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The natural and bypass routes to boundary-layer turbulence have traditionally been
studied independently. In certain flow regimes, both transition mechanisms might
coexist, and, if so, can interact. A nonlinear interaction of discrete and continuous
Orr–Sommerfeld modes, which are at the origin of orderly and bypass transition,
respectively, is found. It causes breakdown to turbulence, even though neither
mode alone is sufficient. Direct numerical simulations of the interaction shows
that breakdown occurs through a pattern of �-structures, similar to the secondary
instability of Tollmien–Schlichting waves. However, the streaks produced by the Orr–
Sommerfeld continuous mode set the spanwise length scale, which is much smaller
than that of the secondary instability of Tollmien–Schlichting waves. Floquet analysis
explains some of the features seen in the simulations as a competition between
destabilizing and stabilizing interactions between finite-amplitude distortions.

1. Introduction
The notion that boundary-layer transition can proceed either via, or in the

absence of Tollmien–Schlichting(T-S) instability waves has existed since the advent
of Orr–Sommerfeld(O-S) theory. The failure to detect T-S waves in experiments led
Taylor (1936) to postulate what today is called a ‘bypass’ mechanism. Once T-S
waves were discovered in the laboratory, they became the subject of an enormous
amount of research. Nevertheless, it remained true that very low levels of free-stream
turbulence were required if T-S waves were to be seen in the laboratory. Our current
understanding is that when free-stream turbulence intensity exceeds 1 % of the mean
velocity, T-S waves are bypassed. Nevertheless, there may be a role for T-S waves
even in the presence of free-stream vortical disturbances. We explore that herein.

1.1. Natural transition

The focus of orderly, or natural, transition research has been the amplification
of primary T-S waves, and their secondary instability which precedes breakdown
to turbulence (Herbert 1988). In zero-pressure-gradient boundary layers, the first
unstable mode is two-dimensional and occurs at a critical Reynolds number,
Re ≡

√
Ux/ν ≈ 270, or based on the momentum thickness, Reθ ≈ 201. Beyond the

critical Reynolds number, transition to turbulence is not inevitable; amplifying T-S
waves can return to a stable state if they cross the upper branch of the neutral
stability curve. If, however, unstable T-S waves reach nearly 1 % of the free-stream
velocity, they develop three-dimensional instabilities.
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Secondary instability theory (Herbert 1983) attributes these three-dimensional
disturbances to parametric excitation of the new base flow, which consists of the
Blasius profile plus a saturated T-S wave that is periodic in the streamwise direction.
The secondary instability modes provide an explanation of the �-patterns which
precede breakdown, and which were first observed in experiments by Klebanoff,
Tidstrom & Sargent (1962). Subsequent rows of emerging �-structures can be aligned
or staggered depending on the flow conditions. Aligned �-structures (K-type) are the
result of fundamental resonance, whereas the staggered arrangements (called C-type
and H-type) are the result of subharmonic resonance. The amplification of secondary
instabilities is followed by breakdown of the �-structures in regions of elevated shear.
The breakdown process continues downstream forming smaller structures and, finally,
a fully turbulent boundary layer (Kleiser & Zang 1991).

1.2. Bypass transition

Often, the proceedings of natural transition are either entirely absent or are difficult
to identify within the transitional region of the flow. These instances of boundary-
layer breakdown have become collectively and indiscriminately known as bypass
transition. Bypass is therefore a reference to what the mechanism is not. The term
bypass has, however, become synonymous with transition due to free-stream vortical
perturbations. Even for this class, variations occur according to the flow conditions;
for example the leading-edge geometry (Kendall 1991) and the mean pressure gradient
and its history (Abu-Ghannam & Shaw 1980; Gostelow, Blunden & Walker 1994).
Even experiments with seemingly similar conditions report different transition onset
and extent, depending on the free-stream turbulence characteristics, such as the level
of anisotropy and decay rate (Westin et al. 1994).

In the absence of leading-edge effects and streamwise pressure gradient, bypass
transition due to free-stream turbulence, T u � 1 %, takes place without the mediation
of T-S instability waves. Instead, transition is preceded by the formation of large-
amplitude elongated disturbances, termed Klebanoff modes (Kendall 1985). Their
instantaneous appearance resembles ‘streaks’, or jets, in the perturbation field. The
wall-normal and spanwise velocities of the perturbations remain of the order of the
free-stream T u, while the streamwise component grows to the order of 10–20 % of
the mean free-stream velocity, giving them a jet-like character.

Klebanoff modes have received a great deal of attention in the literature.
Experimental investigations have documented their spatial amplification, dependence
on the turbulence intensity, and the ‘universality’ of the disturbance wall-normal profile
(see for e.g. Westin et al. 1994; Matsubara & Alfredsson 2001). Their long wavelength,
in comparison to the free-stream disturbance spectrum, has been explained by the
filtering effect of the mean shear (Hunt & Durbin 1999). These elongated disturbances
are created from isotropic free-stream turbulence because only low-frequency vortical
perturbations can penetrate the boundary-layer shear. The physical mechanism for
growth of these distortions is lift up, or displacement, of mean momentum (Phillips
1969). Various mathematical formulations of this process have been proposed, deriving
from non-modal growth analyses (Butler & Farrell 1992; Andersson, Berggren &
Henningson 1999; Luchini 2000), or from the solution of the initial-value problem of
the Squire response to O-S mode forcing (Zaki & Durbin 2005, 2006). Though the
amplification of Klebanoff streaks has been well studied, their influence in bypass
transition remains less understood.

Direct numerical simulations (DNS) have provided a detailed empirical view of the
interaction of free-stream turbulence with boundary layers. Jacobs & Durbin (2000)
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carried out simulations in zero pressure gradient, and in the absence of leading-edge
effects. They synthesized free-stream turbulence from the continuous spectrum modes
of the O-S equation; these modes are the complement to discrete T-S waves in O-S
theory. The instantaneous fields from the DNS captured the amplification of the
low-frequency streaks, their secondary instability due to high-frequency forcing from
the turbulent free stream, and finally the inception of turbulent spots.

In order to isolate the influence of particular spectral components of the free-stream
perturbation, Zaki & Durbin (2005, 2006) carried out simulations of continuous mode
transition. In these basic studies, two continuous modes were prescribed at the inlet,
and their interaction and breakdown are computed using DNS. It was found that the
main features of transition under free-stream turbulence can be emulated by bi-modal
interactions.

In zero pressure gradient, T-S waves have a small exponential growth rate. They
are not seen under free-stream turbulence of about 1 %. However, the term bypass
does not preclude the presence of T-S waves entirely. Kendall (1991) demonstrated
that amplification of T-S waves became more pronounced as the aspect ratio of
his elliptic leading-edge was reduced, while Klebanoff modes were insensitive to the
leading-edge geometry. Similarly, in adverse pressure gradient, T-S waves become
inviscidly unstable and the critical Reynolds number is reduced. As a result of their
increased exponential growth rate, they might reappear within the transitional region
of the flow and contribute to breakdown.

1.3. Motivation

When both boundary-layer streaks and T-S waves are present, their interaction can
be stabilizing or destabilizing. For instance, Cossu & Brandt (2004) and Fransson
et al. (2005, 2006) studied the interaction between steady streaks and T-S waves. Both
the secondary instability analysis and experiments confirmed that steady streaks are
stabilizing, and suppress transition. When the streaks are unsteady, the outcome is
more curious. Boiko et al. (1994) studied this case in the laboratory. Two-dimensional
T-S waves were created by a vibrating ribbon beneath grid turbulence of about
1 % intensity. Adding T-S waves to the boundary layer caused transition at a
lower Reynolds number than under pure free-stream turbulence. That may not seem
surprising. However, the free-stream turbulence was observed to reduce the growth
rate of T-S waves: free-stream turbulence reduces their growth rate, but nevertheless
T-S waves promote transition.

In a less clear cut, but still intriguing study, Hughes & Walker (2001) used wavelet
transforms to extract instability waves from within surface stress measurements on
the suction surface of a compressor blade. The blade was a stator, downstream of
the rotor of a 11

2
stage low-speed cascade. Hence, this is a case of transition induced

by impinging wakes. Hughes & Walker (2001) found evidence of growing instability
waves in high-pass-filtered data, and asserted that instability waves could always be
found prior to the appearance of turbulent spots.

Nagarajan, Lele & Ferziger (2007) performed simulations of turbulence incident
on a plate with a blunt leading edge, for two leading-edge aspect ratios. For the
smaller aspect ratio, he observed instability wave packets in the streaky boundary
layer, upstream of transition. While the packet was related to receptivity at the
leading edge, it could not be attributed to discrete instability modes. The noisy
perturbation environment inside the boundary layer owing to forcing by free-stream
turbulence prevented a clear discernment of the breakdown mechanism. It might
conceivably have involved an interaction of T-S and continuous O-S waves.
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In this paper, we study the interaction of T-S waves and boundary-layer streaks
by numerical simulation. The inlet perturbation is a pair of O-S modes: an unstable
T-S wave and a continuous mode. The T-S wave replaces the spectrum of discrete
instability waves which would emerge in the presence of a leading edge or other
receptivity site, and the continuous mode replaces free-stream turbulence. These
conditions deviate from practical configurations, but the fundamental approach
provides insight into breakdown. By studying particular disturbances, the boundary
layer remains uncluttered upstream of transition, and the breakdown mechanism is
easier to identify. Our approach is therefore similar to experimental investigations
where a particular T-S wave is forced by a vibrating ribbon, and streaks are introduced
by spanwise spacers inside the boundary layer. This approach is well suited to tackling
an apparent controversy in the literature regarding the outcome of the interaction of
T-S waves and streaks: some experiments suggest that streaks enhance breakdown in
natural transition (Kendall 1998; Boiko et al. 1994), while other experiments indicate
that forced T-S waves are less amplified in the presence of streaks, and transition can
be delayed (Fransson et al. 2005).

This paper is divided into five sections. The numerical method and grid resolution
tests are summarized in § 2. The DNS reproduce the seemingly contradictory
observations from the literature: streaks reduce the amplification of T-S waves,
but their influence on transition location is parameter dependent: they can either
accelerate the secondary instability and breakdown (§ 3) or delay this process (§ 4).
The choice of the continuous mode also affects the pattern of the secondary instability
of T-S waves. An informal explanation for the strong interaction of discrete and
continuous modes is provided by Floquet analysis in § 5.

2. The numerical model
Direct numerical simulations (DNS) with the full Navier–Stokes equations are

employed to study the nonlinear modal interactions. The numerics need not be
described at length, as the computer code has been used in previous studies (Wu et al.
1999; Zaki & Durbin 2005, 2006) and is described elsewhere. The numerical method is
a fractional step algorithm for the time-dependent three-dimensional incompressible
Navier–Stokes equations in generalized coordinate systems, developed by Rosenfeld,
Kwak & Vinokur (1991). The governing equations are discretized by finite volumes
on a staggered mesh. The spanwise direction is assumed to be periodic and is treated
by spectral methods to reduce computational cost. The convective terms and the
off-diagonal diffusion terms are advanced explicitly by the Adams–Bashforth scheme,
whereas the remaining diffusion terms are treated implicitly by Crank–Nicolson.
Finally, the Poisson equation for pressure is solved by a multi-grid algorithm. This
code is MPI parallel and the simulations were performed on 32 processors of an
Opteron 280 cluster.

The computational set-up is illustrated in figure 1. Based on the local boundary-
layer thickness, the inlet plane Reynolds number is Reδ99(x0) ≈ 2000. The streamwise
extent of the domain is Lx =200δ99, its height 20δ99, and its spanwise extent Lz =8δ99.
In terms of the Blasius length scale, Re ≡

√
Ux/ν, the computational domain spans

400 � Re � 750. The inflow plane is, therefore, downstream of the critical value,
Rec ∼ 270, and the outflow plane is well below the transition Reynolds number,
Retr ∼ 1800 for full breakdown via the Tollmien–Schlichting route. Nonetheless, the
domain is sufficiently long for us to investigate bypass mechanisms, where a fully
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Figure 1. Schematic of the discrete–continuous mode interaction. The dashed line marks the
boundaries of the computational domain.

turbulent boundary layer can be reached at Re ∼ 550 (Jacobs & Durbin 2000; Zaki &
Durbin 2005, 2006).

In the simulations, no-slip boundary conditions are enforced at the bottom wall and
the the upper boundary is a slip surface. The domain height is 20 inlet boundary-layer
thicknesses. It is therefore sufficiently large and the upper boundary slip condition
does not significantly affect the evolution of the boundary layer. A convective outflow
condition is applied at the exit of the flow domain.

The inflow condition is a superposition of a spatial three-dimensional continuous
mode (ûcon ,v̂con ,ŵcon) and a spatial two-dimensional T-S wave (ûTS ,v̂TS , 0) onto a
Blasius mean flow (Ub, Vb, 0).

u0 = Ub + Re
(
Acon ûcone

i(kzz−ωOSt) + ATS ûTS e−iωTS t
)

(2.1a)

v0 = Vb + Re
(
Acon v̂cone

i(kzz−ωOSt) + AT Sv̂T Se
−iωT S t

)
(2.1b)

w0 = Re
(
Aconŵcone

i(kzz−ωOSt)
)

(2.1c)

The T-S and continuous modes are obtained by solving the O-S and Squire equations
by well-established methods: a Chebyshev collocation scheme is used to find the
discrete modes and an implicit matrix method is used for the continuous modes.

2.1. Single-mode simulations

In all the simulations, the inflow T-S wave has a non-dimensional frequency

F ≡ ων

U 2
∞

106 = 124.

The mode shape, which is superposed onto the Blasius mean flow, is shown in figure 2.
At the inlet Reynolds number, the mode is unstable and has a complex wavenumber

αδ99 = 0.6643 − 3.355 × 10−3i. (2.2)

This mode is stable at the outflow Reynolds number. The inflow and outflow states
are identified on the neutral curve in figure 3(a). When prescribed alone at the inlet
to the computational domain, the discrete mode initially amplifies downstream, and
subsequently decays upon crossing the upper branch of the neutral stability curve.
The downstream amplification computed from DNS is shown in figure 3(b). The
wall-normal maximum in the root mean square and instantaneous u-perturbations
are both shown. The figure shows the onset of modal decay near Re ≈ 625, which is
consistent with the neutral stability curve.

Owing to the near-wall peak in their mode shape, amplifying T-S waves significantly
modify the instantaneous skin friction curve. Figure 4 shows the skin friction
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Figure 2. Profile of the T-S mode. The (a) u-component, and (b) the v-component.
, mode amplitude; , real part; · , imaginary part.

200 400 600 800
0

100

200

300

(a) (b)

Re

F

BA

400 500 600 700
0

1

2

Re

T
-S

 a
m

pl
it

ud
e

Figure 3. (a) The neutral curve for a zero-pressure gradient boundary layer (Bertolotti,
Herbert & Spalart 1992). A and B mark the inlet and exit conditions for the T-S
wave. (b) The downstream evolution of the u-perturbation. , max(urms(y)); ,

max(u(y, t)) =
√

2max(urms).

coefficient of the boundary layer under T-S waves in comparison to the theoretical
curves for laminar and turbulent boundary layers. The amplified instability wave does
not, however, develop any secondary instabilities within the computation domain,
and the boundary layer remains laminar.

The inflow continuous O-S modes used in this study are adapted from Zaki &
Durbin (2005, 2006). Their non-dimensional frequency, wall-normal and spanwise
wavenumbers are, respectively,

F = 33, kyδ99 = π/2, kzδ99 = n2π/Lz = nk0
z , (2.3)

in which

k0
z =

2π

Lz

=
2π

8δ99

; (2.4)

this is the wavenumber with period equal to the domain width. These modes will,
hereinafter, be designated according to the integer n which determines their spanwise
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–2 –1 0 1 2
0

2

4

6

8

10
(a) (b)

0

2

4

6

8

10

V

–2 –1 0 1 2

V

y 

δ99

Figure 5. Profiles of (a) v and (b) η for mode 2. · , real; − − −, imaginary; , ABS.

wavenumber, for example mode 2 has kz = 2k0
z and therefore a wavelength equal to

4δ99. To a good approximation αδ99 = ωδ99/U∞ for continuous modes. Hence, based
on (2.2) and (2.3), the streamwise wavelength of the continuous mode is about 10
times the T-S wavelength in our simulations.

Various inlet continuous modes were considered in our study. The outcome of
their interaction with T-S waves is exemplified by the influence of modes 2 and 5.
Prior to investigating the modal interaction between the continuous and T-S waves,
simulations of modes 2 and 5 alone are carried out. The shape of the continuous
mode 2 is shown in figure 5; mode 5 possesses a similar profile since it shares
the same frequency and wall-normal wavenumber, and both parameters determine
the extent of mode penetration into the boundary layer. The two modes, however,
differ in spanwise wavenumber. As a result, the boundary-layer response to each
of these three-dimensional inlet disturbances differs. A top view of the perturbation
field inside the boundary layer is shown in figure 6. Figure 6(a) is the response
due to mode 2, and figure 6(b) to mode 5. Contours of the velocity perturbations
clearly show the induced streaks. The streaks initially amplify downstream of the inlet
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Figure 6. Contours of the streamwise velocity perturbation inside the boundary layer owing to
inflow perturbation by (a) mode 2 and (b) mode 5; t = 3τ ; y = 0.5δ99. The spanwise coordinate
is enlarged by a factor of 3. Contours are plotted in −0.2 < u < 0.2.
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Figure 7. The disturbance vector of mode 2 alone; t =3τ .

and subsequently decay, without any symptoms of secondary instability or potential
breakdown. The amplitude of the induced streaks is weaker in the case of mode 5,
owing to higher viscous dissipation. The streamwise wavelength of the streaks is, in
fact, growing for mode 2.

A side view of the perturbation streaks is shown in figure 7 for mode 2. The figure
emphasizes the upstream region, 80 <x < 125. The boundary-layer perturbation is
dominated by the streamwise velocity component, u′, and takes the form of forward
and backward jets, or streaks. Figure 8 shows the skin friction. Despite the large
amplitude of the streaks, the skin friction curve follows the laminar values because
Cf is averaged in the span; the instantaneous Cf would show spanwise oscillations.

2.2. Mode identification

In nonlinear simulations of mode interactions, a spectrum of perturbations emerges
downstream of the inlet plane, even when the inlet perturbation is composed of
only two modes. In the context of continuous–discrete mode interactions, it is not
straightforward to infer the role of boundary-layer streaks on the amplification of a
particular T-S wave. Therefore, a method is required to identify the spectral makeup
of the perturbation field at various downstream locations.

One approach is to decompose the perturbation field at every downstream location
in terms of the O-S and Squire eigenmodes using the bi-orthogonality of the
eigenvalue problem (Salwen & Grosch 1981; Tumin 2003). Jacobs (2000) applied
this decomposition to DNS data, but found it to be far less informative than Fourier
decomposition. As disturbances evolve, they depart significantly from the mode shapes
specified at the inlet. Boundary-layer streaks due to a single inlet continuous mode
are composed of a spectrum of perturbations, all sharing the same frequency and
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spanwise wavenumber, but each with a different wall-normal wavenumber (Zaki &
Durbin 2005, 2006). The y-profile is not that of pure O-S modes. For present purposes,
the perturbation frequency spectra are computed via the Fourier transform of time
history. Although this is not a decomposition into O-S modes, we will cite the
evolution of Fourier modal energy as evidence of T-S wave evolution.

In the context of secondary instability of T-S waves, the primary interest is the
amplification of the fundamental frequency ω, its subharmonic ω/2, and its first
harmonic 2ω. The modal amplitude at a selected frequency ω can be calculated
according to

φ̂(ω) =

kN∑
n=1

φ(nT /N)eiωn(T/N), (2.5)

where φ is the velocity component of interest, T = 2π/ω is the period, and k is an
arbitrary integer.

Either the streamwise or the wall-normal component of velocity can be selected
in order to measure the growth of T-S waves. In our simulations, the streamwise
disturbance velocities are dominated by the boundary-layer streaks, which mask the
T-S contribution in that direction. The wall-normal disturbance velocity of both the
streaks and T-S waves remains of the same order of magnitude across the laminar
region and is, therefore, a more suitable indicator of the strength of the T-S waves.
In order to quantify the amplification of T-S waves, the wall-normal peak in the
v-velocity spectra was obtained at every downstream location and compared between
different simulations.

2.3. Resolution tests

The DNS code has been thoroughly validated by Zaki & Durbin (2005, 2006),
who also provided guidelines on resolution requirements for transition studies.
Additional resolution studies were carried out, where the nonlinear interaction of
a T-S and a continuous mode is simulated upto and downstream of transition.
Two continuous modes are considered: mode 2 and mode 5, as designated by their
spanwise wavenumber.
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Figure 9. Grid resolution test: skin friction coefficient for transition due to the interaction
of the T-S wave with the continuous modes (a) 2 and (b) 5.

We are mainly concerned with the early stages of the transition process. The inlet
fundamental modes, their subharmonics and a few of the higher harmonics can all
contribute to the nonlinear interactions preceding transition onset and, hence, must
all be resolved. Breakdown to turbulence follows downstream. A full spectrum of
perturbations emerges and the initial resolution becomes insufficient for capturing
the turbulent boundary layer. An accurate representation of the fully turbulent region
is not a goal here; resolving the fully turbulent region would greatly increase the grid
node requirements, and as a result, limit the total number of interactions that can be
simulated.

It is well known that skin friction is very sensitive to the spatial resolution (Jacobs &
Durbin 2000). Figure 9 shows the skin friction curves for two sets of resolution tests.
In each set, the base grid, which is composed of 1024 × 128 × 64 grid points in the
streamwise, wall-normal and spanwise directions, is systematically refined along each
axis. It is clear that the grid size does noticeably affect the transitional region where
Cf rises from the laminar to the turbulent level and, as a result, the downstream
Reynolds number where a fully turbulent solution is established. It is also worth
noting that the effect of grid refinement is not the same in figures 9(a) and 9(b). In the
former, finer grids lead to slightly accelerated transition whereas an opposite trend
is observed in the latter. Our results also agree with Jacobs & Durbin (2000) who
indicated that the skin friction curve can be brought close to the empirical turbulent
value by increasing the streamwise resolution.

It is clear that the base grid resolution displayed in figure 9 under-resolves the
turbulent region. The question, however, is how much does the under-resolution affect
the quantities of interest here: the breakdown mechanism and transition location?
We define the transition Reynolds number, Re t , as the location where the slope of
the Cf curve last changes signs, prior to its rise to the turbulent level. This value
of Re t marks the onset of the transition process seen in the simulations, namely the
intermittent burst of turbulent patches which cause the rise in the skin friction curve
and, once merged, constitute the fully turbulent boundary layer. The resulting Re t is
summarized in table 1. It is clear that Re t is relatively insensitive to grid resolution.

Another question of concern is whether the base grid resolution faithfully
reproduces the mechanics of transition. Although detailed plots are not shown for
the various grid resolutions, all cases simulated in this work, at the various levels of
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Case series Nx Ny Nz Re t

Mode 2* 1024 128 64 214 000
Mode 2 2048 128 64 204 000
Mode 2 1024 192 64 205 000
Mode 2 1024 128 128 204 000
Mode 5* 1024 128 64 427 000
Mode 5 2048 128 64 437 000
Mode 5 1024 192 64 438 000
Mode 5 1024 128 128 436 000

Table 1. Transition Reynolds numbers for the resolution test of the mode 2 and mode 5
series; the asterisks label the standard resolution setting used in §§ 3 and 4.
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Figure 10. Skin friction coefficient for the spanwise domain size test of (a) mode 2 and
(b) mode 5. Parameters are summarized in §§ 3 and 4. , LZ =8; − − −, LZ =12.

grid resolution, breakdown to turbulence in the same manner, as will be discussed in
§ 3 and 4.

Since periodic boundary conditions are enforced in the spanwise direction, it is
necessary to examine whether transition in our simulations is independent of the
width of the computational domain. The outcome of doubling the spanwise extent
of the domain, while maintaining the grid resolution in that direction unchanged, is
shown in figure 10 and summarized in table 2. Again, transition onset is relatively
insensitive to the domain size. It is also important to note that not only the transition
Reynolds number, but also the transition mechanism is unaffected by doubling
the spanwise extent of the domain. It will be shown in subsequent sections that
breakdown in our simulations is preceded by the formation of �-structures. Both the
streamwise and spanwise extents of these structures, and their relative arrangement
remain unchanged when the domain size is doubled in the span. The independence
of �-structures from the size of the computational domain was verified for all the
simulations presented herein.

3. Mode locked interactions and breakdown to turbulence
This section describes the DNS of bi-modal interactions. A two-dimensional T-S

wave and a continuous O-S mode were prescribed at the inlet of the computational
domain and their evolution computed downstream. A large number of continuous
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Case series Lz Re t

Mode 2* 8δ99 214 000
Mode 2 12δ99 205 000
Mode 5* 8δ99 427 000
Mode 5 16δ99 436 000

Table 2. Transition Reynolds numbers for the dimension test of the mode 2 and mode 5
series; the asterisks label the standard resolution setting used in §§ 3 and 4.
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Figure 11. The contour of the streamwise fluctuation of the mode 2 case; t =5τ ; y = 0.5δ99.
The spanwise coordinate is enlarged by a factor of 3. Contours are plotted in −0.2 <u < 0.2.

modes were investigated in Liu (2007), but only two, kz = {2k0
z , 5k0

z }, will be discussed
in this and the next section; they are representative of the two classes of outcomes from
our simulations. Results from simulations of other continuous modes are included in
the discussion, § 5. For each of the continuous modes considered, various amplitudes
were prescribed at the inlet, and the influence on the amplification of the T-S wave
and breakdown were evaluated.

Within the current theoretical framework, it is difficult to predict the outcome of the
interaction between a continuous O-S and a discrete T-S mode. Each has a different
phase speed, which excludes the possibility of nonlinear resonance. In addition,
the mode shapes are concentrated at different heights within the boundary layer: the
T-S mode has the majority of its energy in the near-wall region, whereas the continuous
mode oscillates in the free stream and penetrates only the upper part of the boundary
layer. As a result, the inner product of these two modes is small. Despite these caveats,
DNS demonstrates that the interaction of a stable continuous mode with a T-S wave
can provoke transition to turbulence. An interaction can be foreseen qualitatively: the
continuous mode induces large-amplitude perturbation streaks within the boundary
layer. Those streaks will cause three-dimensional distortions of the T-S. What this
implies is studied by the following numerical simulations.

3.1. Modal interactions

Considered independently, the T-S and the continuous mode are innocuous. However,
including both at the inflow plane, with amplitudes A0

T S = 1 %, A0
con = 2.1 %, causes

breakdown of the laminar boundary layer. A top view of the instantaneous
perturbation contours is shown in figure 11. Instantaneous and time-averaged skin
friction curves are shown in figure 12.

The Cf curve of this simulation is compared to the T-S control case in figure 12.
As expected the oscillation of Cf is initially suppressed, but it then shoots up to the
turbulent level. This bears on the seeming paradox reported by previous workers: a
T-S wave is actually suppressed by jet-like perturbations, but transition is accelerated
by free-stream turbulence. The swiftness of transition in this case makes the
suppressive effect hard to discern in figure 12. The velocity spectra that are presented
later in this section provide clearer evidence that the streaks reduce the amplification
rate of T-S waves.
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Figure 12. The skin friction coefficient vs. the Rex of the mode 2 case. The lower curves
show the T-S only case for reference; t = 3τ .

3.1.1. The �-structures

Breakdown of the boundary layer is preceded by the formation of �-shaped
structures. It is not clear at this point, however, whether these �-structures have a
similar origin to those emerging from the secondary instability of T-S waves (Herbert
1988). Such inference cannot be made from a single instant of the perturbation field.
A series of snapshots is required to capture the evolution of these perturbations.

The lifetime of a pair of �-structures is shown by the time sequence in figures 13
and 14. Figure 13 is a top view of u′ contours; figure 14 shows contours of v′ and
the in-plane velocity perturbation vectors, at the same time instances. The contour
levels in the former figure are dominated by the large u-perturbation velocity of the
boundary-layer streaks and the T-S waves are thus concealed. The T-S waves are
visible in figure 14 only because the wall-normal perturbation remains comparable in
magnitude for both the discrete mode and the boundary-layer steaks.

Figures 13(a) and 14(a) have mature �-structures positioned at x ∼ 118 and x ∼ 126,
respectively. The upstream event is of larger intensity. Attention should be focused,
however, on the two modified three-dimensional T-S waves at x ∼ 99 and x ∼ 108,
respectively. These perturbations evolve into the �-structures farther downstream.
In figures 13(b) and 14(b), as the pair of mature �-structures starts to break down,
the valleys (dark regions) of the three-dimensional Tollmien–Schlichting waves move
forward and begin to take on � shapes. It should be noted that the emerging structures
are in a staggered position relative to the downstream pair. The emerging pair of
�-structures intensifies in figures 13(c, d) and 14(c, d), and starts breaking down in
figures 13(e) and 14(e). The lifetime of �-structures from inception to breakdown
is approximately three T-S wavelengths. A fully turbulent state is established in the
final time instant, figures 13(f ) and 14(f ). In the same snapshot, a new pair of
�-structures can be seen emerging upstream, in a staggered arrangement.

The streamwise wavelength of the �-structures is nearly twice that of the discrete
mode. This observation, and their staggered arrangement, suggest a connection to
transition via the secondary instability of T-S waves. The connection is not, however,
evident. The �-structures have a spanwise wavelength of 4δ99, which is an order
of magnitude smaller than predicted by a secondary instability of T-S waves alone
(Herbert 1988). This spanwise size is, on the other hand, identical to the continuous
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Figure 13. The instantaneous contour of the streamwise fluctuation of the mode 2 case in
the (x, y)-plane; y = 0.5δ99. Contours are plotted in −0.2 <u < 0.2. Each frame is separated by
�t ∼ 0.075τ , where τ is the flow-through time. The spanwise coordinate is not enlarged.

mode perturbation at the inflow. In other words, the spanwise wavenumber of the
�-structures is locked to that of the continuous mode.

In secondary instability theory (Herbert 1988), the aligned and staggered
arrangements of �-structures are an indication of fundamental and subharmonic
resonances, respectively. As discussed above, the current �-structures appear in an
alternating pattern: every two rows of �-structures are staggered relative to the
following two rows, which are always at the centres of the streaks. The alternating
arrangement is therefore a result of two effects: the locking of �-structures to the
continuous mode and the unsteadiness of the continuous mode. This view is supported
by our Floquet analysis, and other supporting evidence presented in § 5.
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Figure 14. The instantaneous contour of the normal fluctuation and the vector plot of
inplane components of the mode 2 case in the (x, y)-plane; y = 0.5δ99. Contours are plotted in
−0.02 <v < 0.02. Each frame is separated by �t ∼ 0.075τ , where τ is the flow-through time.
The spanwise coordinate is not enlarged.

The location where �-structures emerge oscillates in the streamwise direction.
The steamwise undulation can be explained by the periodicity of the inlet modes.
Though the final state of the boundary layer is turbulent and, hence, not periodic,
the inlet modes are themselves periodic. Since the wavenumbers of the two modes
are kTS

x ∼ 10kcon
x , in terms of wavelengths, 10LTS ∼ Lstreak . Note that the phase speeds

of the two modes are ccon = 1 and cTS ∼ 1/3. If each half-wavelength corresponds to
a forward or to a backward jet, the time for a chosen T-S wave to reside in a specific
jet is 0.5Lstreak/(ccon − cTS ) ∼ 2.5LTS /cTS . Then within a period of modal interactions,
about two �-structures would emerge within one negative jet (figure 14).
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Figure 15. The instantaneous contour of the spanwise fluctuation and the vector plot of
inplane components of the mode 2 case in the (x, y)-plane; the slice cuts through the centre
of �-structures. Snapshots are taken corresponding to figures 13 and 14.

3.1.2. A side view of breakdown

Two-dimensional T-S waves are rolls of spanwise vortices while Klebanoff modes
are forward and backward streamwise jets. Their interaction is best captured in
figures 15 and 16 where side views of the velocity perturbations are plotted at the
same time instants as shown in figures 13 and 14. The first sequence (figure 15) is a
slice through the centre of �-structures while figure 16 cuts through a leg of a �-
structure. The in-plane perturbations velocities are plotted as vectors, and the spanwise
disturbance as background contours, −0.2 % <w < 2 %. In figure 15, the con-
tours of w-perturbations are more intense because they lie at the centre of the
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Figure 16. As figure 15 but the slice cuts through one leg of �-structures.

�-structure, which straddles the forward and backward streaks (see figure 13). It is
also in this plane that breakdown is initiated.

The breakdown mechanism captured in these figures is quite distinct from what
Zaki & Durbin (2005, 2006) reported in simulations of continuous mode transition,
and does not agree with descriptions of oblique T-S waves or streak instabilities. It
appears as if the T-S disturbances act as a corrugated surface near the bottom of the
boundary layer and move slowly downstream (figure 17, and also figure 26 discussed
in the next section). The continuous mode disturbances generate boundary-layer
streaks that lift up from the wall and sweep across the slow-moving sinuous T-S wave
at the free-stream speed. Vortices are generated at the leading edge of the streaks.
Because of the difference in phase speed of boundary-layer streaks and T-S waves,
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Figure 17. Illustration of the breakdown scenario for mode 2. An instantaneous contour of
the spanwise fluctuation and with vectors of inplane components in an x-y plane.

Case name A0
con (%) A0

T S (%) Re t

Mode 2 1.0 1.0 244 000
Mode 2 2.1 1.0 214 000
Mode 2 3.0 1.0 206 500

Table 3. The parameter setting and resulting Ret data from the disturbance energy study of
mode 2.

new vortices are continually shed. Vortices near the wall pair with the new vortices
and convect them downward. It appears that the strong streamwise streaks (both
forward and backward) hit the vortex pairs head-on and cause them to breakdown.
This interaction of the streaks with the vortex pair is shown in side view, and also
marked in the top view in figures 14(d, e). The marked regions of the figures show
breakdown is initiated at the centre plane of the �-structures near the leading edge
of the streaks.

3.2. The influence of modal amplitude

In order to investigate the effect of the streak amplitude, A0
con was changed.

Stronger (A0
con = 3 %) and a weaker (A0

con = 1 %) continuous modes were simulated.
The numerical experiments reveal that all cases develop a clear lambda-vortex
pattern. Table 3 summarizes the transition Reynolds number data, and figure 18
compares instantaneous skin friction curves from the various simulations. The results
demonstrate that decreases in Re t with increasing A0

con. Despite the evidence in the
literature that boundary layer streaks reduce the amplification rate of T-S waves,
stronger streaks are observed to accelerate breakdown to turbulence in this, mode 2,
series.

Two quantities are most likely to affect the transition in these simulations: (i) the
local T-S wave amplitude and (ii) the strength of the boundary-layer streaks near the
transition site. The oscillations of Cf on the left-hand side of figure 18 demonstrate
that stronger streaks are more effective at suppressing the growth of T-S waves.
Velocity spectra were computed using (2.5). The amplitude of the fundamental T-S
frequency is shown in figure 19. The figure provides direct evidence that boundary-
layer streaks impede the growth of T-S waves. So, we can conclude that in the
mode 2 series, earlier transition is accomplished with reduced local T-S amplitude
and stronger local Klebanoff streaks.
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Figure 18. The skin friction of mode 2; effects of disturbance energy.
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Figure 19. The amplitude of the fundamental T-S mode frequency for mode 2. A close up is
shown in (b).

The suspicion that mode 2 breaks down through secondary instability of the
T-S waves is further investigated by considering the perturbation spectra. Figure 20
shows the mode shape of the u and v velocity components at the subharmonic,
fundamental, and first harmonic of the T-S mode frequency. The shape of the
fundamental component agrees with figure 2 (it does not vanish on the top because
the domain is cut to show the boundary layer clearly). Both the harmonic and
subharmonic components have much of their energy inside the boundary layer,
but are of smaller amplitude than the disturbance measured at the fundamental
frequency.

Figure 21 shows the downstream evolution of the wall-normal maximum in the
subharmonic and the first harmonic. The subharmonic shows clear dependence on
the streak amplitude: stronger disturbances at the subharmonic of the T-S mode
are observed in the presence of stronger streaks. More importantly, the subharmonic
grows to a significant magnitude before the point of transition onset. The peak in the
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Figure 20. Profiles of (a) the streamwise and (b) wall-normal spectra.
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Figure 21. The amplitude of (a) the subharmonic and (b) first harmonic modes of the T-S
perturbation.

amplification of the subharmonic component takes place near the breakdown location
of the �-structures. On the contrary, the first harmonic shows little correlation with
either the streak amplitude or the transition point. The spectra therefore supports
the view that subharmonic instabilities of the T-S waves play a significant role
in transition in the mode 2 series of simulations. This also is consistent with the
staggered arrangement of the observed �-structures. However, a pure subharmonic
would correspond to alternative rows of �-structures being staggered, rather than to
pairs of rows forming into a staggered pattern.

4. Detuned modal interactions and transition delay
The spanwise wavenumber of mode 5 follows the same naming convention as

mode 2 and, therefore, kz = 5k0
z .

4.1. Modal interactions

When both mode 5 and the T-S wave are included at the inflow, with amplitudes
A0

con = 2.1 % and A0
T S =1 %, the boundary layer undergoes transition to turbulence.

An instant of the flow is shown in figure 22, a top view of the streamwise perturbation
velocities inside the boundary layer. In this simulation, �-structures are also observed,
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Figure 22. The contour of the streamwise fluctuation of the mode 5 case; t = 5τ ; y = 0.5δ99.
The spanwise coordinate is enlarged by a factor of 3. Contours are plotted in −0.2 <u< 0.2.
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Figure 23. The skin friction coefficient vs. the Rex of the mode 5 case with the T-S only case
as control; t = 3τ .

but are formed on negative u′ streaks instead of the positive u′ of the mode 2
simulations.

The skin friction curve is plotted in figure 23. By comparing it to the simulation
of the T-S mode alone, the presence of boundary-layer streaks clearly suppresses the
oscillation of Cf upstream of transition. Spectral amplitudes shown at the end of
this section will confirm that the growth rate of T-S waves is reduced by the streaks.
Moreover, the oscillations of Cf in the mode 5 case seem to be out of phase with
those of the T-S control case. This indicates that the Klebanoff distortions modify
the streamwise wave-length of the T-S waves. This small modification can be due to
the mean flow distortion in the presence of nonlinear streaks. The large-amplitude
streaks slightly alter the laminar boundary-layer profile and, as a result, the phase
speed of the T-S waves. Since the inlet frequency of the perturbation is constant, the
wavelength of the T-S modes is modified, although inappreciably.

4.1.1. The �-structures

After examining figures 24 and 25, it appears that the �-structures in the mode 5
case differ from those observed the mode 2 simulations. In mode 2, the spanwise
wavelength of the �-structures is the streak width (λ� = λcon), which is Lz/2 = 4δ99. In
mode 5, the spanwise wavelength of the �-structures is nearly three times the width
of the streaks (λ� = 3λcon), which is approximately 3/5Lz =4.8δ99. This observation
indicates that the spanwise wavelength of the �-structures is not necessarily locked to
the width of Klebanoff streaks. It is possible, nonetheless, that their span is an integer
multiple of the streak width. The DNS results alone do not provide sufficient evidence
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Figure 24. The instantaneous contour of the streamwise fluctuation of the mode 5 case in
the (x, y)-plane; y = 0.5δ99. Contours are plotted in −0.2 <u < 0.2. Each frame is separated by
�t ∼ 0.1τ , where τ is the flow-through time. The spanwise coordinate is not enlarged.

to support this assertion. The Floquet analysis described in § 5.1, on the other hand,
provides the theoretical basis predicting the spanwise extent of the �-structures.

In the mode 5 case, the �-structures still appear in an alternating pattern: two
aligned �-structures followed by another two aligned �-structures but in staggered
position. However, only one � can be found in a row because only one fits into
the computation domain (λ� = 0.6Lz). An oscillation of the starting location of the
�-structures is also present in this case.

The appearance of the �-structures in figures 24 and 25 is quite different from
their mode 2 counterpart. Recall the �-structures in mode 2 are just a �-shaped
concentration of negative v′ centred on a forward jet. In the case of mode 5, on
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Figure 25. The instantaneous contour of the normal fluctuation and the vector plot of
inplane components of the mode 5 case in the (x, y)-plane; y = 0.5δ99. Contours are plotted in
−0.02 <v < 0.02. Each frame is separated by �t ∼ 0.1τ , where τ is the flow-through time. The
spanwise coordinate is not enlarged. The vector length is plotted as grid units magnitude= 10.

the other hand, the �-structures have a strong backward jet at their centre, with a
spanwise size identical to the width of the structure itself rather than the width of the
Klebanoff streaks. The core of the �-structures is a �-shaped concentration of positive
v′, which is flanked by negative v′. These differences suggest the �-structures from
the two series of simulations might be generated by different mechanisms.

4.1.2. A side view of breakdown

In the mode 2 simulations, the relative phase speed of the boundary-layer streaks
and the T-S waves caused vortical shedding. The strong streamwise perturbation
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Figure 26. Mode 5. An instantaneous contour of the spanwise fluctuation with vectors
of the inplane components in an (x, y)-plane. The vector length is plotted as grid
units/magnitude=20.

streaks, or jets, seemingly impacted the induced vortex pairs head-on, thus causing
their breakdown. In the mode 5 simulations, however, the boundary-layer streaks
generated owing to the continuous mode are much weaker. Instead, the vortex pairs
are destabilized through an interaction with subsequently shed and amplifying vortices
(figure 26). The time sequence of the interaction leading to breakdown is shown in
figures 27 and 28. The former figure shows the perturbation field in a plane which
bisects the �-structure, and latter is a cut through one leg of the � shape.

While �-structures precede transition in both mode 2 and 5 simulations, the details
of their makeup and breakdown differ. Perhaps the two sets of simulations represent
different types of the same breakdown mechanism, similar for example to K- and
H-types of secondary instabilities.

4.2. The influence of modal amplitude

The influence of the initial amplitudes A0
T S and A0

con are also investigated for mode 5.
Similar to the numerical experiments for mode 2, stronger and weaker O-S continuous
modes, A0

con = 3 % and A0
con =1 % respectively, were simulated.

Table 4 summarizes the transition-Reynolds-numbers data and figure 29 compares
the instantaneous skin friction from the various simulations. Once again, the weaker
T-S waves delay transition. The effect of the inlet amplitude of the continuous mode,
A0

con , is opposite to the trend recorded in the mode 2 simulations. In the latter
case, Re t decreased with increasing A0

con: stronger streaks promote transition in that
series. In the current case of mode 5, Re t increases with an increasing A0

con or,
equivalently, transition is promoted by decreasing the streak amplitude. It should be
noted, however, that in the absence of streaks, the limit A0

con = 0, transition does not
take place. Hence, Re t must decrease, then increase — meaning there is an optimal
A0

con for mode 5.
Both figure 29 and the spectral amplitude, figure 30, confirm that stronger streaks

are more effective at suppressing the growth of T-S waves. As a result, in the mode 5
series, early transition is associated with lower Klebanoff streak magnitude and higher
T-S amplification rates.

In all the transitional cases from mode 5 series, breakdown was preceded by the
formation of �-structures. The transition location for {A0

T S = 1.0 %, A0
con = 3.0 %} is

close to the exit plane of the computational domain. It is difficult to infer whether
these two cases reach the breakdown stage based solely on their skin friction curves.
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Figure 27. The instantaneous contour of the spanwise fluctuation and the vector plot of
inplane components of the mode 5 case in the (x, y)-plane; the slice cuts through the centre of
�-structures. The vector length is plotted as grid units/magnitude= 20. Snapshots are taken
corresponding to figures 24 and 25.

The velocity contours in figure 31, however, show the formation of distinct �-
structures near the outlet in the former case.

The spectral amplitudes at the fundamental, harmonic and subharmonic frequencies
were computed for mode 5. Figure 32 shows the sub- and first harmonic components.
The subharmonic again shows a clear dependence on the streak amplitude; stronger
streaks introduce stronger subharmonic disturbances. The transition locations are less
clear in figure 32(a) than those in the mode 2 counterpart (figure 20a). Nonetheless,
a correlation between the development of subharmonic disturbance and transition



224 Y. Liu, T. A. Zaki and P. A. Durbin

(a)

200 220 240

200 220 240

200 220 240

200 220 240

200 220 240

200 220 240

(b)

(c)

(d )

(e)

( f )

Figure 28. As figure 27 but the slice cuts through one leg of �-structures.

exists. The first harmonic shows similar trends to the fundamental mode whose growth
rate is reduced by the presence of boundary-layer streaks.

Figures 33 shows the streamwise and wall-normal spectral components at the
fundamental, harmonic and subharmonic frequencies. Again, the shape of the
amplitude at the fundamental frequency agrees with figure 2. The other components
have much of their energy well inside the boundary layer.

5. Discussion
At the interface of orderly and bypass transition lies a regime where T-S waves

and boundary-layer streaks are both present within the flow and can interact. The
interaction was investigated using direct numerical simulations. Independently, the
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Case name A0
con (%) A0

T S (%) Re t

Mode 5 1.0 1.0 400 000
Mode 5 2.1 1.0 427 000
Mode 5 3.0 1.0 509 000

Table 4. The parameter setting and resulting Ret data from the disturbance energy study of
mode 5.

Rex

Cf

0

2 3 4 5

0.002

0.004

0.006

0.008

0.010

0.012
TS control
Acon = 2.1 %, ATS = 0.5 %
Acon = 1.0 %, ATS = 1.0 %
Acon = 2.1 %, ATS = 1.0 %
Acon = 3.0 %, ATS = 1.0 %

(×105)

Figure 29. The skin friction of mode 5; effects of disturbance energy.
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Figure 30. The amplitude of the fundamental T-S mode, mode 5.
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Figure 31. The contour of the streamwise fluctuation of the mode 5 case; A0
T S =1.0 %,
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con = 3.0 %; t = 3τ ; y =0.5δ99.
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Figure 32. The amplitude of (a) the subharmonic and (b) first harmonic modes of the T-S
perturbation.
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Figure 33. Profiles of (a) the streamwise and (b) wall-normal spectra.

discrete and the continuous modes in our simulations do not breakdown within
the computational domain. However, the flow becomes transitional when both modes
are present. The influence of the streaks on the growth rate of T-S modes is consistent:
stronger streaks suppress the amplification of T-S waves. On the other hand, the size
of the �-structures which precede breakdown and the location of transition onset
have a more complex dependence on the streak amplitude and spanwise wavenumber.

5.1. The Floquet analysis

Floquet analysis provides some understanding of the DNS results. The analysis
involves solving the stability problem for the Navier–Stokes equations, linearized
about a base flow which is a superposition of the Blasius profile, a saturated T-S
wave, and Klebanoff streaks. The base flow is therefore,

U(y, z, t) = U0(y)ex + A(uT S(x, y, t)ex + vT S(x, y, t)ey) + BuK (y, z)ex, (5.1)

where uT S and uK are periodic functions of the form uT S(kxx) and uK (kzz); kx and kz

are wavenumbers of the T-S and Klebanoff distortions, respectively.
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The disturbance equations are given below in terms of the disturbance velocity,
u3, v3, w3, and vorticity, ξ3, η3, ζ3, components.
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(5.3)

∂u3

∂x ′ +
∂v3

∂y
+

∂w3

∂z
= 0. (5.4)

The Floquet expansion for the secondary disturbance takes the form,

v3 = eσ teiγ x ′
eiβz

∞∑
n=−∞

∞∑
m=−∞

v̂n,m(y)ei(nkxx
′+mkzz), (5.5)

where x ′ = x − ct is the streamwise position in the frame of the T-S wave. Here we
consider the temporal stability problem, where the real part of σ is the growth rate.
The wavenumbers γ and β are those of the disturbance. Periodicity in two directions
greatly complicates the analysis; details can be found in Liu (2007).

The above system recovers the equations of Herbert (1988) when the streak
amplitude, B , vanishes and the base flow is periodic in one direction only. The
eigensolutions in this limit are the secondary instability modes of two-dimensional
T-S waves. When A is set to zero, the system reduces to the stability equations of the
Blasius profile in the presence of steady streaks only. These equations were used by
Cossu & Brandt (2004) to demonstrate the stabilizing effect of streaks on the growth
rate of primary T-S waves. Our algorithm for solving the secondary stability problem
for a double-periodic base flow was validated in the above two limits. In the absence
of streaks, the secondary instability of T-S waves matches that in Herbert (1988).
When the streaks act alone, A = 0, the Floquet analysis predicts a stabilizing effect;
the primary T-S waves have a a lower amplification rate owing to the influence of
the streaks, consistent with Cossu & Brandt (2004).

Both the primary T-S waves and Klebanoff streaks are retained to investigate the
influence of streak amplitude on secondary instability. The results for mode 2 are
shown in figure 34. When the streaks reach an intensity of approximately 15 %, they
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Figure 34. Effect of the streak strength B of mode 2 on the growth rate σr . The subharmonic
instability in x (NA= 1) and fundamental in z (NB = 2) is considered at different amplitudes
of the T-S waves: �, A = 0.2 %; �, A = 0.5 %; �, A = 1.0 %; �, A = 1.5 %.

destabilize T-S waves of 1 % amplitude. The A= 1.5 % wave, which is subject to
secondary instability for all values of B , shows a significant increase in growth rate
when B ≈ 20 %. Streak amplitudes of 15–20 % are in line with those seen in DNS.
Figure 34 corresponds to Floquet modes that are subharmonic in x and fundamental
in z (εz = 0 in equation (5.6)). Hence, the formation of �-structures can be attributed
to a secondary instability that locks onto the Klebanoff streak width.

The limit B → 0 corresponds to the results of Herbert (1988). The optimal growth
for Herbert’s case occurs at a spanwise wavelength of around ten boundary-layer
thicknesses. That is almost an order of magnitude wider than the �-structures seen
in the present DNS. However, in Herbert’s analysis it is supposed that the boundary
layer is subjected to arbitrary disturbances, from which the optimally growing
perturbation is extracted. In the present case, free-stream disturbances induce strong
Klebanoff streaks near the wall and those set the wavelength that distorts the T-S
waves. Natural Klebanoff streaks have a wavelength of about one boundary-layer
thickness. The present ansatz explains how an instability can lock onto that length
scale.

As we have seen, mode 5 behaves differently from mode 2. In Floquet analysis, a
detuning factor is defined as

εz = inf
−∞<m<∞

min

(
2

∣∣∣∣ β

kz

− m

∣∣∣∣ , 1

)
, (5.6)

where kz is the streak wavenumber. For mode 2, kz = 2kz0 = 2 × 2π/Lz, and for
mode 5, kz = 5kz0. The fundamental disturbance mode is represented by (5.5) with
β = kz so that εz = 0; the subharmonic case is β = kz/2 so εz = 1. For mode 5, each εz

corresponds to wavenumbers

kz =
1

2
εz5kz0,

(
1 − 1

2
εz

)
5kz0,

(
1 +

1

2
εz

)
5kz0 . . . (5.7)

in the series of (5.5), where kz0 = 2π/Lz (equation (2.4)).
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Figure 35. Effect of the spanwise detuning factor εz on the growth rate of the (a) fundamental
and (b) the subharmonic (in x) instability of mode 5. The streak amplitude, B = 10 %. Three
T-S wave amplitudes are shown: �, A = 1.5 %; �, A = 2.0 %; �, A = 2.5 %.

Mode 5 has maximum growth for a detuning factor between 0 and 1. That explains
why the width of the �-structures does not lock onto the Klebanoff wavelength, even
though that is the source of spanwise forcing. Figure 35 shows the dependence of the
maximum growth rate of the secondary instability on the detuning factor. Maximum
amplification is around εz = 0.4, but the unstable response is broad. εz = 0 is always
stable. Hence, the perturbation induced by mode 5 does not directly stimulate an
instability. This provides an understanding of the different responses that we have
seen for modes 2 and 5.

Based on both the Floquet analysis and the DNS, the streaks play a dual role in the
breakdown mechanism under investigation. First, they reduce the growth rate of the
primary T-S waves; this observation is consistent with the previous work (Cossu &
Brandt 2004; Fasel 2002) for steady streaks. In the meantime, the streaks can promote
the secondary instability of the primary T-S modes. The secondary eigenmodes can
be either locked to the streak spanwise wavenumber or detuned, as exemplified by
the mode 2 and mode 5 cases, respectively.

5.2. Further simulations and concluding remarks

Further simulations were carried out in order to investigate the influence of (a) the
spanwise wavenumber and (b) the unsteadiness of the streaks on transition. A range
of spanwise wavenumbers of the inlet continuous mode were considered, and two
amplitudes were specified, Acon = {2.1 %, 1.0 %}. The instantaneous skin friction
curves from these simulations are shown in figure 36. A complete account of the
combined effect of disturbance energy and spanwise size is shown in table 5 and in
figure 37. (Mode 1.5 is simulated in a domain whose spanwise size is 12δ99. Also,
mode 1 is actually simulated in a domain whose spanwise size is 16δ99. The spanwise
resolution is comparable among all cases.)

For modes with kz � 3k0
z , an increase in the spanwise wavenumber delays transition.

Meanwhile, for modes with kz > 3k0
z , a higher kz promotes breakdown. We must be

aware, however, that changing kz affects the strength of the streaks (Zaki & Durbin
2005, 2006). The dependence of streak strength on the inflow kz adds difficulties to
distinguishing wavenumber effects from the influence of the disturbance amplitude.

The dependence of streak amplitude on kz can be modelled by the coupling
coefficient, Θ , which was proposed by Zaki & Durbin (2005, 2006). The definition
of Θ includes the resonant term of the Squire response to O-S forcing, and also
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Figure 36. Effect of the spanwise wavenumber on transition location. Skin friction is plot-
ted versus downstream Reynolds number. (a) ATS =1.0 %, Acon =2.1 %; (b) ATS = 1.0 %,
Acon = 1.0 %.

Case name A0
con (%) A0

TS (%) Re t k�
z (k0

z )

Mode 1* 1.0 1.0 205 000 1.0
Mode 1.5* 1.0 1.0 222 000 1.5
Mode 2 1.0 1.0 244 000 2.0
Mode 2 2.1 1.0 214 000 2.0
Mode 2 3.0 1.0 206 500 2.0
Mode 3 1.0 1.0 445 000 3.0
Mode 4 1.0 1.0 404 000 2.0
Mode 5 1.0 1.0 400 000 1.25 ∼ 1.67
Mode 5 2.1 1.0 427 000 1.25 ∼ 1.67
Mode 5 3.0 1.0 509 000 1.25 ∼ 1.67
Mode 6 2.1 1.0 386 000 1.2 ∼ 1.5

Table 5. The dependence of Ret on the spanwise wavenumber and the disturbance energy.
Note: mode 1 and mode 1.5 are simulated in a wider computational domain with the same
resolution.

kz /kz
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1 2 3 4 5 6
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con 21 ts 10
con 30 ts 10
con 21 ts 05

(×105)

Figure 37. A graphical illustration of table 5. Decaying cases are treated by setting a large
value to Ret .
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Figure 38. The transition Reynolds number vs. AconΘ .

accounts for the viscous decay rate of the continuous mode. If kz affects transition
solely through its influence on the streak amplitude, a direct correlation must exist
between transition location and A0

conΘ . Figure 38 shows that such a correlation does
not exist. Therefore, the role of the spanwise wavenumber of the continuous mode
on transition must extend beyond its influence on the streak amplitude.

The spanwise wavenumber of the �-structures was also recorded from the simula-
tions and is shown in table 5. The value of k�

z is initially locked into the spanwise
wavenumber of the continuous mode, up to kz/k0

z = 3. At larger kz for the
streaks, the locking ceases to exist. Instead, the spanwise wavenumber of the �-
structures decreases, which is an indication of the detuned instability. The shift from
mode-locked to detuned instability is consistent with the Floquet results discussed
above.

Finally, we briefly consider the role of streak unsteadiness on the boundary-layer
stability. Our Floquet analysis is consistent with Cossu & Brandt (2004) who showed
that steady streaks reduce the growth rate of primary T-S waves. Our simulations,
as well as those by Fasel (2002), demonstrate that unsteady streaks, too, reduce the
growth rate of the primary T-S waves.

The role of unsteadiness is more curious when considering the secondary instability
due to the interaction of the streaks and TS waves. Fransson et al. (2005, 2006) studied
this interaction for steady streaks and demonstrated that the presence of streaks is
always stabilizing and suppresses transition. Our simulations, however, show that
unsteady streaks promote transition.

Whether the discrepancy can be attributed to the streak unsteadiness was
investigated using DNS. The new simulations preserved the inlet disturbance profile,
but the continuous modes were assumed steady by setting ωOS = 0. The results for
mode 5 with A0

TS = 1.0 % and A0
con = 2.1 % are shown in figure 39. The steady streaks

completely suppress T-S waves and stablize the flow. Therefore, the unsteadiness of
streaks is significant in promoting breakdown.

In summary, our hypothesis to explain the DNS results is that two mechanisms are
involved simultaneously. On one hand, the streaks suppress the growth rate of the
primary T-S waves; on the other hand, the streaks trigger secondary instability of T-S
waves. The competition of these two mechanisms causes the complicated behaviours
found in our parameter studies. Mode 2 is probably an example of the dominance
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Figure 39. The skin friction curves for cases with steady and unsteady streaks, mode 5,
A0

TS =1.0 %, A0
con = 2.1 %.

of secondary instability. The spanwise width of �-structures is therefore a result of
secondary instability.

In mode 5, there is a range where secondary instability dominates; however,
it requires a large T-S amplitude to occur. Because the streaks reduce the T-S
growth rate, larger streak amplitudes might prevent T-S waves from reaching the
amplitude required for secondary instability. That may be why the DNS shows
that transition is delayed by large continuous mode amplitude and promoted at
intermediate amplitudes.

Were the inflow disturbance a sum of modes – or a spectrum of free-stream
turbulence – the boundary-layer response would be more complex than that studied
herein. We would expect a combination of mode 2 type resonant secondary instability,
and mode 5 type detuned instability. The present results provide a foundation for
studying more complex inflow disturbances.
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