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Previous studies of the interaction between boundary layer streaks and Tollmien–Schlichting �TS�
waves have shown puzzling effects. Streaks were shown to reduce the growth rate of primary TS
waves and, thereby, to delay transition; however, they can also promote transition by inducing a
secondary instability. The outcome of the interaction depends on the spanwise wavelength and
intensity of the streaks as well as on the amplitude of the TS waves. A Floquet analysis of secondary
instability is able to explain many of these features. The base state is periodic in two directions: it
is an Ansatz composed of a saturated TS wave �periodic in x� and steady streaks �periodic in z�.
Secondary instability analysis is extended to account for the doubly periodic base flow. Growth rate
computations show that, indeed, the streak can either enhance or diminish the overall stability of the
boundary layer. The stabilizing effect is a reduction in the growth rate of the primary
two-dimensional TS wave; the destabilizing effect is a secondary instability. Secondary instability
falls into two categories, depending on the spanwise spacing of the streaks. The response of one
category to perturbations is dominated by fundamental and subharmonic instability; the response of
the other is a detuned instability. © 2008 American Institute of Physics. �DOI: 10.1063/1.3040302�

I. INTRODUCTION

Transition to turbulence in boundary layers is often clas-
sified as either orderly or as bypass. The orderly route refers
to the amplification, secondary instability, and breakdown of
discrete Tollmien–Schlichting �TS� waves. Instances of
boundary layer breakdown which deviated from this descrip-
tion have generally been termed bypass, with the most com-
mon bypass scenario being transition due to forcing by free-
stream turbulence. In this instance, a fully turbulent
boundary layer can be established at subcritical Reynolds
numbers, and thus unstable TS waves are entirely absent.
Instead, transition is preceded by the formation of high-
amplitude, streamwise-elongated disturbances known as Kle-
banoff distortions or streaks.

Bypass transition is not always free from TS waves. For
instance, in adverse pressure gradient the critical Reynolds
number for TS waves is sufficiently low that they may coex-
ist and interact with boundary layer streaks. Theory, com-
puter simulation, and physical experiments have raised basic
questions on how “streaks” influence the evolution of TS
waves, their secondary instability, and finally breakdown into
turbulence. Some studies show that, in the presence of small
amplitude streaks, the boundary layer is more unstable.1 Oth-
ers show that streaks suppress the amplification of primary
TS waves,2–4 yet transition is promoted.2,4 Our recent direct
numerical simulation �DNS� studies5,6 provide some degree
of empirical resolution: streaks do, indeed, reduce the growth
rate of primary TS waves and therefore can delay transition.
Nevertheless, streaks can also enhance transition by promot-
ing the formation of � shaped velocity contours, which pre-

cede the appearance of turbulent spots and breakdown of the
boundary layer.

How can these apparently conflicting observations be
understood? �-vortices are familiar from the literature on
secondary instability. Herbert7 provided an explanation via
Floquet analysis of an Ansatz constructed as a TS wave su-
perimposed on a Blasius profile. He concluded that paramet-
ric instability explained the formation of � patterns. The �
patterns that emerge in the presence of streaks are of a dif-
ferent character.6 They are related to the spanwise wave-
length of streaks, which is typically one-tenth that of Her-
bert’s secondary instability. Nevertheless Herbert’s Floquet
theory suggests a hypothesis for some of the observations of
the effect of streaks on TS waves. Our hypothesis is that a
competition exists between the reduction in growth rate of
primary TS waves3,1 and a secondary instability. Thus, if the
secondary instability is weak, the flow becomes more stable
due to the first mechanism; if it is not weak, streaks will
promote transition via a secondary instability. In this paper
we pursue this hypothesis by an extended Floquet analysis.

Our hypothesis introduces a complication: it implies that
both the TS wave amplitude and the streak intensity play
roles. We must address a doubly periodic Floquet analysis:
the streaks are periodic in z; the TS waves are periodic in x.
The analysis follows Herbert7 in supposing a TS Ansatz and
Cossu and Brandt3 in invoking a streak Ansatz, but now they
must be included simultaneously.

Before proceeding to the analysis, we must discuss the
notion of a streak, which can be modeled and generated ex-
perimentally in a variety of ways. The widely used terminol-
ogy presupposes that the particulars of the streak are not
critical to the phenomena being investigated. That does, in-

PHYSICS OF FLUIDS 20, 124102 �2008�

1070-6631/2008/20�12�/124102/16/$23.00 © 2008 American Institute of Physics20, 124102-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3040302
http://dx.doi.org/10.1063/1.3040302
http://dx.doi.org/10.1063/1.3040302


deed, appear to be the case: various Ansätze have been used
in numerical studies3,4,6 with similar results regarding the
influence of streaks on the growth rate of primary TS waves.
In the laboratory, streaks can not only be artificially excited
by rods8 but also naturally develop in response to forcing by
free-stream turbulence.2,9 In the last case they are called Kle-
banoff streaks and are quite commonly seen. The term streak
has its origin in flow visualization. For analytical purposes a
less graphical description is warranted. The dominant fea-
tures are u-component perturbations, which oscillate periodi-
cally in the span between positive and negative perturbations
of the mean velocity �cf. u��cos kzz�. They are very long in
the streamwise direction, having the character of perturba-
tion jets, flowing forward and backward relative to the mean.
The dominance of the u component can be explained as the
effect of displacement of the mean shear, with the most per-
sistent displacement being highly elongated in the direction
of the stream.10 It is because the key feature is a jetlike
perturbation that the same phenomenology has been found
with various, ad hoc, Ansätze to model the streak.

One Ansatz for the streaks follows naturally from the
boundary layer response to three-dimensional Orr–
Sommerfeld �OS� continuous modes. This is a good model
for the formation of Klebanoff streaks beneath free-stream
turbulence. In linear analysis, the three-dimensional OS
mode v appears as a source term in the Squire equation. The
Squire response is obtained by solving an initial value prob-
lem �Appendix to Zaki and Durbin11� and, in the solution, the
u velocity is a superposition of Squire modes; it has a y
profile quite like those seen in Klebanoff streaks �Fig. 1�.
The generation of streaks by OS continuous modes was used
in DNS studies6,11,12 and will be adopted for our Floquet
analysis.

A. Summary of previous empirical observations

The observation that streaks reduce the amplification of
the primary TS waves is supported by a number of experi-
mental and numerical investigations. For instance, in the
work of Boiko et al.,2 it was noted that streaks induced by
free-stream turbulence decrease the growth rate of TS waves
generated by a vibrating ribbon. In DNSs by Fasel,4 it was

noted that streaks, induced by volume forcing from the free-
stream, have a similar effect on TS waves. These and similar
empirical observations, both from experiments and simula-
tions, have been supported by the Floquet analysis of Cosso
and Brandt.13 That analysis showed that the growth rate of
the most unstable eigenvalue of the OS equation is reduced
when the boundary layer profile is modified by the presence
of their model streaks.

Evidence of the exact role of streaks in promoting sec-
ondary instability and breakdown of TS waves is more
scarce. Experiments that focused on the stabilizing effect of
streaks, for example, the work of Fransson et al.,8 did not
report the transition mechanism. Others, for instance, the ex-
periments of Boiko et al.,2 reported early transition in the
presence of streaks, but did not discuss the effect of the
intensity of streaks on the breakdown process.

Recently, we have carried out DNS with the objective of
detailing the influence of the streaks on both the growth rate
of primary TS waves and their breakdown to turbulence.6 In
the DNS, interaction between discrete and continuous modes
was found to depend on the spanwise wave number of the
latter. The numerical experiments were for streaks with non-
dimensional spanwise wave numbers, 0.25�����1.5,
based on the displacement thickness. Two broad classes of
behavior were seen in the computer experiments and corre-
spond to the influence of a “wide” versus “narrow” streak.
The former is epitomized by a streak of spanwise size �z

=11.6�� ����=0.54�, which Liu et al.6 referred to as mode 2
because it corresponds to two wavelengths across the span of
their computational domain of size Lz=23��. The influence
of the narrow streak is epitomized by a continuous mode
with spanwise size �z=4.6�� ����=1.35�, which Liu et al.6

referred to as mode 5. �In the study of Liu et al.6 where the
DNS was described in detail, the spanwise wave number of
the streaks, �=n2� /Lz, was quoted in terms of n, the num-
ber of waves that was fitted into the width of the computa-
tional domain of size Lz. In this paper, we will always quote
both the value of � nondimensionalized by �� and the mode
number n for the benefit of the readers who wish to compare
the current results to those of Liu et al.6�

Figure 2 shows two instants from a flow visualization. It
is difficult to see the full pattern of �’s from a single frame
because the �-structures at the right are breaking into turbu-
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FIG. 1. The linear boundary layer response to a continuous OS mode forc-
ing. At left, the OS continuous mode, and at right the u-perturbation re-
sponse, obtained by solving the Squire initial value problem.

FIG. 2. Plane view showing contours of the instantaneous wall-normal fluc-
tuations and vectors of the in-plane velocity at y=0.5�99. The � pattern is a
secondary instability of the primary TS waves in the presence of wide
streaks �mode 2: ���=0.54, �z=11.6���.
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lence and the �-structures at the left are still weak, but it
becomes evident when a time sequence is visualized at regu-
lar intervals. The z spacing between �’s at a given x location
is equal to the wavelength of the continuous mode.

The narrow streaks produced a more irregular pattern,
but still containing �’s. Unlike the wide streak case, the
spanwise spacing of the �’s differed from that of the con-
tinuous mode; it appeared to be approximately three times
the streak width. Figure 3 contains two snapshots from this
case. By contouring the u component, Fig. 3 brings out the
streaks; they appear as long contours in the x direction. By
contouring v, Fig. 2 brings out the TS waves. They are the
bands in the z direction.

Another curious difference between the narrow and wide
cases is the influence of the amplitude of the continuous
mode on transition location. Klebanoff distortions of large
spanwise size cause transition to move upstream with in-
creased streak amplitude. In this case, one can conceive that
the spanwise periodic streaks distort the two-dimensional TS
wave to create the � vortices. This interaction is more effec-
tive at higher streak amplitude.

However, this interaction is not inevitable. Indeed, the
narrow streak simulations yield interesting results. At low
amplitude transition is promoted, but as the amplitude in-
creases transition is delayed. If the previously mentioned hy-
pothesis that a competition between suppression of primary
TS growth and promotion of secondary instability is correct,
then the following explanation can be offered. Low ampli-
tude streaks permit the primary TS waves to grow to suffi-
cient amplitude that they are subjected to secondary instabil-
ity. However, larger streak amplitude suppresses TS growth,
increasing the downstream distance before the TS amplitude
is great enough for secondary instability to occur. Transition
is delayed thereby.

In this paper, we present a doubly periodic Floquet
analysis in order to study the stability of the boundary layer
in the presence of two-dimensional TS waves �periodic in x�
and steady streaks �periodic in z�. The paper is divided into
eight sections. In Sec. II, the secondary instability equations
are summarized, and the numerical implementation of the
solution is described in Sec. III �the validation against pub-
lished literature is deferred to Appendix�. In Secs. IV and V,
Floquet analyses are carried out in the presence of either the

TS waves or the streaks, alone. Finally, the results from the
doubly periodic analysis are presented in Secs. VI and VII,
followed by a discussion in Sec. VIII.

II. THEORETICAL FORMULATION

A. Secondary instability

The idea of secondary instabilities is quite simple. As-
suming the original base flow is v0, a modification v1, which
is based on the solution of the primary perturbation equation,
is added with an amplitude A to define a new base flow,

v2 = v0 + Av1. �1�

The modification v1 can, for instance, be a discrete TS wave,
a streak, or a superposition of the two. Linear perturbations
to this define a new eigenproblem, whose three-dimensional
eigensolutions are the secondary instability waves. One has
to be aware of the assumptions or approximations made to
derive the eigenvalue problem. First, the base flow v0 is as-
sumed to be locally parallel; in the present case a Blasius
boundary layer profile. Second, the amplitude A is assumed
to be constant; for a TS wave Ansatz v1 is periodic in x. This
can be justified if the primary waves are saturated. Finally,
distortions of the v0 flow by v1 are ignored.

Similar to the OS and Squire problems for parallel flow,
secondary perturbation equations are derived in the case of
the spatially periodic base flow of Eq. �1�. Let subscript 3
denote the perturbation. The disturbance equations, linear-
ized about v2, are

� 1

Re
�2 −

�

�t
��3 − v2 · ��3 − v3 · ��2 + ��2 · ��u3

+ ��3 · ��u2 = 0, �2�

� 1

Re
�2 −

�

�t
�	3 − v2 · �	3 − v3 · �	2 + ��2 · ��v3

+ ��3 · ��v2 = 0, �3�

� 1

Re
�2 −

�

�t
�
3 − v2 · �
3 − v3 · �
2 + ��2 · ��w3

+ ��3 · ��w2 = 0, �4�

where ���ex
�+	ey

�+
ez
� is the vorticity vector.

In Secs. II B–II D, the above equations are used to de-
rive the secondary instability problem for a base flow com-
posed of the Blasius profile plus �a� a saturated TS wave
which is periodic in x, �b� steady streaks periodic in z, and
�c� both the TS wave and streaks. The symbols � and � will
be used to refer to the streamwise and spanwise wave num-
bers of the TS wave and streaks, respectively. The wave
numbers of the secondary instability will be denoted kx

and kz.

FIG. 3. Instantaneous contours of the streamwise fluctuations showing the
secondary instability of TS waves in the presence of narrow streaks �mode
5: ���=1.35, �z=4.6���.
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B. Secondary instability of saturated TS waves

The secondary instability of TS waves was the first
theory to successfully explain the origin of �-structures.7 Let
us review this theory as background to our new analysis. It is
also a subset of our problem, which provides verification of
our computer code.

Upon specifying v1 as a saturated TS wave, Eq. �1�
becomes

v2�x,y,t� = U0�y�ex
� + A�uTS�x,y,t�ex

� + vTS�x,y,t�ey
�� , �5�

where U0�y� is the Blasius profile and A is the amplitude of
the saturated TS wave. In the Ansatz, TS waves are periodic
in the streamwise direction and move forward at a constant
phase speed. After a change from the laboratory to a Galilean
frame,

x� = x − crt , �6�

this is expressed as

vTS�x,y,t� = vTS�x�,y� , �7�

where vTS is periodic in x�. Hence, the stability equations are
a linear eigensystem with periodic coefficients, which de-
fines a Floquet stability problem.

Substituting the expression �5� for the base flow into the
perturbation problem ��2�–�4��, the following equations for
normal vorticity and the Laplacian of the normal velocity are
derived:

� 1

Re
�2 − �U0 − c�

�

�x�
−

�

�t
	 �	3

�z
+ 
0

�2v3

�z2

+ A��−
��TS

�y

�

�x�
+

��TS

�x�

�

�y
−

�2�TS

�x� � y
� �	3

�z

+
�2�TS

�x�2 � �2v3

�y2 +
�2u3

�x� � y
� −

�2�TS

�y2

�2v3

�z2 	 = 0 �8�

and

� 1

Re
�2 − �U0 − c�

�

�x�
−

�

�t
	�2v3 −

d
0

dy

�v3

�x�

+ A��−
��TS

�y

�

�x�
+

��TS

�x�

�

�y
��2v3

+
�2�TS

�x�2 � �
3

�y
+

�	3

�z
� −

�2�TS

�x� � y
� �
3

�x�
+

��3

�z
�

−
�
TS

�x�
�2

�u3

�x�
+

�v3

�y
� −

�
TS

�y

�v3

�x�

− �u3
�

�x�
+ v3

�

�y
� �
TS

�x�
	 = 0, �9�

where �TS is the TS wave stream function and 
TS

=−�2�TS. A modal representation of the form

v3�x�,y,z,t� = e
teikzzV�x�,y� �10�

is invoked, where 
 is the complex growth rate and kz is a
real spanwise wave number of the secondary instability. The
Floquet theory of differential equations with periodic coeffi-

cients indicates that solutions take the general form

V�x�,y� = e�x�Ṽ�x�,y� , �11�

where Ṽ periodic in x� with the TS wavelength,

Ṽ�x�,y� = Ṽ�x� + �TS,y� . �12�

Hence, Ṽ�x� ,y� can be expanded in a Fourier series, and v3

becomes

v3 = e
teikzze�x� 

m=−�

�

v̂m�y�eim�x�, �13�

where � is the TS wave number, �=2� /�TS.
Both 
 and � can be complex; however, only two of the

four unknowns, 
r 
i �r, and �i, can be determined by Eqs.
�8� and �9�. We consider the temporal eigenvalue problem,
�r=0, and �i specified. Combining the e�x� and eim�x� terms
reveals that � and �� in� lead to identical solutions. Hence,
without loss of generality, −� /2��i�� /2. The choice of �i

provides a classification of secondary modes: when �i=0,

v3
f = e
tei�z 


m=−�

�

v̂m�y�eim�x� �14�

are called fundamental modes; when �i=� /2,

v3
s = e
tei�z 


m=−�

�

v̂m�y�ei�m+1/2��x� �15�

are called subharmonic modes. When �i takes other values,
of the form �� /2

v3
d = e
tei�z 


m=−�

�

v̂m�y�ei�m+�/2��x� �16�

are called detuned modes, where 0� ����1. Herbert7 noted
that the fundamental modes are associated with primary
resonance which is related to the K-type �-structures; sub-
harmonic modes originate from principal parametric reso-
nance which is related to the H-type �-structures, and also to
triad interactions in C-type instability.14 Detuned modes are
produced by a combined resonance.

C. Instability modes in streaky boundary layers

The influence of Klebanoff streaks on boundary layer
stability is a second subset of our new Floquet analysis.
Cossu and Brandt13 presented an analysis of TS-type insta-
bilities under the influence of steady streaks.

The base-flow Ansatz v2 is now

v2�y,z,t� = U0�y�ex
� + BuK�y,z�ex

� , �17�

where uK is the streak. Since the uK�vK and uK�wK, the
other two components are omitted from streak models. The
most significant difference between Eqs. �17� and �5� is that
v2 is dependent on �y ,z� in the latter equation and on �x ,y� in
the former. Carrying out a similar procedure to Sec. II B, the
following two governing equations can be derived:
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� 1

Re
�2 − U0

�

�x
−

�

�t
�	3 + 
0

�v3

�z
− B�uK

�	3

�x
+ v3

�2uK

�y � z

+ w3
�2uK

�z2 +
�uK

�y

�v3

�z
−

�uK

�z

�v3

�y
� = 0, �18�

� 1

Re
�2 − U0

�

�x
−

�

�t
��2v3 −

�v3

�x

�
0

�y

− B�uK
��2v3

�x
−

�2uK

�y2

�v3

�x
+

�2uK

�z2

�v3

�x

+ 2
�uK

�z

�2v3

�x � z
− 2

�uK

�z

�2w3

�x � y
− 2

�2uK

�y � z

�w3

�x
� = 0.

�19�

Unlike Eqs. �8� and �9� for the secondary instability of two-
dimensional TS waves, in the above w3 cannot be eliminated
and, therefore, the continuity equation must also be solved.

The Floquet expansion for this problem is given by

v3 = e
teikxx 

m=−�

�

v̂m�y�ei�m+�/2��z, �20�

where 0� ����1 determines the classification of modes. Fur-
thermore, if the base flow is symmetric in the spanwise di-
rection, uK�y ,z� can expressed as uK�y�cos��z�. Then, pertur-
bations �20� can be divided into separate groups according to
their odd or even symmetries.

D. Secondary instability in the presence of TS waves
and streaks

When Klebanoff streaks and TS waves are both present
and reach large amplitude, secondary instabilities will de-
pend on both. Assuming the modification of the base flow to
be a superposition of steady boundary layer streaks and TS
waves, the new base-flow Ansatz is

v2�y,z,t� = U0�y�ex
� + A�uTS�x�,y�ex

� + vTS�x�,y�ey
��

+ BuK�y,z�ex
� . �21�

The governing equations for the three-dimensional dis-
turbances can be stated as

1

Re
�2	3 − �U0 − c�

�	3

�x�
− U0�

�v3

�z
− A� ��TS

�y

�	3

�x�
−

��TS

�x�

�	3

�y
+

��TS

�x� � y
	3 +

�2�TS

�x�2 �3 + �2�TS
�v3

�z
	

− B�uK
�	3

�x�
+

�2uK

�y � z
v3 +

�2uK

�z2 w3 +
�uK

�y

�v3

�z
−

�uK

�z

�v3

�y
	 =

�	3

�t
, �22�

1

Re
�2��2v3� − �U0 − c�

��2v3

�x�
+ U0�

�v3

�x�
− A� ��TS

�y

��2v3

�x�
−

��TS

�x�

��2v3

�y
−

�2�TS

�x�2 � �
3

�y
+

�	3

�z
� +

�2�TS

�x� � y
� �
3

�x�
−

��3

�z
�

+
�
TS

�x�
�2

�u3

�x�
+

�v3

�y
� +

�
TS

�y

�v3

�x�
+

�2
TS

�x�2 u3 +
�2
TS

�x� � y
v3	

− B�uK
��2v3

�x�
− � �2uK

�y2 −
�2uK

�z2 � �v3

�x�
− 2

�uK

�z

��3

�x�
− 2

�2uK

�y � z

�w3

�x�
	 =

��2v3

�t
, �23�

with continuity

�u3

�x�
+

�v3

�y
+

�w3

�z
= 0. �24�

We express the TS component of v2 as in Eq. �12�, and � is
the TS streamwise wave number. The streamfunction �TS is
dependent on the frequency parameter

F = 106 ��

U�
2

and on the displacement thickness Reynolds number, R��
.

The profile of �TS is defined by a solution to the OS equa-
tion.

The Klebanoff streaks are expressed as

uK�y,z� = uK�y�cos��z� , �25�

where � is the characteristic spanwise wave number. The
streak profile is given by the Squire response to an OS con-
tinuous mode, derived in Zaki and Durbin11 �e.g., Fig. 1�.
The profile is given by the solution at a fixed time; however,
the amplitude B will be treated as a parameter, so this analy-
sis provides a shape. As we have noted previously, other
studies have shown limited sensitivity to the streak
Ansatz—we have perturbed our Ansatz and verified that
observation.

The Floquet expansion for the problem �22�–�24� is
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v3 = e
t 

n=−�

�



m=−�

�

v̂n,m�y�ei��n+�/2��x�+�m+�/2��z�, �26�

where � and � determine the classification of secondary in-
stabilities and 
 is the temporal eigenvalue.

It is clear that when A=B=0, Eq. �23� reduces to the OS
equation and Eq. �22� reduces to Squire’s equation. Solutions
at different wave numbers are then fully decoupled, and the
resulting eigenvalues should be the discrete and continuous
modes for each wave number. The presence of a TS wave
enables the interaction among all wave numbers in Eq. �26�
with a given streamwise detuning factor � �i.e.,
�� /2,��1�� /2� ,��2�� /2�¯�. Similarly, the presence of a
streak enables the interaction among all wave numbers with
spanwise detuning by a factor �.

E. Limitations of the proposed model

The new base flow �21� consists of a Blasius profile, a
saturated TS wave, and a spanwise periodic streak. The An-
satz uses the local amplitude of the TS wave �A� and the
local amplitude of the streak �B� as input parameters, which
make it indirectly related to experiments such as the DNS of
Liu et al.6 In those simulations the input parameters are am-
plitudes of at the inlet �A0 and B0� and the response depends
on their local amplitude after downstream evolution. The ob-
jective of the present analysis is not to relate secondary in-
stability to an inlet condition, but rather to explain the
mechanism underlying the instability itself.

III. NUMERICAL METHODS

A. Formulation details

Equations �22�–�24� with Eq. �26� and discretization in y
provide an eigenvalue system of the form

Ax̄ = 
Bx̄ , �27�

where A is a matrix operator representing terms on the left
hand sides and B the terms on the right hand side. The ei-
genvector x̄ is the velocity vector �ū , v̄ , w̄�T and 
 is the
complex eigenvalue defined in Eq. �26�. In computations, a
real Fourier expansion, rather than the complex expansion
shown in Eq. �26�, is used for convenience.

B. Algorithmic implementation

Equations �22�–�24� can only be solved numerically. The
core of a numerical solution is the generation of matrices A
and B of Eq. �27�. The interaction among streamwise wave
numbers and also among spanwise wave numbers in the dou-
bly periodic Floquet expansion reduces the sparsity of matri-
ces A and B. By substituting the Floquet expansion �16� into
the governing equations, Eqs. �22� and �23�, and calculating
the convolution terms explicitly, one can obtain governing
equations for each mode. By grouping terms, formulas can
be derived for each entry of the matrix of the eigensystem.
The resulting formulas are, however, extremely complicated
and involve hundreds of terms. As a result, the derivation of
these expressions is prone to errors, whether performed
manually or with symbolic manipulation programs, such as

MATHEMATICA. The numerical implementation is an equally
cumbersome procedure and can introduce further inaccura-
cies. The complexity of the formulas increases dramatically
when more Fourier components are included or when addi-
tional terms are added in the governing equations. A different
approach is therefore adopted and will be summarized below,
but first we present an example of the structure of the eigen-
vector x̄ in Eq. �27�.

Consider fundamental modes in both directions and trun-
cate the expansion at the second Fourier mode. Then the
eigenvector takes the form

x̄ = �ū0,0, ū�,0, ū2�,0, ū0,�, ū�,�, ū2�,�, ū0,2�, ū�,2�, ū2�,2��T,

�28�

where � is the fundamental streamwise wave number and �
is the fundamental spanwise wave number. Each velocity
vector at a specific wave number has three components,

ū�,� = �u�,�,v�,�,w�,��T, �29�

and each velocity component has Fourier terms of the form

u�,� = �ucos���cos���
1 ,usin���cos���

2 ,ucos���sin���
3 ,usin���sin���

4 �T.

�30�

Suppose N collocation points in y are used for each velocity
in Eq. �30�, NA Fourier components are retained in the
streamwise direction, and NB are retained in the spanwise
direction. Let ZA and ZB take the value of 1 if the expansions
in the respective directions include the zero-frequency mode,
otherwise they are 0. The length of the eigenvector x̄ is found
to be

M = �4N � 3 � NA + 2N � 3 � ZA�NB

+ �2N � 3 � NA + N � 3 � ZA�ZB. �31�

In the above example, where NA=NB=2 and ZA=ZB=1, the
sizes of the eigenvector are 2250 if N=30 and 3750 if N
=50. The matrices A and B are of the size �M �M�, which
can become extremely large.

In order to avoid deriving explicit formulas for such
large matrices, we adopt an alternative approach. The basic
idea is to numerically implement Eqs. �22�–�24� as they ap-
pear, in operator form, rather than by deriving expressions
for each wave number vector. For every term in the govern-
ing equation �e.g., BuK�	3 /�x��, a call to a template function
identifies an operand �	3�, operator �� /�x��, and scaling vec-
tor �BuK�. The template function automatically generates the
necessary instructions to construct the operand from the el-
ementary variables �u ,v ,w� to compute the Floquet expan-
sion and to evaluate any required convolution terms. It then
calls a locator routine which adds the resulting terms to the
appropriate entries in the matrices A and B. In this frame-
work, once the elementary operators are created, complex
expressions can be constructed automatically, without error.
The final expression �27� remains identical to the conven-
tional approach of deriving governing equations for every
wave number pair. The resulting eigensystem is solved by a
general complex eigenvalue solver from the NAG library.
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The implementation and numerical solution to the eigenvalue
problem is validated using established results from the litera-
ture in Appendix.

Before we discuss the instability of the Blasius profile
when distorted by both the TS waves and streaks, in Secs. IV
and V, we consider the stability of a base state which is only
periodic in one direction. These results establish the influ-
ence of the primary TS wave or streak distortion, when each
is acting alone, on the stability of the boundary layer. These
results are followed by a discussion of the stability of the
boundary layer when both components are present.

IV. SECONDARY INSTABILITY OF THE PRIMARY
TS WAVE

In the DNS of Liu et al.,6 when a primary TS wave with
reduced frequency F=120 was applied alone at the inlet, it
amplified downstream. The amplification of the primary
wave is consistent with a supercritical inlet Reynolds number
where, based on the inflow boundary layer displacement
thickness and free-stream velocity, R��

=688. Although this
Reynolds number is at the inlet to the computational domain,
it will be retained for the saturated TS wave in the Floquet
analysis. Secondary instability was not observed within the
computational domain, which was attributed to the absence
of any appreciable level of noise in the DNSs.

A Floquet analysis of the stability of this flow, composed
of a Blasius state distorted by a two-dimensional primary TS
wave, yields similar observations to Herbert.15 The results
are summarized here, and are in later sections contrasted to
the secondary instability when the streaks are also included.
Figure 4 displays the growth rate of the three-dimensional
secondary instabilities of the TS waves as a function of the
spanwise wave number of the instability. Both the stream-
wise fundamental �left pane� and subharmonic �right pane�
modes were considered. The results demonstrate that the
streamwise subharmonic mode is most unstable. This asser-
tion is further verified by computing the maximum growth
rate of the secondary instability at kz��=0.54 over the range
of the detune factor � �Fig. 5�; indeed the subharmonic in-
stability is most pronounced when A�0.02 in that figure.

In Fig. 4, the maximum amplification of secondary
modes is at kz���0.19–0.22, which is equivalent to a wave-
length of over ten boundary layer thicknesses. This optimal
spanwise size should match that of the �-structures, where

they to develop from broadband, background perturbations.
It is interesting to note that this size is much larger, by nearly
an order of magnitude, than the instabilities computed in
subsequent sections and observed in the DNS of Liu et al.6

when Klebanoff streaks are present. This indicates that the
size of the �-structures seen in DNS �e.g., Fig. 3� is in part
affected by the Klebanoff distortion of the base flow—rather
than the maximum secondary instability of a TS waves
per se.

Another observation from Fig. 4 is that the three-
dimensional secondary eigenmodes are stable for spanwise
wave numbers kz���1 and A�2% of the free-stream veloc-
ity. This result does not take into account any streaks and is
also expected to change in the doubly periodic analysis: In
the DNS of Liu et al.,6 when streaks are present, secondary
instabilities were observed at higher spanwise wave num-
bers, kz���1, even at lower amplitude of the primary TS
waves. In short, the �-structures which develop in the pres-
ence of streaks do not exist in Herbert’s framework. Their
very presence must be related to the influence of boundary
layer streaks.

FIG. 4. Secondary instability of a
boundary layer distorted by two-
dimensional TS waves. Growth rates
of both the streamwise �a� fundamen-
tal and �b� subharmonic Floquet
modes are plotted vs the spanwise
wave number.

FIG. 5. Secondary instability of a boundary layer distorted by two-
dimensional TS waves. The growth rate is evaluated for a three-dimensional
instability wave, kz��=0.54, over the range of the streamwise detuning fac-
tor �.
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V. STABILITY OF A BLASIUS BOUNDARY LAYER
DISTORTED BY KLEBANOFF STREAKS

The discrete TS waves of a simple Blasius boundary
layer are often referred to as primary instability modes. Here
we consider a base flow which is the Blasius profile distorted
by Klebanoff streaks. Discrete instability waves of this base
state exist and can be traced back to the primary TS waves as
the streak amplitude is reduced. Therefore, these instabilities
can be regarded as modified TS waves of a Klebanoff-
distorted boundary layer. When the instability has its root in
a two-dimensional TS wave, it is dominated by the zeroth
spanwise mode in the spanwise Floquet expansion, but will
also include contributions from harmonics of the streak span-
wise wave number.

In our analysis, we use the solution to the Squire initial
value problem in order to represent the streaks. The instabil-
ity of the Balsius boundary layer distorted only by the Squire
streaks was computed, and a similar behavior to Cossu and
Brandt13 was observed. Figure 6 shows the growth rate of the
computed TS-type waves versus their streamwise wave num-
ber in the presence of streaks at various amplitudes. The
observed reduction in the growth rate is significant. The
wave speed of these disturbances is also shown and is com-
mensurate with the result for a TS instability of a Blasius
profile.

The results in Fig. 6 describe the dependence of the TS-

type instability on a streak of a particular spanwise size,
���=0.54 �mode 2�. The analysis was repeated for a number
of spanwise sizes of the streak and is shown in Fig. 7. In the
regime ����0.5, the dependence of the growth rate on wave
number is less pronounced than the dependence on the streak
amplitude.

The stabilizing influence of the streaks on the TS-type
instabilities of the boundary layer is important in the context
of the simulations of Liu et al.6 In those simulations, both
primary TS waves and streaks were prescribed at the inflow
of the computational domain. Since the streaks are long in
the streamwise extent, the superposition of the streak and the
Blasius profile presents in effect a new base flow for the
primary TS wave. Indeed, the growth rate of the primary TS
wave was observed to decrease with increasing streak ampli-
tude in the DNS. This is consistent with the current analysis
which, in a sense, describes the early stages of the flow evo-
lution in the DNS.

Farther downstream, a secondary instability of the pri-
mary TS waves was observed in the simulations. That insta-
bility was not independent of the streaks. Therefore, in Secs.
VI and VII we discuss the results of the secondary instability
problem when the base flow is a superposition of the Blasius
profile and both a primary TS wave and a Klebanoff distor-
tion.

FIG. 6. Growth rate 
r and phase
speed cr of the secondary instability of
a boundary layer distorted by streaks
of spanwise size, ���=0.54 �mode 2�.
The spanwise fundamental Floquet
mode is shown; the computed instabil-
ity has its origin in the two-
dimensional TS wave at zero streak
amplitude.

FIG. 7. Growth rate 
r and phase
speed cr of the secondary instability of
a boundary layer distorted by streaks
of various spanwise sizes. The com-
puted instability has its origin in the
two-dimensional TS wave at zero
streak amplitude.
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FIG. 8. Effect of the streak strength B
on the growth rate 
r of the secondary
instability. The fundamental and sub-
harmonic modes in x are shown, both
assuming a spanwise expansion in
terms of the fundamental streak wave
number �mode 2, ���=0.54�.

FIG. 9. Relative strength of the Fou-
rier components in the Floquet analy-
sis of Fig. 8�b�. The change of the
dominant Fourier mode causes the
sharp changes in the growth rate
curve.

FIG. 10. Effect of � on the growth rate

r of the streamwise fundamental and
subharmonic instability of wide
streaks �mode 2, ���=0.54�. The
streak amplitude, B=20%, is represen-
tative of the maximum intensity re-
corded in the simulation of Liu et al.
�Ref. 6�.
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VI. THE INFLUENCE OF WIDE STREAKS
ON SECONDARY INSTABILITY

When both the discrete and continuous modes are
present in the flow, the secondary instability problem re-
quires a Floquet expansion in two directions. We will iden-
tify Floquet modes by the two detuning factors � and �. As
explained in Sec. II, fundamental modes have a detuning
factor of 0 and subharmonic modes have a detuning factor of
1. A mode with �=1 and �=0 is referred to as subharmonic
in x and fundamental in z.

Let us start by noting a DNS result of Liu et al.6 When
both the continuous mode, ���=0.54 �mode 2�, and the TS
wave were included at the inflow, the maximum recorded
streak amplitude was 21% of the free-stream velocity. Break-
down of the boundary layer was preceded by the formation
of �-structures that matched the continuous mode spanwise
wavelength �Fig. 2�. In addition, an increase in the amplitude
of the inlet continuous mode caused transition to move
upstream.

In those simulations, the inflow included unsteadiness at
the Klebanoff streak wavelength. This acts as an unsteady
perturbation which can promote secondary instability. Thus
disturbances which are fundamental in z ��=0� should be
provoked, if they have positive growth rate. This is investi-
gated using our Floquet analysis. The growth rate of the
eigenmodes that are fundamental in z is plotted in Fig. 8

versus the streak amplitude. Both the fundamental and sub-
harmonic expansions in x are shown, and the latter has a
larger growth rate. The fundamental instability in z explains
the spanwise size of the �-structures which appear in the
DNS, and which match the width of the streaks. It should
also be noted that the growth rate of the secondary instability
which is subharmonic in x and fundamental in z �Fig. 8�b��
increases nearly monotonically with increasing streak ampli-
tude. This is consistent with the DNS result that transition
moved upstream with amplitude of the wide streak �mode 2,
���=0.54�.

For a TS wave with local amplitude of 1%, the second-
ary disturbances become unstable only when B�13%. For
smaller B, the primary TS waves initially grow more slowly
than when B=0 and may even decay. But Klebanoff streaks
grow relatively quickly, so that a stage of high streak inten-
sity and moderate TS amplitude develops. At this stage, sec-
ondary instability sets in. Indeed, that is what is observed in
the DNS: the streaks cause a quick transition, shortly down-
stream from the inlet. The spanwise spacing of �-structures
is the same as the streak spanwise wavelength.

The dependence of the secondary instability on the am-
plitude of the primary TS wave is also shown in Fig. 8. The
results indicate that the “window” of instability narrows at
lower amplitudes of the primary wave. As a result, transition
is less likely at lower TS amplitudes.

Figure 9 shows the relative strength of the Fourier com-
ponents of the perturbation which is subharmonic in x and
fundamental in z �Fig. 8�b��. The wall-normal maximum of
each component in the Floquet expansion, normalized by
u�,�

max, is plotted versus streak amplitude �see Eq. �28��. Sharp
turns in Fig. 8�b� are the result of changes in the dominant
Fourier component. Since the curves in Figs. 8 and 9 are not
smooth, a resolution test was performed:5 these results ap-
pear to be independent of the grid size.

The existence of a spanwise fundamental instability has
now been established. However, evidence in the literature
suggests that long-wavelength spanwise modulation of the
mean flow can lead to fundamental and subharmonic insta-
bilities, with the later showing higher growth rate.16,17 This
observation was made, for instance, by Li and Malik,17 in the
context of modulation of the mean flow by steady Görtler
vortices. Therefore, we evaluate the influence of the span-
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FIG. 11. Effect of the streamwise detune factor � on the growth rate of the
secondary instability for wide streaks �mode 2, ���=0.54�. The streak am-
plitude is 20%.

FIG. 12. Effect of the streak strength
B on the growth rate 
r of the stream-
wise �a� fundamental and �b� subhar-
monic instabilities, both assuming a
fundamental spanwise expansion in
wave number of the narrow streaks
�mode 5, ���=1.35�.
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wise detune factor � in Fig. 10. Indeed the spanwise subhar-
monic mode is slightly more unstable than the fundamental.

Since both the spanwise fundamental and subharmonic
modes are unstable �Fig. 10�, both can emerge in the fully
nonlinear simulations. The dominant instability in the DNS
is, however, dependent on the perturbations that are present
in the flow, and which excite the secondary instability. In the
DNS of Liu et al.,6 the inlet perturbation includes unsteadi-
ness only at the fundamental spanwise wavelength. The
spanwise subharmonic was absent upstream of transition in
the simulations. Due to this forcing at the fundamental wave
number, the �-structures were seen to acquire the spanwise
size of the streaks.

While the width of the �-structures which emerge in the
DNS is explained in terms of the spanwise fundamental in-
stability, their streamwise pattern is more complex. The
paired and staggered arrangements observed in the DNS dis-
played a periodicity at four times the wavelength of the pri-
mary TS wave �see Fig. 2�. This corresponds to a streamwise
detune factor, �=1 /2. The influence of � on the growth rate
of the secondary instability was computed using our Floquet
algorithm, and is shown in Fig. 11. The results demonstrate
that the optimal detune factor in x is ��0.7 for A=0.5% and
it shifts toward the subharmonic at higher TS wave ampli-
tudes. This provides an explanation of the streamwise peri-

odicity of the �-structures which emerge in the DNS of Liu
et al.6

However, it also should be noted that the continuous
modes were unsteady in the simulations, which causes the
direction of the perturbation jets to oscillate with time. This
may cause the staggering directly.6

VII. THE INFLUENCE OF NARROW STREAKS
ON SECONDARY INSTABILITY

The narrow streak case has ���=1.35 �mode 5�. Break-
down of the boundary layer in the presence of TS waves and
narrow streaks proceeded in a manner quite distinct from that
discussed in Sec. VI. In the DNS,6 the onset of transition is
delayed as the streak amplitude increased. In addition, the
�-structures had a spanwise size different from that of the
streaks. Again, Floquet theory offers an explanation.

Figure 12 shows the growth rate of secondary instability
modes that are fundamental in z. If these modes were to
possess positive growth rates, they would be favored. They
are all, however, decaying. Although the fundamental modes
are slightly unstable under very weak streaks, this period is
short lived in the DNS where the streaks amplify quickly
downstream of the inlet plane �in the linear limit, the solution
of the OS-Squire initial value problem shows that the ampli-

FIG. 13. Effect of the detune factor �
on the growth rate of the streamwise
�a� fundamental and �b� subharmonic
instabilities. The streak spanwise wave
number is ���=1.35 �mode 5�. The
streak amplitude B=10% is represen-
tative of the simulation of Liu et al.
�Ref. 6�.

FIG. 14. Effect of the streak strength B on the growth rate of the streamwise fundamental and subharmonic instabilities in the presence of narrow streaks,
���=1.35 �mode 5�. The spanwise detune factor, �=0.5.
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tude of the streaks grows linearly in time11�. As a result, the
instability at low values of B does not contribute significantly
to the development of the secondary instability.

A study of the effect of the spanwise detune factor � is
shown in Fig. 13. Unlike the wide streaks, which are domi-
nated by their fundamental and subharmonic instability, the
maximum growth rate in Fig. 13 occurs at ��0.4, and the
curve is quite flat in the interval 0.3���0.7. The
�-structures observed in DNS correspond to 0.5���0.67,
which is within the range of secondary instability predicted
by our analysis. It is also important to note that this spanwise
size of the secondary instability wave is appreciably smaller
than the Herbert type, which was evaluated in Sec. IV in the
absence of streaks. Therefore, the computed secondary insta-
bility is influenced by the spanwise periodicity of the Kle-
banoff distortion, despite not directly matching the streak
width.

Figures 14 and 15 display the growth rate of two modes
in the range of 0.3���0.7 evaluated as a function of streak
amplitude. The amplification rate is fairly insensitive to
streak amplitude. Increasing B does not enhance the second-
ary instability; it only suppresses the growth rate of the pri-
mary TS wave according to the analysis of Sec. V. This
provides an explanation for why larger streak amplitude was
seen to delay transition in DNS.

The simulations of Liu et al.6 produced slower transition
to turbulence in the presence of narrow streaks, ���=1.35
�mode 5�, than in the presence of wide streaks, ���=0.54
�mode 2�: secondary instability emerged farther downstream
and transition took place at higher Reynolds numbers. This is
partly because the secondary instability is weakly dependent
on the streak amplitude �see Fig. 12�. Instead, a stronger TS
wave is required in order to obtain a significant secondary
instability. The requirement for greater amplification of the
primary TS wave prior to instability is, in part, responsible
for a downstream shift in the transition location. Another
reason, potentially of more importance, is that the spanwise
wave number of the inlet continuous mode does not match
the wave number of the detuned secondary instability. En-
ergy transfer from the streak wave number to that of the

�-structures is therefore not supported directly. In the DNS,
nonlinearity creates a broader spectrum of wave numbers to
trigger detuned instabilities.

VIII. DISCUSSION

Transition by interaction of TS waves and streaks can
proceed in different manners, depending on the spanwise
wave number of the latter. Both wide and narrow streaks
have a stabilizing effect on the primary TS wave. Their effect
on the secondary instability is, however, distinct. In the wide
streak case �mode 2, ���=0.54�, the Floquet analysis pre-
dicts both fundamental and subharmonic secondary instabili-
ties. The former, despite a slightly smaller growth rate, is
favored in the DNS due to the unsteady inflow perturbation.
In the narrow streak case �mode 5, ���=1.35�, the funda-
mental spanwise mode is stable; instead, detuned modes are
unstable �Fig. 13�. The Floquet result therefore explains why
transition occurred in the DNS via �-structures correspond-
ing to a detune factor, ��0.5.

Another difference between the wide and narrow streaks
considered thus far is the effect of increasing the streak am-

FIG. 15. Effect of the streak strength B on the growth rate of the streamwise fundamental and subharmonic instabilities in the presence of narrow streaks,
���=1.35 �mode 5�. The spanwise detune factor, �=0.6.

FIG. 16. Secondary instability in the presence of TS waves and streaks of
spanwise wave number, ���=0.81 �mode 3�. The effect of the streak
strength B on the growth rate 
r of the streamwise subharmonic and span-
wise fundamental instabilities.
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plitude. In the former, transition moves upstream and, in the
latter, transition is delayed. In the case of wide streaks, in-
creasing the streak amplitude has the dual role of stabilizing
the primary TS wave, and also increasing the growth rate of
that fundamental instability �Fig. 10�—the net balance is
early transition. On the other hand, higher amplitude narrow
streaks stabilize the primary TS wave, but do not affect the
growth rate of the detuned secondary instability �Figs. 15
and 14�—the net effect is therefore transition delay.

A natural question arises: how does the transition pattern

change as the spanwise wave number is varied gradually. In
the study of Liu et al.,6 transition did not take place when a
continuous mode with ���=0.8 �mode 3� and B0=2.1% was
included at the inflow. However, for lower amplitude �B0

=1%�, breakdown was observed, preceded by �-structures
of the same size as the streaks. The maximum streak ampli-
tude in these simulations was B=18%. Figure 16 explains
why transition in this case is difficult to realize. According to
the Floquet analysis, when B=18%, the secondary eigendis-
turbances are only unstable for large amplitudes of the pri-

FIG. 17. Effect of � on the growth rate
of the streamwise fundamental and
subharmonic secondary instabilities.
Values of � correspond to instability
modes with kz= �� /2��, �1�� /2��,
etc.
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mary TS waves, A�1%. However, strong streaks suppress
the primary TS waves. Only weaker Klebanoff streaks,
which do not suppress the growth of TS waves significantly,
permit them to grow to a critical amplitude for transition.

Figures 17 and 18 explain how the transition pattern
changes with the spanwise wave number of the Klebanoff
streaks. In these figures, the amplitudes of the streaks are
reduced as their spanwise wave number increases. This re-
duction in amplitude is due to the following reason: given an
initial v-eigenperturbation, the maximum amplitude of the
induced streaks depends on the spanwise wave number of the

forcing. At higher values of �, this maximum amplitude of
the streaks is reduced due to viscous dissipation. This reduc-
tion in maximum amplitude is accounted for in the figure.

The continuous modes ���= 
0.27,0.54,0.81� �modes
1–3� cause a secondary instability at their fundamental span-
wise wavelength ��=0�. The growth rate of the fundamental
frequency becomes negative when ����1.08 ��mode 4�
and detuned modes, ��0.3–0.4, become most unstable. As
a result, transition for streaks of spanwise wave number
���= 
1.08,1.35,1.62� �modes 4–6� takes place at spanwise
detuned wavelengths. This mechanism is usually slower than

FIG. 18. Effect of � on the growth rate
of the streamwise fundamental and
subharmonic secondary instabilities,
continued.
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breakdown via fundamental resonance which exactly
matches the strong forcing by the inflow continuous mode
disturbance.

In cases where the secondary instability occurs at the
fundamental spanwise wavelength of the streaks, increasing
the amplitude of the streaks generally promotes breakdown.
But transition can be suppressed if the inflow primary TS
mode is too weak or is excessively attenuated by strong
streaks. This behavior is most likely in the case of detuned
resonance: When the inlet perturbation does not match the
spanwise wavelength of secondary instability, large ampli-
tude streaks can significantly attenuate the primary TS wave
prior to the nonlinear cascade of energy to unstable wave
numbers. As a result, increasing the streak amplitude in de-
tuned resonance generally delays transition.

ACKNOWLEDGMENTS

We are grateful to Professor Vassilis Theofilis, who pro-
vided his Floquet code as a starting point for our work.

APPENDIX: VALIDATION OF THE DOUBLY PERIODIC
FLOQUET ALGORITHM

The secondary instability equations �22�–�24� were dis-
cretized in the manner described in Sec. III, leading to the
eigenvalue problem

Ax̄ = 
Bx̄ . �A1�

The discretized eigensystem �A1� accounts for the periodic-
ity of the base flow in the streamwise and spanwise direc-

tions due to two-dimensional TS waves and streaks, respec-
tively.

The validation of the numerical, doubly periodic Floquet
expansion is carried out in two steps: First, the implementa-
tion of the streamwise expansion is validated against
Herbert,7 where the base flow is a Blasius boundary layer
and a two-dimensional TS wave. Second, the validation of
the spanwise expansion is performed by comparing our re-
sults to Cossu and Brandt,13 who studied the instability of a
base flow composed of a Blasius boundary layer and span-
wise streaks. The validation using two unidirectional peri-
odic cases is sufficient because the doubly periodic base flow
has the form

v2�y,z,t� = U0�y�ex
� + A�uTS�x�,y�ex

� + vTS�x�,y�ey
��

+ BuK�y,z�ex
� , �A2�

where every term in the superposition is at most periodic in
one direction, and the problem is linear.

The comparison to Herbert7,15 is shown in Fig. 19. The
secondary instability of two-dimensional TS waves was
computed at the same base-flow conditions of that paper,
R��

=1042, F=124. These parameters place the primary TS
wave on the upper branch of the neutral stability curve. The
plot at left shows the growth rate of the streamwise subhar-
monic secondary instability ��=1� versus its spanwise wave
number. At right, the growth rate is plotted versus the
streamwise detune factor for a particular spanwise wave
number of the secondary instability mode. Good quantitative
agreement is observed between our results �symbols� and
those of Herbert7 �lines�.

TABLE I. Effect of the streak amplitude on the growth rate and wave speed
of the most unstable mode.

Streak amplitude B

Cossu and Brandta Current results


r ��103� cr 
r ��103� cr

0% 2.258 0.3209 2.442 0.3122

14.0% 1.485 0.3144 1.473 0.3207

20.0% 0.652 0.3084 0.6122 0.2752

24.3% −0.131 0.3046 0.1088 0.2564

aReference 13.

FIG. 19. Validation vs results from
Herbert �Ref. 7� at R��

=1042, F=124.
At left, growth rate of the subhar-
monic, �=1, secondary instability
mode as a function of the spanwise
wave number. At right, the growth rate
is plotted vs the detuning factor at kz

=0.2. Symbols are current results and
lines are obtained from Ref. 7.
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FIG. 20. Growth rate 
r of the modified TS wave of a boundary layer
distorted by streaks at R�� =1,934. The streak spanwise wave number is
kz�

�=0.774. Two streak amplitudes are shown: �—� B=0; �– – –� B=14%.
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A comparison of our numerical Floquet results to Cossu
and Brandt13 is shown in Fig. 20 and Table I. The base flow
is a superposition of a Blasius profile and a steady Klebanoff
streak, and is therefore periodic only in the span. The Floquet
analysis yields the instability mode which has its origin in
the conventional, “primary” TS wave. Because streaks are
modeled differently here and in Cossu and Brandt,13 an exact
comparison was not possible. However, reasonably accurate
agreement was obtained by matching the amplitude and
spanwise wave number of the base-flow streaks.

The results of Cossu and Brandt13 indicate that the
growth rate of the instability mode decreases with increasing
streak amplitude. This behavior is shown in Fig. 20 where 
r

is plotted versus kx of the instability mode in the absence of
streaks and when B=14%. The symbols are obtained from
our numerical solution and the lines are from Cossu and
Brandt.13 The value of the maximum growth rate of the in-
stability was also recorded over a range of streak amplitudes,
and is reported in Table I. The influence of steady streaks is
the consistent reduction in the growth rate of the instability,
and good quantitative agreement is demonstrated between
our solution and the literature.

Resolution tests were carried out in order to ensure con-
vergence of the Floquet expansion in both periodic direc-
tions. The resolution requirements in the streamwise direc-
tion were consistent with Herbert.7 The resolution test for the
spanwise Floquet expansion showed higher sensitivity to the
truncation. The recommended resolution is N=50 Chebyshev
polynomials for the discretization and NB=5 spanwise Flo-
quet modes in the expansion.

1X. Wu and M. Choudhari, “Linear and nonlinear instabilities of a Blasius
boundary layer perturbed by streamwise vortices. Part 2. Intermittent in-
stability induced by long-wavelength Klebanoff modes,” J. Fluid Mech.
483, 249 �2003�.

2A. V. Boiko, K. J. A. Westin, B. G. B. Klingmann, V. V. Kozlov, and P. H.
Alfredsson, “Experiments in a boundary layer subjected to freestream tur-
bulence. Part II. The role of TS-waves in the transition process,” J. Fluid
Mech. 281, 219 �1994�.

3C. Cossu and L. Brandt, “Stabilization of Tollmien–Schlichting waves by
finite amplitude optimal streaks in the Blasius boundary layer,” Phys.
Fluids 14, L57 �2002�.

4H. F. Fasel, “Numerical investigation of the interaction of the Klebanoff-
mode with a Tollmien–Schlichting,” J. Fluid Mech. 450, 1 �2002�.

5Y. Liu, “Transition to turbulence by mode interaction,” Ph.D. thesis, Stan-
ford University, 2007.

6Y. Liu, T. A. Zaki, and P. A. Durbin, “Boundary layer transition by inter-
action of discrete and continuous modes,” J. Fluid Mech. 604, 199 �2007�.

7T. Herbert, “Secondary instability of boundary layers,” Annu. Rev. Fluid
Mech. 20, 487 �1988�.

8J. Fransson, L. Brandt, A. Talamelli, and C. Cossu, “Experimental study of
the stabilization of Tollmien–Schlichting waves by finite amplitude
streaks,” Phys. Fluids 17, 054110 �2005�.

9P. S. Klebanoff, “Effect of freestream turbulence on the laminar boundary
layer,” Bull. Am. Phys. Soc. 10, 1323 �1971�.

10O. M. Phillips, “Shear-flow turbulence,” Annu. Rev. Fluid Mech. 1, 245
�1969�.

11T. A. Zaki and P. A. Durbin, “Mode interaction and the bypass route to
transition,” J. Fluid Mech. 531, 85 �2005�.

12T. A. Zaki and P. A. Durbin, “Continuous mode transition and the effects
of pressure gradient,” J. Fluid Mech. 563, 357 �2006�.

13C. Cossu and L. Brandt, “On Tollmien–Schlichting like waves in streaky
boundary layers,” Eur. J. Mech. B/Fluids 23, 815 �2004�.

14A. D. D. Craik, “Nonlinear resonant instability in boundary layers,” J.
Fluid Mech. 50, 393 �1971�.

15T. Herbert, “Secondary instability of plane channel flow to subharmonic
three-dimensional disturbances,” Phys. Fluids 26, 871 �1983�.

16M. E. Goldstein and D. W. Wundrow, “Interaction of oblique instability
waves with weak streamwise vortices,” J. Fluid Mech. 284, 377 �1995�.

17F. Li and M. R. Malik, “Fundamental and subharmonic secondary insta-
bilities of Görtler vortices,” J. Fluid Mech. 297, 77 �1995�.

124102-16 Liu, Zaki, and Durbin Phys. Fluids 20, 124102 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1017/S0022112003004221
http://dx.doi.org/10.1017/S0022112094003095
http://dx.doi.org/10.1017/S0022112094003095
http://dx.doi.org/10.1063/1.1493791
http://dx.doi.org/10.1063/1.1493791
http://dx.doi.org/10.1063/1.1897377
http://dx.doi.org/10.1146/annurev.fl.01.010169.001333
http://dx.doi.org/10.1017/S0022112005003800
http://dx.doi.org/10.1017/S0022112006001340
http://dx.doi.org/10.1016/j.euromechflu.2004.05.001
http://dx.doi.org/10.1017/S0022112071002635
http://dx.doi.org/10.1017/S0022112071002635
http://dx.doi.org/10.1063/1.864226
http://dx.doi.org/10.1017/S0022112095000401
http://dx.doi.org/10.1017/S0022112095003016

