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This article investigates the problem of obtaining a state-space model of the disturbance evolution that precedes
turbulent flow across aerodynamic surfaces. This problem is challenging since the flow is governed by nonlinear,
partial differential-algebraic equations for which there currently exists no efficient controller/estimator synthesis
techniques. A sequence of model approximations is employed to yield a linear, low-order state-space model, to
which standard tools of control theory can be applied. One of the novelties of this article is the application of an
algorithm that converts a system of differential-algebraic equations into one of ordinary differential equations.
This enables straightforward satisfaction of boundary conditions whilst dispensing with the need for parallel flow
approximations and velocity–vorticity transformations. The efficacy of the model is demonstrated by the
synthesis of a Kalman filter that clearly reconstructs the characteristic features of the flow, using only wall
velocity gradient information obtained from a high-fidelity nonlinear simulation.

Keywords: turbulence; nonlinear equations; partial differential equations; descriptor systems; model approxi-
mation; boundary conditions

1. Introduction

In a recent research agenda, the Advisory Council for
Aeronautics Research in Europe (ACARE) recom-
mended a 50% reduction in fuel consumption (per
passenger kilometre) of all new aircraft by the year
2020 (Argüelles et al. 2001), for obvious economic and
environmental reasons. However, it is widely accepted
that this target is unlikely to be met unless novel flow
control technologies emerge, which are capable of
manipulating the surrounding airflow to reduce the
drag force exerted on an aircraft (Gad-el-Hak 2000).
In practice, it is likely that the sensors and actuators
of such a scheme (Arthur, McKeon, Dearing,
Morrison, and Cui 2006) will be located on the aircraft
surfaces, thus necessitating the use of an observer to
estimate flow parameters away from the wall.
Knowledge of these estimates may subsequently
enable improved actuation towards a more desirable
flow-field.

In order to synthesise an observer, a model of the
system is required. In this work the system is taken to
be a boundary layer (Schlichting and Gersten 2000;
White 2003) evolving over a flat plate, as depicted in
Figure 1. The term ‘boundary layer’ simply refers to
the layer of fluid next to a bounding surface.

Here, the bounding surface is a flat plate, which can be
considered a simplified aircraft wing. At subsonic
velocities this type of flow is governed by the incom-
pressible Navier–Stokes equations:

!
@~v

@t
¼ "D~v" !~v # r~v" rpþ ~f, ð1aÞ

0 ¼ r # ~v, ð1bÞ
with initial and boundary conditions:

~vð#, 0Þ ¼ ~v0ð#Þ 8# 2 !, ð1cÞ

~vð#, tÞ ¼ ~gð#, tÞ 8ð#, tÞ 2 @!' ½0, tf ), ð1dÞ

where the velocity of the fluid is
~v : !'Rþ! R3, p :!'Rþ ! R is the pressure,
~f : !' Rþ! R3 is a vector of external forces,
~g : @!' Rþ! R3 is a vector of boundary conditions
and ~v0 2 R3 is a vector of initial velocities. The density
and viscosity of the fluid (here assumed constant) are
!, "2Rþ, respectively, and tf2Rþ is the endpoint of
the time interval. The gradient operator is denoted by
r whilst D and r# denote the Laplace and divergence
operators, respectively. The flow evolves within a
domain !*R3 with three spatial dimensions and a
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boundary @!, and #2! is a point within the domain.
Throughout this article sans serif fonts will represent
parameters used to describe the flow system, whilst
serif fonts will denote (discretised) vectors and
matrices.

The Navier–Stokes equations (1) are a coupled
system of nonlinear, partial differential-algebraic equa-
tions, for which no general controller/estimator syn-
thesis techniques currently exist. In order to simplify
analysis, the majority of researchers have focussed their
efforts upon relatively well-understood flows. A par-
ticular case that has received much attention is that of
channel flow (e.g. Hogberg, Bewley, and Henningson
2003; Baramov, Tutty, and Rogers 2004; Hoepffner,
Chevalier, Bewley, and Henningson 2005; McKernan,
Whidborne, and Papadakis 2007; Chughtai andWerner
2010), where the mean (time-averaged) flow is parallel
to the walls and fully developed in the sense that it is
invariant in the streamwise direction. A convenient
consequence of this fact is that it enables a relatively
straightforward analytic reformulation of (1) into an
equivalent system expressed in terms of the so-called
‘divergence-free’ variables of wall-normal velocity and
vorticity. These variables implicitly satisfy the incom-
pressibility constraint (1b) thus allowing the flow
dynamics, after spatial discretisation, to be described
by ordinary differential equations (ODEs), rather than
differential-algebraic equations (DAEs). Hence, the
flow can be modelled as a conventional state-space
system, rather than a descriptor (or implicit) state-space
system for which far fewer established control-theoretic
tools exist.

In contrast, the mean flow of a boundary layer is
non-parallel since it varies with distance travelled in the
streamwise direction. In an effort to recast the system
in terms of a divergence-free basis, a parallel flow
assumption is commonly employed, e.g. Hoepffner
and Brandt (2008). In this work the need for this

assumption is avoided by employing a more flexible
modelling technique that produces a state-space model
without the need for an analytical reformulation of the
governing equations. To complete the state-space
model, a disturbance model is included as well as
Direct Numerical Simulation (DNS)-based measure-
ments of the streamwise and spanwise wall shear (wall-
normal velocity gradient) at three evenly spaced
locations along the plate. Based on this model, a
time-varying Kalman filter is synthesised that produces
estimates of the in-plane velocity fields. The overall
scheme is sketched in Figure 1.

Two-dimensional control of boundary layers has
been considered (Baker, Myatt, and Christofides 2002),
as has Tollmien-Schlichting wave cancellation
(Sturzebecher and Nitsche 2003), but to the best of
the authors’ knowledge, this is the first work to
attempt flow estimation of a three-dimensional, non-
parallel and unsteady boundary layer by employing an
estimator derived from a physically based model and
using practically implementable sensors mounted in
the bounding surface. For the special case where
disturbances are time-independent, one can view per-
turbation growth within a (non-parallel) boundary
layer as a process that evolves in space, rather than in
time, and control of such a system has been considered
(Cathalifaud and Bewley 2004). However, in practical
control terms, the temporal dynamics of sensors and
actuators will likely form an important part of any
model used for controller/estimator synthesis, and so
in this article, the growth of boundary layer distur-
bances is viewed as a process that evolves in time (i.e. is
unsteady), within a fixed volume of space.

The sequence of modelling steps described in this
article, namely linearisation, spatial discretisation and
the numerical conversion of DAEs into ODEs, are very
general in nature and thus can be applied to a wide
range of fluid flow systems to obtain simple control
models.

The concept of modelling for the exclusive pur-
poses of control or estimation has yet to permeate
the mainstream fluid-mechanics community, where
research effort is typically invested in refining the
open-loop behaviour of models. Explaining ever more
complicated and subtle features of these models has
necessarily spawned a large body of complex termi-
nology and phraseology that can be discouraging to
control practitioners interested in controlling fluid
flows. Therefore, the current exposition aims to
employ and define only those fluid mechanics concepts
most relevant to obtaining a model for control or
estimation. At the same time, and for the benefit of a
fluid mechanics audience, every effort has been made
to ensure the references are as complete and the article
as self-contained as possible.

Figure 1. Sketch of the estimation problem. The observer
constructs estimates x̂ðtÞ of the true velocity perturbation
(shown in red) above the sensors, using only measurements
y(t) of the streamwise and spanwise wall shears. Note that in
realistic flows, the boundary layer interface is not as smooth
and well defined as sketched here. Available in colour online.
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This article is organised as follows. Section 2
describes the boundary layer DNS database and the
underlying physical model. Section 3 discusses the
validity of a linear approximation to the boundary
layer equations. In Section 4 the linearised system is
spatially discretised to yield a finite-dimensional
descriptor state-space model, together with a technique
for easily enforcing boundary conditions. Section 5
describes a method for converting this descriptor state-
space system into a standard state-space system, which,
in Section 6 is augmented with a disturbance model
and wall shear measurements. Based on the resulting
model, a time-varying Kalman filter is synthesised and
the velocity field estimates are presented in Section 7,
with conclusions in Section 8.

As a final note in this section, it is stressed that the
control and estimation of fluid flows poses challenging
research questions, many of which are not tackled in
this article. For example, this article does neither
address the issue of optimal location of sensors and
actuators, nor does it address the issue of guaranteeing
that controllers and estimators based on approximate
models of finite state dimension will actually perform
well on the underlying infinite-dimensional plant.
These issues are addressed, for example, in Reinschke
and Smith (2003), Naguib, Morrison, and Zaki (2010)
and Jones and Kerrigan (2010).

2. Description of the DNS database

In the present investigation data is obtained from a
boundary layer DNS (Zaki and Durbin 2005, 2006).
The domain extends 525$0, 40$0, 30$0 in the streamwise
(x), wall-normal (y) and spanwise (z) directions, where
$0¼ 1 length unit is a reference boundary layer thick-
ness (defined as the height at which the mean
streamwise velocity is 99% of the free-stream velocity)
at an inlet location marked by the origin of the
Cartesian coordinate system in Figure 2. Note that
this is some distance away from the leading edge. The
data were generated by spatially discretising (1) using a
central, second-order finite-volume method on a stag-
gered grid of 1798' 194' 194 nodes in x, y and z, and
advancing the resulting system in time by using Adams-
Bashforth, Crank-Nicolson and implicit Euler schemes
for the convective, viscous and pressure terms, respec-
tively (Rosenfeld, Kwak, and Vinokur 1991). In total,
1201 snapshots of the streamwise, wall-normal and
spanwise velocity components were available at each
grid point, separated by a sampling period of Ts¼ 2
(nondimensional time units). The available fields
spanned a time interval required by a fluid particle to
travel a total distance of 2400$0 at the free-stream
velocity U1. A snapshot of the DNS data is shown in

Figure 3 and depicts three planes parallel to the wall.
The lower planes are inside the boundary layer whilst
the uppermost is in the free-stream. The contours depict
velocity perturbations in the streamwise direction. The
flow is initially laminar and characterised by long
streamwise perturbations, or ‘streaks’, that are initiated
by disturbances in the free-stream penetrating the
boundary layer (Zaki and Saha 2009). The streaks
grow in magnitude and develop secondary instabilities
(Vaughan and Zaki 2011) that lead to localised break-
down into turbulent spots, with the spots merging to
form a fully-turbulent boundary layer. Transition to
turbulence via this mechanism is known as ‘bypass’
transition since, for moderate sizes of disturbances, the
Tollmien-Schlichting (‘modal’) wave development
(Sturzebecher and Nitsche 2003) is bypassed. This
process can lead to the transient growth phenomenon,
explained in the next section, as opposed to the
exponential growth of Tollmien–Schlichting waves.

Laminar-to-turbulent transition is accompanied by
a large increase in skin friction. Therefore, the key to
devising control strategies to suppress this phenome-
non lies in understanding the streak dynamics.
Fortunately, this transition mechanism can be
explained by a linear model, as explained in the next
section. Note that since the streaks are confined to the
boundary layer, for the purposes of drag reduction it is
likely that only the velocity estimates in the near-wall
region need be accurate.

3. Transient growth and linearisation

Transition to turbulence has traditionally been investi-
gated by linearising the flow system around an equilib-
rium and inspecting the eigenvalues of the linearised
system. However, the predictions of this hydrodynamic
stability theory are well known to contradict physical
experiments (Butler and Farrell 1992), with the latter
often displaying instability (turbulence) despite the

Figure 2. Sketch of the computational domain and coordi-
nate system. Reprinted with permission from Naguib et al.
(2010). Copyright 2010, American Institute of Physics.

1312 B.L. Jones et al.

D
ow

nl
oa

de
d 

by
 [ 

] a
t 0

8:
07

 1
4 

O
ct

ob
er

 2
01

2 



eigenvalues of the linearised system residing in the
complex left-half-plane. In recent years, a reconciliation
of these findings has been provided by non-modal
stability theory (e.g. Butler and Farrell 1992; Trefethen,
Reddy, and Driscoll 1993; Schmid 2007), whereby the
eigenfunction alignment of the linearised flow system is
analysed. These eigenfunctions are known to by highly
nonorthogonal. Consequently, small, three-dimen-
sional perturbations to the mean flow can be amplified
by several orders of magnitude via a linear mechanism,
despite all the eigenvalues being stable. This transient
growth, if large enough, can initiate the so-called
‘bypass’ transition to turbulence.

A linear, transient growth model of the current
boundary layer is obtained as follows. The Navier–
Stokes equations (1) are first made nondimensional
by scaling all parameters by the inlet boundary layer
thickness $0 and the free-stream velocity U1.
Subsequent linearisation about a nominal mean flow
yields the following set of perturbation equations
(Aamo and Krstic 2003, p. 16):

@u

@t
¼ "u @U

@x
"U

@u

@x
" v

@U

@y
" V

@u

@y
" w

@U

@z
"W

@u

@z
" @p
@x

þ 1

R

@2u

@x2
þ @

2u

@y2
þ @

2u

@z2

! "
,

@v

@t
¼ "u @V

@x
"U

@v

@x
" v

@V

@y
" V

@v

@y
" w

@V

@z
"W

@v

@z
" @p
@y

þ 1

R

@2v

@x2
þ @

2v

@y2
þ @

2v

@z2

! "
,

@w

@t
¼ "u @W

@x
"U

@w

@x
" v

@W

@y
" V

@w

@y
" w

@W

@z
"W

@w

@z

" @p
@z
þ 1

R

@2w

@x2
þ @

2w

@y2
þ @

2w

@z2

! "
,

0 ¼ @u
@x
þ @v
@y
þ @w
@z

, ð2Þ

where R :¼U1$0/% is the Reynolds number, % :¼"/! is
the kinematic viscosity of the fluid, U, V and W are the
average streamwise, wall-normal and spanwise veloc-
ities, respectively, whilst u, v, w and p are the
corresponding perturbation velocities and pressure.
For clarity, the spatial and temporal dependence of
each of the variables is not shown here, but it should be
noted that u, v, w and p are each real-valued functions
of x, y, z and t, whereas the mean-flow velocities are
real valued functions of x, y and z, only. Since the
system of interest is the transient growth region of a
laminar, flat-plate boundary layer subject to zero
streamwise pressure gradient, the following simplifying
assumptions can be employed:

. Two-dimensional mean flow, i.e. W, @U
@z ,

@V
@z ,

@W
@z ¼ 0.

. Negligible streamwise pressure gradient, i.e.
@p
@x + 0.

. Negligible second-order streamwise velocity
gradients, i.e. @

2u
@x2,

@2v
@x2,

@2w
@x2 + 0.

Note that the second and third assumptions are valid
since the streamwise variation of the streaky distur-
bances is much smaller than in the wall-normal and
spanwise directions. Under these assumptions, the
system (2) reduces to:

@u

@t
¼"u@U

@x
"U

@u

@x
" v

@U

@y
"V

@u

@y
þ 1

R

@2u

@y2
þ @

2u

@z2

! "
,

@v

@t
¼"u@V

@x
"U

@v

@x
" v

@V

@y
"V

@v

@y
" @p
@y
þ 1

R

@2v

@y2
þ @

2v

@z2

! "
,

@w

@t
¼"U @w

@x
"V

@w

@y
" @p
@z
þ 1

R

@2w

@y2
þ @

2w

@z2

! "
,

0¼ @u
@x
þ @v
@y
þ @w
@z

, ð3Þ

Figure 3. DNS snapshot. The flow is from left to right. Shaded regions represent streamwise velocity perturbations at three
different heights above the wall. The lower two planes are within the boundary layer whilst the upper plane is in the free-stream.
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where the mean-flow velocities U, V are now func-
tions of x, y only. The interested reader may wish
to compare (3) with the linearised equations
obtained for channel flow (Aamo and Krstic 2003,
p. 21). For boundary conditions of (3), the fol-
lowing are assumed (Andersson, Berggren, and
Henningson 1999):

uðx, 0, z, tÞ ¼ 0, vðx, 0, z, tÞ ¼ 0,

wðx, 0, z, tÞ ¼ 0, uðx, ymax, z, tÞ ¼ 0,

pðx, ymax, z, tÞ ¼ 0, wðx, ymax, z, tÞ ¼ 0, ð4aÞ

where ymax!1, although in practice this is set to a
large but finite value. In a realistic estimation problem,
the initial condition of the flow will be unknown, in
which case it is assumed to be zero:

uðx, y, z, 0Þ, vðx, y, z, 0Þ, wðx, y, z, 0Þ, pðx, y, z, 0Þ ¼ 0:

ð4bÞ

The equations in (3) are known as the Linearised
Boundary Region Equations (LBRE) (Leib,
Wundrow, and Goldstein 1999), and have been
shown to accurately predict the evolution of streaky
boundary layer disturbances in response to external
forcing.

The mean flow quantities U and V in (3) are
computed by solving the Blasius equation for F(&) and
its derivatives:

2F000ð&Þ þ Fð&ÞF00ð&Þ ¼ 0, ð5aÞ

where & :¼ y(%x/U1)"1/2, F0ð&Þ :¼ dFð&Þ
d& and (5a) has the

boundary conditions:

Fð0Þ ¼ F0ð0Þ ¼ 0, F0ð&Þ! 1 as &!1: ð5bÞ

The Blasius equation (5a) is a nonlinear ODE that
can be solved in a number of different ways. The
most straightforward is via numerical integration
from the initial conditions in (5b) and the extra
initial condition F00(0)+ 0.332 (Boyd 1999). The mean
velocities and their derivatives were then calculated as
follows:

Uðx, yÞ ¼ F0ð&Þ,

Vðx, yÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
%

U1x

r
&F0ð&Þ " Fð&Þð Þ,

@Uðx, yÞ
@x

¼ " &

2x
F00ð&Þ,

@Vðx, yÞ
@x

¼ " 1

4x3
2

ffiffiffiffiffiffiffiffi
%

U1

r
&2F00ð&Þ þ &F0ð&Þ " Fð&Þ
$ %

,

@Uðx, yÞ
@y

¼
ffiffiffiffiffiffiffiffi
U1
%x

r
F00ð&Þ,

@Vðx, yÞ
@y

¼ &

2x
F00ð&Þ: ð5cÞ

The streamwise region of validity for the linear model
can be deduced from the DNS data by studying the
downstream evolution of the kinetic energy of the u
perturbations. Figure 4 shows the streamwise evolu-
tion of the mean-square u perturbations at a height
above the wall of y¼ 0.69, corresponding to the wall-
normal location of maximum disturbance energy.
Linear (algebraic) growth appears for 20~x~60
(Naguib et al. 2010).

4. Spatial discretisation

The set of equations (3) represents a system of linear,
partial differential-algebraic equations. These can be
approximated by a finite dimensional system by spatial
discretisation in the x, y and z directions.

4.1 Spanwise discretisation

Referring to Figure 3, since the flow is periodic in the
spanwise direction, the Fourier transform can be
employed as follows:

uðx, y, z, tÞ + R
XNz"1

nz¼0
~uðx, y, tÞei'z

 !

, ð6Þ

where i :¼
ffiffiffiffiffiffiffi
"1
p

, nz is the harmonic number,
' :¼ 2(nz/Lz is a wavenumber, Lz is the wavelength in
the spanwise direction and Nz is finite and represents
the truncation of the series. Similar expressions are
obtained for the remaining perturbation variables.

Figure 4. Mean-square streamwise velocity perturbations
versus x, for y¼ 0.69. Linear growth occurs in the region
20/ x/ 60. Recall that x(0) corresponds to the origin of the
axes in Figure 2.
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Substituting these into (3), yields the following system
for each wavenumber ':

@~u

@t
¼"~u

@U

@x
"U

@~u

@x
" ~v

@U

@y
"V

@~u

@y
þ 1

R

@2 ~u

@y2
" '2 ~u

! "
,

@~v

@t
¼"~u

@V

@x
"U

@~v

@x
" ~v

@V

@y
"V

@~v

@y
" @p
@y
þ 1

R

@2 ~v

@y2
" '2 ~v

! "
,

@ ~w

@t
¼"U @

~w

@x
"V

@ ~w

@y
" i'pþ 1

R

@2 ~w

@y2
" '2 ~w

! "
,

0¼ @
~u

@x
þ @

~v

@y
þ i' ~w: ð7Þ

Thus, the Fourier transformed perturbation variables
~u, ~v, ~w, ~p are complex-valued functions of x, y, t, for a
given spanwise wavenumber. Since the DNS data were
available at discrete points, all Fourier coefficients
were computed using the discrete Fourier transform
(DFT). A 32-point DFT of the data revealed the
majority of the perturbation kinetic energy to be
contained in the fourth Fourier mode (nz¼ 4), corre-
sponding to a wavelength of Lz¼ 2.5 (see Naguib et al.
(2010) for further details). Thus, for the purposes of
this article, attention was restricted to a single model
with a spanwise wavenumber of '¼ 10. Note that the
use of the Fourier transform in the spanwise direction
enables separate controllers/estimators to be synthe-
sised independently of one another, based on models of
individual spanwise wavenumber.

4.2 Wall-normal discretisation

In the wall-normal direction it is advantageous to
employ a higher clustering of grid points within the
boundary layer compared to the free-stream. This
ensures that the boundary layer is adequately resolved
whilst keeping the state-dimension of the overall
system reasonably low. One method of achieving this
favourable distribution of grid points is as follows.
First, the perturbation variables are computed on a
grid of Ny Chebyshev collocation nodes:

ynych
:¼ cos

ðny " 1Þ(
Ny " 1

! "
, ny ¼ 1, . . . ,Ny : ð8aÞ

The wall-normal derivatives @
@y ,

@2

@y2 are approximated
by Chebyshev differentiation matrices Ych,Ych

2,
respectively (Weideman and Reddy 2000). Naturally,
one could construct analogous finite differencing
matrices on the same set of grid points, but spectral
differentiation (of which Chebyshev methods are an
example) are known to be more accurate for fewer grid
points (Trefethen 2000), thus helping to reduce the
state-dimension of the model.

In order to use Chebyshev differentiation matrices
for the boundary layer (3), the interval 0, y, ymax

is mapped to the canonical Chebyshev interval
"1, ych, 1. The following algebraic mapping is
employed (Hanifi, Schmid, and Henningson 1996):

yny :¼
að1þ ynych

Þ
b" ynych

, ð8bÞ

where:

a :¼ ymidymax

ymax " 2ymid

and b :¼ 1þ 2a

ymax

: ð8cÞ

This mapping is convenient as it places half the nodes
in the region 0, y, ymid. By setting ymid¼ 4 (twice the
approximate height of the boundary layer in the
transient growth region of the DNS) and ymax¼ 14, a
reasonable tradeoff is obtained between resolving the
boundary layer whilst not wasting too many points in
the free stream. Lastly, the chain rule and (8b) are used
to obtain:

@~uðx, yny , tÞ
@y

+ Y1 ~unych ðx, tÞ,
@2 ~uðx, yny , tÞ

@y2
+ Y2 ~unych ðx, tÞ,

ð8dÞ

where ~unych ðx, tÞ :¼ ~uðx, ynych
, tÞ, and:

Y1 :¼ dych
dy

Ych, Y2 :¼ d2ych

dy2
Ychþ

dych
dy

! "2

Y2
ch, ð8eÞ

with similar expressions for the other perturbation
variables. Substituting (8d) into (7) yields:

@~unych
@t
¼ "

@Unych

@x
"Unych

@

@x
" Vnych

Y1 þ
Y2 " '2

R

! "
~unych

"
@Unych

@y
~vnych ð9aÞ

@~vnych
@t
¼ "

@Vnych

@x
~unych þ

!
"Unych

@

@x
"
@Vnych

@y

" Vnych
Y1 þ

Y2 " '2

R

"
~vnych " Y1 ~pnych

ð9bÞ

@ ~wnych

@t
¼ "Unych

@

@x
" Vnych

Y1 þ
Y2 " '2

R

! "
~wnych
" i'~pnych

,

ð9cÞ

0 ¼
@~unych
@x
þ Y1 ~vnych þ i' ~wnych

, ð9dÞ

where the perturbation variables at a spanwise
wavenumber ' and at each Chebyshev node are now
complex-valued functions of x and t only. The results
presented in Section 7 employed a model with Ny¼ 15
wall-normal grid-points. It was found that using fewer
grid-points led to a significant deterioration in
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estimator accuracy, owing to the model being unable
to spatially resolve the streaks, whilst little was gained
from employing more points.

4.3 Streamwise discretisation

As was stated earlier, this work makes no attempt to
address the issue of optimal sensor location. For a
discussion of boundary layer sensor/actuator place-
ment, the reader is referred to Bagheri, Brandt, and
Henningson (2009). The present streamwise sensor
locations were chosen purely on the basis that they lay
within the transient growth region and were spaced
closely enough to resolve first-order velocity gradients
in the streamwise direction. With this in mind,
spanwise arrays of wall sensors were placed at
streamwise locations x1¼ 49, x2¼ 50 and x3¼ 51.
This separation is close to the actual resolution of the
DNS and it is worth noting that a separation of five
times the current value was tested with only a modest
resulting degradation in the Kalman Filter estimates of
Section 7. A semi-staggered grid was used to evaluate
the velocities at these streamwise locations, whilst
pressures were resolved at intermediate spacings
x12¼ 49.5 and x23¼ 50.5. This separation of the
velocity and pressure grids helped prevent
unphysical oscillations in either field (Ferziger and
Perić 1997, p. 158). Adopting the notation ~ux1, nych ðtÞ :¼
~uðx1, ynych

, tÞ etc., the following three-point finite-
differencing scheme was employed to approximate
the (first-order) streamwise derivative terms in (19–21):

@~ux1, nych ðtÞ
@x

+ 1

2Dx
"3~ux1, nych þ 4~ux2, nych " ~ux3, nych

& '
,

ð10aÞ

@~ux2, nych ðtÞ
@x

+ 1

2Dx
"~ux1, nych þ ~ux3, nych

& '
, ð10bÞ

@~ux3, nych ðtÞ
@x

+ 1

2Dx
~ux1, nych " 4~ux2, nych þ 3~ux3, nych

& '
,

ð10cÞ

where Dx¼ 1 is the separation between the streamwise
locations. Similar expressions were obtained for the
other perturbation velocities. The streamwise deriva-
tive term in the divergence constraint (9d) was
approximated at the pressure nodes as follows:

@~ux12, nych ðtÞ
@x

+ 1

Dx
"~ux1, nych þ ~ux2, nych

& '
, ð10dÞ

@~ux23, nych ðtÞ
@x

+ 1

Dx
"~ux2, nych þ ~ux3, nych

& '
: ð10eÞ

Substituting these into (9) yields the finite-dimensional
system of ordinary differential and algebraic equations
(11), where xD2Cm is the state vector, m¼ 11Ny,
A#,# 2 CNy'Ny are the submatrices of ADnoBCs (defined in
the appendix), E#,# :¼ INy are the submatrices of EDnoBCs

(where I is the identity matrix), 0 is a matrix of zeros
and all other unmarked entries are zeros. The subscript
‘D’ denotes vectors and matrices associated with a
descriptor state-space system, while the subscript
‘noBCs’ indicates that boundary conditions (4) have
yet to be satisfied.

Enforcing these boundary conditions is straight-
forward and amounts to modifying the relevant rows
of (11). For example, to enforce the condition
~uðx1, ymax, tÞ ¼ 0, the top rows of E1,1, A1,1, A1,2, A1,5

and A1,9 are set to zero, except for the (1, 1) element of
A1,1 (corresponding to ~ux1, 1chðtÞ), which is set equal to
unity. This ease of enforcing boundary conditions is

E1,1

E2,2

E3,3

0

E5,5

E6,6

E7,7

0

E9,9

E10,10

E11,11

2

66666666666666666666666666666664

3

77777777777777777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EDnoBCs

d

dt

~ux1 ,nych ðtÞ

~vx1 ,nych ðtÞ

~wx1 ,nych
ðtÞ

~px12 ,nych
ðtÞ

~ux2 ,nych ðtÞ

~vx2 ,nych ðtÞ

~wx2 ,nych
ðtÞ

~px23 ,nych
ðtÞ

~ux3 ,nych ðtÞ

~vx3 ,nych ðtÞ

~wx3 ,nych
ðtÞ

2

666666666666666666666666666666664

3

777777777777777777777777777777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
xDðtÞ

¼

A1,1 A1,2 A1,5 A1,9

A2,1 A2,2 A2,4 A2,6 A2,10

A3,3 A3,4 A3,7 A3,11

A4,1 A4,2 A4,3 A4,5 A4,6 A4,7

A5,1 A5,5 A5,6 A5,9

A6,2 A6,4 A6,5 A6,6 A6,8 A6,10

A7,3 A7,4 A7,7 A7,8 A7,11

A8,1 A8,6 A8,7 A8,9

A9,1 A9,5 A9,9 A9,10

A10,2 A10,6 A10,8 A10,9 A10,10

A11,3 A11,7 A11,8 A11,11

2

66666666666666666666666666666664

3

77777777777777777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ADnoBCs

~ux1 ,nych ðtÞ

~vx1 ,nych ðtÞ

~wx1 ,nych
ðtÞ

~px12 ,nych
ðtÞ

~ux2 ,nych ðtÞ

~vx2 ,nych ðtÞ

~wx2 ,nych
ðtÞ

~px23 ,nych
ðtÞ

~ux3 ,nych ðtÞ

~vx3 ,nych ðtÞ

~wx3 ,nych
ðtÞ

2

666666666666666666666666666666664

3

777777777777777777777777777777775

ð11Þ
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one of the main benefits of the descriptor system
approach to modelling. By comparison, traditional
velocity–vorticity methods require impractical bound-
ary conditions where considerable care must be taken
in constructing wall-normal derivative operators of up
to fourth order. Unless the basis functions of these
operators each implicitly satisfies the boundary condi-
tions, the discretised system will be contaminated by
the so-called ‘spurious eigenvalues’ that typically reside
in the complex right-half-plane (Bewley and Liu 1998).

The next section describes a method for converting
the autonomous descriptor state-space system;

ED _xDðtÞ ¼ ADxDðtÞ, ð12Þ

where ED and AD are the matrices in (11) after the
inclusion of boundary conditions, into a standard
state-space system of the form _xðtÞ ¼ AxðtÞ.

5. Dealing with descriptor systems

The divergence constraint (1b) and imposition of
boundary conditions (4) causes ED to be rank deficient.
Therefore, it is not possible to obtain a standard state-
space system by simply premultiplying both sides of
(12) by ED

"1. The system (11) is an example of a
descriptor state-space system (also known as a singu-
lar, implicit or generalised state-space system), the
control and estimation of which are still an open
research field. In this section an algorithm is sum-
marised for converting (11) into a standard state-space
system (Schön, Gerdin, Glad, and Gustaffson 2003;
Gerdin 2006; Shahzad, Jones, Kerrigan, and
Constantinides 2011).

Let ED, AD2Cl'm. The pair (ED,AD) is defined as
regular if l¼m and there exists an s2C such that
det(sED"AD) 6¼ 0 (Dai 1989). Regularity of a matrix
pair ensures the transfer function of a system is well-
defined, and is easily checked using the shuffle algo-
rithm of Luenberger (1978).

Next, a result is employed that reveals how the slow
and fast subsystems of (12), containing the finite and
infinite generalised eigenvalues, respectively, can be
decoupled to yield the so-called standard form.
According to Gerdin (2006, Lemma 2.3), if the pair
(ED,AD) in (12) is regular, there exist nonsingular
matrices T,S2Cm'm such that the transformation:

TEDSS
"1 _xDðtÞ ¼ TADSS

"1xDðtÞ, ð13aÞ

gives the system in standard form:

I 0
0 N

) *
_xðtÞ
_zðtÞ

) *
¼ A 0

0 I

) *
xðtÞ
zðtÞ

) *
, ð13bÞ

where N2C(m"n)'(m"n) is nilpotent (meaning that
Ninp ¼ 0 for some inp2N), A2Cn'n, I are identity

matrices of compatible dimensions and ½xðtÞzðtÞ) ¼
S"1xDðtÞ ¼S"1xD(t). The matrices in (13),are com-
puted as follows (Gerdin 2006; Schön et al. 2003;
Shahzad et al. 2011):

(i) Compute the generalised Schur form of the
matrix pencil )ED"AD so that:

T1ð)ED " ADÞS1 ¼ )
E1 E2

0 E3

) *
þ A1 A2

0 A3

) *
, ð14Þ

where T1 and S1 are unitary matrices i.e.
T -1T1 ¼ T1T -1 ¼ I, and are not to be confused
with T and S in (13a). The generalised
eigenvalues should be sorted so that the
diagonal elements of E1 contain only non-
zero elements. Computation of the generalised
Schur form and the subsequent reordering can
be accomplished using a QZ algorithm (Golub
and Van Loan 1996).

(ii) Solve the following coupled Sylvester equation
to obtain the matrices L and R:

E1Rþ LE3 ¼ "E2, ð15aÞ

A1Rþ LA3 ¼ "A2: ð15bÞ

The solution to (14), can be obtained by
solving for L in:

A1E
"1
1 LE3A

"1
3 " L" A2 " A1E

"1
1 E2

$ %
A"13 ¼ 0, ð16aÞ

and substituting to obtain R:

R ¼ "E"11 E2 " E"11 LE3: ð16bÞ

An efficient algorithm for solving (16), is
described in Shahzad et al. (2011).

(iii) Form the matrices in (13) as follows:

T ¼
E"11 0

0 A"13

" #
I L

0 I

) *
T1, S ¼ S1

I R

0 I

) *
,

ð17aÞ

A ¼ E"11 A1, N ¼ A"13 E3: ð17bÞ

Thus, the autonomous state-space system _xðtÞ ¼ AxðtÞ
is obtained from the top row of (13b), Temporal
discretisation of the resulting system yields the follow-
ing discrete-time system:

xkþ1 ¼ "Axk, ð18Þ

where xk is the state of the system at time tk and
"A :¼ eATs , where Ts¼ 2 is the sample period. The next
section augments this system with a disturbance model
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and measurements of the velocity gradients at the wall,
to produce a system of the form

xkþ1 ¼ "Axk þ "Bwk, ð19aÞ

yk ¼ "Cxk þ "Dwk þ vk: ð19bÞ

Again, the approach will be to model in terms of the
states of the descriptor system, before transforming to
those of (18).

6. Disturbance model and wall-shear measurements

With respect to a disturbance model, it was assumed
that the states xDk

and the measurements yk of the
system were perturbed by zero-mean, Gaussian, white
noise sequences, wk and vk, with covariances Qw and
Rv, respectively. For simplicity, it was further assumed
that the noises wk and vk were uncorrelated.
Furthermore, since yk were obtained from the
DNS data, the covariance of vk was assumed to be
small and set at Rv¼ 10"5I6. A process noise
model was obtained from the DNS data as follows.
First, the state covariance matrix Q ~xD was computed
from the data:

Q ~xD :¼ 1

Nk

XNk

k¼1
~xDk

~x-Dk
, ð20aÞ

where Nk is the total number of time samples, ~xDk
is the

state at the k-th sample, the tilde represents values
obtained from (spanwise Fourier transformed) data,
and the asterisk denotes complex conjugate transpose.
In most physical applications, the number of distur-
bances entering the system is typically less than the
number of states. This was found to be the case in the

present work, as deduced from the singular-value
decomposition of Q ~xD :

Q ~xD ¼ U1U2½ ) #1

#2

) *
U1
-

U2
-

) *
, ð20bÞ

in which U12Cm'g, #12Rg'g and g is the number of
‘significant’ disturbance inputs, obtained by inspecting
the diagonal elements of #1, shown in Figure 5(a).
Based on this Figure, a disturbance model with just
two inputs was selected, i.e. g¼ 2. A disturbance input
matrix "BD 2 Cm'g was then defined as follows:

"BD :¼ U1

ffiffiffiffiffiffi
#1

p
: ð20cÞ

Note that "BD
"BD
- + Q ~xD . Of course, the question of

whether or not this was the ‘best’ disturbance model
for the purposes of control or estimation is open for
debate. The present model was chosen purely on the
grounds of convenience and the fact that it is physically
plausible. For example, it is interesting to plot the wall-
normal variation of the elements of the first column of
"BD, since this represents the ‘shape’ of the principal
disturbance entering the state. Figure 5(b) shows this
variation for the real part of the elements correspond-
ing to ~ux1, nych , ~vx1, nych and ~wx1, nych

. As expected, the
disturbances are mainly confined to the boundary
layer. The forcing term "B in (19a) was obtained from
the following;

"B
"G

) *
¼ T "BD, ð21Þ

where "G 2 Cðn"mÞ'g and T is the transformation matrix
in (13a).

With respect to measurements, the wall-normal
gradients at the wall of the streamwise and spanwise

Figure 5. (a) First 10 singular values of Q "xD , (b) wall-normal variation (real part) of the ~ux1, nych (red), ~vx1, nych (blue), and ~wx1, nych

(green) components of the first column of "BD. Available in colour online.
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velocities were used, in the sensor location planes x1, x2
and x3:

where yk2Cp, with p¼ 6, "CD 2 Cp'm, and Nych denotes
the Ny-th Chebyshev node (corresponding to the node
at the wall). The notation Y1* is to be interpreted as
‘row Ny and all columns of the matrix Y1’, and each
zero entry is a row vector of Ny zeros. The output
equation (19b),was formed as follows:

yk ¼ "CDS
xk

zk

) *
þ vk ¼ ½ "C "H)

xk

zk

) *
þ vk

¼ "Cxk þ "Dwk þ vk, ð23Þ

where "H 2 Cp'ðm"nÞ and "D :¼ " "H "G (Schön et al.
2003). Note that, although difficult to obtain experi-
mentally, wall-shear stress information was employed
in this study since this is sufficient to enable estimation
of the flow-field above the wall, at least in the linear
(transient growth) case (Bewley and Protas 2004).

Thus, with all terms in (19) defined, a discrete-time-
varying Kalman filter (Franklin, Powell, andWorkman
1997, p. 391) was synthesised for the system. Note that
this filter produces estimates x̂k, but it is straightfor-
ward to interpret these states in terms of the velocities
and pressures in x̂Dk

via the transformation:

x̂Dk
¼ S

x̂k
ẑk

) *
: ð24Þ

where S is the transformation matrix in (13a). The
results are described in the next section.

7. Results and discussion

The streamwise velocity perturbation fields above each
of the sensing locations are shown in Figure 6 for the
initial and three subsequent sample times. It should be
noted that the initial state of the estimator is zero.
Clearly, the Kalman filter, employing a low-order,
linear model of the Navier–Stokes equations, a noise
model with only two stochastic inputs, and measure-
ments obtained solely from wall shear information, is
reconstructing the characteristic streaky disturbances

within the transient growth region of the boundary
layer. It should be noted that the estimated streaks are

of approximately the correct shape, location and
magnitude, despite uncertainty in the initial conditions.
Thus, the main aim of this article is achieved.

Quantitatively, the estimates differ slightly from the
DNS data. Figures 7–9 shows the estimated versus
actual streamwise velocity components at three differ-
ent heights above the wall (and within the boundary
layer) in the central streamwise sensing plane. As is to
be expected, as distance above the wall (where the
sensors are located) increases, so too does the error
between the estimates and the DNS data.

Convergence of the Kalman filter was deduced by
studying the convergence of the variance-related
quantity kRk2,y,[0 k], where R : w-k v-k

+ ,-
! x̂Dk,y, u"

xDk,y, u , for k2 [0 Nk]. Here, x̂Dk,y, u denotes the estimate
of a streamwise velocity Fourier component at a
particular height above the wall. The quantity kRk2,y,[0
k] was defined as follows:

kRk2,y, ½0 k) :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

n¼0
x̂Dk,y, u " xDk,y, u

$ %-
x̂Dk,y, u " xDk,y, u

$ %- .
vuut :

ð25Þ

Figure 10 shows a plot of this quantity against sample
time tk as k is increased from zero to Nk¼ 1201, for the
three different heights in Figures 7–9. This plot clearly
shows that the variance of the error between estimates
and DNS data is lower closer to the wall, and also
suggests convergence for tkO1000.

It is also interesting to observe from Figures 7–9 the
presence of a delay between estimates and data that
appears to increase with height. The cause of this
apparent delay is not clear, but could pose implications
for the design of feedback controllers, since these
would need to compensate for the delay. However, it is
encouraging to observe that this delay is small close to
the wall, and so may not be of significant cause for
concern given that the actuators of any practical
scheme are most likely to be located on the wall.
Ultimately, assessing how good the estimates are

@~ux1,Nych

@y ðkÞ
@ ~wx1,Nych

@y ðkÞ
@~ux2,Nych

@y ðkÞ
@ ~wx2,Nych

@y ðkÞ
@~ux3,Nych

@y ðkÞ
@ ~wx3,Nych

@y ðkÞ

2

666666666664

3

777777777775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
yk

¼

Y1- 0 0 0 0 0 0 0 0 0 0
0 0 Y1- 0 0 0 0 0 0 0 0
0 0 0 0 Y1- 0 0 0 0 0 0
0 0 0 0 0 0 Y1- 0 0 0 0
0 0 0 0 0 0 0 0 Y1- 0 0
0 0 0 0 0 0 0 0 0 0 Y1-

2

6666664

3

7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
"CD

xDk
, ð22Þ
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Figure 6. Streamwise velocity perturbations ~ux, y at four different times. DNS data is on the left and Kalman filter estimates are
on the right. Red (blue) contours are regions of relatively high (respectively, low) streamwise velocity. Available in colour online.
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clearly depends on the model employed and the
underlying objectives for that model. With respect to
closed-loop control, given that feedback reduces the
effects of uncertainties such as plant/model mismatch,
then depending on the particular closed-loop perfor-
mance specifications, a model such as the one
employed to produce the estimates in this study
could well prove satisfactory.

It is worth stating that the quality of the estimates
is dependent on a number of modelling parameters
such as level of spatial discretisation, choice of noise
model and sample rate. With respect to the latter, the
current rate was clearly sufficient to yield estimates

that resolved the temporal streak dynamics with a fair
degree of accuracy. However, it is reasonable to
expect that sampling at a faster rate might improve
the quality of the estimates and so it would be of
interest to resample the data at a higher rate.
This would be computationally expensive, particularly
since the DNS data employed in this study for the
full nonlinear problem (including statistical conver-
gence of the turbulent region) took approximately
one week of wall-clock time on 96 processors of
the HLRB-II Supercomputer to compute. Even the
transient growth region, which is computationally
less expensive, requires significant computational

Figure 8. Real and imaginary parts of the streamwise velocity perturbations ~ux at a height above the wall of y¼ 0.35. Actual
velocity components are shown in blue, whilst estimates are shown in red. Available in colour online.

Figure 7. Real and imaginary parts of the streamwise velocity perturbations ~ux at a height above the wall of y¼ 0.23. Actual
velocity components are shown in blue, whilst estimates are shown in red. Available in colour online.
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resources to compute. This is in stark contrast with the
real-time speed at which the current Kalman filter
computes estimates.

Finally, it should be noted that in the present study
the Kalman filter employed a noise model derived
directly from the DNS data of the entire flow-field.
However, in practice it is more likely that one would
only possess a small sub-set of this data, provided by
sensor-based measurements. Future work may there-
fore attempt to construct a noise model from

measurement data alone (Odelson, Rajamani, and
Rawlings 2006; Rajamani and Rawlings 2009).

8. Conclusions

Motivated by the problem of drag reduction via flow
control, this article began with the Navier–Stokes
Equations and employed a series of modelling approx-
imations to yield a linear, low-order state-space model

Figure 10. Variance related measure versus sample time of streamwise velocity Fourier components at heights y¼ 0.69
(solid line), y¼ 0.35 (dashed line) and y¼ 0.23 (dashed dotted line).

Figure 9. Real and imaginary parts of the streamwise velocity perturbations ~ux at a height above the wall of y¼ 0.69 (streak-
centre height). Actual velocity components are shown in blue, whilst estimates are shown in red. Available in colour online.
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describing disturbance evolution within the transient
growth region of a boundary layer. Using this model,
together with DNS-based wall shear measurements, a
Kalman filter was synthesised that reproduced the
characteristic streaky disturbances that are known
precursors of turbulence, and hence increased skin-
friction drag. Such a model could easily be used for
closed-loop controller synthesis. Furthermore, it was
argued that the numerical method described in this
article, for converting a system of DAEs into an
equivalent system of ODEs, significantly reduced the
modelling burden by allowing straightforward satis-
faction of boundary conditions whilst dispensing with
the need for commonly employed parallel-flow
assumptions and velocity–vorticity transformations.

Given the complexity of the underlying system, the
limited measurements and the simplicity of both the
model and the estimator, the velocity-field estimates
were very encouraging. Future work could focus on
integrating wall actuators as part of a complete closed-
loop feedback scheme within the existing DNS of the
flow, and also deriving noise models solely from
measurement data.
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Appendix A. Submatrices of (11)

The submatrices of ADnoBCs in (11) are defined as follows:

A1,1 :¼ "
@Ux1, nych
@x

" Vx1, nych
Y1 þ

3

2Dx
Ux1, nych

þ Y2 " '2

R
,

A1,2 :¼ "
@Ux1, nych
@y

, A1,5 :¼ " 2

Dx
Ux1, nych

,

A1,9 :¼ 1

Dx
Ux1, nych

, A2,1 :¼ "
@Vx1, nych
@x

,

A2,2 :¼ "
@Vx1, nych
@y

" Vx1, nych
Y1 þ

3

2Dx
Ux1, nych

þ Y2 " '2

R
,

A2,4 :¼ "Y1, A2,6 :¼ " 2

Dx
Ux1, nych

, A2,10 :¼ 1

2Dx
Ux1, nych

,

A3,3 :¼ "Vx1, nych
Y1 þ

3

2Dx
Ux1, nych

þ Y2 " '2

R
,

A3,4 :¼ "i'I, A3,7 :¼ " 2

Dx
Ux1, nych

, A3,11 :¼ 1

2Dx
Ux1, nych

,

A4,1 :¼ " 1

Dx
I, A4,2 :¼ 1

2
Y1, A4,3 :¼ 1

2
i'I,

A4,5 :¼ 1

Dx
I, A4,6 :¼ 1

2
Y1, A4,7 :¼ 1

2
i'I,

A5,1 :¼ 1

2Dx
Ux2, nych

, A5,6 :¼ "
@Ux2, nych
@y

,

A5,5 :¼ "
@Ux2, nych
@x

" Vx2, nych
Y1 þ

Y2 " '2

R
,

A5,9 :¼ " 1

2Dx
Ux2, nych

, A6,2 :¼ 1

2Dx
Ux2, nych

,

A6,4 :¼ " 1

2
Y1, A6,5 :¼ "

@Vx2, nych
@x

,

A6,6 :¼ "
@Vy2, nych
@x

" Vx2, nych
Y1 þ

Y2 " '2

R
,
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A6,8 :¼ " 1

2
Y1, A6,10 :¼ " 1

2Dx
Ux2, nych

, A7,3 :¼ 1

2Dx
Ux2, nych

,

A7,4 :¼ " 1

2
i'I, A7,7 :¼ "Vx2, nych

Y1 þ
Y2 " '2

R
,

A7,8 :¼ " 1

2
i'I, A7,11 :¼ " 1

2Dx
Ux2, nych

, A8,1 :¼ " 1

2Dx
I,

A8,6 :¼ Y1, A8,7 :¼ i'I, A8,9 :¼ 1

2Dx
I,

A9,1 :¼ " 1

2Dx
Ux3, nych

, A9,5 :¼ 2

Dx
Ux3, nych

,

A9,9 :¼ "
@Ux3, nych
@x

" Vx3, nych
Y1 "

3

2Dx
Ux3, nych

þ Y2 " '2

R
,

A9,10 :¼ "
@Ux3, nych
@y

, A10,2 :¼ 1

2Dx
Ux3, nych

,

A10,6 :¼ 2

Dx
Ux3, nych

, A10,8 :¼ "Y1, A10,9 :¼ "
@Vx3, nych
@x

,

A10,10 :¼ "
@Vx3, nych
@y

" Vx3, nych
Y1 "

3

2Dx
Ux3, nych

þ Y2 " '2

R
,

A11,3 :¼ " 1

2Dx
Ux3, nych

, A11,7 :¼ 2

Dx
Ux3, nych

, A11,8 :¼ "i'I,

A11,11 :¼ "Vx3, nych
Y1 "

3

2Dx
Ux3, nych

þ Y2 " '2

R
:
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