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Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls
were performed, and the influence of the wall-heating on the thermal boundary layers was investigated.
The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl num-
ber therefore changes with temperature, while the Péclet number is constant. Two wall temperatures
(Tw = 70 �C and 99 �C) were considered relative to T1 = 30 �C, and a reference simulation of TBL with con-
stant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance
of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant vis-
cosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed.
Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown
to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall
turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respec-
tively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the
mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient.
Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux,
which contributes favorably to the enhanced heat transfer at the wall.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Turbulent flows of liquids over heated walls are of practical
importance in many engineering problems such as heat exchang-
ers and nuclear reactors. For common liquids including water, vis-
cosity decreases with increasing temperature. When a large
temperature difference between the wall and the free stream is
established, the resulting temperature gradient near the wall
causes a gradual change in viscosity. Although turbulence modifi-
cation due to the temperature-dependent viscosity in heated flows
was previously addressed (e.g. Zonta et al., 2012; Lee et al., 2013),
the effect of the viscosity variation on the thermal boundary layer
and scalar transport has not received a similar level of attention.

A number of studies were devoted to numerical simulations of
turbulent thermal boundary layer flows, but have generally
assumed constant fluid properties and in particular the Prandtl
number, Pr. For example, based on direct numerical simulations
(DNS), Kong et al. (2000) demonstrated the similarity between
the wall-normal heat flux and the Reynolds stresses, which under-
lies the correlation between the temperature and the streamwise
velocity fluctuations. Most of the earlier studies concentrated on
the effect of different, but constant, Pr on the mean scalar quanti-
ties and scalar fluxes. Tiselj et al. (2001) and Kozuka et al. (2009)
investigated scalar transfer in turbulent channel flows at different
Prandtl numbers. Abe et al. (2004) examined the Reynolds-number
(Re) effect on the scalar transfer as well as the Pr-effect (Pr = 0.71
and 0.025) in channel flows. They showed that the scalar-flux
fluctuations are increased in high-Re flows due to augmented
turbulence activity. Transitional and turbulent thermal boundary
layers were studied by Li et al. (2009) and Wu and Moin (2010).
The former work investigated the effects of thermal boundary con-
ditions and the Prandtl number. Wu and Moin (2010) provided the
statistics of a spatially developing flow up to relatively higher-Re.
These studies focused on the scalar transport and contributed to
our understanding of turbulence structures including the velocity
and temperature fluctuations in flows with various thermal bound-
ary conditions and Prandtl numbers.
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The above numerical studies assumed constant fluid viscosity
or, equivalently, Prandtl number. Few researchers took into
account the temperature-dependence of viscosity, e.g. Wall and
Wilson (1997) and Sameen and Govindarajan (2007). Most previ-
ous research on the influence of viscosity stratification focused
on the stability of laminar boundary layers and not on TBLs. We
herein address this gap and consider the case of temperature-
dependent viscosity, where the Prandtl number varies spatially
within the TBL. One relevant study was the recent work by Zonta
et al. (2012), who performed DNS of turbulent channel flow with
wall heating. They examined the effect of inhomogeneous viscosity
and found that turbulence production and dissipation of the wall-
bounded flow were significantly altered. Their work did not, how-
ever, consider the heating of spatially developing flows.

Recently, the mechanism of skin-friction reduction owing to the
temperature-dependent viscosity was studied by Lee et al. (2013).
That work demonstrated weakening of the outer vortices and
enhanced fine-scale motions near the heated walls. The present
work is a continuation of the study by Lee et al. (2013). We exam-
ine the transport of scalars, such as temperature or concentration,
owing to the viscosity gradient. DNS data of forced convection in
TBLs with temperature-dependent viscosity are utilized. The free-
stream fluid is assumed to be water at 30 �C, which corresponds
to Pr = 5.4. Using an empirical model of the water viscosity, two
wall temperatures (70 �C and 99 �C) are considered in order to
establish the viscosity difference; namely, moderately heated
(MH) and strongly heated (SH) walls. For comparison, a conven-
tional passive scalar simulation, herein referred to as constant
viscosity (UH; the term was ‘unheated’ in Lee et al., 2013), is also
considered.
Table 1
Summary of simulation parameters. The quantities vRjw and Pr(y) are determined at
Ree

hff ¼ 1840. Note that the unheated (UH) case by Lee et al. (2013) corresponds to
constant viscosity.

Tw (�C) T1 (�C) vRjw Pr(y) Dt (Hin/U1)

Constant viscosity (UH) – – 1.000 5.4 0.025
Moderately heated (MH) 70 30 0.497 2.68–5.4 0.018
2. Numerical details

The temperature-dependent viscosity of water is defined by the
Arrhenius-type viscosity model (White, 2006). In order to isolate
the effect of the viscosity variation alone, the thermal diffusivity
(a) and density (q) are assumed to be constant and are set by
the free-stream temperature. The present simulation belongs to
the forced convection regime, Gr=Re2 � 1, where Gr is the Grashof
number and Re is the Reynolds number.

The governing equations for an incompressible flow with tem-
perature-dependent viscosity are

@ui

@xi
¼ 0; ð1Þ
Strongly heated (SH) 99 30 0.352 1.90–5.4 0.015

Table 2
Spatial and temporal resolutions normalized by wall units.

Dx+ Dy+
min Dy+

max Dz+ Dt+

Constant viscosity (UH) 5.08 0.246 24.6 3.25 0.0564
Moderately heated (MH) 9.22 0.447 22.4 5.90 0.0670
Strongly heated (SH) 12.2 0.593 21.1 7.82 0.0698

Table 3
Spatial and temporal resolutions normalized by the Batchelor scale ðgH ¼ g

ffiffiffiffiffiffiffiffiffiffi
1=Pr

p
Þ.

Subscript d denotes the value at the free-stream edge of the momentum boundary
layer.

(Dx/gH)max (Dy/gH)max,w (Dy/gH)max,d (Dz/gH)max

Constant viscosity (UH) 8.3 0.402 3.04 5.31
Moderately heated (MH) 11.0 0.531 3.01 7.01
Strongly heated (SH) 12.4 0.599 2.98 7.91
@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ 1

Rehin

@

@xj
mR

@ui

@xj
þ @uj

@xi

� �� �
; ð2Þ

and

@H
@t
þ uj

@H
@xj
¼ 1

Rehin
Pr1

@2H
@x2

j

: ð3Þ

The velocity components in the streamwise (x), wall-normal (y) and
spanwise (z) directions are u, v and w, respectively, and p is the
kinematic pressure. The non-dimensional temperature deficit,
herein referred to as the scalar, is defined as H = (T � Tw)/(T1 � Tw).
Subscripts w and 1 denote variables at the wall and in the free
stream, respectively. The ratio of the local to the free-stream
viscosity is mR � m(T)/m1. Note that the physical temperature (T) is
used to determine the viscosity ratio. The Reynolds and Prandtl
numbers in the governing equations are Rehin

(�U1hin/m1) = 1240
and Pr1 (�m1/a) = 5.4, respectively. The numerical method for the
solution of the Navier-Stokes equations is summarized in Zaki
et al. (2010), and was previously applied in the DNSs of various
transitional (Zaki, 2013; Nolan and Zaki, 2013) and fully-turbulent
flows (Lee et al., 2013).

The parameters of the main simulations are summarized in
Table 1. In the heated cases, the wall temperature was set to
the desired value immediately downstream of the inlet. The fluid
viscosity at the heated wall is 49.7% and 35.2% of the free-steam
value in the MH and SH cases, respectively. The computational
domain is a rectangular region with dimensions Lx = 400hin,
Ly = 60hin and Lz = 80hin. The number of grid points is 4097 �
385 � 1281 in x, y, and z, respectively. A non-uniform grid
distribution was adopted in the wall-normal direction, whereas
uniform grid spacing was used in the streamwise and spanwise
directions. The grid spacing in the present study is summarized
in Table 2 using wall units, and in Table 3 based on the Batchelor
scale. Starting from the inlet Reynolds number Reh = 1240, the
reference unheated flow reaches Reh = 2060 at the end of the
streamwise domain. The total time for statistical averaging during
the DNS is 1800hin/U1 time units.

Due to the viscosity variation with temperature, an effective
Reynolds number Reeff

h is defined:

Reeff
h ¼

U1h
meff

; ð4Þ

where

meff ¼ 1
d

Z d

0

�mðyÞdy: ð5Þ

All results are compared at the same Reeff
h . Because an appropriate

inner length-scale is required in the presence of the non-uniform
fluid viscosity, the ratio of the local viscosity to the friction velocity
is used, i.e. lvðyÞ ¼ �mðyÞ=us, where the friction velocity us is defined
using the viscosity at the wall. Therefore, the modified inner scaling
is given by yþv � y=lvðyÞ.
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Fig. 2. Wall-normal distribution of mean scalar at Reeff
h ¼ 1840. Each profile is

normalized by the friction temperature (Hs) of each case. (a) Circle symbols (s) are
the original relation of Kader (1981) and (b) square symbols (h) are the refined
relation for the non-uniform Pr.
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3. Results

The local decrease in the near-wall viscosity leads to a dramatic
change in the near-wall turbulence. As shown in Fig. 1a, the skin-
friction coefficient ðCf � 2sw=qU2

1; sw is the local wall shear stress)
is decreased appreciably. The mechanism of the skin-friction reduc-
tion due to wall heating with temperature-dependent viscosity was
explained by Lee et al. (2013). Their work showed that the reduction
of Reynolds shear stress in the outer region is the main factor. Fig. 1a
also shows an increase in the Stanton number (St) for wall heating.
Here, St is the non-dimensional heat (scalar) transfer coefficient,

St ¼ qw

qU1cpðHw �H1Þ
: ð6Þ

The variables qw and cp are the rate of heat transfer from the wall
to the flow and the specific heat, respectively. The Stanton number
of the SH case is 10.4% higher than that of the UH case at
Reeff

h ¼ 1840, even though the viscosity variation does not appear
in the energy equation, i.e. the Péclet number ðPe � RePrÞ is con-
stant. Owing to the combined effect of decreased skin-friction and
increased Stanton number, the Reynolds analogy factor (2St/Cf) of
the SH case is 44.2% higher than that of the UH flow. In particular,
the factor increases from 0.526 (UH) to 0.759 (SH), at Reeff

h ¼ 1840
(Fig. 1b). In Section 3.1, we examine the effect of the viscosity var-
iation on statistics of the scalar field and, in Section 3.2, we discuss
the scalar transport and the scalar flux budget in detail.

3.1. Statistics of the scalar field

3.1.1. Mean scalar
The wall-normal distribution of mean scalar is shown in Fig. 2,

normalized by the friction temperature Hs � qw
qcpus
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Fig. 1. Profiles of (a) the Stanton number (St) and the skin-friction coefficient (Cf)
along the effective Reynolds number. (b) The Reynolds analogy factor (2St/Cf). (See
above-mentioned references for further information.)
Reeff
h ¼ 1840. The profile from the constant viscosity case (UH) is

in good agreement with that of low-Re channel flow (Kawamura
et al., 1998). The profile of the mean scalar is shifted down for
the moderately and strongly heated (MH and SH) flows. As the vis-
cosity decreases near the heated walls, the mean scalar is reduced
due to the decreased Prandtl number. Note that the Prandtl num-
ber varies in a thin thermal layer relative to the momentum
boundary layer. However, the mean scalar decreases to a signifi-
cant extent in the outer region. This decrease is caused by the large
friction temperature. The law-of-the-wall with the local Prandtl
number �Hþ ¼ Prðyv Þyþv

	 

and the log-law with the inclination

angle of 2.12 (Kader, 1981) are plotted in Fig. 2, and both curves
are in good agreement with the experimental data by Kawamura
et al. (1998). If we employ the modified wall-normal coordinate
yv as the abscissa, the wall layer is divided into two regions: the
conductive sublayer yþv ’ 5

	 

and the logarithmic region. The

wall-normal elevations of the log-law are b = 33.3, 27.3 and 24.4
for the UH, MH and SH cases, respectively. The structure of the sca-
lar fields in the presence of temperature-dependent viscosity is
qualitatively similar to that of the passive scalar simulation (UH),
although the wall-normal distribution is changed.

The mean scalar equation suggested by Kader (1981) provides a
unified relation in the conductive sublayer and in the logarithmic
region, given by

�Hþ ¼ Pr yþ expð�CÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
inner

þ 2:12 ln ð1þ yþÞ 2:5ð2� y=dÞ
1þ 4ð1� y=dÞ2

 !
þ bðPrÞ

 !
expð�1=CÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

outer

;

ð7Þ
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Fig. 3. Wall-normal distribution of r.m.s. of scalar fluctuation normalized by (a) the
friction temperature (Hs) and (b) both the friction temperature ðHsÞ and the
Prandtl numbers (Pr(y) and Pr1) at Reeff

h ¼ 1840. All triangle symbols (N) represent
the scalar fluctuations in channel flow (Kawamura et al., 1998).
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where

bðPrÞ ¼ ð3:85Pr1=3 � 1:3Þ2 þ 2:13 ln Pr ð8Þ

and

C ¼ 0:01ðPr yþÞ4

1þ 5Pr3yþ
: ð9Þ

Using this relation for �Hþðy; PrÞ, the wall-normal distribution of the
mean scalar was evaluated and is plotted in Fig. 2a. Although the
constant Prandtl number Pr in the original relation by Kader (Eqs.
(7)–(9)) was replaced by the local value, Pr(y), appreciable disagree-
ment with the present DNS results is still observed in the outer
region. In that region, the Prandtl number affects the wall-normal
elevation b, which dictates the difference in the mean scalar
between the wall and the lower edge of the log region (Kader,
1981). The disagreement originates from b(Pr). In order to match
the relation of the mean scalar and the present DNS results for a
flow with temperature-dependent viscosity, we suggest a new b,

bðPrvÞ ¼ ð3:85Pr1=3
v � 1:3Þ2 þ 2:13 ln Prv : ð10Þ

Because b denotes the wall-normal elevation of the log-law
(dotted line in Fig. 2), b should be constant irrespective of yv. In
the work by Kader (1981), the log-law is valid for 30 < yþ < dþ

when Pr � 1, and therefore b is determined from Prv �
Pr yþv ¼ 30
	 


. Except for the definition of b, all Pr of the original rela-
tion by Kader(1981) should be replaced by the local value, Pr(y), in
order to reflect the local thermal behavior. Then, a refined scalar
profile is obtained as,

�Hþ ¼ PrðyÞyþv expð�CÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inner

þ ð2:12 ln 1þ yþv
	 
 2:5ð2� y=dÞ

1þ 4ð1� y=dÞ2

 !
þ bðPrvÞÞ expð�1=CÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

outer

;

ð11Þ

where

C ¼
0:01 PrðyÞyþv

	 
4

1þ 5PrðyÞ3yþv
: ð12Þ

Using the refined relation, we obtain an excellent agreement with
the DNS data (see Fig. 2b). This implies that the modified inner
length-scale yþv

	 

and the use of Prv are appropriate for capturing

the mean scalar profile in the case of inhomogeneous Prandtl num-
ber. The refined mean scalar relation demonstrates that the law-of-
the-wall in the conductive sublayer is governed by the local Prandtl
number Pr(y), and that the elevation of the log-law is determined by
Prandtl number Prv at the start of the log region, near yþv ¼ 30.

3.1.2. Scalar fluctuations and scalar flux
The root-mean-square (r.m.s.) of the scalar fluctuations ðH0Þ is

reported in Fig. 3, normalized by the friction temperature. The UH
profile is in good agreement with that by Kawamura et al. (1998).
Due to the isothermal wall boundary condition, the r.m.s. values
of all cases approach zero at the wall. According to Tiselj et al.
(2001) and Li et al. (2009), a decrease in Pr leads to a decrease in
the r.m.s. of the scalar fluctuations H0þrms

	 

near the wall. While those

studies were concerned with constant Pr flows, the trend is still pre-
served in the heated flow cases. The r.m.s. values of the scalar near
the wall, including the peak value, all decrease in the case of tem-
perature-dependent viscosity, where Pr(y) is reduced. The peak
position shifts from yþv ¼ 6:39 (UH) to yþv ¼ 8:70 (SH). Unlike the
mean scalar profiles (Fig. 2), the r.m.s. profiles collapse in the outer
region. However, the r.m.s. profiles show a significant deviation in
the inner region even when normalized by Hs (Fig. 3a). This depen-
dence is due to the variation in the Prandtl number. The appropriate
scaling of the profiles in the near-wall region is empirically
obtained and is shown in Fig. 3b. In that figure, the r.m.s. values
are normalized by PrðyÞ0:4Pr0:15

1 and plotted against PrðyÞ0:5yþv . In
summary, appropriate scaling for both the mean and r.m.s. profiles
of the scalar fields have been constructed using the modified inner
length-scale and the local Prandtl number.

Profiles of the scalar fluxes u0iH
0 are shown in Fig. 4. When the

inflow quantities U1, H1 and hin are used as reference scales
(Fig. 4a), both the streamwise and wall-normal scalar fluxes for
the MH and SH cases increase near the heated wall. Note that
the r.m.s. of the scalar fluctuations in the reference scaling
H0rms=H1
	 


are almost identical near the wall (not shown), and

the field behavior of u0H0 at small y reflects changes in the stream-
wise velocity fluctuation. Using the inner scaling based on the fric-
tion quantities and lv (Fig. 4b), the trend increases and follows the
trend of H0þrms previously shown in Fig. 3a: Both the streamwise and
wall-normal scalar fluxes for the temperature-dependent viscosity
decrease near the wall. While this inner scaling collapses the r.m.s.
velocity fluctuations (see Fig. 5d of Lee et al., 2013), it is not ade-
quate for the scalar fluctuations (Fig. 3a) or their fluxes (Fig. 4b).
The decrease of the scalar flux originates from the weakened scalar
fluctuations (Fig. 3a). Note, however, that the near-wall slopes are

2 and 3 for u0H0 and v 0H0, respectively, which are the same values
as those reported in the literature at constant viscosity, i.e. con-
stant Pr, (Kong et al., 2000).
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Similar to the profiles of the r.m.s. scalar fluctuations, the pro-
files of the fluxes can be plotted using the modified inner length-
scale and the local Prandtl number. Since the locations of the peak
values of the fluxes are almost identical in all cases (see UH, MH
and SH cases and data by Kawamura et al. (1998) at Pr = 5.0 in
Fig. 4b), an appropriate near-wall scaling can be obtained using
Pr(y) and lv(y) because the thermal layer is thin relative to the
momentum boundary layer. In addition, the scaling must take into
account the effect of Pr1, which shows large fluxes for large Pr1
(Kawamura et al., 1998; Li et al., 2009). Therefore, the appropriate
scaling is finally obtained using Pr1, Pr(y) and lv(y). The outcome is
shown in Fig. 4c and d. The profiles of the streamwise scalar flux
(Fig. 4c) normalized by Pr0:5

1 collapse well with Pr(y)0.25 and lv(y).
The wall-normal scalar flux normalized by Pr0:1

1 is plotted against
the scaled coordinate PrðyÞ0:5Pr�0:15

1 yþv in Fig. 4d. This proposed
scaling is in good agreement with both variable-viscosity flows
(MH and SH) and the reference calculation of constant Prandtl
number (UH). In addition, the scaling also collapses the data by
Kawamura et al. (1998) for different Pr1 in the near-wall region.

3.1.3. Turbulent Prandtl number
The turbulent Prandtl number is a key concept in the develop-

ment of turbulence models for scalar transport in bounded shear
flows (Kong et al., 2000). To compute the turbulent Prandtl num-
ber, the turbulent eddy viscosity ðmt � �u0v 0=ð@U=@yÞÞ and the tur-

bulent eddy diffusivity ðat � �v 0H0=ð@ �H=@yÞÞ are obtained and
reported in Fig. 5a. Due to the isothermal boundary condition, both
mt and at are proportional to y3 near the wall. The increase of oU/oy
near the wall is most dominant relative to the other terms in the

definitions of at and mt, namely @ �H=@y;u0v 0 and H0v 0. The turbulent
Prandtl number Prt � mt/at is shown in Fig. 5b. As the viscosity dif-
ference increases, the near-wall Prt decreases. In all cases, Prt

decreases with increasing wall-normal distance in the range
yþv < 15. A small peak around yþv � 50 is observed, in agreement
with previous studies (Kong et al., 2000; Li et al., 2009).



Table 4
Limiting values of the turbulent eddy viscosity (mt/y3) and the turbulent eddy
diffusivity (at/y3) near the wall.

a0 a1 a2 n0 n1 n2

Constant viscosity (UH) 0.0804 1.12 �7.13 0.114 0.418 �4.07
Moderately heated (MH) 0.184 1.08 �18.7 0.198 0.242 �10.2
Strongly heated (SH) 0.257 0.717 �25.2 0.266 �0.222 �12.6
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The asymptotic near-wall behavior of Prt is derived below.
Similar to previous studies (Antonia and Kim, 1991; Na and
Hanratty, 2000; Kong et al., 2000), mt and at are expressed in terms
of polynomials. Following Na and Hanratty (2000), a fifth-order
polynomial is adopted,

at=y3 ¼ a0 þ a1yþ a2y2 þ Oðy3Þ; ð13Þ

and

mt=y3 ¼ n0 þ n1yþ n2y2 þ Oðy3Þ: ð14Þ

The limiting behavior of the turbulent eddy viscosity and diffusiv-
ity normalized by y3 is shown in Fig. 6. In the y ? 0 limit, Prt =
n0/a0 (see details in Table 4). The maximum value (wall-asymp-
totic value) in the UH case is 1.41 at the wall. This value is larger
than that reported by Kong et al. (2000) (Prt = 1.1 for Pr = 0.71 and
Reh = 300) and Li et al. (2009) (Prt = 1.1 for any Pr lower than 2.0
and Reh = 830), which is consistent due to the higher Pr in the
current UH case (Pr = 5.4). The maximum value of Prt decreases
to 1.08 and 1.03 in the MH and SH flows. This drop is consistent
with the decreased local Pr near the heated surface. The lower
values of Prt within the current Pr-range is in a good agreement
with Kozuka et al. (2009). Note that Prt = 1.03 in the SH case can
be regarded to approach the lower-most value at Reeff

h ¼ 1840,
because the SH case represents the near boiling temperature of
water (Tw = 99 �C). The herein reported increase in the Reynolds
analogy factor towards unity (Fig. 1b) is consistent with the
decreased Prt (Prt ? 1) in the present viscosity model. This effec-
tively implies that the scalar transport is augmented due to fluid
motions. Thus, consideration of the viscosity variation with tem-
perature is critical to prediction of the thermal field at large tem-
perature differences.

3.2. Scalar transport

3.2.1. Contributions to the Stanton number
As shown in Fig. 1a, the temperature-dependent viscosity leads

to an increase in the Reynolds analogy factor (2St/Cf) and the scalar
transfer coefficient (St). The wall-normal gradient of the mean sca-
lar normalized by H1 and hin increases in the SH case (not shown),
which leads to the enhanced scalar transport near the wall.
Although the increase in St is synonymous with the increase in
the mean scalar gradient, the variation of the gradient is caused
by the action of turbulent thermal events throughout the entire
y/θin

0 0.01 0.02 0.03 0.04 0.05
0.05

0.1

0.15

0.2

0.25

0.3

UH

νt /y3

MH

SH

αt /y3

Fig. 6. Limiting behavior of the turbulent eddy viscosity (mt/y3) and the turbulent
eddy diffusivity (at/y3) near the wall. Symbols indicate the positions of the grid
points. Lines represent the polynomial fit with an order of 2.
boundary layer. This relationship is examined in detail in this
section.

Fukagata et al. (2002) proposed an approach to identify various
contributions to the skin-friction coefficient. They performed
wall-normal integration of the Reynolds-averaged Navier-Stokes
(RANS) equation for the streamwise momentum, and obtained an
identity for the skin-friction coefficient. This identity can be
instructive in the analysis of the origin of changes to the skin-
friction. Here, a similar approach is adopted for the energy equa-
tion in variable-viscosity flows,

Stidentity ¼
2

d2Rehin
Pr

Z d
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In Eq. (15), the first and second terms on the right-hand side are
related to the mean scalar; the third and fourth terms are related
to the mean scalar fluxes; and the last two terms are related to
the turbulent scalar fluxes. The Stanton numbers evaluated from
the mean scalar profile and from the above expression are plotted
in Fig. 7 versus the effective Reynolds number. The result from
the identity (Stidentity) is in excellent agreement with the original
definition (St). The various contributions to the Stanton number
(Eq. (15)) are shown in Fig. 8a. The results demonstrate that three
terms are important, namely (i) the streamwise gradient of U �H
denoted St(UH); (ii) the product of the mean wall-normal velocity
and scalar St(VH); and (iii) the correlation between the wall-normal
Reθ
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Fig. 7. Stanton numbers, computed from the mean scalar gradient St (lines) and
from the identity Stidentity (symbols) as a function of the effective Reynolds number.
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velocity fluctuation and scalar fluctuation Stðv 0H0Þ. The remaining
terms make a contribution near the inlet only, where the isothermal
heating starts, and become vanishingly small downstream of
Reeff

h ¼ 1400.
The most significant contributions to the change in the Stanton

number in the heated flow can be attributed to terms (i) St(UH)
and (ii) St(VH). The former, (i) St(UH), has an unfavorable effect,
i.e. it reduces the Stanton number, and is attributed to the reduc-
tion in the growth rate of the boundary layer in the heated flow.
The second term, (ii) St(VH), contributes favorably to the change
in the Stanton number, and is a result of the reduction in the dis-
placement thickness (Lee et al., 2013). These two terms should
therefore be viewed together, and their net contribution is plotted
in Fig. 8b. Their net effect is an increase in the Stanton number. The
figure also shows the wall-normal scalar flux, (iii) Stðv 0H0Þ, which
has a comparable change relative to the change in St(UH) + St(VH).
For example, the 10.4% increase in the Stanton number at

Reeff
h ¼ 1840 is due to 7.7% increase in St(UH) + St(VH) and a 2.7%

increase in Stðv 0H0Þ. Note also that the modification of �v 0H0 is
most pronounced near the wall (Fig. 4a), where changes in the
mean flow are appreciable. This motivates a closer examination
of the turbulent scalar flux with particular attention to the near-
wall region.

3.2.2. Scalar flux budget
In this section, the transport equation for the scalar flux is

evaluated. Because the viscosity in the momentum equation is
dependent on temperature, corresponding terms appear in the
averaged scalar flux equation,
0 ¼ �Uj
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In the above budget, CH;i denotes convection, PH;i is production,
PH;i þ GH;i are terms involving the velocity�pressure-gradient cor-
relation, TH;i is the turbulent transport, DH;i the viscous diffusion,
and eH;i is the dissipation. The additional viscosity stratification
(VSH) terms are:
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The budgets of the scalar flux for the UH and SH cases are com-
pared in Fig. 9. The scaling of the wall-normal coordinate ðPr0:25yþÞ
by Li et al. (2009) is modified to take into account the local Pr, i.e.

PrðyÞ0:25yþv . In order to assess the effect of introducing the wall
heating downstream of the inlet, all the budget terms are normal-

ized by U2
1H1=hin. In the profiles of the budget for u0H0 (Fig. 9a),

the production term increases in the buffer region. Similar to the
TKE budget, the production and the viscous diffusion terms are
the largest in the buffer layer and in the viscous sublayer, respec-
tively. The peak value of the production increases for the heated

flow. Here, the production term for u0H0 is:

PH;1 ¼ �u0H0
@U
@x
� v 0H0 @U

@y
� u0u0

@ �H
@x
� u0v 0 @

�H
@y

: ð22Þ

The increase of the peak value results from the 2nd and 4th terms in
Eq. (22), because the remaining terms are negligible given the rela-
tively small value of the mean streamwise gradients in comparison

to the wall-normal gradients. Even though the values of �v 0H0 and
�u0v 0 are only slightly changed in the sublayer and buffer regions
for the heated flow, those of oU/oy and @ �H=@y are significantly
increased in these regions. The increased wall-normal gradients
are mainly responsible for the large production in the heated flow.

Near the wall, the viscous diffusion term decreases and the dis-
sipation term increases. The changes in the viscous diffusion and
the dissipation are balanced by the VSH,i term (VSH,i = VS1H,i +
VS2H,i + VS3H,i + VS4H,i + VS5H,i). The enhanced dissipation in the
sublayer is required to balance the diffusion and VSH terms at
the wall. In terms of turbulent structures, the enhanced dissipation
is established by a reduction in the smallest scales in the low-
viscosity, near-wall layer (Lee et al., 2013). The sum of the viscosity
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stratification terms is a gain in the sublayer and a loss near the pro-
duction peak, which mimics the effect of the viscous diffusion.

The budget of the wall-normal scalar flux �v 0H0 is shown in
Fig. 9b. The peak value of the production term is increased due
to the large wall-normal gradient of the mean scalar. The sum of
the VSH,i terms appears as a gain term. While the change in pres-
sure diffusion (the dominant loss term) by wall heating is negligi-
ble, the dissipation and turbulent transport terms are changed to a
greater extent: The dissipation decreases in the sublayer and the
turbulent transport increases in the buffer region, respectively.
To balance with the lower dissipation in the sublayer, the viscous
diffusion term decreases. This figure demonstrates that transport
of the wall-normal scalar flux is reduced between the location of
its peak and the wall in the variable viscosity flow.

Fig. 10 displays the additional VSH,i terms in the SH case. In both
the streamwise and wall-normal scalar fluxes, the VS1H,i term,
which reflects the wall-normal gradient of the mean viscosity ratio
ð�vRÞ, has the largest contribution. Most of the viscosity stratifica-
tion effect is in the inner region, in particular PrðyÞ0:25yþv ’ 30.
Overall, the VSH,i terms play a role which is similar to viscous dif-
fusion whereby the scalar flux is transported towards the wall.

3.3. Turbulent thermal structures

The statistics of the scalar field (Section 3.1) and of its fluxes
(Section 3.2) are connected to the modification of turbulent
thermal structures in the variable viscosity flow. Fig. 4a showed
that the wall-normal scalar flux in the SH case increases in the
near-wall region. A manifestation of this increase in terms of
instantaneous structures is given in Fig. 11. The figure shows
contours of the wall-normal scalar flux near the wall for both the
reference and the heated flows. The large population density of
near-wall vortical structures (grey) in the SH case corresponds to
the enhanced fine-scale motions reported by Lee et al. (2013). Note
that the crowded contour of the scalar flux is similar to the
observation of surface heat-flux fluctuations in the large Rey-
nolds-number flow by Abe et al. (2004). Because the quasi-stream-
wise vortices induce the wall-normal fluid motions, the position of
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the scalar flux is closely related to the position of the vortical struc-

tures. Positive regions of �v 0H0 (red) are increased in the heated

flow. However, negative regions of �v 0H0 (blue) are nearly identi-

cal in both cases. Therefore, there is an overall increase in �v 0H0 in
the variable viscosity case, which contributes to the increase in the
Stanton number via the term Stðv 0H0Þ.

The two-point correlation between the wall-normal velocity
and scalar fluctuations, given by

R�v 0H0 ðrx; rzÞ ¼
�v 0ðx; zÞH0ðxþ rx; zþ rzÞ

v 0rmsH
0
rms

; ð23Þ

was evaluated to support the observations from the instantaneous
flow fields. As shown in Fig. 12, the spatial extent of the positive
correlation (high-temperature region for upward motion at the ref-
erence position; or low-temperature region for downward motion
at the reference position) is increased in the downstream direction.
Because the upward motions (ejection events) are more dominant
in the sublayer, this indicates that high-temperature transport takes
place in a wider region around the upward fluid motion at the ref-
erence position. The hot fluid parcels ðH0 < 0Þ in the SH case con-
vect further in the downstream direction by an enhanced mean
streamwise velocity near the wall in the heated flow (Fig. 5a of
Lee et al. (2013)). In addition, since the wall-normal velocity fluctu-
ations are 52% higher than those of the UH case at y/hin = 0.11 (not
shown), H0 is correlated with the strong v 0 in a wide area. The long
positive region of the two-point correlation is similar to the appear-
ance of long near-wall vortices in the SH case, because the ejection
events reside along with the near-wall vortices (Fig. 11). In addition,
the high population density of elongated vortices near the wall
reflects the high local Reynolds number due to the local decrease
in viscosity.

The negative regions of the correlation in Fig. 11 (upward
motion of low temperature; or downward motion of high temper-
ature at the reference position) are observed near the reference
position. This is caused by a counter-balance of the wall-normal
velocity fluctuations at the reference position. Both the spatial
extent and the maximum value of the negative correlation are
decreased in the heated flow.

Shaw and Hanratty (1977) showed that the high-frequency
fluctuations in mass transfer are diminished with increasing
Schmidt number. Later, Hasegawa and Kasagi (2009) reported
the spatio-temporal correlation of fluctuations in velocity and
concentration in order to quantify the reduction in the high-
frequency in concentration fluctuations. They termed this behavior
the low-pass filtering effect at high Schmidt number. Although the
previous studies focused on the concentration fields and the
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high-Schmidt-number effect, the same low-pass filtering of fluctu-
ations in the scalar is expected in high-Pr flows.

In the SH case, the vigorous fluctuations in the scalar flux inside
the viscous sublayer can be regarded as a result of a weakening
in the low-pass filtering. To assess the strength of the filtering
effect, the spatio-temporal correlation of the velocity and scalar
fluctuations ðRu0

i
H0 Þ in the near-wall region is reported in Fig. 13.

The correlation is defined as Ru0
i
H0 ðDtÞ ¼ u0iðtÞH

0ðt þ DtÞ at the refer-

ence position, and is normalized by the r.m.s. of each event. There
is a reduction in the time lag (tlag) between the velocity and scalar
fluctuations in the variable viscosity flow, where tlag is defined as
the duration from the reference time to the extremum of the cor-
relation. For instance, the time lag is decreased by 34.5% Ru0H0ð Þ
and 54.9% Rv 0H0ð Þ at y = 0.051hin. The reduction is 35.9% ðRu0H0 Þ and
56.1% ðRv 0H0 Þ at y = 0.11hin. The decreased time lag of the SH case
indicates a weakening of the low-pass filtering effect. In other
words, the high-frequency velocity signal affects the scalar fluctu-
ations to a greater extent. The decreased time lag implies a rapid
scalar transport from the heated wall, which is consistent with
the low turbulent Prandtl number in the near-wall region. The
near-wall behavior is closely related to the near-wall turbulence
structures which become more energetic in the heated flow. This
was shown by Lee et al. (2013) by comparing the premultiplied
spanwise energy spectra of the u0-velocity and the joint probability
density function of Qs(�(SijSji)/2) and Rs(�(SijSjkSki)/3) near the wall.
Here, Sij = (oui/oxj + ouj/oxi)/2 is the symmetric component of the
velocity gradient tensor (Blackburn et al., 1996; Ooi et al., 1999).
The results by Lee et al. (2013) demonstrated that the small scales
are more energetic near the wall in the heated flows. This leads to
an abundance of high-frequency fluctuations of the scalar flux near
the wall, which is consistent with the weakened low-pass filtering

effect observed here. In summary, the large �v 0H0 in the tempera-
ture-dependent viscosity flow stems from the large population of
vortical structures (Fig. 11), and the greater extent of the two-point
correlation R�v 0H0 near the wall (Fig. 12). The swift response of H0 to



52 J. Lee et al. / International Journal of Heat and Fluid Flow 49 (2014) 43–52
v 0 events also favors, or enhances, the scalar flux near the heated
wall. These combined effects lead to an enhanced contribution of
turbulent motions to the scalar transport.

4. Summary and conclusions

The influence of wall-heating on turbulent thermal boundary
layers with variable viscosity was investigated using DNS data.
The fluid viscosity model was chosen to represent water at atmo-
spheric pressure, and therefore lower viscosity at higher tempera-
ture. Based on two wall temperatures, moderately and strongly
heated cases (MH and SH) were considered. A simulation with a
conventional passive scalar approach (UH) was included for com-
parison. The present study focused on the effect of temperature-
dependent viscosity on the statistics of both the scalar field and
scalar transfer rate.

Due to the low near-wall viscosity in the heated flow, the Pra-
ndtl number reduces in that region. An associated increase in the
friction temperature caused the statistics of the scalar field, such
as the mean scalar, scalar fluctuation and scalar flux, to exhibit
smaller values relative to the reference, isothermal flow. A unified
relation for the mean scalar in the presence of inhomogeneous vis-
cosity was proposed. In addition, appropriate scalings were pre-
sented for the scalar fluctuation and the scalar flux. The proposed
functional form for the mean was based on the local and free-
stream Prandtl numbers and the modified inner length-scale. It
was also shown that the wall asymptotic value of the turbulent
Prandtl number was reduced in the heated flow.

The combined effect of the reduction in skin-friction (Lee et al.,
2013), and the increase in Stanton number (non-dimensional sca-
lar transfer rate) leads to an increase in the Reynolds analogy factor
by 44% in the variable viscosity flow relatively to the reference
simulation. We derived an identity for the Stanton number to
explain the effect of the variable viscosity on the scalar transfer
rate. The individual terms in the identity indicated that the Stanton
number is increased owing to the reduction in the mean wall-nor-
mal velocity and the increase in the wall-normal scalar flux. The
change of the mean flow is a result of the reduction in the displace-
ment thickness. The budget of the scalar flux showed that the peak
value of the production is increased, owing to the large wall-nor-
mal gradients of the mean streamwise velocity and the mean sca-
lar. The change in the scalar flux, v 0H0, was attributed to the
modification of the turbulent thermal structures. In the viscous
sublayer, a shorter lag was demonstrated in the response of the
scalar fluctuations to the velocity fluctuations, which indicates a
weakening of the low-pass filtering effect. Therefore, the wall-nor-
mal scalar flux was enhanced near the heated wall, which leads to
a favorable contribution to the Stanton number.

In summary, the present findings showed that the temperature-
dependence of fluid viscosity enhances heat transfer between the
fluid and the wall. Combined with the previous findings by Lee
et al. (2013), namely the reduction in turbulent drag, this work
provides a complete description of turbulent liquid flow near a
heated surface.
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