
THE JOURNAL OF CHEMICAL PHYSICS 135, 024512 (2011)

The equivalence between volume averaging and method of planes
definitions of the pressure tensor at a plane
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It is shown analytically that the method of planes (MOP) [Todd, Evans, and Daivis, Phys. Rev. E
52, 1627 (1995)] and volume averaging (VA) [Cormier, Rickman, and Delph, J. Appl. Phys. 89, 99
(2001)] formulas for the local pressure tensor, Pα,y(y), where α ≡ x, y, or z, are mathematically
identical. In the case of VA, the sampling volume is taken to be an infinitely thin parallelepiped,
with an infinite lateral extent. This limit is shown to yield the MOP expression. The treatment is
extended to include the condition of mechanical equilibrium resulting from an imposed force field.
This analytical development is followed by numerical simulations. The equivalence of these two
methods is demonstrated in the context of non-equilibrium molecular dynamics (NEMD) simulations
of boundary-driven shear flow. A wall of tethered atoms is constrained to impose a normal load
and a velocity profile on the entrained central layer. The VA formula can be used to compute all
components of Pαβ (y), which offers an advantage in calculating, for example, Pxx (y) for nano-scale
pressure-driven flows in the x-direction, where deviations from the classical Poiseuille flow solution
can occur. © 2011 American Institute of Physics. [doi:10.1063/1.3605692]

I. INTRODUCTION

Stresses that are defined on an atomic distance scale can
be used to describe the physical state of inhomogeneous sys-
tems on this scale.1 Knowledge of the stress tensor varia-
tions in an atomistically inhomogeneous system can be used
to help understand its behavior under equilibrium and non-
equilibrium conditions, and suggest routes to optimise per-
formance in use. This applies to purely solid systems (e.g.,
crack tip propagation in metals,2) and liquid-solid combina-
tions such as high pressure elastohydrodynamic lubrication.3

In addition, the ability to link stress profiles to atomistic inter-
actions using non-equilibrium molecular dynamics (NEMD)
simulations offers the prospect of helping to resolve some ma-
terial science issues (such as the ones cited above). As a con-
sequence, there has been significant interest in the literature
in the formal definition of a local stress tensor.

In the bulk liquid state atomistic simulation literature, it
is usual to focus on a second order tensor (3×3) describing the
pressure, P . This is equal to the negative of the stress tensor
normally encountered in the continuum mechanics literature.
The tensor, P , is calculated using the virial formula4
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where V is a volume containing N molecules, i is the index
of the molecule, and mi is its mass. If r i is the co-ordinate
of particle, i , then r i j = r i − r j . The translational peculiar
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momentum is p
i
,

p
i
= mi (vi − u(r = r i )), (2)

where vi is the laboratory frame velocity of molecule i
and u is the local advected or “streaming” velocity at spa-
tial position r . For notational simplicity, it will be as-
sumed that the system is composed of monatomic molecules
and that the pair potential, φi j , is therefore radially symmetric.
In the above equation, the standard notation, φ′

i j ≡ dφi j/dri j ,
is used. Equation (1) is taken over a volume, V , which is as-
sumed to be much larger than the structural correlation length
in the system (typically at least 3-4 molecular diameters, σ ,
in a simple liquid). In bulk molecular simulation, V is the
volume of the simulation cell.

The virial pressure expression given in Eq. (1) is only
applicable to a homogeneous fluid, giving a single pressure
tensor for the whole domain. However, a localised pressure
definition is required for many NEMD applications where in-
homogeneous systems are considered. One suggested local
pressure tensor definition is to take each molecular term in Eq.
(1) to be the pressure tensor centered on that molecule, i.e.,
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where κ is the average volume per molecule. Compari-
son between Eqs. (1) and (3) requires that for a bulk or
homogeneous system,

P = 1

V

N∑
i=1

κ Pi . (4)

The formula in Eq. (3) could be generalised so that the local
pressure tensor in a sub-volume element or “bin” of volume,
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Vbin(R), where R is a reference vector, is

Pbin(R) = 1
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The local pressure tensor in the sub-volume involves just the i
particles found in that volume whereas the j particles include
all possible atoms within and outside the bin. The formulas
in Eqs. (3) and (5) have been shown to lead to spurious
oscillations in the pressure tensor near boundaries.5–7

The purpose of this article is to explore and compare two
now widely used statistical mechanical definitions of the local
pressure tensor in the literature which can be used to resolve
this quantity as a function of y, the distance perpendicular to
a planar wall or boundary. This is a frequently simulated ge-
ometry in NEMD simulations, and appropriate for modelling,
for example, fluid flow between solid parallel boundaries such
as Couette and pressure-driven (Poiseuille) flow. These two
methods are based either on a local volume average or an av-
erage of interactions across a plane. Section II considers the
statistical mechanics of the local pressure tensor, and the con-
sequences of applying external forces normal to the bound-
ary walls. Section III reports results of NEMD simulations of
boundary-driven Couette flow to compare these two methods,
and conclusions are made in Sec. IV.

II. THEORY

In this section, two methods for defining the local pres-
sure tensor are compared, and also the effects of an external
force profile on this analysis are considered.

A. Planar resolution of the pressure tensor

In their pioneering paper, Irving and Kirkwood (IK) de-
rived formulas for the pressure tensor at a point in space,
r , i.e., P(r).8 Two formally equivalent expressions for P(r)
were derived, one which involves an operator, Oi j , written as
a series of particle position derivatives, and another (integral)
formula where the contribution of a pair of atoms to the stress
acts at points along the straight line between them. There are
problems with implementing both of these representations for
P(r ) in any molecular simulation. If Oi j is set to 1, the IK
formula (Eq. (2) in Ref. 6) is referred to as IK1. When V is a
finite volume smaller than the simulation volume, IK1 is also
incorrect for an inhomogeneous system.

A number of alternative “local” pressure tensor formulas
have been derived since then. Using Fourier transformation
(FT) of the momentum continuity equation, Todd et al.
derived an expression for the local pressure tensor in terms
of the force and momentum transfer across a plane, which
they called the Method of Planes or “MOP.”6 An alternative
formulation using an idea originally proposed by Hardy,9 is
to compute the local stress in a sub-volume of the system.
Cormier et al.,10 derived a formula via FT based on localising
the stress in an arbitrary shaped volume, which we refer to
as the volume averaging or VA method. The VA formula

maintains much of the bulk virial pressure tensor form of
Eq. (1), while the Todd et al. formula is quite different in
its implementation.6 The relationship between these two
formulas for the case of the local pressure tensor for planar
geometry is explored in this work. Recall that the normal
or diagonal components of the pressure tensor, Pαα , where
α is a cartesian direction, represent the force per unit area
applied normal to one of the faces of a representative cubic
volume orientated along the three cartesian axes, and the
off-diagonal elements, Pαβ , represent a force applied parallel
to the surface, per unit area.

The VA formula is9–11
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where � is a volume of arbitrary shape and size which is
less than or equal to the domain size (� ≤ V ), within which
the average value of P is specified. The term, �i is equal
to unity if particle i is in this volume and �i = 0 otherwise.
The quantity, li j is the fraction of |r i j | which lies within the
averaging volume, so 0 ≤ li j ≤ 1. The volume � could be
a sphere surrounding and containing just a single molecule.
It can be seen now why the quantity Pi in Eq. (3) and the
formula in Eq. (5) do not define the local pressure tensor
of the system associated with the space immediately around
the i−th molecule or within another specified sub-volume,
as they omit the contributions of pair interactions which
cross that sub-volume. In contrast, the formula in Eq. (6) per-
mits the pressure tensor to be determined at locations in an
inhomogeneous system where there are no molecules dur-
ing the ensemble or time average process. However, the first
(kinetic) part of the local pressure tensor is given correctly by
the formulas in Eqs. (3) and (5).

For many atomic simulations of inhomogeneous systems,
it is natural to analyse the full pressure tensor as a function of
y, the cartesian component in the direction normal to a bound-
ary wall, i.e., P(x, y, z) · ny = P(y), where y defines an in-
finite xz plane at y. For this case, the � volume element in
the VA formula in Eq. (6) can be considered to be a “slice”
or “bin” of finite thickness, 	y, in the y−direction which is
bounded by two xz planes. Let there be Nk such bins, bounded
by y ≡ yk ± 	y/2, where the bin location is defined to be
at the mid-point y value, yk . The optimum magnitude of 	y
would be chosen to be large enough to obtain adequate sta-
tistical averaging in atomistic simulation, but small enough to
resolve important fine structure in the pressure tensor profile
on the atomistic scale. This means that typically 	y ≤ σ/10,
where σ is the diameter of the molecule. The local pressure
tensor is decomposed into kinetic and configurational com-
ponents, i.e., P(y) = P K (y) + PU (y), respectively. For the
kinetic component, from Eq. (6),

P K (yk) = 1
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where θ (x) is the Heaviside step function (θ (x) = 0,

x < 0, θ (x) = 1/2, x = 0 and θ (x) = 1, x > 0). A is the
cross-sectional area of the simulation domain. For the con-
figurational component, the VA formula can be written in the
following analytic form,

PU (yk) = − 1

A	y

1

2

N∑
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r i j r i j

ri j
φ′

i j (ri j )li j , (8)

where

li j = |	yk |
|yi j | , (9)

and

|	yk | =
∫ yk+	y/2

yk−	y/2
dyθ

( yi − y

yi j

)
θ
( y − y j

yi j

)
. (10)

The quantity, |	yk | is that portion of |yi j | which is contained
within bin k. If the line, yi j , passes completely through the
bin, then |	yk | = 	y, whereas if i or j (only one) is in bin
k, then |	yk | ≤ 	y. If both i or j are in the same bin, k,
then |	yk | = |yi j |. If the line yi j does not enter bin k then,
|	yk | = 0. The ratio, |	yk |/|yi j | is the fraction of that i j com-
ponent that contributes to P(yk). This means that the fraction,
|	yk |/|yi j | of the i j interaction term in the pressure tensor
formula is added to the k−th bin entry for that quantity. It
would be expected that the kinetic part of the VA pressure
tensor would be more sensitive to the magnitude of 	y, than
the configurational part. For |yi j | � 	y, the configurational
part should be essentially independent of 	y.

As the width of the volume element becomes smaller,
Eqs. (7) and (8) approach the MOP result. For example, for
PU

αy(yk) in this limit, i and j will have an inappreciable prob-
ability of being in the bin and Eq. (8) will reduce to

PU
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= −r i jφ
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ji
is the pair force of j acting

on i , and fαi j is the α−cartesian component of f
i j

. The con-
stant, c, is equal to unity when yi and y j are on different sides
of the plane, y = yk , and c = 0 otherwise. Equation (11) can
be expressed as

PU
αy(yk) = 1

4A

N∑
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N∑
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fαi j (sgn(yi − yk) + sgn(yk − y j )),

(12)
where sgn(x) = 1 for x > 0, sgn(x) = 0 for x = 0 and
sgn(x) = −1 for x < 0. A more formal proof of this result
is obtained directly from Eq. (10), which can be simplified
through the substitution, p = (yi − y)/yi j ,

|	yk |
	y

= 1

2ε

∫ a+ε

a−ε

dpθ (p)θ (1 − p), (13)

where a = (yi − yk)/yi j and ε = 	y/2yi j . Interest here is in
the limit 	y → 0. This is equivalent to ε → 0 as 	y can al-
ways be made much smaller than |yi j | as |yi j | → 0 to achieve
the ε → 0 condition. Appendix A proves that the formula in

Eq. (13) in the ε → 0 limit is

|	yk |
	y

= θ (a)θ (1 − a). (14)

Substitution of Eq. (14) in Eq. (8) gives
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(15)

This is of the same form as found in, for example, the pa-
per of Rao and Berne,12 and acts as a useful intermediate
step for the present treatment. Equation (15) indicates that
in the limit of 	y → 0, the number of particles in the bin
tends to zero, and the interaction part of the pressure tensor
on the plane is composed entirely from interactions that cross
the plane. We note in passing that the above expression for the
pressure tensor at a plane can also be derived directly from
Irving and Kirkwood’s equation (A6) found in the appendix
of Ref. 8 by averaging the stress tensor at point r over an xz
plane positioned at y (see Appendix B).

Equation (15) can be simplified further using sgn(y)
= 2θ (y) − 1 to give

PU
αy(yk) = 1

4A

N∑
i=1

N∑
j �=i

fαi j (sgn(yi − yk) + sgn(yk − y j )).

(16)
The formula in Eq. (16) is the interaction part of the MOP
expression,6 the local pressure tensor definition in terms of
the force per unit area across a plane. The VA and MOP for-
mulas for the local pressure tensor applied to planar geometry
are therefore shown to be the same, in this special limiting
case. This proof is one of the main objectives of this work.
References 5,13, and 14, for example, also consider this “me-
chanical” definition of local stress.

The equivalence between the planar bin VA and MOP
definitions of the kinetic part of the pressure tensor, P K ,
in the limit of infinitely thin bin thickness can also be
established.6, 15 From Eq. (7)

P K (yk) = 1
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Now consider the αy component of P K (yk),

P K
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In the limit, 	y → 0,16

P K
αy(yk) = 1

A

N∑
i=1

1

mi
pαi pyi δ(yi − yk). (19)

For a given time or t−dependent function, g(t), the following
delta function identity holds:

δ[g(t)] =
∑

ki

δ[t − tki ]

|ġ(tki )| , (20)

where tki is the time when particle i crosses the plane y = yk

for the ki-th time and is a root of g(t). As g(t) ≡ yi (t) − yk

then ġ(t) = ẏi − ẏk ≡ py/m for the kinetic part of the pres-
sure tensor. Let tsim be the sampling or simulation time,
and Nki be the total number of times that particle i crosses
the plane at y = yk during the simulation. On substituting
Eq. (20) in Eq. (19) and using sgn(pyi ) = pyi /|pyi |, the ki-
netic part of the pressure tensor in the MOP description is

P K
αy(yk) = 1

Atsim

∫ tsim
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N∑
i=1

pαi (t)
pyi (t)

|pyi (t)|
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(θ (tsim − tki ) − θ (−tki )) pαi (tki )

× sgn[pyi (tki )], (21)

which is the MOP definition of the kinetic part of the local
pressure tensor in the case where the Heaviside functions limit
the averaging period from 0 to tsim . There have been many
papers written using the MOP method, e.g., Refs. 17–21 and it
is now an established formula, widely used in NEMD studies.

In summary, the VA formula converges in the limit of in-
finitely thin slice to the exact MOP formulas of Eqs. (16) and
(21) for the stress across an xz plane. There are advantages
in using the VA approach in certain circumstances (as will be
discussed in Sec. III), as it enables all of the components of
the local pressure tensor to be computed, not just Pαy , which
includes y as one of the cartesian indices.

The binning (VA) and the planar crossing (MOP) proce-
dures are applicable to a range of state variables. For example,
the local number density in VA form is

ρ(yk) = 1

A	y

N∑
i=1

θ

(
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)
θ

(
yi − yk + 	y

2

)
,

(22)
and,15

ρ(yk) = 1

tsim A

N∑
i=1

Nki∑
ki=1

1

|vyi (tki )| , (23)

by the plane traversal (MOP) route,15 where vyi is the velocity
of particle i in the y−direction.

B. The effects of an external force field

Having shown the equivalence of the VA and MOP
stresses which result from interatomic forces, the follow-
ing section considers the effects of external forces. In many
numerical studies of inhomogeneous systems on the atomic
scale, an external force field is applied to the system (e.g.,

in sliding friction, crack propagation and confined lubrica-
tion). While this force is not itself formally included in the
definition of the pressure tensor,8, 22, 23 it will indirectly influ-
ence it, as the system will need to respond to the perturba-
tion, and possibly restructure, in order to achieve mechanical
equilibrium. At steady state the following condition must be
satisfied,22

∇.P(r ) + ρ(r )∇φe(r) = 0, (24)

where ρ(r ) is the particle number density at r , φe is the exter-
nal potential at point, r , and ∇φe(r ) ≡ −Fe(r ) is the external
force. In the present context, it is appropriate to consider a thin
film geometry in which the atoms in the system are subjected
to a force field which is a function of y only, then

∂ Pαy

∂y
− ρ(y)Fe

α (y) = 0, (25)

where α can be any of the three cartesian components and
Fe

α = −∂φe/∂rα , where rα is the α component of r . Integra-
tion of the expression in Eq. (25) between y1 and y2 gives

Pαy(y1) = Pαy(y2) +
∫ y1

y2

ρ(y)Fe
α (y)dy. (26)

For the case of a boundary constrained external force, it is
convenient to choose y1 to be in the middle of the system, i.e.,
y1 ≡ ym , where the magnitude of the external force is negligi-
ble, and Pαy(ym) is determined predominantly by pair interac-
tions between the neighboring molecules. It follows directly
from Eq. (26) that the quantity on the right side of Eq. (26) is
independent of y2. Let yb and yt be the bottom and top lim-
its of the particle density in the y-direction, as illustrated in
Fig. 1. These are tethered solid state atoms in this study. For
the bottom (b) part of the system or where y < ym , the pres-
sure tensor is denoted by Pb,

Pb
αy(ym) = Pb

αy(y) +
∫ ym

y
Fe

α (y′)ρ(y′)dy′

= Pb
αy(y) + 1

A

N∑
i=1

Fe
α,iθ (yi − y)θ (ym − y) ≡ G(y),

(27)

where ρ(y′) is the atomic number density at y′. The function,
G(y), should be independent of y, as will be shown to be the
case from the simulation results presented in the figures in
Sec. III. Note that, in order to achieve a physically meaning-
ful quantity, time averaging is assumed for the last term in the
above equations and corresponding terms in the equations be-
low. For the top (t) part of the system, where P ≡ Pt in this
region,

Pt
αy(ym) = Pt

αy(y) +
∫ ym

y
Fe

α (y′)ρ(y′)dy′

= Pt
αy(y) −

∫ y

ym

Fe
α (y′)ρ(y′)dy′

= Pt
αy(y) − 1

A

N∑
i=1

Fe
α,iθ (y − yi )θ (y − ym) ≡ G(y).

(28)
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FIG. 1. Schematic diagram of the NEMD simulation geometry and key pa-
rameters. The diagram was created using VMD (Ref. 31).

The imposed pressure tensor components to the top and bot-
tom walls are given by

Pe
α = limy→yb

1

A

N∑
i=1

Fe
α,iθ (yi − y)θ (ym − y)

= limy→yt − 1

A

N∑
i=1

Fe
α,iθ (y − yi )θ (y − ym), (29)

as there are no system atom-atom potential interactions cross-
ing the y−plane in the limits of y → yb and y → yt , and
hence the pressure tensor terms, Pb

αy and Pt
αy tend to zero in

these limits. This means that the sum of the external forces per
unit area across the histogram planes at yk = yb and yk = yt

are equal to the desired or “target” pressure tensor component,
as determined from the simulation boundary conditions. Also
note that from Eqs. (27) and (28),

Pe
α = limy→ym Pb

αy(y) = limy→ym Pt
αy(y), (30)

must be satisfied. The constancy of G(y) throughout the sys-
tem in the y−direction is, in fact, a restatement of Newton’s
principle of mechanical equilibrium (see, e.g., Ref. 24).

In the simulations whose results are discussed in Sec. III,
the wall atoms are tethered to lattice sites. The tethered in-
teractions themselves do not contribute (at least directly) to
P(r ) as they are one-body interactions and their contribution
to the free energy, F , is therefore independent of macroscopic
strain.25 The tethering of the wall atoms does indirectly affect
the pressure tensor, however, via the two-body LJ interaction
contribution, as this constraint affects the particle position dis-
tribution function.

III. RESULTS AND DISCUSSION

In this section, the results of NEMD simulations are re-
ported of boundary-driven shear flow under conditions com-
parable to or even more extreme than those found in typi-
cal tribological experiments.26 The principal objective is to

compare the VA and MOP formulas for the local pressure
tensor, rather than being a systematic investigation of this
model system through the various sets of parameters. A three-
dimensional model of a nanoscale atomic sample confined in
a channel between two solid walls was simulated. The chan-
nel was periodic in the streamwise, x , and spanwise, z, di-
rections, and was bounded by solid walls on either side in
the y−direction. The atoms in the system interacted via the
Lennard-Jones (LJ) potential,

φkl(r ) = 4εkl

[(σ

r

)12
−

(σ

r

)6
]

, (31)

where the indices k and l refer to the types of atoms, either en-
trained phase (e) or solid wall (w). The entrained molecules
can be in a liquid, glassy or polycrystalline state, depending
on the imposed conditions. The cross-interaction energy pa-
rameter was the usual geometric mean of the wall-wall and
entrained molecule self values, εwe = (εwwεee)1/2. For nota-
tional simplicity below, ε ≡ εee is defined. The potential pa-
rameters, σ and ε specify the interaction range and energy,
respectively. All atoms in the system had the same mass,
m. A reduced temperature, T ∗ = kB T/ε = 1, where kB is
Boltzmann’s constant, was employed, and εww = 2. The in-
teractions were truncated at r = 2.5σ . In order to convert
to real units, the LJ parameters for argon are used, where
ε/kB = 120K , and σ = 0.340 nm. The results of the calcu-
lations are given in a mixture of LJ reduced units and real
units. For pressure (stress) one LJ reduced unit is equivalent
to 42.1 MPa, one LJ reduced unit of speed is equivalent to
158 m/s, and the solid wall reduced density was typically
1.063 (≡ 1.79 g/cm3 for LJ argon).

The equations of motion and general technical proce-
dure for carrying out the calculations were essentially those of
Petravic and Harrowell (PH).27 The wall atoms were tethered
to the lattice sites with the PH anharmonic potential,

�T (r i ) = k4[r i − r0,i ]
4 + k6[r i − r0,i ]

6, (32)

where r0,i is the equilibrium lattice site of atom i . The con-
stants were, k4 = 5 × 103 and k6 = 5 × 106, in LJ units. Each
confining wall was made up of 8 FCC (100) planes, allowing
for a definable number of these layers to be thermostatted.
The outermost layers of each wall were thermostatted to take
account of the absence of an extended lattice of atoms be-
yond. As discussed by Bernardi et al., the model for the wall
can have a significant effect on the calculated properties of the
liquid part of the system.28 All wall atoms executed classical
dynamics in this study (i.e., there were no “frozen” atoms).

In the MD simulation, there were three distinct regions,
(r ), labeled 1 for the lower solid wall and 3 for the upper solid
wall. Region 2 denotes the entrained atoms between walls 1
and 3 which were free to respond to the imposed sliding and
stress from the walls. An atom was associated with a par-
ticular region by virtue of its index rather than its instanta-
neous location. The two solid layers were constrained to move
with velocities, v1 and v3, respectively, specified as input pa-
rameters. There were periodic boundary conditions in the x
(flow) and z (vorticity) directions, and y is the direction per-
pendicular to the planes of the walls bounding the fluid. The
pure sliding case, v3 ≥ 0 and v3 = −v1 was employed. The
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system was not periodic in the y direction. For a given system
size, the total force on wall atoms of regions 1 and 3 from the
other atoms in the system are denoted by Fr

1 and Fr
3, respec-

tively. The net force on region k from the other atoms in the
system is formally defined as

Fr
k =

∑
i∈Ik

Fi , (33)

where Fi is the force on particle i , and Ik is the set of
molecules assigned to region k. The instantaneous forces on
the bottom and top walls were on average equal in magni-
tude and of opposite sign. The instantaneous average force
on the walls was, FN = (Fr

y3 − Fr
y1)/2 and the instantaneous

wall pressure, PN = |FN |/A, where A is the cross-sectional
area of the MD cell in the xz plane.

The equations of motion for the central region
molecules were integrated using the half-step leap-frog
Verlet algorithm,29 which numerically integrates Newton’s
equations of motion for each molecule, r̈ i = Fi/mi , where
these quantities are the acceleration, force, and mass for
molecule i , respectively. The central region molecules are not
thermostatted nor are they subjected to an externally imposed
force or velocity field, apart from those arising through the
action of the confining walls. The time step used was 0.001 in
LJ reduced units.

A variety of equations of motion have been used to con-
trol the normal pressure in NEMD thin film simulations.30

The procedure adopted here to fix the average normal pres-
sure was to add an overdamped normal wall velocity con-
trol scheme to the PH equations of motion of the wall atoms.
Let P0 be the desired normal load pressure. Incorporating the
Nosé-Hoover (NH) thermostat, the equations of motion for
the wall atoms are

ṙ i = p
i
/mi + i x uk,x ± i yuy,

ṗ
i

= Fi − gmαm p
i
,

α̇m = (Tm − Tm,0)/Q,

uy = (PN − P0)/Q p,

(34)

where p
i

and ṙ i are the peculiar momentum and velocity
of molecule i . The time-independent normal pressure-control
damping parameter, Q p, sets the timescale of the fluctuations
in the normal pressure. The choice, Q p = P0 achieved stable
equilibration at the target normal pressure, P0. The imposed
drift velocity in the x−direction for region, k, is denoted by
uk,x , and iα is the unit vector in the α−direction. The normal
wall velocity is ±i yuy .

The heat generated during the simulation, which would
normally have been carried away from the boundary region
by an extended lattice of wall atoms, needed to be removed
from the system to prevent it heating up continuously. This
was performed by thermostatting the outer wall atoms. In
Eq. (34), the index m is used to distinguish between the two
Nosé-Hoover thermostatted regions and the remainder, which
were unthermostatted. The thermostatting region parameter,
gm is equal to 1 for a thermostatted region, and gm = 0 if the
atom i is not in the thermostatted region. The instantaneous
and desired temperatures are, Tm and Tm,0, respectively. The
target temperature, Tm,0 = 1 in LJ reduced units for the ther-

density vx(y) zy xy
(a) (b) (c) (d)

P=100 MPa; v= +/- 50 m/s

FIG. 2. (a) The normalised number density profile, ρ(y), or “density” in the
figure annotation. (b) the normalised x−velocity profile. The dots at the top
and bottom are the average x−velocity values for each solid layer, which are
seen to be the same as the imposed sliding velocity. The next two plots are
snapshot projections of the assembly of particles: (c) A snapshot of the atom
positions projected onto the zy plane, at the end of the simulation. z is hori-
zontal and y is vertical. (d) A snapshot of the atom positions projected onto
the xy plane, at the end of the simulation. x is horizontal and y is vertical. All
atoms in the system are used in these snapshot projections. Red dots (color
online) indicate wall atoms. Blue (color online) dots indicate the atoms of the
entrained region. The simulation parameters are, εw = 2, the Nosé-Hoover
thermostat was applied to the outer two layers of each wall, the normal load
was 100 MPa, the wall speeds in the x−direction were ±50 m/s, and the
target wall temperature, T ∗ = 1.

mostatted region. The time-independent NH thermostatting
parameter, Q, was the same for both thermostatted regions
and was set to 5 in LJ reduced units. Only the outer two lay-
ers of atoms in each wall were thermostatted. Note that the
velocity profile in the central region was free to adopt any
form, in response to the action of the wall velocities and the
values of other system parameters.

Figure 1 presents a schematic diagram of the simula-
tion cell and the imposed boundary conditions. The normal
pressure, Pe

y = 100 MPa and the wall sliding velocities of
±50 m/s in the x direction were used.

The separation between the sampling planes for MOP
and the thickness of the bin in VA were both set to
	y = 0.05σ . Figure 2 shows the normalised VA density pro-
file from Eq. (22), the x−velocity profile and instantaneous
snapshots of the particle positions projected onto two of the
cartesian planes, zy and xy (the shear plane). The central re-
gion can be seen to be liquid, apart from about two layers next
to the wall, where the central atoms are seen to be in registry
with the walls (“epitaxial locking”) as has been observed in
previous such simulation studies of boundary deriven flow.32

The velocity profile exhibits a linear velocity profile in most
of the liquid region, apart from near the walls where the first
few layers moved with speeds closer to those of the walls.
The velocity profile becomes somewhat noisier very close to
the walls as there are fewer entrained atoms on average in that
region. There is no shear-induced order evident in the central
region of the film. Converted to Lennard-Jones reduced units,
the global shear rate for wall sliding speeds of ±50 m/s is
less than 0.03 at this pressure, which is relatively small on a
molecular scale. In bulk NEMD simulations, reduced shear
rates in excess of ca. 1 at liquid densities are typically needed
to obtain shear-induced ordering at ambient pressures.33 Heat-
ing effects can be controlled by thermostatting the wall atoms.
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FIG. 3. The number density profiles calculated by binning or VA (continuous
curves, Eq. (22)) and MOP (symbols, Eq. (23)), for the top half of the system
only (i.e., y > ym ). Red curves indicate the wall atoms and blue curves indi-
cate the atoms in the central liquid region. The data points are normalised by
the largest density value in the entire system, ρmax . The black symbols are
the MOP data points while the continuous lines are for VA.

Figure 3 presents the density profile calculated by
Eqs. (22) and (23) for the solid wall and central regimes. Only
the top side of the system is shown, because the profile, within
statistics, is symmetric, and to aid discernment of the fine
structure. The figure demonstrates that there is no statistically
significant difference between the density profiles computed
by the two formulas, taking into account the limitations of a
finite simulation length and spatial resolution of the density
histogram.

The pressure tensor profiles are considered in Fig. 4 on-
wards, again only presenting the top half of the full profile
as they are also symmetric about y = ym . Figure 4 compares
the Pyy(y) profiles from the VA and MOP formulas. Again
there is no statistically significant difference between the two
methods. The pressure tensor decays to zero towards the outer
boundaries of the walls. Also plotted on the figure is the func-
tion, G(y), defined on the right hand sides of Eqs. (27) and
(28). This function should be independent of y to comply with
mechanical equilibrium, as it is seen to be on the figure. Note
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FIG. 4. The yy component of the pressure tensor, Pyy (y), is shown. The top
half of the system is shown. The individual kinetic energy and configurational
components, and total value of Pyy (y) are shown. The continuous lines are
for the VA approach and the symbols are for the MOP formulas. For the VA
method, the kinetic part (k) is given by Eq. (7) and the configurational part,
(u) by Eq. (8). The sum of the kinetic and configurational parts is denoted
by “t” on the figure. The corresponding formulas for the MOP method are
Eqs. (21) and (16), respectively. “G” is the G(y) function defined on the right-
hand side of Eqs. (27) and (28).
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FIG. 5. As for Fig. 4 except the xy element of the pressure tensor, and its
components are shown.

that, in the entrained region, oscillations in the separate ki-
netic and configurational parts of the pressure tensor tend to
cancel each other out, to give a constant total value. Any small
differences between MOP and VA can be attributed to statis-
tical fluctuations in the simulation, of 3×105 time steps. Also
because of the large density fluctuations in the walls, a finer
spatial resolution in the pressure tensor histograms would be
required for even better agreement and constancy of G(y) on
the figures. Other simulations carried out at an imposed nor-
mal pressure of 5000 MPa also showed that G(y) is statisti-
cally constant across the system on the scale of the figure, so
the methodology is robust and capable of investigating high
pressure conditions typical of elastohydrodynamic lubrication
and those even more extreme.

The pressure tensor element Pxy profile is given in
Fig. 5. These data again demonstrate the good agreement be-
tween the MOP and VA expressions. G(y) for this quantity is
also statistically constant across the system, even in the wall
regions where the density variations with distance are signif-
icant on an atomic scale. The ratio of shear to normal stress
(the traction coefficient) is 0.04, which is a value typical for
experimental lubricant systems under similar conditions.3

Figures 6 and 7 present the Pxx (y) and Pzz(y) respec-
tively, from the VA formulas only, as there are no correspond-
ing MOP expressions for these quantities. Also there are no
external force fields in the x and z directions, and there-
fore no consequences from Eq. (24) for these two functions.
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FIG. 6. As for Fig. 5 except the xx element, and its components, of the pres-
sure tensor from the VA formulas are shown.
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FIG. 7. As for Fig. 5 except the zz elements of the pressure tensor from the
VA formulas are shown.

Nevertheless, the average pressure tensor values in the center
of the film are quite close to the imposed value in the y di-
rection (which would be expected for a hydrostatic system),
i.e., Pxx (ym) � Pyy(ym) � Pzz(ym). In addition, note that even
the total pressure profiles manifest significant oscillations, re-
flecting those in the density profile. This is perhaps not sur-
prising as these functions are not subject to the constraints
of a boundary stress (unlike Pxy and Pyy). Figures 4–7 show
that the pressure tensor profiles taper off to zero towards the
boundaries of the system, which reflects the diminishing num-
ber of LJ pair interactions that pass through the bin (VA)
or plane (MOP) as the outer boundary of the system is ap-
proached towards the bottom and top of the system in the
y direction.

IV. CONCLUSIONS

It is shown that the Method of Planes and Volume Av-
eraging expressions for the local pressure tensor can be used
interchangeably in boundary-driven flow NEMD simulations,
where the cartesian coordinate (y) normal to the walls defines
the spatial resolution of the pressure tensor. The VA method
has the useful feature that it will give the complete pressure
tensor in this geometry. It has been shown by Han and Lee,17

that the MOP method can be extended to apply over a small fi-
nite surface rather than an infinite plane, so both VA and MOP,
can be used to compute the pressure tensor variation in more
complicated 2D and 3D geometries which go beyond planar
localisation. If only Pαy is required, then MOP has an advan-
tage over VA in that the potential part is exact and this result
will only be approached using VA in the limit of small width
of the sampling volume. If the other components of the pres-
sure tensor are required, both methods could be used, where
VA uses a coarse graining in space while Han and Lee’s MOP
generalisation uses coarse graining in time.

The simulations presented here have demonstrated that
the VA and MOP approaches are applicable even when the
external stresses are implemented indirectly, in the present
case by continuously adjusting the relative velocities of the
two walls to achieve an imposed normal pressure and rela-
tive sliding speed. Implementation of both methods provides
a useful self-consistency check in any equilibrium molecular
dynamics or NEMD application. Further investigation of the

relative computational efficiencies of the two methods would
be useful.
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APPENDIX A: DERIVATION OF A STAGE IN THE
PROOF OF THE EQUIVALENCE BETWEEN VA
AND MOP FOR PLANAR GEOMETRY

The expression in Eq. (13) can be integrated by parts

1

2ε

∫ a+ε

a−ε

dpθ (p)θ (1 − p) = 1

2ε
[pθ (p)θ (1 − p)]a+ε

a−ε

+ 1

2ε

a+ε∫
a−ε

dp p θ (p) δ (1 − p) ,

(A1)

where the formula for the derivative of the Heaviside step
function, ∂

∂y θ (ay − b) = aδ(ay − b), has been used. Evalu-
ating the integral term using the sifting property of the Dirac
Delta function and applying the limits of integration results in

|	yk |
	y

= 1

2
[θ (a + ε)θ (1 − a − ε) + θ (a − ε)θ (1 − a + ε)]

+ a

2ε
[θ (a+ε)θ (1−a−ε) − θ (a − ε)θ (1−a+ε)]

− 1

2ε
[θ (1 − a − ε) − θ (1 − a + ε)], (A2)

where ε has been canceled where it occurs on top and botttom
and similar terms have been collected. Taking the limits as
ε → 0 using L’Hôpital’s rule,

lim
	y→0

|	yk |
	y

= θ (a) θ (1 − a)

− a[δ (1 − a) θ (a) − θ (1 − a) δ (a)]

+ δ(1 − a), (A3)

the Dirac Delta functions of the form xδ(x) = 0 for all x ,34

giving the final expression for the integral in the limit of the
bin thickness tending to zero,

lim
	y→0

|	yk |
	y

= θ (a) θ (1 − a) + δ (1 − a) (1 − aθ (a)) .

(A4)

The Dirac delta functional is only non-zero when a = 1. At
this point, 1 − aθ (a) = 0 so the term is also of the form xδ(x)
making it always zero. The expression for the integral over a
bin in the limit of zero thickness is therefore

lim
	y→0

|	yk |
	y

= θ

(
yi − yk

yi j

)
θ

(
yk − y j

yi j

)
. (A5)
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APPENDIX B: PRESSURE TENSOR AT A POINT
AND AVERAGED ACROSS A PLANE FROM
THE IRVING-KIRKWOOD EQUATIONS

In this Appendix the Irving-Kirkwood (IK) formula for
the pressure tensor at a point is used to define the correspond-
ing quantity averaged over a planar surface. The IK pressure
tensor at location r can be decomposed into two components,
P(r ) = P K (r ) + PU (r ), where P K is the kinetic part and PU

is the configurational part,

P K (r ) =
N∑

i=1

mi (vi − u(r = r i ))(vi − u(r = r i ))

× δ(r i − (r = r i )), (B1)

where vi is the laboratory frame velocity of molecule, i , and
mi is its mass. The streaming velocity is u, and δ(· · ·) is the
Dirac delta function, with units of inverse volume.

Equation (A6) in Ref. 8 gives an expression for the
configurational component of the pressure tensor at a point,
which is written in an equivalent form as

PU (r ) = −1

2

N∑
i=1

N∑
j �=i

r i j r i j

ri j
φ′

i j (ri j )
∫ 1

0
dαθ (α)θ (1 − α)

× δ[r − (r j + αr i j )], (B2)

where θ (α) is the Heaviside step function defined below
Eq. (7) in the main text, and r i j = r i − r j . It is convenient
in the present context to consider a planar spatial resolution
for r . The cartesian component, y replaces r on the left side
of the equation in Eq. (B2)

PU (y) = −1

2

N∑
i=1

N∑
j �=i

r i j r i j

ri j
φ′

i j (ri j )
∫ 1

0
dαθ (α)θ (1 − α)

× δ[x − (x j + αxi j )]δ[y − (y j + αyi j )]

× δ[z − (zy + αzi j )], (B3)

and where the Dirac delta function in r is replaced by the
product of three Dirac delta functions in x, y and z, each with
units of inverse length. In the above equation, the cartesian
components of r are written as x, y, and z. The cartesian com-
ponents of r i are denoted by xi , yi , and zi . The cartesian com-
ponents of r i j are written as xi j , yi j , and zi j . Integration is car-
ried out of x and z over the xz surface containing the x and
z projections of all r i and r j , for 0 ≤ x ≤ Sx and 0 ≤ z ≤ Sz ,
respectively, to give the average value of PU on this surface.
A given xz surface of area A = Sx Sz is located at a particular
value of y. Sx and Sz could be two of the sidelengths of a par-
allelepiped shaped molecular dynamics simulation cell which
generates a plane that is laterally homogeneous,

PU (y) = −1

2

N∑
i=1

N∑
j �=i

r i j r i j

ri j
φ′

i j (ri j )

×
{∫ 1

0
dαθ (α)θ (1 − α)δ[y − (yi + αyi j )]

× 1

Sx

∫ Sx

0
dxδ[x − (xi + αxi j )]

× 1

Sz

∫ Sz

0
dzδ[z − (zi + αzi j )]

}

= − 1

2A

N∑
i=1

N∑
j �=i

r i j r i j

ri j
φ′

i j (ri j )
1

|yi j |θ
( yi − y

yi j

)

× θ
( y − y j

yi j

)
. (B4)

The above integral in α equals the value of the integrand at
α = (y − y j )/yi j , The scaling identity, δ(ax) = |a|−1δ(x),35

has been used in the last stage in the above equation. The order
of the two θ functions has been reversed to help appreciation
of the meaning of their product. The integrals in x and z are
unity because their limits span the simulation domain in the
xz plane, and they are equal to the value of the integrand at
the same value of α as the y integral. Hence, considering the
components of the pressure tensor containing a y cartesian
component,

PU
αy(y) → 1

2A

N∑
i=1

N∑
j �=i

fαi j
yi j

|yi j |θ
( yi − y

yi j

)
θ
( y − y j

yi j

)
,

(B5)
which is just the same as Eq. (15). Similarly for the kinetic
part of the pressure tensor, we can average it over the surface.
Equation (B1) gives

P K (y) = 1

A

N∑
i=1

mi (vi − u(y = yi ))(vi − u(y = yi ))

× δ(y − yi ). (B6)
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