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In boundary layers, eigenfunctions which belong to the continuous spectrum of the
Orr–Sommerfeld equation have been established as a suitable basis for the expan-
sion of general free-stream vortical disturbances. They are oscillatory in the free
stream, and attenuate inside the boundary layer due to shear sheltering. The ex-
tent of modal penetration into the shear depends on the disturbance frequency and
orientation, with the low-frequency, streamwise elongated modes being the most
effective triggers of a high-amplitude streak-like response. The influence of intro-
ducing a time-periodic, spanwise mean flow on modal sheltering is investigated. The
evaluation of the continuous modes in this case requires a Floquet expansion in the
fundamental frequency of the base flow. Appropriate treatment of the free-stream
boundedness condition is developed, and quantitative measures of modal shelter-
ing are computed. The time-dependent, spanwise motion is shown to significantly
enhance shear sheltering, and to change the optimal orientation of the continuous
modes for penetration into the shear. An explanation is provided, in the limit of low
frequency of the base flow, using asymptotic analyses. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3687451]

I. INTRODUCTION

In boundary layers, eigensolutions which belong to the continuous branch of the Orr–
Sommerfeld spectrum represent free-stream vorticity modes. The eigenfunctions have therefore
been established as a suitable basis for the expansion of free-stream vortical perturbations. An invis-
cid mechanism, known as “shear sheltering”, generally restricts the ability of these vortical modes
to penetrate the mean shear. However, the effectiveness of shear sheltering is not uniform: Earlier
studies have demonstrated that low-frequency modes can effectively penetrate the shear, and lead
to the amplification of boundary layer streaks which precede bypass transition to turbulence. The
characteristics of these modes, in particular their structure in the near-wall region, take a pivotal role
in flow stability and are consequently of relevance for a range of applications in aeronautics and
engineering. The present work investigates the effect of the introduction of time-dependent shear. In
addition to the steady Blasius profile, the base flow includes a time-harmonic spanwise component
defined by the second problem of Stokes. The objective is to clarify the impact of unsteady shear on
the sheltering of free-stream vortical modes.

Jordinson1 conjectured that the discrete Orr–Sommerfeld eigensolutions, in the case of semi-
infinite domains, are supplemented by a continuous spectrum. The latter is nevertheless exponentially
stable, and was therefore overlooked by the classical linear stability analyses which focused on the
Tollmien-Schlichting mechanism. Mack2 was able to show the equivalence of the phase speed of the
continuous modes and the free-stream convective velocity in the limit of large Reynolds numbers.
The same work numerically demonstrated the sinusoidal behavior of continuous modes in the free
stream, in contrast to discrete modes which vanish away from the wall. The formal mathematical
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description of the continuous spectrum was provided in Grosch and Salwen.3 The authors suggested
that even though the expansion of arbitrary disturbances requires a full eigenbasis consisting of both
the discrete and the continuous part of the spectrum, arbitrary perturbations at large wall distances
may be represented by a superposition of continuous modes only. Jacobs and Durbin4 advanced
this hypothesis by defining broadband, free-stream turbulence as in terms of a superposition of
continuous modes.

Inviscid rapid distortion theory predicts that free-stream vortical disturbances do not cause a
perturbation inside the mean shear – they are expelled.5, 6 This behavior was related by Craik7 to an
inviscid mechanism, active in the presence of mean shear and significantly more effective than viscous
dissipation. The terminology of shear sheltering was coined later by Hunt and Durbin8 when they
discovered the pertinence of inviscid filtering for the interaction of vortices of significantly varying
length scales. Quantitative studies of free-stream vortical mode sheltering in Blasius boundary layers
have been performed by Jacobs and Durbin.4 The authors found the penetration of vortical modes into
the boundary layer to be inversely proportional to both the Reynolds number and modal frequency.
A detailed study of sheltering, and the structure of the vortical modes in single- and two-fluid shear,
was performed by Zaki and Saha.9 They employed asymptotic as well as numerical approaches in
order to comprehensively explain the underlying mechanism. The effect of three-dimensionality of
the base flow – as found along swept wings – on the continuous modes was examined by Schrader
et al.10 They reported a significant increase in modal sheltering compared with two-dimensional
boundary layers.

Investigations of the continuous spectrum, and the structure of vortical modes in boundary
layers, are to material extent motivated by the ability of free-stream disturbances to initiate bypass
transition. The latter refers to subcritical breakdown to turbulence, significantly upstream of transition
via discrete instability waves. Jacobs and Durbin11 performed direct numerical simulations of the
bypass process, which they described as “somewhere between turbulence and transition,” due
to its stochastic nature. They synthesized isotropic free-stream turbulence at the inlet of their
computational domain via weighted superposition of a spectrum of continuous Orr–Sommerfeld
modes. The same approach was later used by Brandt et al.12 in order to study the influence of the
free-stream turbulent length scale on subcritical breakdown. In order to differentiate the role of
the low- and high-frequency components of the free-stream vortical spectrum, Zaki and Durbin13

carried out simulations of bi-modal interactions, leading to breakdown to turbulence. The latter
work demonstrated that low-frequency, Orr–Sommerfeld modes lead to the generation of Klebanoff
streaks. The high-frequency modes are sheltered, and hence are only observed in the free stream.
However, their interaction with the streaks, near the edge of the boundary layer, leads to secondary
instability and breakdown to turbulence.

The base flows in the above studies, both in two- or three-dimensional boundary layers, were
steady. The literature on the effects of unsteady mean motion has generally focused on fully turbulent,
wall-bounded shear flows.14–16 However, relatively less attention was attributed to the effect of wall-
oscillation on transitional flows, and in particular the interaction of free-stream vortical disturbances
with boundary layers. The recent work by Ricco17 demonstrated that superposing a streamwise-
dependent, spanwise mean flow onto a boundary layer can lead to weaker streaks. However, the
base flow was steady, and the free-stream disturbances which were considered belonged to a narrow
parameter range. Other vortical modes could potentially yield an enhanced response. A systematic
study of the influence of unsteady shear on the proceedings of bypass transition—namely, the
penetration of vortical modes into the boundary layer, the amplification of streaks and nonlinear
breakdown to turbulence—is therefore not available in the literature. The first of these questions is
addressed herein.

The present work examines the sheltering properties of streamwise boundary layers when
a time-periodic, spanwise mean motion is introduced. In Sec. II, the eigenvalue problem which
governs linear perturbations to the base state is introduced. A solution method in terms of a finite
order Floquet expansion is described, as formally introduced by Hall18 and Herbert.19 In addition,
a method for computing the continuous modes, and enforcing a boundedness condition in the
free stream, is presented within the context of the Floquet expansion. In Sec. III, quantitative
measures of modal sheltering are defined and evaluated for different frequencies and amplitudes of
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FIG. 1. Illustration of the base flow, U = (U, 0, W (y, t))T .

the base flow oscillation. Finally, the deductions based on the numerical solutions of the eigenvalue
problem are augmented by asymptotic analyses in Sec. IV, in the limit of low frequency mean-flow
oscillation.

II. THEORETICAL FORMULATION

An illustration of the base flow considered herein is given in Figure 1. It is a superposition of a
streamwise Blasius boundary-layer U(y), and a time-periodic spanwise velocity component W(y, t).
The latter is modelled by the solution to the familiar second problem of Stokes

W (y, t) = W0 exp

(
−

√
Reπ

T
y

)
cos

(
2π

T
t −

√
Reπ

T
y

)
, (1)

where W0 is the magnitude of the wall oscillation velocity, T is the period of wall oscillation. The
Reynolds number, Re ≡ U∞δ/ν, is based on the Blasius flow, where δ is the 99% boundary layer
thickness and U∞ is the Blasius free-stream speed. Throughout this work, lengths are scaled by δ,
velocities are made non-dimensional using U∞, and a value Re = 1000 is used.

In the presence of the streamwise flow, the Stokes relation (1) is no longer an exact solution to
the Navier-Stokes equations. Direct numerical simulations nevertheless show that the relative error
in this ansatz is less than 1% for the flow parameters of interest (see Appendix A). Sufficiently large
Reynolds numbers further justify the application of a parallel-flow approximation. The full base
flow is therefore

U = (U (y) , 0, W (y, t))T .

A. Governing equations for linear perturbations

The linear evolution equations for a small perturbation, u′ = (
u′, v′, w′)T

, to the base state are
derived starting from the Navier-Stokes equations for the full velocity, U + u′. The equations for the
base flow are subtracted, and nonlinear terms in u′ are neglected. An equation of Orr–Sommerfeld
type is obtained for the wall-normal perturbation component[(

∂

∂t
+ U

∂

∂x
+ W

∂

∂z

)
∇2 − D2U

∂

∂x
− D2W

∂

∂z
− 1

Re
∇4

]
v′ = 0, (2)

where D ≡ ∂/∂y. The coefficients U, W, D2U , and D2W are independent of the wall-parallel x and
spanwise z dimensions. Under the assumption of wave-like disturbances in these directions, Eq. (2)
thus admits solutions of the form

v′ (x, y, z, t) = v (y, t) exp (ikx x) exp (ikzz) . (3)
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The temporal problem is considered here, so that the streamwise and spanwise disturbance wavenum-
bers kx and kz are known, real quantities. Strict time periodicity of W and D2W requires a Floquet
expansion of the perturbation, in the fundamental frequency F = 2π /T of the base flow

v (y, t) = exp (σ t)
∞∑

n=−∞
vn (y) exp (inF t) . (4)

The exponent σ = σr + iσi is the complex frequency. Following established notation, the real part
σr gives the disturbance growth rate, whilst the imaginary part σi denotes a frequency shift from
integer multiples of F.

The complete ansatz for the disturbance velocity (3) is substituted in the governing
equation (2), and yields the differential equation

∞∑
n=−∞

[
(−iσ + nF + kxU + kz W )

(
D2 − κ2

) − kxD2U

−kzD2W + i
1

Re

(
D2 − κ2

)2
]

exp (i (−σ + nF) t) vn (y) = 0, (5)

where κ2 = k2
x + k2

z . For a given wavenumber pair (kx, kz), only particular values of σ admit solutions
of the system (5), which gives rise to an eigenvalue problem in σ . The corresponding eigenfunctions
v are recovered from the harmonic eigen-components vn as given in Eq. (4).

By taking into account the periodicity of the base flow, Eq. (5) can be recast as a set of coupled
ordinary differential equations. First, the spanwise base flow (1) is expressed in the form

W (y, t) = W1 (exp (iFt) + exp (−iFt)) + W2 (exp (iFt) − exp (−iFt)) ,

where W1 = W0 exp (ay)cos (ay)/2, W2 = iW0 exp (ay) sin (ay) /2, and a = −√
F Re/2. Substituting

the above expression in the eigenvalue problem (5), and grouping terms that premultiply exp(inFt),
we obtain the set of coupled ordinary differential equations[

(−iσ + nF + kxU )
(
D2 − κ2

) − kxD2U +i
1

Re

(
D2 − κ2

)2
]

vn (y)

+ kz (W1 + W2)
(
D2 − κ2 − 2ia2

)
vn−1 (y)

+ kz (W1 − W2)
(
D2 − κ2 + 2ia2

)
vn+1 (y) = 0. (6)

In the final form, each Floquet component, vn, is coupled to vn ± 1 due to the time-harmonic base
flow.

B. The continuous spectrum

The dispersion relation of the continuous Orr–Sommerfeld spectrum is derived by consider-
ing the free-stream limit of the system of governing equations (5). As y → ∞, U = U∞, and
W, D2U, D2W = 0, and as such all time-dependent coefficients vanish. The Floquet shape func-
tions vn(y) hence become decoupled in the free stream, and must each satisfy the relation[

(−iσ + nF + kxU )
(
D2 − κ2

) + i
1

Re

(
D2 − κ2

)2
]

v∞
n = 0. (7)

Note that the eigenvalue σ is unchanged among all the Floquet components, (i.e., σ is the same for
all values of n). However, in order to determine σ , one must consider a particular, although arbitrary,
choice of n = ñ. The Floquet mode, v∞

n=ñ , is nontrivial. All other components v∞
n �=ñ must vanish in

the free stream in order to satisfy (7). They become finite inside the Stokes layer due to coupling
between Floquet modes via the periodic base state.

With the particular choice, n = ñ, Eq. (7) becomes[
(−iσ + ñF + kxU )

(
D2 − κ2

) + i
1

Re

(
D2 − κ2

)2
]

v∞
ñ = 0. (8)
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FIG. 2. Schematic of the Floquet spectrum: ◦, discrete eigenvalues; ∗, eigenvalues of the continuous branches.

Solutions to this equation are of the form v∞
ñ (y) = ∑4

j=1 C j exp
(
λ j y

)
, where λj is the jth root of

the characteristic polynomial of Eq. (8),

λ2
1,2 = κ2,

λ2
3,4 = κ2 + iRe (−iσ + ñF + kxU∞) .

One of the first two solutions, λ1, 2, must be discarded since it is exponentially growing with distance
from the wall and is therefore unphysical. If λ3, 4 are complex, a similar argument requires elimination
of the growing component. As a result, the eigenfunction, v∞

ñ (y) = C1 exp (λ1 y) + C3 exp (λ3 y),
vanishes in the free stream. However, the two degrees of freedom cannot satisfy the four boundary
conditions associated with the fourth order differential equation; this gives rise to the discrete
spectrum of the Orr–Sommerfeld operator.

Alternatively, the continuous spectrum is obtained by requiring that the eigenfunctions remain
bounded, rather than vanish, in the free stream. For boundedness, purely imaginary values of λ3, 4

are sought by setting λ2
3,4 = −k2

y . The free-stream behavior of these modes is therefore proportional
to exp

(±iky y
)
, where ky is a real parameter that governs the wall-normal wavenumber of the

continuous-spectrum modes. The dispersion relation for the continuous spectrum is therefore

σ = −i (kxU∞ + ñF) − 1

Re

(
k2

x + k2
y + k2

z

)
. (9)

The real component of the eigenvalue, σr, is a continuous function of the parameter, ky, and hence
the terminology “continuous spectrum.” It should also be noted that the dispersion relation reduces
to the expression for Blasius flow when the base state is steady, F = 0. When F is finite, the Floquet
nature of the problem introduces multiple continuous branches, separated by a frequency shift, F.
Each branch corresponds to a particular choice of ñ.

A graphical representation of the eigenvalue spectrum is obtained from a numerical solution of
the Floquet problem and is shown in Figure 2. Because of the discrete nature of the computational
method, continuous branches are approximated by a finite set of eigenvalues. Each vertical line in
the figure is a continuous branch, with constant frequency σi obtained from a particular choice of ñ.

The choice of ñ and the wavenumber vector k = (
kx , ky, kz

)T
fully defines an eigenvalue. The

corresponding eigenfunction remains a superposition of the full Floquet expansion (4), and solution
to the eigenvalue problem (5). Thence, four boundary conditions are required for each component
of the Floquet expansion. At the wall, they must each satisfy

vn (y = 0) = 0, (10)

Dvn (y = 0) = 0 ∀ n. (11)
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In the free stream, since the eigenvalue σ was derived from boundedness of v∞
ñ , the boundary

conditions for this particular Floquet component must reflect such behavior. Boundedness is enforced
using the approach proposed by Jacobs and Durbin,4

v∞
ñ =1, (12)(

D2v∞
ñ + k2

yv
∞
ñ

)
y1(

D2v∞
ñ + k2

yv
∞
ñ

)
y2

= exp
(
ky (y2 − y1)

)
, (13)

where y1 and y2 are two points in the free stream. As stated above, the remaining Floquet components,
v∞

n �=ñ must vanish in the free stream. This can be shown formally: given an eigenvalue σ (̃n) from
the dispersion relation (9), Eq. (7) is satisfied by Floquet components with n �= ñ if and only if v∞

n �=ñ
vanishes

v∞
n = 0, (14)

Dv∞
n = 0, n �= ñ. (15)

C. Numerical method

Numerical solution of the eigenvalue problem (5) requires a finite Floquet expansion, −N ≤ n
≤ N. The resulting generalized eigenvalue problem has the form Av = σ Bv. Since the eigenvalues
of the continuous spectrum are known a priori from the dispersion relation (9), the eigen-problem
can be converted into a boundary value problem described by a system of linear equations

(A − σ B) v = b, (16)

where the vector v is a combined representation of all 2N + 1 harmonic shape functions vn(y).
Nontrivial solutions require an inhomogeneous right-hand side with at least one nonzero element in
b. The latter is given by the free-stream boundedness of the ñth harmonic component vñ , as described
in Eqs. (12) and (13). Although ñ is arbitrary, a value of ñ = 0 had been employed throughout this
work. This choice identifies the continuous branch which coincides with the continuous spectrum
of the Blasius base flow—see Eq. (9).

In order to solve the boundary value problem (16), a similar approach to that of Liu et al.20

and Vaughan and Zaki21 is used. A spectral Chebyshev discretization is applied in the wall-normal
coordinate. An algebraic coordinate mapping is used in order to ensure that half of the Gauss-Labatto
points are located inside the boundary layer. Numerical experiments established that 200 Chebyshev
polynomials, and a domain height of 50 boundary layer thicknesses, y ∈ [0, 50δ], are sufficient for
an accurate representation of the eigenfunction v. A direct factorization of (A − σB) into a lower
and an upper triangle operator is employed in order to solve Eq. (16) for the continuous mode, v.

A simple validation of the above described Floquet approach for computing continuous modes
is given for the case of a pure Blasius boundary layer. In this limit of steady base flow, all time-
dependent coefficients of the governing equation (2) vanish. The modal behavior must consequently
be described by a single term of the Floquet expansion, such that the ansatz (4) may be equivalently
replaced by a normal mode assumption with respect to time, v′(y, t) = v(y)exp (σ t). An example
comparison of the Floquet solution and the normal mode assumption is given in Figure 3, where
both solutions are shown to match identically.

When the base flow is periodic, all components vn of the Floquet expansion are coupled and
contribute to the makeup of the eigenfunction, as shown in Figure 4. The contributions of the
zeroth (̃n) and first harmonic (̃n ± 1) terms are of the same order of magnitude in the boundary
layer. All Floquet components with n �= ñ vanish in the free stream, where the amplitude of the
time-periodic base flow becomes negligible. Independent of the considered wall distance, higher
Floquet components fail to significantly contribute to the total mode shape. Numerical studies in
this work thus employ Floquet expansions to the tenth harmonic of the fundamental frequency. This
component was in none of the considered cases found to be of material magnitude.
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FIG. 3. Comparison of the continuous modes computed using the normal mode and Floquet ansatz for Blasius base flow.
The modal wavenumber vector, k = (0.25, π, π)T . (+) real and (∗) imaginary components of the normal modes; ( )
real and ( − − − ) imaginary component of the Floquet solution.

III. RESULTS

A. Modal sheltering

Streamwise oriented vortical disturbances play a significant role in the context of subcritical
transition to turbulence in boundary layers. Andersson et al.22 demonstrated that streaks emanating
from streamwise aligned vortices yield the largest algebraic energy growth, but the initial perturbation
must be located within the boundary layer. Jacobs and Durbin4 investigated the ability of mean
shear to shelter the boundary layer from free-stream vortical disturbances. They demonstrated
that the penetration of free-stream modes into a Blasius layer is proportional to the streamwise
disturbance wavelength. Streamwise-elongated vortical modes are therefore the highest amplified
and weakest sheltered vortical perturbations of Blasius layers. In accordance with these earlier
findings, Figure 5(a) demonstrates the very weak sheltering of a vortical perturbation of wavenumber
vector k = (0.01, π, π )T in pure Blasius flow. Introduction of an unsteady Stokes layer substantially
changes the sheltering characteristics, as is shown in Figures 5(b)–5(d). A reduction of modal
penetration with increasing base flow period is observed, corresponding to a growing thickness of
the spanwise Stokes layer dStokes ∼ √

T . In Figures 5(b) and 5(c), the ratio dStokes/δ is less than unity.
On the other hand, in Figure 5(d), the thickness of the Stokes layer exceeds that of the Blasius flow,
dStokes/δ = 1.64. This results in the enhanced sheltering observed in the mode shape in that case.
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FIG. 4. Selected harmonic solution components vn of the Floquet expansion for T = 40, W0 = 0.25U∞; (a) n = ñ;
(b) n = ñ ± 1; (c) n = ñ ± 2; (d) n = ñ ± 6; , real component; − − −, imaginary component.
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FIG. 5. Modal sheltering for (a) Blasius and (b)–(d) Stokes-Blasius flow. The dotted line marks the thickness of the Stokes
layer. W0 = 0.25U∞, T = {4, 40, 400}, dStokes/δ = {0.16, 0.52, 1.64}; ( ) real and (− − −) imaginary components of
the eigenfunction.

Since spanwise wall oscillation reorients the mean shear, it is expected that the time-dependent
mean flow will exhibit different sheltering characteristics from the Blasius counterpart. The effec-
tiveness of the base flow to shelter arbitrarily oriented free-stream vortical modes is quantified by
introducing the integral parameter

s =
∫ δ

0

v∞ − v (y)

v∞
dy,

where v∞ is the average free-stream amplitude of the eigenfunction. This quantity approaches unity
for high sheltering with vanishing modal penetration into the boundary layer. Weakly damped free-
stream modes, which retain their full amplitude throughout the boundary layer correspond to small
values of s. Throughout this work, the wall-normal disturbance wavelength is kept on the order of
the boundary layer thickness, 2π/ky ∼ O (1). This particular choice also found in other works on
vortical interactions with shear layers is motivated by the observation of strong blocking for low-ky

modes. On the other hand, eigenfunctions with high wall-normal wavenumber have a high viscous
decay rate, and due to their small amplitude do not induce an appreciable response inside the shear
layer.23

A numerical evaluation of the sheltering parameter s for a steady boundary layer and a wide
range of wavenumber pairs, (kx, kz), is shown in Figure 6. For pure Blasius flow, modal permeability
into the shear is nearly independent of the spanwise wavenumber. A decrease in the streamwise
wavenumber thus directly corresponds to increased modal amplitude within the shear layer. Presence
of unsteady spanwise motion substantially changes the sheltering characteristics (see Figure 7). In
contrast to the case of steady one-dimensional flow, the level of sheltering now additionally depends
on the spanwise wavenumber of the eigenmode. Free-stream vortical modes with relatively high kz

are sheltered. For smaller wavenumbers, the permeability of the shear layer depends on the ratio
of streamwise and spanwise wavenumbers, kx/kz. The origin of this dependence is elucidated in
Sec. IV, where it is related to the orientation of the mean shear.

B. Energy sheltering

Incomplete sheltering of free-stream vortical disturbances results in a fraction of the free-
stream turbulent kinetic energy being introduced into the boundary layer. This energy may serve as
an initial seed for the algebraic growth mechanism that ultimately leads to subcritical breakdown.
In the following, a von Kármán spectrum is assumed in the free stream, and an integral measure for
the total disturbance energy within the boundary layer is derived. The influence of wall oscillation
on the energy inside the shear is also evaluated for a range of base-flow frequencies and amplitudes.
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FIG. 6. Quantitative evaluation of modal sheltering for Blasius flow; lines denote levels of s from 0.125 to 0.875 with an
increment of 0.125.

Eigenfunctions of the continuous Orr–Sommerfeld and Squire spectra behave like Fourier modes
in the free stream

v′ ∼ v̂ exp
(
i
(
kx x + ky y + kzz

))
,

η′ ∼ η̂ exp
(
i
(
kx x + ky y + kzz

))
,
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FIG. 7. Quantitative evaluation of modal sheltering for combined Stokes-Blasius flow of T = 100, W0 = 0.25U∞; lines
denote levels of s from 0.125 to 0.875 with an increment of 0.125.
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where η ≡ ∂u/∂z − ∂w/∂x is the wall-normal vorticity. The continuous spectrum modes there-
fore constitute a suitable basis for the expansion of a broadband perturbation field.11 The scaling
v̂ = −iA

√
k2

x + k2
z /k, η̂ = −iB

√
k2

x + k2
z leads to the Cartesian formulation

û = iAkx ky

k
√

k2
x + k2

z

+ Bkz

k2
x + k2

z

,

v̂ = − i
A
√

k2
x + k2

z

k
,

ŵ = ikykz A

k
√

k2
x + k2

z

− Bkx

k2
x + k2

z

, (17)

where k ≡
√

k2
x + k2

y + k2
z . Isotropy of the disturbance field enables disregard of all directional

information, so that a scalar formulation of the energy spectrum is obtained. Von Kármán24 proposed
the specific relation

E (k) = L5k4

C
(
1 + (kL)2

)17/6 ,

which behaves as E(k) ∼ k4 for large scales and recovers the property E(k) ∼ k−5/3 in the inertial
sub-range as implied by the second similarity hypothesis of Kolmogorov. Following Jacobs and
Durbin,11 we set L = 55C

9π
L11 and C = 0.6884. A unit integral turbulent length scale, L11 = 1, leads

to a peak in the energy spectrum at unit wavenumber. In addition, the total energy contained within
the spectrum is

∫ ∞
0 E (k) dk = 3/2.

The kinetic energy within the wavenumber range [k1, k2] can be expressed in terms of F2 (k)
≡ E(k)/(2πk2), according to

ε =
∫ kz2

kz1

∫ ky2

ky1

∫ kx2

kx1

1

2
F2 (k) dkx dky dkz . (18)

Alternatively, ε can also be evaluated from the coefficients of the Fourier expansion (17),

ε =
∫ kz2

kz1

∫ ky2

ky1

∫ kx2

kx1

1

2
(ûû∗ + v̂v̂∗ + ŵŵ∗) dkx dky dkz

=
∫ kz2

kz1

∫ ky2

ky1

∫ kx2

kx1

1

2
(AA∗ + B B∗) dkx dky dkz, (19)

where star denotes the complex conjugate. Equating the two expressions for ε, and assuming isotropy
of the disturbance field, leads to the particular choice

A =F exp (iθ1) cos γ,

B =F exp (iθ2) sin γ,

where θ1, θ2, and γ are uniformly distributed random angles.25 In this context, γ governs the energy
distribution between the Orr–Sommerfeld and Squire modes, whilst θ j specifies the spatial phase of
the perturbations.

It follows from the above that the spectral energy density due to the wall-normal perturbation
v(k) alone is

ρv

(
k
) = 1

2
v̂(k)v̂∗(k)

= 1

2

E(k)

4πk2

k2
x + k2

z

k2
. (20)

Since the random angle γ is uniformly distributed, the cos 2(γ ) term has been substituted by its arith-
metic mean of one half. Integration of ρv

(
k
)

over the three-dimensional wavenumber space k gives
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FIG. 8. Normalized von Kármán-weighted modal energy within the boundary layer for ky = π ; ◦, W0 = 0.1U∞; �,
W0 = 0.2U∞; �, W0 = 0.4U∞.

one third of the total energy of all perturbation components, εv = ∫ ∞
0

∫ ∞
0

∫ ∞
0 ρv

(
k
)

dkx dky dkz

= 1/2.
In the following, attention is focused on the energy spectrum near k̃y = π . These modes,

whose wall-normal scale is on the order of one boundary layer thickness penetrate the shear most
effectively and undergo maximum energy amplification. The total kinetic energy of k̃y modes within
the boundary layer can be evaluated from the integral

εv k̃y
= 1

δ

∫ δ

0

∫
kx

∫
kz

ρv

(
k
) ‖v (

y; k
) ‖dkz dkx dy,

where v
(
y; k

)
is the eigenfunction of the Orr–Sommerfeld continuous spectrum. Normalization

by the disturbance energy inside the boundary layer for pure Blasius base flow yields the relative
measure εrel

v k̃y
≡ εv k̃y

/εBlasius
v k̃y

. This quantity was evaluated for different parameters of the spanwise

base flow and is shown in Figure 8. The fraction of free-stream energy which penetrates the boundary
layer is inferred to decrease with increasing period and amplitude of the wall oscillation.

Previous examination of the sheltering measure s in Sec. III A has shown a shift in the modal
wavenumber, or equivalently modal orientation, for which the weakest sheltering is observed. This
motivates a comparison of the perturbation energy within the boundary layer along rays of constant
kz/kx, which define modes oriented at an angle ϕ = tan −1(kz/kx) relative to the streamwise direction.
Integrating the energy spectrum along lines of constant ratio kz/kx yields

ε
ϕ

v k̃y
= 1

εBlasius
v k̃y

1

δ

∫ δ

0

∫
kx

∫
kz

ρv

(
k
) ‖v (

y; k
) ‖dkz dkx dy,

with kz = kx tan ϕ. (21)

Integration over all angles recovers the total energy of the v-perturbation spectrum within the
boundary layer,

∫ π/2
0 ε

ϕ

v k̃y
dϕ = εrel

v k̃y
. Figure 9 shows the variation of ε

ϕ

v k̃y
with the angle ϕ. An

increase in the amplitude of the base-flow oscillation causes a shift of the maximum energy towards
higher values of ϕ. In addition, modes oriented at very large angles to the streamwise direction
insignificantly contribute to the total energy.

The angle ϕε max which maximizes the perturbation energy inside the boundary layer is charted
in Figure 10, for a range of base-flow oscillation frequencies and amplitudes. For Blasius flow, it is
known that ϕε max = 0, or that streamwise oriented modes are most penetrating into the boundary
layer and thus contribute most to the disturbance energy inside the shear. As the period and magnitude
of wall oscillation are increased, ϕε max shifts away from zero. The maximum contribution to the
energy spectrum in the boundary layer is therefore due to oblique vortical modes.
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FIG. 9. Angular distribution of weighted modal energy for ky = π and T = 300; ◦, W0 = 0.1U∞; �, W0 = 0.2U∞; �,
W0 = 0.4U∞.

The presence of spanwise unsteady shear hence not only reduces the magnitude of boundary
layer perturbation energy, but also changes the modal parameters for which the weakest sheltering is
observed. Significantly increased disturbance damping inside the shear is observed for streamwise
elongated perturbations. Depending on the parameters of the spanwise base flow, modes aligned in
an angle to the streamwise direction may on the other hand be subject to decreased sheltering.

C. Time scale-based model of shear sheltering

A physical interpretation of shear sheltering in Blasius boundary layers was provided by Zaki and
Saha.9 They explained the sheltering phenomenon in terms of convective and diffusive processes:
The convection of the free-stream vortical disturbance relative to an observer within the shear
introduces a convective time scale. In addition, according to the Orr–Sommerfeld equation, the
free-stream vorticity may only reach the observer by wall-normal diffusion which itself carries
an inherent times cale. When the convective time scale is short, diffusion processes cannot act
sufficiently fast and the observer is sheltered from the free-stream disturbance; such is the case
for high-frequency continuous modes and at high relative convection speed due to strong shear.
Based on this physical interpretation, a model of shear sheltering in combined Stokes-Blasius flow
is formulated and numerically evaluated in this section.
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FIG. 10. The direction of weakest disturbance energy sheltering for ky = π ; ◦, W0 = 0.1U∞; �, W0 = 0.2U∞; �,
W0 = 0.4U∞.
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FIG. 11. Relevant time scales of modal sheltering observed in a Lagrangian frame of reference within the shear layer.

The phase speed of the continuous modes is equal to the free-stream mean-flow velocity. These
modes therefore appear steady in a Lagrangian reference frame, or relative to an observer, that
translates at U∞. On the other hand, a fluid particle within the shear travels at a lower streamwise
velocity, and hence experiences a temporal change of the modal phase. The apparent frequency �x,
as recorded by the observer, is therefore equal to the product of the relative convection speed and
the streamwise disturbance wavenumber

�x = (U∞ − U (y)) kx . (22)

At the wall, one recovers the frequency in the lab frame, which is the temporal frequency from the
modal dispersion relation (9), �x = U∞kx = ωr.

Combined Stokes-Blasius flow introduces an additional spanwise relative motion between the
free-stream mode and locations within the shear layer. The apparent frequency, �x, z, due to the
combined streamwise and spanwise relative convection is thus

�x,z = (U∞ − U (y)) kx + Wrms (y) kz . (23)

Based on this apparent frequency, the convective time scale is defined to be Tc = �−1
x,z .

Due to the vanishing wall-normal mean velocity, U = (U (y) , 0, W (y, t))T , free-stream vor-
tical modes of the Orr–Sommerfeld equation (2) enter the boundary layer by wall-normal diffu-
sion. Thence transport of modal information in the wall-normal direction is governed by the time
scale

Td ∼ Re

k2
y

, (24)

which is a function of Reynolds number and wall-normal wavenumber. Following Zaki and
Saha,9 the degree of sheltering can be determined by comparing the convective and diffusive time
scales

N ≡ Td

Tc
= Re (kx (U∞ − U (y)) + kz Wrms (y))

k2
y

. (25)

As N → 0, the time scale at which the wall-normal diffusion process is able to transport phase
information is small compared to the convective time scale associated with the relative modal
convection. Locations within the Stokes layer thus receive an exact representation of the modal
phase information as illustrated in Figure 11(a). High values of the parameter N → ∞, on the
other hand, correspond to a temporal under-resolution of the convective time scale by the diffusive
mechanism (see Figure 11(b)). The observer within the shear thus receives a smeared representation
of modal phase information or is “sheltered” from the free-stream mode. It should be noted that the
extremal cases of pure Stokes and pure Blasius flow are contained in the above definition of N via
U(y) = 0 and Wrms = 0, respectively.
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FIG. 12. Correlation of predicted and observed D1; ◦, W0 = 0.1U∞; �, W0 = 0.2U∞; �, W0 = 0.4U∞.

Jacobs and Durbin4 quantified sheltering by evaluating the distance from the edge of a Blasius
boundary layer to the location where the vortical mode has attenuated to a fraction of its free-stream
amplitude. In the current work, the spanwise wall movement introduces a second shear layer whose
thickness depends on the frequency of oscillation. Therefore, it is more natural to measure modal
penetration in terms of the height from the wall, where the vortical mode amplitude reaches 1% of
its free-stream value

D1 ≡ min
y

: ‖v(y)‖ = 0.01‖vFS‖. (26)

Making use of the above model, a direct correlation between the wall distance D1 and the
parameter N is sought, such that

Ñ = Re (kx (U∞ − U (y = D1)) + kz Wrms (y = D1))

k2
y

= const. (27)

A numerical evaluation of this relation has been performed for a range of oscillation amplitudes
W0 ∈ [0.1, 0.4]U∞, periods T ∈ [10, 100] and streamwise and spanwise wavenumbers kx, kz

∈ [10−3, 102]. The wall-normal disturbance length scales are selected to be of the order of the
boundary layer thickness, ky = {π , 2π}. Figure 12 shows a comparison of D1 extracted from the
mode shapes following (26) and the predicted value D1(Ñ ) from Eq. (27) with Ñ = 6. The agree-
ment demonstrates that the time scale-based model introduced above yields a good approximation
of modal sheltering in the presence of time-harmonic shear.

IV. ASYMPTOTIC ANALYSIS

In order to explain the structure of the continuous modes in the presence of mean shear, Zaki and
Saha9 performed asymptotic analyses of the Orr–Sommerfeld equation for steady boundary layers.
Analytical treatment of the problem was made possible by approximating the Blasius profile with a
piecewise linear velocity distribution. Based on the magnitude of the parameter

R ≡ kxU∞ Re

k2
y

, (28)

three distinct regimes were identified:

1. R � 1 is the diffusive regime, where modes retain their free-stream amplitude throughout the
largest portion of the boundary layer;

2. R � 1 is the convective-sheltered regime, where modes are expelled from the boundary layer
and are simply convected in the free stream;
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FIG. 13. Two-dimensional shear layer in the streamwise moving reference frame.

3. R ∼ O (1) is an intermediate, “convective-diffusive” regime which exhibits limited modal
penetration into the outer region of the boundary layer.

In order to explain the sheltering properties of combined Blasius-Stokes flow, an asymptotic
approach is adopted, similar to the work of Zaki and Saha.9 The analysis assumes a piecewise linear
velocity profile for both the streamwise and the spanwise velocity component. The limit of large
oscillation periods T � δ/U∞ is considered, which allows a quasi-steady base flow assumption.
Furthermore, the analysis focuses on cases where the Stokes and Blasius boundary layer thicknesses
are comparable, d ∼ O (δ), and therefore T ∼ O

(
Reδ2π

) � δ/U∞. A schematic of the base flow
is shown in Figure 13, in a frame convecting with the free-stream speed, U∞. In this frame, the
base-flow profile is given according to

U (Y ) = 0 for Y > 0,

U (Y ) = U∞
δ

Y for 0 ≥ Y ≥ −δ, (29)

W (Ys) = 0 for Ys > 0,

W (Ys) = −W0

d
Ys for 0 ≥ Ys ≥ −d, (30)

where U ≡ U − U∞, and the wall-normal coordinates are Y ≡ y − δ and Ys ≡ y − d. Without loss of
generality, the spanwise mean velocity is assumed to be contained within the streamwise boundary
layer, d < δ. Therefore, in the moving frame, the mean flow consists of a one-dimensional outer
layer and a two-dimensional inner layer. The former was addressed in the work of Zaki and Saha,9

and the analysis herein will focus on the latter.
The governing equation for a small disturbance v′ = v (y) exp (i (kx x + kzz − ωt)) is obtained

by introducing the above base flow, and the dispersion relation of the continuous modes, into the
Orr–Sommerfeld equation (2). In terms of ψ ≡ (

D2 − κ2
)
v, the disturbance equation is given by[−i (kxU + kzW) − 1/Re

(
k2

y + D2
)]

ψ = 0. (31)

Modes that are significantly damped by the outer layer are not of interest. Instead, the focus is
on modes which belong to the diffusive regime of that region, R ≡ kxU∞ Re/k2

y � 1. These modes
are unaffected by the outer shear and are governed by the following equation for Ys > 0:

D2ψ + k2
yψ = 0. (32)

The governing equation for the inner layer is

D2ψ + K 2ψ − iRe

[
kx

U∞
δ

− kz
W0

d

]
Ysψ = 0, (33)
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where

K 2 = k2
y

(
1 − iR

(
1 − d

δ

))
.

With R � 1, the expression for K is further simplified, K 2 ≈ k2
y . The asymptotic analyses presented

below consider the convective-sheltered and diffusive limits of the governing equation for the inner
layer.

A. Inner layer convective-sheltered regime

The convective regime of the inner layer describes the additional sheltering caused by the
transverse shear. Equation (33) can be written as

εscD2ψ + εsck2
yψ − k2

y

iYs

d
ψ = 0, (34)

where εsc = k2
y

Re
(

kx
U∞

δ
−kz

W0
d

)
d

� 1. A series expansion

ψ = ψ0 + εscψ1 + ε2
scψ2 + . . .

yields a degenerate one-term leading order equation with trivial solutions for all ψn, so that
ψ ≡ 0. The boundary conditions for ψ at the edge of the inner layer and at the wall require a
separate treatment, which results in an edge-layer and a wall-layer with respective thicknesses

δse =
(

1/Re

kx
U∞
δ

− kz
W0
d

)1/3

and δsw =
(

1/Re

d
(
kx

U∞
δ

− kz
W0
d

))1/2

.

The details of the derivation are mathematically similar to those of Zaki and Saha9 and are not
repeated here. We note, however, that these layers dictate the shape of the vorticity eigenfunction
near at the edge of the Stokes layer and at the wall. At both locations, viscosity thickens δse and δsw

as inferred from their numerators. However, the thickness is also dependent on the orientation of the
vorticity mode with respect to the mean shear, as described by the denominator, kx

U∞
δ

− kz
W0
d .

The final expression for the wall-normal velocity eigenfunction is

v =C5 exp (−κYs) + C6 exp (κYs) + Csw2 exp

(
− 1 − i√

2δw

)

+ Cse1

[
exp (−κYs)

∫ Ys

−∞
exp (κs) ς (s) ds

+ exp (κYs)
∫ 0

Ys

exp (−κs) ς (s) ds

]
, (35)

where ς (s) = Ai
(

exp (5iπ/6)
(
kx

ReU∞
δ

− kz
ReW0

d

)1/3
s
)

. The coefficients are obtained using the

matching conditions of the velocities and stresses between the shear region and the free stream and
are given in Appendix B 1.

Modes which belong to the inner layer convective-sheltered regime correspond to εsc � 1. The
two-dimensional shear consequently introduces a dependence of the sheltering characteristics on the
spanwise wavenumber kz. Modes with high kz are subject to strong sheltering, as was predicted by
the numerical results shown in Figure 7. The mode shape obtained from evaluating equation (35)
for a wavenumber vector (kx, ky, kz) = (0.01, π , 100) is shown in Figure 14. The modal amplitude
rapidly attenuates at the beginning of the inner layer at d = 0.5.

B. Inner layer diffusive regime

The diffusive regime corresponds to disturbances which retain their free-stream amplitude over
the largest part of the inner layer. Free-stream modes which belong to this regime are hence scarcely
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FIG. 14. Convective-sheltered modal behavior; , real component; − − −, imaginary component.

impacted by the sheltering properties of the shear. Similar to Sec. IV A, a small parameter εsd is
introduced

εsd = Re
(
kx

U∞
δ

− kz
W0
d

)
d

k2
y

� 1,

so that the vorticity equation can be written

1

k2
y

D2ψ + ψ − εsd
iYs

d
ψ = 0. (36)

A power series expansion of ψ in the small parameter εsd yields the leading order equation

D2ψ + k2
yψ = 0, (37)

whose solution is given by

ψ = Csd1 exp
(−ikyYs

) + Csd2 exp
(
ikyYs

)
.

The wall-normal velocity is therefore

v = C5 exp
(−ikyYs

) + C6 exp
(
ikyYs

)
+ C7 exp (−κYs) + C8 exp (κYs) . (38)

The solution shows the eigenfunctions to remain oscillatory deep into the inner layer, and the
coefficients are determined from the boundary conditions (see Appendix B 2).

Two classes of modes fulfil the constraint εsd � 1, and hence belong to the diffusive regime

(i) kx � 1 and kz � 1, or (39)

(ii)
kx

kz
≈ W0/d

U∞/δ
, kx and kz of arbitrary order. (40)

The first criterion identifies disturbances with small streamwise and spanwise wavenumbers
which permeate the shear independent of their orientation relative to the mean flow. This finding is
similar to the known result of low-kx modes being unaffected by the streamwise shear of Blasius
layers. An example eigenfunction obtained from the asymptotic solution is illustrated in Figure 15,
by evaluating expression (38) for a wavenumber vector (kx, ky, kz) = (0.1, π , 0.1). The penetration
of low (kx, kz) modes is also consistent with the results shown in Figure 7, where a region of very
weak sheltering is observed at values of kx � 10−2 and kz � 10−1 .

Downloaded 01 Mar 2012 to 129.31.64.117. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



034101-18 M. J. P. Hack and T. A. Zaki Phys. Fluids 24, 034101 (2012)

−1 −0.5 0 0.5 1
0

1

2

3

4

5

v

y

d
δ

FIG. 15. Diffusive modal behavior of criterion (i); , real component; − − −, imaginary component.

When considering the second criterion, it should be emphasized that the analysis has been
performed in a frame translating with U∞. This speed is identical to the phase speed of the continuous
modes, so that one may equivalently think of the coordinate system affixed to the disturbance.
Equation (40) demonstrates that, within this moving frame, modes can penetrate the boundary layer
if the wall-parallel projection of their wavenumber vector, (kx, kz) is orthogonal to the direction of
the mean shear (U∞/δ, W0/d). An equivalent interpretation is that phase fronts are aligned with the
direction of mean shear (and not the direction of the mean flow). With this alignment, the apparent
frequency for an observer within the shear is minimal (see Sec. III C), and hence penetration of the
mode is maximized. An example where a mode with relatively high (kx, kz) penetrates the inner
layer due to criterion (ii) is shown in Figure 16. The wavenumber vector of the eigenfunction is
k = (1, 5.5, π )T . Similar behavior is illustrated by the earlier Floquet results (Figure 7), where a
region of weak sheltering is observed around values of kx ≈ 100, kz ≈ 101.

Within the inner layer, eigenfunctions of criteria (i) and (ii) are both governed by the diffusion
equation (37). All these modes can therefore effectively permeate the shear of the two-dimensional
mean flow y ≤ d. On the other hand, modal permeability in the outer layer, δ > y > d, depends on
the parameter R. Modes that satisfy criterion (ii) may correspond to large values R � O (1). These
modes can thus experience an attenuation in the outer layer, so that their amplitude at the edge of
the inner layer is reduced from the free-stream value. This behavior is illustrated in Figure 16. The
integral sheltering effect for the whole boundary layer, y ≤ δ, may consequently be stronger for
modes of criterion (ii) than it is for modes of criterion (i).

−1 −0.5 0 0.5 1
0

1

2

3

4

v

y

d

δ

FIG. 16. Diffusive inner layer modal behavior corresponding to criterion (ii); , real component; − − −, imaginary
component.
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V. CONCLUSIONS

This work presented a method for the computation of continuous Orr–Sommerfeld eigen-
functions in the context of unsteady base flows. Periodicity of the base state results in harmonic
components in the eigensolutions, which were computed using a finite order Floquet expansion in
time. By considering the free-stream behavior of the continuous modes, the dispersion relation is
known analytically. Using the dispersion relation, and a boundedness condition applied within the
context of the Floquet expansion, the generalized eigenvalue problem of the disturbance waves is
converted into a boundary value problem.

In the context of combined Stokes-Blasius flow, modal sheltering was quantified over a wide
range of streamwise and spanwise wavenumbers. A substantial reduction of free-stream disturbance
energy entering the boundary layer in presence of unsteady shear was demonstrated. The orientation
of modes subject to weak sheltering increasingly deviates from the streamwise direction for increased
period and amplitude of oscillation of the base flow. The physical mechanism was explained by
comparing the convective and diffusive time scales of the free-stream disturbance relative to an
observer within the shear.

Asymptotic analyses of the Orr–Sommerfeld equation were performed for a two-dimensional,
piecewise-linear velocity profile. It was demonstrated that the effectiveness of sheltering depends on
the orientation of the disturbance wavenumber vector with respect to the mean shear, as observed in
a reference frame translating with the free stream: Perturbations with phase fronts aligned parallel to
the mean shear are not sheltered. It was moreover shown that the outer shear permits the penetration
of low-kx modes, and the entire spectrum of kz. On the other hand, the inner flow reorients the shear
vector and, therefore, introduces a new restriction on the set of penetrating modes. This further
limits the set of weakly sheltered modes to the sub-spectra (kx, kz) ≈ (0, 0) and (kx, kz) ≈ (τ z, τ x),
where τ (x, z) is the shear due to the streamwise and spanwise mean velocities, respectively. Hence, the
wavenumber sets of penetrating modes for outer and inner layer are not identical, and their common
elements constitute the set of modes that retain their amplitude throughout the full boundary layer.

In the case of continuously varying shear direction, the filtering criterion continuously changes
inside the boundary layer, thus effectively limiting the disturbances which penetrate from the free
stream towards the wall: The sub-spectrum that penetrates the outer layers is not necessarily effective
at penetrating the inner regions of the shear. A final verdict on the role of time-periodic shear
in the context of subcritical breakdown to turbulence must take into account the characteristics
of sheltering. However, the boundary layer response to penetrating disturbances17, 22 must also be
considered, as well as the threshold for secondary instability that precedes breakdown to turbulence.21

The current study nevertheless clearly demonstrates that the addition of spanwise time-harmonic
motion appreciably reduces the permeability of energy from the free stream into the boundary
layer.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Nicholas J. Vaughan for his assistance with the Floquet algo-
rithm. This work was supported by the UK Engineering and Physical Sciences Research Council
(EP/F045093) and the Air Force Office of Scientific Research (FA8655-11-M-4002).

APPENDIX A: VALIDITY OF THE ANALYTICAL SOLUTION FOR THE SPANWISE FLOW

The present work made use of the analytical solution to the second problem of Stokes (1) in
order to prescribe the time-harmonic component of the base flow. The simultaneous presence of a
streamwise boundary layer nevertheless introduces a one-sided coupling between the streamwise
and spanwise momentum equations for the base flow. Therefore, the Stokes solution (1) is no longer
exact. Thence direct computations were employed in order to quantify the deviation of our base-flow
ansatz from numerical solution of the full Navier-Stokes equations at the target Reynolds number,
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FIG. 17. Relative deviation of analytical and numerical solution for the spanwise mean flow component at the target Reynolds
number; , T = 40; − − −, T = 400.

Reδ = 1000. The root-mean-square of the relative difference was evaluated

Wdiff, rms (y) = 1

T W0

√∫ T

0

(
Wcomp (y, t) − WStokes (y, t)

)2
dt

and is plotted in Figure 17 as a function of the wall distance for two representative periods of
oscillation of the base flow. For the base-flow parameters of interest, one may thus conclude that the
analytical solution of the second problem of Stokes (1) provides an accurate representation of the
actual flow field.

APPENDIX B: COEFFICIENTS OF THE ASYMPTOTIC SOLUTIONS

The below given coefficients follow from the application of the boundary conditions

v (y = 0) = 0, (B1)

Dv (y = 0) = 0, (B2)

v (y → ∞) < ∞, (B3)

Dv (y → ∞) < ∞. (B4)

Conditions (B3) and (B4) correspond to the boundedness of modal amplitude and wall-normal
derivative in the limit of large wall distances mentioned in the discussion of the continuous spectrum,
cf. Sec. II B.

Additionally, four interface conditions are required for matching the outer and inner layer
solutions at Ys = 0,

v
(
Ys = 0+) − v

(
Ys = 0−) = 0, (B5)

Dv
(
Ys = 0+) − Dv

(
Ys = 0−) = kz W0v (Ys = 0)

d (ω − kz W (Ys = 0)) ,
(B6)

D2v
(
Ys = 0+) − D2v

(
Ys = 0−) = 0, (B7)

D3v
(
Ys = 0+) − D3v

(
Ys = 0−) = 3κ2 kz W0v (Ys = 0)

d (ω − kz W (Ys = 0))
. (B8)
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1. Convective inner layer regime

The coefficients are

Cse2 = λCse1, (B9)

Cse1 = C1

[
Ai (0)

κ2 + k2
y

+ A− − A+−λ

(
k2

y + ζ 2

κ2 + k2
y

exp (ζd) + ζ − κ

2κ
exp (−κδ) + κ + ζ

2κ
exp (κd)

)]−1

,

(B10)

C1 =1

2

⎡⎣−Cse1

Ai (ς (0)) + Ai′ (ς (0)) ς ′
iky

κ2 + k2
y

+ Csw2

(
1 + ζ

iky

)
κ2 − ζ 2

κ2 + ζ 2
exp (ζd)

−2Reκ2 (kxU∞/δ − kz W0/d)

ky
(
κ2 + k2

y

)2

(
Csw2

κ2 − ζ 2

κ2 + ζ 2
exp (ζd) − Cse1

Ai (0)

κ2 + k2
y

+ C3

)]
, (B11)

C2 =1

2

⎡⎣−Cse1

Ai (ς (0)) − Ai′ (ς (0)) ς ′
iky

κ2 + k2
y

+ Csw2

(
1 + ζ

iky

)
κ2 − ζ 2

κ2 + ζ 2
exp (ζd)

+2Reκ2 (kxU∞/δ − kz W0/d)

ky
(
κ2 + k2

y

)2

(
Csw2

κ2 − ζ 2

κ2 + ζ 2
exp (ζd) − Cse1

Ai (0)

κ2 + k2
y

+ C3

)]
, (B12)

C5 = −κ + ζ

2κ
Csw2 exp (κd) , (B13)

C6 = −Cse1 A+ − κ−ζ

2κ
Csw2 exp (−κd) , (B14)

with

A± = 1

2κ

∫ 0

−d
exp (±κs) Ai (ς (s)) ds (B15)

and

λ =
1

κ2+k2
y

(
κ Ai (0) − Ai′ (ς (0)) ς ′ (0)

) − 2κ A+ − iRe(kx U∞/δ−kz W0/d)(3κ2+k2
y)

(κ2+k2
y)

2

(
A− − A+)

(κ − ζ )
(

exp (−κd) − k2
y+ζ 2

κ2+k2
y

exp (ζd)
)

+ iRe(kx U∞/δ−kz W0/d)

(κ2+k2
y)

2

(
exp (ζd) + ζ−κ

2κ
exp (−κd)

) ,

(B16)

and ς (Ys) = exp (5iπ/6) (Re (kxU∞/δ − kz W0/d))1/3 Ys and ζ = (1 − i) /
(√

2δsw

)
.

2. Diffusive inner layer regime

The coefficients are

C5 = 2C3 exp
(−ikyd

)((
−1 + iky

κ

)
+ λ

(
1 + iky

κ

))
exp (κd) +

(
−

(
1 + iky

κ

)
+ λ

(
1 − iky

κ

))
exp (−κd) ,

(B17)

C6 = −λC5 exp
(
2ikyd

)
, (B18)

C1 = C5 + Reκ2 (kxU∞/δ − kz W0/d)

ky
(
κ2 + k2

y

)2 (C3 + C5 + C6) , (B19)

Downloaded 01 Mar 2012 to 129.31.64.117. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



034101-22 M. J. P. Hack and T. A. Zaki Phys. Fluids 24, 034101 (2012)

C2 = C6 − Reκ2 (kxU∞/δ − kz W0/d)

ky
(
κ2 + k2

y

)2 (C3 + C5 + C6) , (B20)

C7 = − exp (−κd)

2

((
1 + iky

κ

)
C5 exp

(
ikyd

) +
(

1 − iky

κ

)
C6 exp

(−ikyd
))

, (B21)

C8 = − exp (κd)

2

((
−1 + iky

κ

)
C5 exp

(
ikyd

) −
(

1 − iky

κ

)
C6 exp

(−ikyd
))

(B22)

with

λ =
(2κ + γ )

(
−1 + iky

κ

)
exp (κd) + γ

(−2κ + γ )
(

1 + iky

κ

)
exp (κd) + γ

, (B23)

where γ = iRe (kxU∞/δ − kz W0/d) /
(
κ2 + k2

y

)2
.
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