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a b s t r a c t 

A robust algorithm is introduced for detection of large-scale coherent structures in transitional and in- 

termittent flows that feature turbulent/non-turbulent (T/NT) interfaces. The algorithm is applicable the 

instantaneous flow fields of wall-bounded and free shear flows, and can effectively identify coherent 

events in the velocity or vorticity fields, or sweep/ejection motions. A database from direct numerical 

simulation (DNS) of transitional boundary layer is used to develop and demonstrate the capabilities of 

the algorithm which consists of three steps. The first is identification of the T/NT interface by comparing 

the normalized vorticity magnitude to a threshold value that is independent of the Reynolds number. 

The vorticity normalization is specifically designed to be applicable in transitional flows, where regions 

of the flow can host juxtaposed regions of laminar and turbulent flow. With the definition of the T/NT 

interface, conditional statistics are computed and perturbation quantities are defined relative to their re- 

spective conditional means. Second, the influence of the small-scale turbulence is excluded by applying 

an anisotropic Gaussian filter. The filter size is determined from the spatial characteristics of the small- 

scale vortical motions. In the third step, one-dimensional cores and two-dimensional surfaces within the 

flow structures of interest are identified from local extrema in the fields, and are tracked as Lagrangian 

objects. Using the algorithm, the population trends and advection speeds of large-scale sweep/ejection 

events are computed in the transitional boundary layer. Two additional flow configurations are also con- 

sidered: turbulent jet flow emerging from a circular nozzle and the turbulent flow in a channel with a 

wavy surface. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

At moderate and high-Reynolds numbers, a turbulent/non-

turbulent interface separates chaotic fluid motion from laminar (or

non-turbulent) fluid. The presence of the T/NT interface introduces

a significant difficulty in the analysis of the turbulence and flow

structures because the length and velocity scales change consider-

ably across the interface [1] . In the turbulent region various con-

tributions to the perturbation energy budget are of interest [2,3] .

The classical interpretation of the turbulent spectrum is that dissi-

pation takes place at the smallest vortical scales, and that energy

is contained in the largest scales. The notion of scale motivates the

study of turbulence structures. Analysis of these structures within

the turbulent region has extended our understanding of the inter-

nal mechanism of turbulence [4] . In the non-turbulent region, in-

terest is in the inception of laminar-turbulent transition in bound-

ary layers [5] , the far wake [1] and jets [6] . Detection of turbu-
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ence structures in intermittent flow regions is challenging because

f the large gradients near the turbulent/non-turbulent interface.

 robust algorithm is sought for the detection of large-scale flow

tructures near T/NT interfaces in intermittent flows, which is ap-

licable to transitional and turbulent flows. 

Several flow quantities have been adopted as a detector of the

/NT interface, for example the vorticity magnitude [1,7–10] , the

elocity–vorticity criterion [11,12] and the defect kinetic energy

13,14] . These identifiers were devised to detect the T/NT boundary

t high- Re , and are not directly applicable to transitional flows. De-

ending on the detector function, the characteristics of the identi-

ed interface may vary slightly. However, the variations are rather

mmaterial when the turbulent region is adjacent to an irrotational,

on-turbulent free stream. The same approach is, however, not di-

ectly applicable to transitional flows. For example, in transitional

oundary layers, turbulence spots are fully surrounded by non-

urbulent, but nonetheless vortical, region with strong mean-shear.

The large-scale flow coherence is usually defined by the

ong-wavelength modes of the streamwise velocity fluctuation u ′ 
e.g. 15 , 16] . In physical space, these structures are long regions

https://doi.org/10.1016/j.compfluid.2018.08.015
http://www.ScienceDirect.com
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f u ′ . In transitional boundary layers, the structures are termed

lebanoff streaks [17,18] and large-scale and super structures in

he turbulent boundary layer [19] . Detection of coherent turbu-

ence motions in physical space has practical significance because

 spectral, or Fourier, representation is not possible in complex

eometries. Agrawal et al. [20] visualized the low-speed streaks

rom laser-induced fluorescence (LIF) images using noise filtering

nd thresholding. Dennis and Nickels [21] extracted the geomet-

ic center of large-scale u ′ motions, and reported the population

rends of the negative and positive events separately. The local

aximum of u ′ were also utilized to extract representative posi-

ions of the structure and to track them in space and time, in pre-

ransitional [22,23] and in fully turbulent flows [24,25] . Each flow

egime has been considered separately, and previous studies have

ot attempted to perform structure identification and tracking in

he vicinity of the intermittent T/NT interface. 

The large-scale coherence in shear flows is not limited to u ′ per-

urbations, and can also be observed in the Reynolds shear stress,

 

′ v ′ , and the streamwise vorticity, ω x . The u ′ events have attracted

uch attention because they dominate the perturbation field, both

isually and are the dominant contributor to the turbulence ki-

etic energy. The origin of these energetic motions is in the pro-

uction term, where u ′ v ′ acts against the mean shear. In transi-

ional boundary layer, the interaction has been described as tilting

f mean vorticity [26] or lift-up [27] ; In fully turbulent flows, the

nterpretation is in terms of ejection and sweeps [28] . The spatial

orrelation between u ′ v ′ and negative u ′ structures was examined

y Lozano-Durán et al. [29] and Dennis and Nickels [21] . However,

he spatial extent of the u ′ v ′ cross-correlation is shorter than that

f the u ′ auto-correlation [30] . Similarly, Lee and Moser [16] noted

hat the emergence of the long-wavelength outer peak in the spec-

ra of the shear stress lags in Reynolds number that in the stream-

ise stress event. Thus, it is important to analyze their role which

equires a detection algorithm for the shear stress. Large-scale co-

erence in shear flows is also observed in the streamwise vor-

ex, ω x . Toh and Itano [31] reported that the large-scale stream-

ise swirl contributes to the self-sustaining turbulence cycle and

he modulation of the near-wall structure. Also, the large-scale ω x 

eads to the formation of the very-long streamwise perturbations

25] , which motivates the identification of ω x structures. 

Image processing techniques have often been used to ana-

yze flow field data, including noise reduction, edge detection and

hresholding techniques. First, the noise, which corresponds to

he small-scale turbulence, can be reduced by discarding high-

requency modes using grid coarsening or spatial filtering. [19] and

13] employed the box filter to exclude the small-scale feature

or the large-scale u ′ -coherence and the T/NT interface. Previously

dopted filtering techniques relied on a priori knowledge of the

engthscale of the flow and the features to remove. Edge detec-

ion, in image processing, relies on identifying the pixel with large

radient in brightness [32] . Similarly, the grid point where the

ow quantities have specific gradients can be identified [24] . Lastly,

hresholding is required for image segmentation. Otsu [33] and

rasad and Sreenivasan [34] provided methods for the gray-level

icture thresholding, which inspired the algorithm for streak de-

ection in pre-transitional boundary layers by Nolan and Zaki

22] and the T/NT interface detection by Holzner et al. [35] . In im-

ge processing, image brightness relies on the histogram of pixel

alue, which must be replaced by an appropriate measure in the

ontext of fluid mechanics. 

In the present study, we introduce a detection algorithm for

arge-scale coherence in intermittent flows with a T/NT interface.

tructures defined by u ′ , u ′ v ′ and ω x in three-dimensional instan-

aneous flow fields (physical space) are detected. The algorithm is

emonstrated in a transitional boundary layer, turbulent round jet

nd the flow over an undulating surface. Compared to previous
tudies, the emphasis is placed on: ( i ) demarcation of the localized

urbulent region (turbulence spot) from the mean shear, ( ii ) the

nisotropic filtering by considering the small-scale turbulence, and

 iii ) application to various flow types and quantities. Ultimately,

e present a detection algorithm for the large scales of turbulent

uantities, which can be applied to both turbulent and intermittent

ow fields seamlessly. 

. Sample dataset 

A database from direct numerical simulation (DNS) of tran-

itional boundary layer [36] is utilized to introduce the algo-

ithm. This flow is challenging because it includes three T/NT in-

erfaces: (i) an expanding interface separates spreading turbulent

pots from their surrounding laminar flow; (ii) an interface sepa-

ates the pre-transitional and fully turbulent boundary layer down-

tream; (iii) and an interface separates the fully turbulent bound-

ry layer from the free stream. The computational domain starts

pstream of the leading edge, which is a super ellipse defined by

1 − 1 
20 

x 
L 

)4 + 

(
y 
L 

)2 = 1 where L is the half thickness of the plate

nd the major-to-minor axes ratio is 20. In the body-fitted grid, the

all-parallel and wall-normal coordinates are ξ and η, respectively.

he streamwise, vertical and spanwise directions are denoted x, y

nd z ( Fig. 1 ), and corresponding velocity components are u, v and

 . Throughout this work, the symbol 〈·〉 denotes the ensemble av-

rage, while · denotes the unconditional average in time and in

he homogeneous spanwise direction. 

The incompressible Navier–Stokes equations were solved us-

ng a fractional step algorithm on a staggered grid with a local

olume-flux formulation [37] . The viscous terms were integrated

n time implicitly using the Crank–Nicolson method and the con-

ective terms were treated explicitly using the Adams–Bashforth

cheme. The spanwise Fourier transform of the pressure update is

overned by a Helmholtz equation, which is solved for every span-

ise wavenumber using multigrid in the ξ − η plane. 

Fig. 1 shows an instantaneous visualization of the flow field

nd the skin-friction coefficient. The size of the C-shape domain

s 1100 L ( ξ ), 40 L ( η) and 30 L ( z directions), and the length of the

emi-infinite plate is 1050 L in the x direction. The number of grid

oints is 4097 ( ξ ), 257 ( η) and 257 ( z directions). The boundary

ondition at the curved inlet (marked ‘A’ in Fig. 1 ( a )) was a super-

osition of a free-stream velocity U ∞ 

and a fluctuating field from

 separate computation of homogeneous isotropic turbulence u ′ HIT .

he intensity and integral length-scale of the isotropic turbulence

t the curved inlet ( x/L = −40 ) are T u = 0 . 03 U ∞ 

and L k /L = 1 . 9 .

he free-stream turbulence decays to T u = 0 . 02 U ∞ 

at the leading

dge ( x = 0 ). The flat plate was a no-slip surface. 

At the top and bottom boundaries (marked ‘B’ and ‘C’), time-

ependent vertical velocities ensure zero-pressure-gradient. The 

uction velocity is computed using the continuity equation for a

hort-time averaged field and an active control. The controller uses

 signal �u s which is the difference between the mean streamwise

elocities of a sensor u s and a desired value u target , 

u s (x, t) ≡ u s (x, y s , t) − u target (x ) , (1)

here y s denotes the sensor position in the wall-normal direction.

or the zero pressure gradient (ZPG), the target velocity is constant,

 target = U ∞ 

. The actual streamwise velocity u s is obtained from the

verage over a duration T , 

 s (x, y, t) = 

1 

T 

1 

L z 

∫ t 

t−T 

∫ L z 

0 

u (x, y, z, t ) d z d t . (2)
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Fig. 1. ( a ) Instantaneous coherent structures in the transitional boundary layers and computational grid. (Color) Vortical structures identified by λ2 ; (white) High- and 

(black) low-speed structures; (blue dashed) Boundary-layer edge. Every sixteenth line of the grid is shown for clarity. ( b ) Skin-friction coefficient as a function of streamwise 

position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

p  

l  

e  

n  

o  

r

3

 

r  

a  

t  

t  

p

3

r

 

|  

a  

s  

t  

d  

e  

o  

b  

p

|  

T  

i  

l  

f

The suction boundary condition is then prescribed by, 

v top (x, t) = − d 

d x 

∫ L y 

0 

u s (x, y, t) d y ︸ ︷︷ ︸ 
continuity 

+ ε�u s (x, y s , t) ︸ ︷︷ ︸ 
active control 

, (3)

where ε denotes the control factor. We adopted the parameters

T = 10 L/U ∞ 

, y s = L y − L, and ε = 10 −3 ∼ O(1 / Re ) . 

At the outflow planes (marked ‘D’ and ‘E’), convective boundary

conditions are adopted. At the lower exit plane (marked ‘E’), the

mass-flow rate is adjusted to match that at the opposing cross-

flow plane, ‘F’, on the upper surface. This ensures that the mean

stagnation streamline ahead of the leading edge is horizontal. Pe-

riodic boundary condition is enforced in the spanwise direction.

The Reynolds number U ∞ 

L / ν is 800, where U ∞ 

and ν are the free-

stream velocity and the kinematic viscosity. A video of the flow

configuration and the flow field is available online [36] . 

Laminar-turbulent bypass transition takes place in the region

600 < x / L < 800, where C f rises from the laminar level to turbu-

lent correlation. For the present study, 1125 instantaneous flow

fields were stored separated by �t = 1 L/U ∞ 

, and thus spanning

1124 L / U ∞ 

time units. 

3. Algorithm 

The current algorithm consists of three steps: ( i ) conditional

sampling, ( ii ) small-scale filtering and ( iii ) identification and track-

ing of the large-scale structures. The following is an overview of

the algorithm. 

• Step 1: conditional sampling 

1. Demarcation of T/NT regions 

2. Conditional statistics within the turbulent and non-

turbulent regions 
• Step 2: small-scale filtering 

1. Determination of the filter size 

2. Application of the Gaussian filter to the turbulent fields 
• Step 3: structure identification and tracking 

1. Identification of the position of the local extrema from the
filtered fields |  
In contrast previous studies on fully-turbulent internal flow

e.g. 24 , 25,38 , 39] , the present work on the intermittent flow pays

articular attention to the first two steps. A precondition for uti-

izing the algorithm is access to converged conditional statistics,

ither computed during the simulation of from a sufficiently large

umber of stored instantaneous flow fields. Spatial homogeneity

f the flow in one or more directions is helpful, although not a

equirement of the algorithm. 

.1. Step 1: conditional sampling 

The purpose of this step is to evaluate the fluctuating velocities,

elative to an appropriate reference, or mean, within the turbulent

nd non-turbulent regions. First the T/NT interface is identified, in

he context of transitional boundary-layer flow. Then, the condi-

ional average is conducted to obtain the reference velocity and the

erturbation field. 

.1.1. Detector function for the T/NT interface for high- Re – a brief 

eview 

Previous studies have adopted the magnitude of vorticity,

 ω| ≡ ( ω i ω i ) 
1/2 , to identify the irrotational boundary that encloses

 turbulent region and separates it from an outer, non-vortical

tream [e.g. 40] . Because the mean, and more generally the dis-

ribution, of | ω| varies with the streamwise position in a spatially-

eveloping flow, a normalized vorticity was suggested by da Silva

t al. [41] . Using such approach, a streamwise independent thresh-

ld of the normalized vorticity can be selected to identify that

oundary. In free shear flows such as a jet, the normalization was

erformed using the root mean square (r.m.s.) | ω| rms , such that, 

 ω | ∗(x ) ≡ | ω | (x ) 

max ( | ω | rms ) (x ) 
. (4)

he r.m.s. of the vorticity magnitude | ω| rms is defined by the max-

mum in the cross-flow plane. In the wall-bounded flow, particu-

arly zero-pressure-gradient turbulent boundary layer (TBL), a dif-

erent normalization was proposed by Borrell and Jiménez [10] , 

 ω | ∗ ≡ | ω | 
u 

2 
τ /ν

√ 

δ+ = 

| ω | 
u 

2 
τ /ν

√ 

u τ δ

ν
, (5)
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Fig. 2. Probability density function (p.d.f.) of log 10 | ω| ∗ at ( a ) x/L = 900 (early turbulent) and ( b ) x/L = 200 (laminar region). (Dashed) | ω| ∗
th 

= 0 . 2 ; (dotted) normalized vorticity 

of the free-stream perturbation; (black) boundary-layer thickness δ. 
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here u τ and δ are the friction velocity and the 99% boundary-

ayer thickness. Note that equation (5) was verified for turbulent

oundary layer (TBL) at δ+ ∼ O(10 3 ) . In an earlier study, Taveira

t al. [8] suggested the volume method to define the threshold for

he irrotational boundary. That method identifies the value of the

etector function where the volume of the turbulent region is least

ensitive to changes in the threshold, and the wall-normal distance

orresponding that threshold was larger than the conventional 99%

hickness δ. A comparison of both approaches was provided by

ee et al. [42] , and while both have their merits, there were both

nly attempted for turbulence beneath non-vortical streams. In the

resent study, however, we aim to identify the boundary that sep-

rates boundary-layer turbulence from a rotational outer flow, be

hat the streaky laminar region or the vortical free stream. 

.1.2. Identification of the interface in transitional flow 

The detector function that was adopted to identify the irrota-

ional boundary at high- Re ( Section 3.1.1 ) must be modified for the

dentification of the interface in transitional flows. An attempt to

dentify the vorticity threshold using the volume method was not

uccessful, because the free-stream flow is vortical and the volume

f the turbulent region grows continually as the threshold is re-

uced, without a clear plateau. This issue is demonstrated clearly

n Fig. 2 , which shows the probability density function (p.d.f.) of

og 10 | ω| ∗ at each y w 

position. In the current dataset, y w 

denotes

he vertical distance from the wall. As shown in Fig. 2 ( a ), the con-

ours of the p.d.f. at x/L = 900 have two distinct regions relative to

he threshold | ω| ∗
th 

= 0 . 2 (dashed line). One region centers around

mall values of | ω| ∗ at large- y w 

, and the other near large values

f | ω| ∗ at small- y w 

region – the two regions being clearly asso-

iated with the free stream and the boundary layer, respectively.

ecall that the | ω| ∗-threshold has been designed to be streamwise

ndependent at high- Re [10,42] . In the laminar region, x/L = 200

 Fig. 2 ( b )), the boundary-layer vorticity at small y w 

is larger than

he threshold, which suggests that the flow is turbulent when in

eality it is laminar and perturbed by Klebanoff streaks. In ad-

ition, the p.d.f. of vorticity in the free stream due to the weak

ackground turbulence ( Tu ∼ 0.01 U ∞ 

) straddles the threshold. Two

ontributions to this shift are the presence of a weak level of vor-

ical perturbation in the free stream and, more importantly, that

he vorticity is artificially amplified when normalized by the small

riction-velocity u τ in the laminar region (see C f in Fig. 1 ( b )). This

esult motivates a revising the normalization of the T/NT indicator

unction for transitional flows. 

The interface detected by | ω| ∗
th 

= 0 . 2 is shown in Fig. 3 ( a ). As

iscussed, the original definition of | ω| ∗
th 

does not show a clear de-

ineation of the free stream and the laminar and turbulent bound-

ry layers. In order to improve the interface detection, we replace

he friction velocity u τ in equation (5) by the turbulent correlation,
 τ,T = 1 . 13 Re 0 . 843 
θ ν/δ, (6)

hich was provided by Schlatter and Örlü [43] . The normalization

or the vorticity magnitude is modified accordingly, 

 ω | ∗m 

≡ | ω | 
(u τ,T ) 2 /ν

√ 

u τ,T δ

ν
. (7) 

ig. 3 ( b ) shows the isosurface of | ω| ∗m 

= 0 . 2 , which successfully

liminates the undesirable structures above the laminar boundary

ayer. However, the interface does not isolate the turbulent region,

ut rather also includes the laminar boundary layer upstream (blue

sosurface in the figure), because the mean spanwise vorticity is in-

luded in the classical definition of the normalized threshold. Re-

efining the threshold based on the perturbation vorticity is not

esirable because it requires prior knowledge of the flow statistics.

n addition, the magnitude of the perturbation vorticity in the lam-

nar region, e.g. due to the Klebanoff streaks, is appreciable which

ould hinder accurate prediction of the turbulent/non-turbulent

oundary. 

A possible improvement of the algorithm is to take advantage

f the total streamwise vorticity, ω x ≡ ∂ w/∂ y − ∂ v /∂ z. At the wall,

 ω x | w 

is insignificant in the laminar region relative to the turbu-

ent boundary layer. A threshold for | ω x | w 

can therefore be estab-

ished based on the p.d.f. of its logarithm. As shown in Fig. 4 ( a ),

he non-turbulent and turbulent regions flows are clearly sepa-

ated in the streamwise direction with | ω x | w,th = 0 . 03 U ∞ 

/L (dashed

ine). Fig. 4 ( b ) shows the contour of | ω x | w,th = 0 . 03 U ∞ 

/L in an in-

tantaneous flow field. Dilatation and erosion are applied to | ω x | w 

n order to eliminate any holes, which yields the mask M (| ω x | w 

)

n Fig. 4 ( c ). This mask is used to refine the normalized vorticity

eld. The final form of the vorticity magnitude, which is applica-

le throughout this transitional flow, is denoted | ω| ∗t and defined

y, 

 ω | ∗t = 

{| ω | ∗m 

if M(| ω x | w 

) ≥ | ω x | w,th , 

0 otherwise . 
(8) 

ig. 3 ( c ) shows the T/NT interface in the resulting transitional

oundary layer. In comparison to the original approach that uses

 ω| ∗, which was originally introduced for turbulent boundary lay-

rs, the current method accurately separates the laminar boundary

ayer from all regions of turbulence, including the turbulence spot

t x / L ≈ 500 in the figure (see also movie 1) for the time evolu-

ion of the interface identification. It is worth noting that the cur-

ent definition for the vorticity magnitude yields identical results

o | ω| ∗ in the fully turbulent region;i.e., | ω | ∗t = | ω | ∗ when u τ,T = u τ
nd | ω x | w 

/| ω x | w, th � 1. However, only the present approach can be

pplied indiscriminately throughout a transitional flow and accu-

ately identify the interface surrounding any patches of turbulent
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Fig. 3. Isosurface of the turbulent/non-turbulent (T/NT) interface at t = t 0 + 500 L/U ∞ . ( a ) | ω| ∗ = 0 . 2 , ( b ) | ω| ∗m = 0 . 2 , ( c ) | ω| ∗t = 0 . 2 conditioned with | ω x | w ≥ 0.03 U ∞ / L . 

Fig. 4. ( a ) Probability density function of log 10 | ω x | w at the wall. (Dashed) | ω x | w,th = 0 . 03 U ∞ /L . ( b − c) Plan views of | ω x | w and M (| ω x | w ) at t = t 0 + 500 L/U ∞ . (Red) Turbulent 

and (white) non-turbulent regions identified using | ω x | w, th . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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in the intermittent flow regime and the fully turbulent flow down-

stream. 

3.1.3. The perturbation velocity field 

Using the demarcation into non-turbulent and turbulent flows,

conditionally averaged fields can be computed for each of the

two regions. The conditional mean velocity profiles are plotted in

Fig. 5 ( a, b ). Data are shown only where the number of samples

at each event exceeds 5% of the total. Within the transitional re-

gion ( x/L = 700 ), for example, the mean velocities show nontriv-

ial difference between the non-turbulent 〈·〉 NT and turbulent 〈·〉 T 
conditions. In Fig. 5 ( a ), the streamwise component of the non-

turbulent, or laminar, mean is smaller than the turbulent counter-

part near the wall ( y w 

/L = 0 . 5 ), and vice versa away from the wall

( y w 

/L = 4 ). The difference in the mean vertical velocity ( Fig. 5 ( b ))

is more interesting, with 〈 v 〉 NT and 〈 v 〉 T having different signs in

the transition zone. The non-turbulent contribution is negative in
he transition zone, which provides the necessary mean transport

f streamwise momentum towards the wall in order to achieve a

uller 〈 u 〉 T and satisfy the mean continuity equation. In the fully

urbulent boundary layer region, ( x/L = 900 ), intermittency persists

ear the boundary-layer edge, and again a notable difference in the

onditional mean vertical velocities is observed. These differences

etween the non-turbulent and turbulent statistics highlights the

mportance of computing perturbation quantities relative to the

ppropriate means, in order to accurately identify low- and high-

peed, or positive and negative, flow structures. 

The fluctuating velocities relative to the non-turbulent 〈 u i 〉 NT 

nd turbulent 〈 u i 〉 T mean are, respectively, 

 

′′ 
i = u i − 〈 u i 〉 NT , (9)

 

′ = u i − 〈 u i 〉 T . (10)
i 
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Fig. 5. Conditional mean ( a ) streamwise and ( b ) wall-normal velocities. Conditionally sampled ( c ) m.s. streamwise velocity fluctuation and ( d ) Reynolds shear stress. (Red 

solid) Turbulent and (blue dashed) non-turbulent events; (gray) conventionally averaged quantity. The profiles are shown increasing values of x/L = { 30 0 , 50 0 , 70 0 , 90 0 } , 
indicated with increasing line thickness. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he profiles of the mean square (m.s.) of the streamwise fluctua-

ions, 〈 u ′ ′ u ′ ′ 〉 and 〈 u ′ u ′ 〉 , and the Reynolds shear stresses, 〈 u ′ ′ v ′ ′ 〉
nd 〈 u ′ v ′ 〉 , are plotted n Fig. 5 ( c ) and ( d ). The stresses computed

elative to the unconditional mean, u i − u i , are also shown for

omparison (gray line). In the transition region ( x/L = 700 ), the

onditional stresses deviate appreciably from the classical Reynolds

ecomposition (gray). These results indicate that the non-turbulent

nd turbulent systems should be considered separately, and thus

he original flow field is separated into two dynamical systems

ith perturbation velocities relative to their respective means. 

.2. Step 2: small-scale filtering 

Small-scale features in the perturbation field obfuscate the

arge-scale coherent motions of interest, and therefore must be re-

oved prior to the structure identification and tracking procedure.

he filtering step results in a smoothed perturbation field, which

ust be calibrated to take into account the impact on the am-

litude of the original signal. Note that the filtered field will be

sed only to identify the geometric features of the coherent mo-

ions. Evaluations of any fluid dynamical quantities, e.g. turbulence

tatistics, must use the original, unfiltered fields within the region

ccupied by the structure. Hereafter, the description of the algo-

ithm is focused on the u ′ -event, while examples of other quanti-

ies will be shown in Section 3.3 . 

.2.1. Filter size 

In order to exclude small-scale features from the flow field, a

aussian filter is adopted in all directions. The Gaussian filter pre-

erves localized features, in comparison to a box filter [32] , and is

pplicable in inhomogeneous directions and thus circumvents the

imitations of spectral filters. For example, in boundary layers and

ets, the streamwise and normal coordinates are not periodic and

ence spectral filtering is not possible. Also, the typical eddy size

aries in the normal direction [6] . 

An important parameter in the Gaussian filter is its size, σx i .

t must be selected based on the size of the flow structures of

nterest which can be determined from the two-point correlation

e.g. 30 , 44] . In transitional flows, the correlation is computed con-
itional on the flow being turbulent, 

 ψ T ψ T 
( r x ; x ref ) = 

〈 ψ T ( x ref ) ψ T ( x ref + r x ) | �( x ref )=1 〉 
ψ 

rms 
T 

( x ref ) ψ 

rms 
T 

( x ref + r x ) 
, (11)

here ψ T ≡�ψ for a general quantity ψ , and � is the instanta-

eous intermittency factor, 

(x , t) = 

{
1 if | ω| ∗t ≥ | ω| ∗

th 
(turbulent) 

0 if | ω| ∗t < | ω| ∗
th 

(non-turbulent) . 
(12) 

he correlation coefficient (11) is normalized by the turbulent-

onditioned root-mean-square, ψ 

rms 
T 

≡
√ 〈 ψ 

2 | �=1 〉 . Fig. 6 ( a ) shows

 u ′ u ′ , which represent the size of the large-scale structures. The

ize of the isosurface R u ′ u ′ = 0 . 5 (green) is on the order of δ in

he x direction and 0.5 δ in the y and z directions. Although the

ltering algorithm utilizes the correlation in the turbulent zone

nly, Fig. 6 ( a i) reports R u ′ u ′ = 0 . 5 in the transition region for com-

leteness. There, the correlation is very-large in streamwise ex-

ent ( > 2 δ), and is reflective of the elongated nature of Klebanoff

treaks. In the turbulent region, the structures are of the order 1 δ
s shown in Fig. 6 ( a ii). An appropriate choice of the filter size,

o remove small-scale fluctuations in the turbulent regime, should

herefore be shorter than 1 δ. The ambiguity in this choice moti-

ates evaluating the size of the small-scale vortical motions which

hould be filtered directly. 

Fig. 6 ( b ) shows the correlation coefficients of the signed

wirling strength λ∗
2 , which is a modification of the λ2 -criterion

45] , 

∗
2 ≡ c λneg 

2 
, (13) 

here c and λneg 
2 ( ≡ | min ( λ2 , 0 ) | ) give the sign and the strength

f the swirling motion, respectively. The sign is determined from,

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ω x / | ω x | if λneg 
2 ,x 

= max 
(
λneg 

2 ,x 
, λneg 

2 ,y 
, λneg 

2 ,z 

)
ω y / | ω y | if λneg 

2 ,y 
= max 

(
λneg 

2 ,x 
, λneg 

2 ,y 
, λneg 

2 ,z 

)
ω z / | ω z | if λneg 

2 ,z 
= max 

(
λneg 

2 ,x 
, λneg 

2 ,y 
, λneg 

2 ,z 

) (14) 

here λneg 
2 ,x 

, λneg 
2 ,y 

and λneg 
2 ,z 

denote the magnitudes of the 2-D

wirling motions in the streamwise, wall-normal and spanwise di-

ections. Because the streamwise and spanwise vortices are pre-
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Fig. 6. Conditional two-point correlations of ( a ) the streamwise velocity fluctuation u ′ and ( b ) the signed swirling strength λ∗
2 . The streamwise reference position is located at 

(i) x re f /L = 700 and (ii) x re f /L = 900 . The vertical reference position is y w,re f = 0 . 5 δ(x re f ) . Isosurfaces are shown at R = −0 . 1 (white), 0.3 (cyan) and 0.5 (green). Line contours 

are shown from R = 0 . 3 to 0.9 with an increment of 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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dominant near the wall and the outer region, respectively, the di-

mension of R λ∗
2 
λ∗

2 
represents the typical sizes of the streamwise

and spanwise vortices in those two regions. Fig. 6 ( b ), evaluated

at y w,re f = 0 . 5 δ (outer region), thus shows the size of the span-

wise vortex. At R λ∗
2 
λ∗

2 
= 0 . 5 (green), the streamwise extent is an or-

der of 0.1 δ. Also, the difference in the streamwise dimension of

R λ∗
2 
λ∗

2 
= 0 . 5 in the transitional and turbulent regions is not as sig-

nificant as the change in R u ′ u ′ . In this work, the lengthscale of the

signed swirling strength λ∗
2 

is used to set the size of the Gaussian

filter. Specifically the lengthscale of R λ∗
2 
λ∗

2 
= 0 . 05 is adopted. This

iso-level is a typical choice to extract the size of the correlation,

and has been used for example by Monty et al. [44] to identify the

size of large-scale structures when R u ′ u ′ = 0 . 05 . 

The two-point correlation R λ∗
2 
λ∗

2 
was evaluated throughout the

transitional boundary layer. Fig. 7 shows the resulting filter size σx i 

for this dataset. Unlike previous studies which assumed isotropy

of the small-scales [e.g. 24] , asymmetry of the Gaussian filter is

taken into account in the present algorithm. Owing to the statisti-

cal homogeneity of the sample dataset in the span, the filter size

is defined in 2-D anisotropic values, σx i (x, y ) with i = 1 , 2 and 3 . In

general, the determined filter size inside the boundary-layer edge

(dashed line in Fig. 7 ) increases towards the free stream at down-

stream as Re increases. The filter sizes vary up to approximately

2 L ( ≈ 0.2 δ) near the downstream end of the computational domain.

The full width at half maximum (FWHM) of the Gaussian function

is close to the spanwise cut-off wavelength used by Bernardini and

Pirozzoli [46] , which was λz = 0 . 5 δ. In contrast to the upstream

non-turbulent region, the turbulent flow ( x / L � 700) has a signifi-

ψ  
ant reduction of the filter size near the wall due to the generation

f the turbulent near-wall streaks. 

.2.2. Gaussian filter in the Cartesian coordinates 

The flow fields, especially data from numerical simulations, are

ften represented on non-uniform grids (e.g. Fig. 8 ( a ), ( b )). In or-

er to apply the Gaussian filter, non-uniformity in grid spacing and

dge handling should be taken into account. Separability of the

aussian is used to define the kernel K x i at a given position x , 

 x i (x p 
i 
, x ) = exp 

(
− (x p 

i 
− x i ) 

2 

2 σx i (x ) 2 

)
�V (x p 

i 
, x j , x k ) α(x p 

i 
, x j , x k ) C x i (x ) , 

(15)

here x p are the surrounding points within the kernel. For an

symmetric Gaussian [47] , 

x i = H(x p 
i 

− x i ) σ+ x i + H(x i − x p 
i 
) σ−x i (16)

here H is the Heaviside function. Note that σ z is symmetric in

he sample dataset, σz = σ+ z = σ−z . In equation (15) , the cell vol-

me, �V ( ≡�x �y �z ), takes into account the non-uniform grid

pacing. For edge handling, the coefficient α is set to either unity

nside the flow domain or zero outside the domain. The coefficient

 x i is determined to ensure that the Gaussian kernel, K x i , is appro-

riately normalized to unity, 
∑ 

x 
p 
i 

K x i (x 
p 
i 
, x ) = 1 . 

The Gaussian smoothing is completed by taking the convolution

f the instantaneous flow field and the kernel. For a general quan-

ity ψ , the output of the linear spatial filter, or the filtered quantitŷ 

 , is given by ̂ 

 ≡ ( ( ψ ∗ K z ) ∗ K y ) ∗ K x , (17)
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Fig. 7. Size of the Gaussian filter measured by R λ∗
2 
λ∗

2 
= 0 . 05 . ( a ) Downstream size σ+ x , ( b ) upstream size σ−x , ( c ) upward size σ+ y , ( d ) downward size σ−y and ( e ) symmetric 

spanwise size σ ± z . The boundary-layer thickness δ is marked by the dashed line. 

Fig. 8. Sketch of the two-dimensional Gaussian kernel. ( a ) Cross-stream plane in Cartesian coordinates; ( b ) side view with the wavy-shaped immersed body (gray); ( c ) 

cylindrical coordinates. 
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n  
here ∗ denotes the convolution operator, A ∗ B = 

∑ 

x 
p 
i 

A (x i ) B (x 
p 
i 

−
 i ) . Because the linear spatial filter is commutative, the order of 1-

 convolutions does not affect the outcome. Unlike to the multi-

imensional Gaussian filter which requires nested loops in or-

er to perform the convolution at a given position, the present

eparated filter achieves filtering using three independent loops.

here the kernel size is large, for example near the edge of the

oundary layer in the present configuration, the use of three one-

imensional Gaussian filters can greatly increase the computation

fficiency relative to a single three-dimensional kernel. 

.2.3. Gaussian filter in cylindrical coordinates 

A Gaussian filter that adopts multiple one-dimensional ker-

els is not adequate in cylindrical coordinates. For a dataset in

ylindrical coordinates, the Gaussian function cannot be expressed

long radial r grid lines near the pole ( Fig. 8 ( c )). Therefore, a two-

imensional Gaussian filter is adopted in the radial-azimuthal ( r,

) plane in cylindrical coordinates, despite being computationally
ess efficient, 

 rθ (r p , θ p ; x ) = exp 

(
− (r p − r) 2 

2 σr (x ) 2 
− (r p θ p − rθ ) 2 

2 σθ (x ) 2 

)
�V (x, r p , θ p ) α(x, r p , θ p ) C rθ (x ) , (18) 

here the position vector x ≡ ( x, r, θ ). In the axial direction, the

symmetric Gaussian function is used. Definitions of all other

uantities are identical to the explanation in Section 3.2.2 . The

onvolution of the flow field and the Gaussian kernel is, ̂ 

 = ( ( ψ ∗ K rθ ) ∗ K x ) . (19) 

llocating memory for large 2-D kernel and computing the convo-

ution reduces computational efficiency. However, the application

f the 2-D Gaussian filter on the original grid is more accurate than

nterpolation onto a Cartesian grid and filtering in three consecu-

ive directions. 

.2.4. Calibration of the filtered perturbation field 

The spatial filter reduces the magnitude of the fluctuating sig-

al when eliminating high-frequency modes. To compensate for
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Fig. 9. Streamwise velocity fluctuations in the cross-flow plane at x/L = 700 and t = t 0 + 500 L/U ∞ . ( a ) Fluctuations relative to the non-turbulent mean u ′ ′ / U ∞ , ( b ) fluctuations 

relative to the turbulent mean u ′ / U ∞ , ( c ) filtered turbulent fluctuations after calibration ˜ u ′ /U ∞ . Black line denotes (solid) 0.1 and (dashed) −0 . 1 . Green solid line marks the 

T/NT interface. ( d ) The calibration function f ̂ u ′ / u ′ at x/L = 700 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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this attenuation, the filtered signal ̂ ψ should be calibrated. Note

that the calibrated signal will only be used to identify the large-

scale motions, and is not used to compute any flow statistics; these

are evaluated based on the original unfiltered fields only. The cali-

brated filtered field is given by, ˜ ψ ≡ ̂ ψ / f ̂ ψ /ψ 

, (20)

where the correction factor f ̂ ψ /ψ 

(x ) ≡ ̂ ψ 

rms /ψ 

rms is inhomoge-

neous in space due to the inhomogeneity of the filter size. The cal-

ibrated filtered field 

˜ ψ thus preserves the same root-mean-square

level of the original fluctuation field ψ . Since filtering is only ap-

plied in the turbulent region, this calibration is not relevant to the

non-turbulent flow where ˜ ψ = 

ˆ ψ = ψ . 

An example of the small-scale filtering of u -fluctuations in the

transitional boundary layer is shown in Fig. 9 . In the cross-stream

plane, the non-turbulent perturbations u ′ ′ ( Fig. 9 ( a )) reflect the

shape of laminar Klebanoff streaks outside of the T/NT interface

(green line). In contrast, the fluctuations of the turbulent system

u ′ ( Fig. 9 ( b )) include small-scale feature within the local intermit-

tent regions of turbulence. These small-scales lead to noise in the

detection of large-scale motions [32] . After applying the filtering

and calibration, Fig. 9 ( c ) shows the shape of turbulent u ′ -structures

which retains the large-scale features only. The calibration function

f ̂ u ′ / u ′ is provided in Fig. 9 ( d ). 

3.3. Step 3: extraction of cores 

The final step is to identify the spatial coordinates of the flow

structure of interest within the filtered field. The core of the struc-

ture is detected by identifying the local extrema of the field and

establishing their connectivity [22] . Connectivity in the stream-

wise direction leads to a one-dimensional skeleton, and connec-

tivity in the streamwise-vertical plane leads to a two-dimensional

surface that bisects the object. The latter is important, for example,

when evaluating the intersection of large-scale motions with wall-

parallel planes or their extent at various heights in wall-bounded
ows [48] . Tracking in time can be performed by cross-correlating

uccessive flow fields. 

The spatial coordinates of the cores of positive and negative

tructures are denoted x s + ̃  ψ 

and x s − ˜ ψ 

, 

 

s 

+ ̃  ψ 

= x if ∂ ̃  ψ /∂ z = ∂ ̃  ψ /∂ y = 0 and 

˜ ψ > ψ th (21)

 

s 

− ˜ ψ 

= x if ∂ ̃  ψ /∂ z = ∂ ̃  ψ /∂ y = 0 and 

˜ ψ < −ψ th . (22)

he superscript s is a unique identifier of each structure, and the

hreshold ψ th facilitates isolating high-amplitude events. Similarly,

he two-dimensional surface bisecting the structure is defined by

 

p 

+ ̃  ψ 

and x 
p 

− ˜ ψ 

, where 

 

p 

+ ̃  ψ 

= x if ∂ ̃  ψ /∂z = 0 and 

˜ ψ > ψ th (23)

 

p 

− ˜ ψ 

= x if ∂ ̃  ψ /∂z = 0 and 

˜ ψ < −ψ th . (24)

An example of the detection of large-scale u -structures is

hown in Fig. 10 – see also movie 2 for the temporal evolution.

n this case, the quantity ˜ ψ in equations (21) –(24) is ˜ u ′ for the

urbulent system and u ′′ (≡ ˜ u ′′ ) for the non-turbulent region, and

he threshold is u th = 10% of the free-stream speed U ∞ 

. The orig-

nal field ( Fig. 10 ( a )) clearly shows the pre-transitional Klebanoff

treaks, localized turbulent patches near the spanwise edges of the

omain, and a fully turbulent flow downstream. The filtered field

n the second panel excludes the small fluctuations while preserv-

ng the large-scale features. The detected cores of the streaks are

hown in Fig. 10 ( c ), with low- and high-speed structures distin-

uished by the colormap. The streamwise connectivity shows the

longated spines of the Klebanoff distortions in the laminar bound-

ry layer, and of the large-scale motions in the turbulent flow. The

ormer are very long in the streamwise direction and reside away

rom the wall (dark color), while the streaky structures in the tur-

ulent region are relatively short and reside nearer to the wall

light color). The current algorithm thus detects both the outer
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Fig. 10. Detection of large-scale streaks in transitional boundary layer at t = t 0 + 500 L/U ∞ . Isosurfaces of ( a ) streamwise velocity fluctuations u ′ � + u ′′ (1 − �) = ±u th ; ( b ) 

filtered fluctuations ˜ u ′ � + u ′′ (1 − �) = ±u th ; ( c ) detected cores x s ±u ′ ; ( d ) detected surfaces x p ±u ′ . The adopted threshold is u th = 0 . 1 U ∞ . Green solid line marks the T/NT 

interface on the wall. Transparent isosurfaces are structures in the non-turbulent region, � = 0 .(For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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arge-scales and the near-wall streaks simultaneously. Fig. 10 ( d )

hows the surface bisecting the streaks along their spanwise max-

ma, x p . Unlike the core x s , this representation also includes the

onnectivity in the wall-normal direction, and shows that large-

cale u -structures identified by u th = 0 . 1 U ∞ 

are generally attached

o the wall. 

Other flow structures of interest include streamwise vorticity,

treamwise vortices, and structures associated with sweep and

jection events [25,29,31] . Fig. 11 shows a coherence of the to-

al streamwise vorticity, which corresponds to ψ = ω x in equa-

ions (21–22) – see also movie 3 for the temporal evolution. Un-

ike the original field in the top panel, where the coherent stream-

ise vorticity is difficult to discern, the detected core in Fig. 11 ( c )

learly distinguishes the location and shape of these structures.

he lengths of ω x events are generally shorter than of u ′ (com-

are Figs. 11 ( c ) and 10 ( c )). In the laminar boundary layer, stream-

ise vorticity is negligible because the dominant perturbations are

lebanoff steaks, or wall-normal vorticity [26,49] . The secondary

nstability of Klebanoff streaks, however, involves the generation of

treamwise vorticity [50] . The cores of ω x in the transition region

hus have a meandering, helical appearance. In the fully turbulent

oundary layer, the streamwise-vorticity structures are adjacent in

he span to the cores of u ′ and have a similar appearance. 

Sweep and ejection motions have a significant role in the pro-

uction of turbulent kinetic energy through their contribution to

he Reynold shear stress. Their organization in sweep–ejection

airs and a vortex cluster was reported by Lozano-Durán et al.

29] . The current algorithm can be used to identify these flow

c

tructures, and can distinguish ejections (Q2) and sweeps (Q4) us-

ng the following expression, 

 

′ = 

{ 

u 

′ v ′ if u 

′ < 0 and v ′ > 0 (Q2; ejection) 
−u 

′ v ′ if u 

′ > 0 and v ′ < 0 (Q4; sweep) 
0 otherwise . 

(25) 

 similar definition of Q 

′ ′ in the non-turbulent region uses u ′ ′ 
nd v ′ ′ . Both Q 

′ and Q 

′ ′ are negative for ejections and positive for

weeps. The cores of these structures are identified in Fig. 12 –

ee also movie 4 for the temporal evolution. The adopted threshold

as Q th = 0 . 002 U 

2 ∞ 

. Inside the young turbulent spots in the tran-

ition zone, and also within the tail of the fully turbulent bound-

ry layer, the ejection motions are more prevalent. Within the fully

urbulent flow, streamwise coherence in the Reynolds shear stress

vents exceeds 2 δ (or ∼ 20 L at the exit plane). The spectral signa-

ure of these structures is a peak in the premultiplied co-spectra

f u ′ and v ′ , which was reported for example by Balakumar and

drian [3] . 

.4. Analysis of the detected structures 

The present algorithm can be exploited to characterize the de-

ected structures, for instance their sizes, advection velocities and

ntensities. Here, the coherent Reynolds shear stress events in the

ransitional boundary layer will be examined. As noted in §3.2 , the

riginal unfiltered fields are used in the analysis, for example to

ompute flow statistics, within the detected structures. 
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Fig. 11. Detection of the large-scale streamwise vorticity in transitional boundary layer at t = t 0 + 500 L/U ∞ . Isosurfaces of ( a ) streamwise vorticity ω x = ±ω x ,th ; ( b ) filtered 

streamwise vorticity; ( c ) the position of detected cores x s + ω x (red) and x s −ω x (blue). The adopted threshold is ω x,th = 0 . 1 U ∞ /L . Green solid line marks the T/NT interface on 

the wall. Transparent isosurfaces are structures in the non-turbulent region, � = 0 . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 12. Detection of large-scale (red) sweep and (blue) ejection events in transitional boundary layer at t = t 0 + 500 L/U ∞ . Isosurfaces of ( a ) original fluctuation Q ′ � + Q ′′ (1 −
�) = ±Q th ; ( b ) filtered fluctuation ̃  Q ′ � + Q ′′ (1 − �) = ±Q th ; ( c ) the position of detected cores, x s 

Q ′ . The adopted threshold is Q th = ±0 . 001 U 2 ∞ . Green solid line marks the T/NT 

interface on the wall. Transparent isosurfaces are structures in the non-turbulent region, � = 0 . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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3.4.1. Population trends of the large-scale sweeps and ejections 

The procedure which led to Fig. 12 ( c ) was repeated for the en-

tire database of flow fields, and population trends of turbulent

sweeps and ejections were evaluated. Two properties were con-

sidered: the strength 〈 u ′ v ′ 〉 c and the length l x i of the structures

(see schematic in the inset of Fig. 13 ( a )). The strength is evaluated

as the average of the shear stress along the core of the structure,
 t  
 u ′ v ′ 〉 c ≡ 1 
N 

∑ N 
n =1 u 

′ v ′ (x s 
Q2(4) 

(n )) , where N is the number of points

long the core. The lengths l x and l y denote the extent of the struc-

ure in the streamwise and the wall-normal directions. The sam-

les were binned into x and y based on the most upstream posi-

ion of each structure, marked by the green square in the inset. 

Fig. 13 shows the joint p.d.f. of the wall-normal distance and

he averaged magnitude of sweeps and ejections along the core
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Fig. 13. Joint p.d.f. of Q − core strength and wall-normal distance, P 
(〈 u ′ v ′ 〉 c , y w ), at ( a ) x/L = 700 and ( b ) x/L = 900 . (Flood) Q 2 and (line) Q 4 cores. Contour levels increase 

logarithmically. 

Fig. 14. Joint p.d.f. of Q − core size and wall-normal distance, P ( l x i , y w ) , at (i) x/L = 700 and (ii) x/L = 900 . ( a ) Streamwise length l x ; ( b ) wall-normal height l y . (Flood) Q 2 

and (line) Q 4 cores. Contour levels increase logarithmically. 
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f the structure, P 

(
y w 

, 〈 u ′ v ′ 〉 c ). Note that only structures longer

han 0.5 δ in the streamwise direction were conditionally sampled.

egardless of the streamwise position, the joint p.d.f.s have large

alues near the wall, which means the large-scale sweep/ejection

otions are more frequently wall-attached than detached. In gen-

ral, large-scale ejections exhibit a higher amplitude than sweeps,

hich is consistent with the findings from quadrant analyses that

nclude all the flow scales [28] , The only exception is in the near-

all region, where the large-scale ejections have lower population

ensity. This suggests that strong near-wall ejections are unlikely

o be associated with large scales. Comparison of Fig. 13 ( a ) and ( b )

ighlights the difference between the transitional and turbulent re-

ions of the flow. While transition onset is due to an outer instabil-

ty which starts near the free stream [26,51] , turbulence production

s in the near-wall region of the fully turbulent boundary layer. As

uch, the joint p.d.f. is shifted in Fig. 13 ( b ) towards the wall. 

Fig. 14 ( a ) shows the joint p.d.f. of the streamwise length and

he wall-normal elevation of the detected core, P ( l x , y w 

) . Consider-

ble amount of very-long events ( > 3 δ; dashed line) are observed

n the transitional region, and correspond to the Klebanoff streaks

 Fig. 14 ( a i)). In the turbulent region ( Fig. 14 ( a ii)), the streamwise

xtent of the structures is generally shortened, which is due to the

eneration of relatively shorter energetic turbulent motions. The
oint p.d.f. of the wall-normal size and elevation of the structures,

 

(
l y , y w 

)
, is shown in Fig. 14 ( b ). The majority of the population

as a shorter wall-normal extent than 0.3 δ. The green horizon-

al line in the figure marks y + w 

< 20 . The joint p.d.f. of the wall-

ttached events, below this line, peaks near l y ≈ 0.05 δ, and there-

ore the inclination angle of the structures is not large. A slight in-

rease in both l y with increasing y w 

is seen in the turbulent region

 Fig. 14 ( b ii)), although not appreciable. 

These results demonstrate the use of the structure identification

lgorithm to characterize the population of a quantity of interest.

urther analyses are possible by tracking flow structures in time-

nd performing conditional statistical sampling of the flow fields. 

.4.2. Temporal analysis of large-scale sweeps and ejections 

The time evolution of a large-scale ejection event (Q2) is shown

n Fig. 15 ( a ). The initial instance of the structure, at the arbitrary

ime origin t = t 0 (red in the figure), is wall-detached and nearly

ligned in the streamwise direction. During the downstream evolu-

ion, it elongates and exhibits a larger inclination angle. Ultimately,

he structure is divided into two downstream, at t = t 0 + 80 U ∞ 

/L

blue in the figure). Although the isosurface of u ′ v ′ (not shown)

as a complicated geometry, the detected core is much simpler and

learly shows the temporal change. 
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Fig. 15. ( a ) Example of the temporal evolution of the large-scale ejection (Q2) core with the time increment of 20 L / U ∞ . Joint p.d.f. of ( b, c ) lifetime of the sweep/ejection 

core and the wall-normal position, P ( T, y w ) ; ( d, e ) advection velocity of the core and the wall-normal position, P ( u c , y w ) . ( b, d ) 650 < x / L < 750 and ( c, e ) 850 < x / L < 950 

based on the emergence of the core. (Flood) The large-scale ejection and (line) the large-scale sweep events. Contour levels increase logarithmically. 
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Fig. 15 ( b ), ( d ) shows the joint p.d.f. of the lifetime of the large-

scale sweeps/ejections and the wall-normal position, P ( T , y w 

) . Be-

cause of the streamwise inhomogeneity of the flow, we only con-

sidered structures within the ranges 650 < x / L < 750 ( Fig. 15 ( b ))

and 850 < x / L < 950 ( Fig. 15 ( d )). The wall-normal position is rep-

resented by the geometric center of the core at the first instance

when the structure is identified, even though the wall-normal po-

sition of the core varies with downstream evolution. Note that the

initial detection of structures encompasses the formation of en-

tirely new ones or splitting of existing ones. The lifetime measures

the duration between inception and either extinction or splitting.

The result shows that most of the large-scale sweeps/ejections last

less than 10 U ∞ 

/ L . Nonetheless structures which have long lifetimes

(e.g. larger than 20 U ∞ 

/ L ) are also observed. 

Fig. 15 ( c ), ( e ) shows the joint p.d.f. of the streamwise advection

velocity of the cores ( u c ) and the wall-normal position, P ( u c , y w 

) .

To minimize statistical errors, only events with lifetimes larger

than 4 U ∞ 

/ L were considered. The advected distance was evaluated

from the coordinates of the geometric center of the core of the

structure. Sweeps have a faster advection velocity relative to ejec-

tions, which is consistent with previous effort s that evaluated the

advection velocities of the respective low- and high-speed struc-

tures [24] . 
fl  

t  

s  

p  

w

. Numerical examples 

Two additional flow configurations are examined, and the per-

ormance of the algorithm for their analysis is demonstrated. The

rst is an emergent round turbulent jet, where both the confined

ow in the nozzle and the spatially growing free jet are simulated.

he second configuration is flow in a channel with a wavy bottom

urface. 

.1. Turbulent round jet 

The algorithm was applied to data from DNS of turbulent round

et. The streamwise (or axial), radial and azimuthal positions are

enoted as x, r and θ , and the corresponding velocity components

re u x , u r and u θ ( Fig. 16 ( a )). Based on the radius of the nozzle R ,

he axial extent of the computational domain is 6 πR including the

ozzle length which is πR . The radial extent of the domain is 8 R .

he number of grid point is 1153( x ) × 513( r ) × 385( θ ). The Navier–

tokes equations are solved in cylindrical coordinates, using the al-

orithm described by Jang et al. [52] . Turbulent inflow data were

enerated from an auxiliary computation of periodic turbulent pipe

ow, at Re D ≡ (2 R ) U b /ν = 150 0 0 where U b is the bulk velocity. In

he jet simulation, the no-slip condition was applied to the nozzle

urface. A convective outflow condition was prescribed at the exit

lane of the computational domain, and all remaining boundaries

ere treated as impermeable free-slip surfaces. 
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Fig. 16. ( a ) Instantaneous visualization of the turbulent/non-turbulent (T/NT) interface in round jet at Re D = 150 0 0 . Conditionally sampled ( b ) mean streamwise velocity 

〈 u x 〉 , ( c ) streamwise stress and ( d ) Reynolds shear stress. (Solid) Turbulent and (dashed) non-turbulent events. The profiles are shown increasing values of x/R = { 0 , 5 , 10 } , 
indicated with increasing line thickness. 
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The position of the T/NT interface is shown in Fig. 16 ( a ), which

s identified using | ω| ∗
th 

= 0 . 02 throughout the laminar, transitional

nd turbulent regions of the jet. The vorticity magnitude of free

hear flows is normalized using equation (4) , and the threshold

evel is determined by the volume method [8] . Using the demar-

ated non-turbulent and turbulent regions, the conditional mean

treamwise velocities, 〈 u x 〉 NT (dashed) and 〈 u x 〉 T (solid), were eval-

ated and are plotted in Fig. 16 ( b ). Note that data is shown when

he number of samples is greater than 5% of the total. The radial

preading of the turbulent region with downstream distance is ev-

dent in the conditional mean. In agreement with previous stud-

es [e.g., 12] , mean streamwise momentum is thus transported in

he radial direction, and the amplitude of the velocity profile de-

reases downstream. Fig. 16 ( c ) and ( d ) show the streamwise and

he Reynolds shear stresses evaluated from the fluctuating veloci-

ies, relative to their conditional means. 

Turbulent large-scale u ′ x -structures which satisfy u ′ 
x,th 

= 0 . 1 U b 

ere detected and are plotted in Fig. 17 and movie 5. Relative to

he original data ( Fig. 17 ( a ), large-scale features are evident in the

ltered field ( Fig. 17 ( b )). The figure also highlights the scale growth

f these structures with downstream distance. The detected cores

 Fig. 17 ( c )) mark the local maximum of the fluctuating motion. The

adial position of the cores is largely unaffected by the jet spread-

ng within the computational domain. This observation is in agree-

ent with Fig. 16 ( c ), which shows almost similar radial position of

he maximum streamwise stress. The detected surface ( Fig. 17 ( d ))

hows the very-large radial dimension of the structure. The present

lgorithm can be adopted for future studies of the role of large tur-

ulent scales in the entrainment process and their contribution to

ow statistics near the T/NT interface. 

.2. Wavy channel 

The structure identification algorithm is applied to the turbu-

ent flow in a channel with a wavy bottom topology that in-
uces flow separation. The flow configuration is similar to the

ork by Cherukat et al. [53] . The bottom-wall undulation is a si-

usoidal function with period 2 h and amplitude 0.1 h , where h is

he averaged half-height of the channel. An orthogonal grid was

enerated using an elliptic grid generation algorithm [54] . The

omain length and width are 16 h and 2 πh , respectively, which

re larger than previous studies, in order to accurately capture

he large-scale features of the flow. The number of grid point is

025( ξ ) × 385( η) × 385( z ). The numerical solution of the Navier-

tokes equations is identical to the description in §2 . The Reynolds

umber is 3460 based on the bulk velocity U b and h . The bulk

ow was driven by the constant mass-flow-rate constraint. No-slip

onditions were applied on both the wavy (bottom) and flat (top)

alls. Periodic boundary conditions were enforced in the stream-

ise and spanwise directions. Flow statistics were collected using

veraging in the spanwise direction and time, and phase-averaging

n the streamwise direction. For the purpose of structure identi-

cation, flow fields obtained from solution of the Navier-Stokes

quations in the body-fitted grid system were interpolated onto a

artesian grid (c.f. Fig. 8 ( b )). 

Fig. 18 and movie 6 show the detected large-scale u ′ -structures.

he original data, the filtered field, and the detected cores and sur-

aces are all plotted. The cores of the large scales are properly iden-

ified over both the flat wall and the undulating surface. Similarly

o the boundary-layer flow, the streaks near the flat wall reach

ery long extent in the streamwise direction. Due to the lower-

all morphology, however, detected cores in that region are rel-

tively short. Previous studies of flow over transverse ribs have

hown that the outer flow becomes more energetic [55] , and sim-

larly in the present configuration very-long low-speed structure

re observed above the wavy surface. 

The black solid line in Fig. 18 ( c ) marks the edge of the sepa-

ation zone, which varies in the span beneath the high- and low-

peed streaks. High-speed structures locally delay separation, while

ow-speed ones promote its onset. [56,57] observed the same be-
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Fig. 17. Turbulent u ′ x structures extracted from an instantaneous realization of turbulent round jet. ( a ) Streamwise velocity fluctuation with u ′ x , th = 0 . 1 U b ; ( b ) filtered fluctu- 

ation at ̂ u ′ x = ̂

 u ′ x , th ; ( c ) detected cores x s ±u ′ ; and ( d ) detected surface x p ±u ′ with | ω| ∗
th 

= 0 . 02 . Only the left half of the domain is visualized for clarity. Red and blue are hight- 

and low-speed structures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Detected u ′ structures extracted from an instantaneous realization of flow in a wavy channel. ( a ) Streamwise velocity fluctuation at u ′ 
th 

= 0 . 1 U b ; ( b ) filtered fluctuation 

at ̂ u ′ = ̂

 u ′ th ; ( c ) detected cores x s ±u ′ ; ( d ) detected surface x p ±u ′ . Red and blue are high- and low-speed structures. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

5

 

havior in simulations of the flow in a compressor passage. The cur-

rent algorithm can be used to quantify such observations, and to

correlate the changes in separation with the overlying flow struc-
tures. s  

w  

s  

a  

g  
. Summary 

A detection and tracking algorithm was developed for large-

cale turbulent structures in transitional and intermittent flows

ith a turbulent/non-turbulent (T/NT) interface. Direct numerical

imulation (DNS) datasets of transitional boundary layer, round jet

nd flow in a wavy channel were examined to introduce the al-

orithm and demonstrate its performance. The approach also nat-
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rally facilitates conditional sampling of flow statistics. An impor-

ant feature of this algorithm is that it can be applied to flows with

uxtaposition of laminar and turbulent regions, to identify coherent

tructures in physical space within each region. It is also applicable

o inhomogeneous flows with any restriction, provided that suffi-

ient samples are available to ensure convergence of flow statistics.

The algorithm consists of three elements. The first step is the

valuation of conditional statistics within the non-turbulent and

urbulent regions. The T/NT discrimination is performed using a

ormalized vorticity magnitude, and our proposed normalization is

pplicable throughout transitional flows. The second step is elim-

nating the small-scale motions using anisotropic Gaussian filter.

he filter size is determined using the typical dimension of the

mall-scale flow features, which is obtained from the conditional

wo-point correlation of the vortical strengths. The magnitude of

he filtered field is normalized by the ratio of the r.m.s. levels be-

ween the filtered and original fields. The last step of the algo-

ithm is to detect the cores of the structures using the local ex-

rema in the field. Extraction of the simple geometry from the tur-

ulent field facilitates the statistical analysis and tracking of the

tructures in time. As an example, the instantaneous flow fields of

 transitional boundary layer were analyzed. The identification of

arge-scale coherent streamwise velocity perturbations, streamwise

orticity, and sweep/ejection motions were all demonstrated. Simi-

ar analyses were performed for a turbulent round jet and the flow

n a wavy channel. 

The present algorithm enables the study of the spatiotemporal

volution of flow structures. Combined with conditional sampling

echniques, it can be used to establish the contribution of these

tructures to the dynamics. In addition to data from eddy resolv-

ng simulations, the algorithm is equally applicable to experimen-

al data, for instance from tomographic particle image velocimetry

tomo-PIV) or magnetic resonance velocimetry (MRV). 
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