, “On shear sheltering and the structure of vortical
modes in single- and two-fluid boundary layers,” J. Fluid Mech. 626, 111
�2009�.

21J. Hoepffner, M. Chevalier, T. R. Bewley, and D. S. Henningson, “State
estimation in wall-bounded flow systems. Part 1. Perturbed laminar
flows,” J. Fluid Mech. 534, 263 �2005�.

22T. A. Zaki, Ph.D. thesis, Stanford University, 2005.
23M. Ilak and C. W. Rowley, “Modeling of transitional channel flow using

balanced proper orthogonal decomposition,” Phys. Fluids 20, 034103
�2008�.

24C. W. Rowley, “Model reduction for fluids, using balanced proper or-
thogonal decomposition,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15,
997 �2005�.

25P. Andersson, M. Berggren, and D. S. Henningson, “Optimal disturbances
and bypass transition in boundary layers,” Phys. Fluids 11, 134 �1999�.

26P. Luchini, “Reynolds-number-independent instability of the boundary
layer over a flat surface: Optimal perturbations,” J. Fluid Mech. 404, 289
�2000�.

27H. Choi, P. Moin, and J. Kim, “Active turbulence control for drag reduc-
tion in wall-bounded flows,” J. Fluid Mech. 262, 75 �1994�.

28D. Rempfer and H. F. Fasel, “Evolution of three-dimensional coherent
structures in a flat-plate boundary layer,” J. Fluid Mech. 260, 351 �1994�.

29D. Rempfer, “On the structure of dynamical systems describing the evo-
lution of coherent structures in a convective boundary layer,” Phys. Fluids
6, 1402 �1994�.

30K. Chapman, M. Reibert, W. Saric, and M. Glauser, “Boundary-layer tran-
sition detection and structure identification through surface shear stress
measurements,” Proceedings of the 36th Aerospace Sciences Meeting and
Exhibit, Reno, NV, 12–15 January 1998, AIAA Paper No. 98-0782.

31For theoretical background and details of the POD analysis, the reader is
referred to Holmes et al. �Ref. 32�. Also, for brevity, only v� equations are
shown. The corresponding equations pertaining to �� are similar.

32P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry �Cambridge University Press,
Great Britain, 1996�.

33J. P. Bonnet, D. R. Cole, J. Delville, M. N. Glauser, and L. S. Ukeiley,
“Stochastic estimation and proper orthogonal decomposition: Complemen-
tary techniques for identifying structure,” Exp. Fluids 17, 307 �1994�.

34P. Mokhasi, D. Rempfer, and S. Kandala, “Predictive flow-field estima-
tion,” Physica D 238, 290 �2009�.

054103-13 On wall-shear-stress-based estimation Phys. Fluids 22, 054103 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1017/S0022112094003083
http://dx.doi.org/10.1017/S0022112094003083
http://dx.doi.org/10.1017/S0022112000002810
http://dx.doi.org/10.1017/S0022112000002421
http://dx.doi.org/10.1017/S0022112000002469
http://dx.doi.org/10.1017/S0022112000002469
http://dx.doi.org/10.1017/S0022112003004427
http://dx.doi.org/10.1017/S0022112003004427
http://dx.doi.org/10.1017/S0022112005003800
http://dx.doi.org/10.1017/S0022112006001340
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110135
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110135
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1017/S0022112002001702
http://dx.doi.org/10.1017/S0022112098001281
http://dx.doi.org/10.1017/S0022112097008562
http://dx.doi.org/10.1017/S0022112007006490
http://dx.doi.org/10.1146/annurev.fl.01.010169.001333
http://dx.doi.org/10.1017/S0022112080000122
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1017/S0022112008005648
http://dx.doi.org/10.1017/S0022112005004210
http://dx.doi.org/10.1063/1.2840197
http://dx.doi.org/10.1142/S0218127405012429
http://dx.doi.org/10.1063/1.869908
http://dx.doi.org/10.1017/S0022112099007259
http://dx.doi.org/10.1017/S0022112094000431
http://dx.doi.org/10.1017/S0022112094003551
http://dx.doi.org/10.1063/1.868253
http://dx.doi.org/10.1007/BF01874409
http://dx.doi.org/10.1016/j.physd.2008.10.009

