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The influence of harmonic wall motion on
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The influence of harmonic spanwise wall motion on bypass transition in boundary
layers is investigated using direct numerical simulations. It is shown that the
appropriate choice of the forcing parameters can achieve a substantial stabilization
of the laminar flow regime. However, an increase of the forcing amplitude or period
beyond their optimal values diminishes the stabilizing effect, and leads to breakdown
upstream of the unforced case. For the optimal wall-oscillation parameters, the
reduction in propulsion power substantially outweighs the power requirement of
the forcing. The mechanism of transition delay is examined in detail. Analysis
of the pre-transitional streaks shows that the wall oscillation substantially reduces
their average amplitude, and eliminates the most energetic streaks. As a result,
the secondary instabilities that precede breakdown to turbulence are substantially
weakened – an effect demonstrated by linear stability analyses of flow fields from
direct numerical simulations. The outcome is transition delay owing to a significant
reduction in the frequency of occurrence of turbulent spots and a downstream shift in
their average inception location. Finally, it is shown that the efficiency of the forcing
can be further improved by replacing the sinusoidal time dependence of the wall
oscillation with a square wave.
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1. Introduction

Transition to turbulence in boundary layers is promoted in the presence of external
perturbations. In such conditions, the relatively slow natural transition process is
bypassed. The final state is a turbulent boundary layer and therefore a higher level of
viscous drag. Earlier works have devoted considerable efforts towards the reduction
of the high skin friction of the turbulent regime. These studies established the
effectiveness of transverse, time-harmonic wall forcing in decreasing wall friction in
fully turbulent flows. The present work investigates the influence of such forcing on
bypass transition in boundary layers beneath free-stream turbulence.
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1.1. Bypass transition in boundary layers
Boundary layer transition to turbulence may be described as a succession of receptivity
to external disturbances, growth of primary and secondary instabilities and finally
nonlinear breakdown. Two classes of transition have been defined, based on the
nature of the primary perturbations. The prevalence of either mechanism, and thus
the observed variant of the transition process, largely depends on the spectrum of
the initial perturbation field (see e.g. Arnal & Michel 1990; Saric, Reed & Kerschen
2002).

The first breakdown scenario is commonly known as natural transition and arises
in the presence of small-amplitude background perturbations (e.g. Kleiser & Zang
1991). This route to turbulence is characterized by the exponential amplification of
discrete instability modes, or Tollmien–Schlichting waves, above the critical Reynolds
number. At some distance downstream, these two-dimensional waves reach levels
of the order of several per cent of the free-stream velocity. At this point, the flow
becomes susceptible to three-dimensional secondary instabilities (e.g. Herbert 1988).
The subsequent breakdown occurs through the formation of localized turbulent spots
(Emmons 1951), which grow in extent and eventually merge to form a continuous
turbulent region.

The second class, known as bypass transition, refers to breakdown scenarios
that deviate from the above description (see e.g. the reviews by Durbin & Wu
(2007) and Zaki (2013)). Initial disturbance growth is dominated by algebraic, or
non-modal, amplification, which is active at all Reynolds numbers. The bypass process
thus describes a potentially faster path to turbulence than the Tollmien–Schlichting
mechanism. Algebraic growth is nevertheless transient and is overcome by viscous
decay at finite time. Hence, only perturbations with significant initial magnitude
can amplify via the non-modal mechanism and reach sufficient levels to promote
laminar–turbulent transition. Studies by Suder, O’Brien & Reshotko (1981) established
an initial perturbation amplitude between 0.5 and 1 % as a lower bound for algebraic
growth to become the dominant primary amplification mechanism.

While other disturbances such as surface roughness and acoustic waves are potential
sources for bypass breakdown, the term ‘bypass’ is commonly associated with
transition caused by free-stream vortical perturbations. The bypass process therefore
requires a mechanism that allows these external disturbances to enter the boundary
layer. Rapid distortion theory (Hunt & Carruthers 1990; Hunt & Durbin 1999) and
inviscid receptivity studies (Kerschen 1991) demonstrated that regions of mean shear
are shielded from external vortical perturbations – a phenomenon referred to as ‘shear
sheltering’. In the presence of viscosity, low-frequency perturbations nonetheless enter
the shear (Jacobs & Durbin 1998). This can be explained using a model problem that
compares the diffusive time scale for external vortical perturbations to penetrate the
boundary layer and the shear time scale (Zaki & Saha 2009).

Low-frequency vortical disturbances that penetrate the shear trigger a response
inside the boundary layer. For example, it was discovered by Dryden (1936)
that external perturbations with amplitudes of the order of a few per cent of the
free-stream velocity cause laminar boundary layers to develop ‘speed fluctuations of
amplitude considerably greater than that in the free stream’. Taylor (1939) reported
the very low frequency of these streaky perturbations, which are dominated by the
streamwise velocity component. The works by Klebanoff, Tidstrom & Sargent (1962)
and Klebanoff (1971) later brought broader attention to these ‘breathing modes’,
which the authors had termed accordingly because of their thinning and thickening
effect on the boundary layer. In recognition of these earlier contributions, Kendall
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(1985) established the now common terminology of ‘Klebanoff modes’. It should
be noted that these ‘modes’ are not eigenfunctions of the governing equations, even
though elongated structures like streaks can be considered a general property of shear
layers (Phillips 1969).

Landahl (1975, 1980) explained the origin of streaks in terms of the vertical
displacement of mean momentum. This so-called lift-up effect ultimately results from
the action of wall-normal velocity perturbations with finite spanwise wavelength
on the mean shear of the boundary layer. As a consequence, the mean shear is
tilted, which causes the production of normal vorticity and thus a perturbation in the
streamwise velocity component. Three-dimensional wall-normal velocity perturbations
alone are therefore sufficient for the generation of Klebanoff streaks (see e.g. Breuer &
Haritonidis 1990; Leib, Wundrow & Goldstein 1999). Optimal growth studies (Butler
& Farrell 1992; Andersson, Berggren & Henningson 1999) demonstrated that the
optimal spanwise perturbation wavelength is of the order of the local boundary-layer
thickness.

Low-frequency streaks, however, do not immediately initiate breakdown. Rather,
the regions of increased shear that surround these primary features provide the
potential for the development of high-frequency secondary instabilities. Two modes
of instabilities are possible (Vaughan & Zaki 2011; Hack & Zaki 2014). Outer
modes are situated on top of boundary-layer streaks and were the dominant type
of instability in a number of studies (Jacobs & Durbin 2001; Brandt, Schlatter &
Henningson 2004; Zaki & Durbin 2005). Inner modes become more relevant in the
presence of adverse pressure gradients. Beyond the initial growth of the secondary
instability, full nonlinear breakdown to turbulence is observed. The resulting spots
have opening angles between 18 and 20◦, consistent with theoretical (Bowles & Smith
1995) and experimental studies (Wygnanski, Sokolov & Friedman 1976; Chong &
Zhong 2005).

1.2. Reduction of turbulent drag by unsteady forcing
For a given Reynolds number, the skin friction of fully turbulent flow is considerably
higher than for laminar conditions. An attempt to reduce drag can focus on altering
the turbulent state or on delaying the onset of turbulence. In the former category, one
mechanism that has received considerable attention is spanwise wall oscillation. The
effectiveness of the same mechanism to stabilize the laminar flow regime, and thus
delay the onset of turbulence, is examined herein. Therefore, a discussion of the efforts
in the context of fully turbulent flow is presented first, followed by some recent efforts
in the field of transition delay.

The experimental investigations by Bradshaw & Pontikos (1985) showed a
significant decrease in turbulent skin friction as the transverse pressure gradient
along a swept wing rapidly changed the direction of the mean flow. Driver & Hebbar
(1987) and Spalart (1989) investigated three-dimensional turbulent boundary layers
with continuously changing mean flow direction and noted that the formation of
streak-like elongated structures is largely suppressed. In internal flows, Moin et al.
(1990) performed direct numerical simulations (DNS) of channel flow subjected to an
impulsively started spanwise pressure gradient. They demonstrated a substantial
reduction in the turbulence kinetic energy as the mean flow became strongly
three-dimensional. Once the base flow realigned itself in the new direction and
became two-dimensional again, the kinetic energy recovered its original level. Jung,
Mangiavacchi & Akhavan (1992) simulated turbulent channel flow with spanwise wall
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oscillation. They demonstrated the continuous reduction of the mean wall shear stress
for oscillation periods 25<T+< 200, where T+=Tu2

τ/ν and uτ is the friction velocity.
Baron & Quadrio (1996) investigated the energy budget for oscillatory wall forcing

applied to turbulent channel flow. It was shown that the energy savings that result
from a reduction in turbulent drag may, for suitable choice of parameters, outweigh
the power input into the oscillatory movement so that a net energetic gain is achieved.
A comprehensive review of turbulent flows under the influence of transverse forcing
is given by Karniadakis & Choi (2003). Further contributions by Choi (2002) related
the reduction in turbulent skin friction to the weakening of sweep events, in which
high-speed fluid is transported towards the wall. Quadrio & Ricco (2004) established a
characteristic quantity S, which is linearly correlated with drag reduction in turbulent
channel flow for a wide range of forcing parameters. More recently, Quadrio, Ricco
& Viotti (2009) and Viotti, Quadrio & Luchini (2009) investigated the effect of wall
forcing in the form of steady and travelling streamwise waves. The comprehensive
study by Touber & Leschziner (2012) focused on the impact of oscillatory wall
forcing on turbulent streaks. The authors concluded that intervals of the oscillation
cycle during which the shear changes slowly weaken the overall drag reduction effect.
They assert that these phases allow the turbulent streaks sufficient time to grow in
the instantaneous direction of the shear vector.

The above literature focused on the influence of wall oscillation on turbulent
flows. In comparison, relatively little is known regarding the efficacy of wall forcing
to influence transition to turbulence in boundary layers. Experimental studies of
transition delay have largely focused on wall suction (Fransson & Alfredsson 2003)
and compliant surfaces (Huang & Johnson 2007). Another approach attempted to
exploit streaks in order to delay natural transition. Experiments by Boiko et al.
(1994) and Fransson et al. (2005) showed that the presence of Klebanoff streaks can
weaken the amplification of the primary Tollmien–Schlichting waves. The underlying
mechanism was attributed to a negative production term associated with the spanwise
variation of the streaky base state (Cossu & Brandt 2004). It should be noted,
however, that the streaks can also promote transition by enhancing the secondary
instability of Tollmien–Schlichting waves (Liu, Zaki & Durbin 2008a,b). More
recent attempts to delay transition include the work by Duchmann, Grundmann &
Tropea (2013). They demonstrated the effectiveness of dielectric barrier discharges
to increase the Reynolds number at the onset of natural transition by approximately
10 %. Hanson et al. (2014) used a closed-loop control set-up with plasma actuators
to attenuate streaks in pre-transitional boundary layers. Furthermore, a number of
theoretical studies demonstrated a weakening of the lift-up mechanism for different
flow configurations, for example viscosity stratification (Sameen & Govindarajan
2007), two-fluid flows (Malik & Hooper 2005) and steady spanwise wall forcing
(Ricco 2011).

The present work investigates the effect of a spanwise oscillatory wall motion
on bypass transition using DNS. A description of the simulation set-up and the
computational method is given in § 2. Section 3 reports integral measures of the
effect of the wall forcing on the bypass process. Section 4 is devoted to the lift-up
mechanism and boundary-layer streaks, while § 5 focuses on the secondary instabilities
and the subsequent breakdown to turbulence. Finally, § 6 discusses the effect of
varying the forcing amplitude and waveform.

2. Simulation set-up
The numerical method solves the full incompressible Navier–Stokes equations using

the fractional step algorithm by Kim & Moin (1985). The equations are discretized
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Computational domain

x

FIGURE 1. Schematic of the computational domain.

with the finite-volume approach described by Rosenfeld, Kwak & Vinokur (1991).
The convective terms are advanced in time using an explicit Adams–Bashforth scheme,
and the diffusion terms are treated implicitly with a Crank–Nicolson scheme. The
pressure Poisson equation is solved by applying Fourier and cosine transforms along
the spanwise and streamwise directions, and direct inversion in the wall-normal
coordinate.

A graphical representation of the simulation set-up is given in figure 1. The
computational domain starts at distance x̃0= 33 from the leading edge of the flat plate.
This location defines the origin of the coordinate x≡ x̃− x̃0. Lengths are normalized
by the inlet 99 % boundary-layer thickness, δ0, and velocities are normalized by
the free-stream value, U∞. The inlet Reynolds number based on δ0 is Reδ0 = 800
(in terms of the Blasius length scale, L =√x̃ν/U∞, the inlet Reynolds number is
ReL0 = 162). In order to relate to the literature on fully turbulent flows, dimensionless
wall distances y+= yuτ/ν, forcing periods T+= Tu2

τ/ν and velocities W+=W0/uτ are
supplied where beneficial. The friction velocity, uτ , is extracted at the onset of the
fully turbulent flow regime in the respective cases.

The length, width and height of the computational domain are 1200, 30 and 40,
respectively, and the number of grid points in these dimensions are 4096, 192 and 192.
The grid resolution is thus slightly finer than that adopted by Jacobs & Durbin (2001),
who performed an extensive grid refinement study. The grid spacing in the streamwise
(x) and spanwise (z) dimensions is uniform. Grid stretching using a hyperbolic tangent
function is used in the wall-normal coordinate (y) to ensure a fine grid resolution near
the wall. Throughout the streamwise extent of the computational domain, the coarsest
grid resolution at the wall in terms of viscous units is 1y+wall = 0.38. The streamwise
and spanwise grid spacings are 1x+ = 5.56 and 1z+ = 2.95, respectively.

The top boundary condition balances the growth of the boundary layer by a
positive wall-normal velocity in order to ensure a zero mean pressure gradient in
the streamwise direction. Homogeneous Neumann conditions are applied for the
streamwise and spanwise velocity components at that boundary. A convective outflow
condition is used at the exit of the domain, and periodicity is enforced in the spanwise
direction. No-slip conditions are prescribed at the bottom wall. In addition, spanwise
wall oscillation is applied over the full extent of the computational domain,

W(y= 0, t)=W0 cos
(

2π

T
t
)
. (2.1)

The transverse forcing starts at the inlet of the computational domain, and causes
the development of a Stokes boundary layer. It can be shown that, in the limit of large
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FIGURE 2. (a) Wall-normal profiles of w̃(y, t) (solid) and WStokes (dashed) for T = 200.
Eight equidistant phases are shown at x= 200. (b) Measure qT for the deviation between
w̃(y, t) and WStokes as a function of downstream distance for T = 10 (solid), T = 200
(dashed) and T = 800 (dash-dotted).

downstream distances, the spanwise velocity field approaches the analytical solution to
the Stokes second problem,

WStokes(y, t)=W0 exp
(
−
√

π

νT
y
)

cos
(

2π

T
t−
√

π

νT
y
)
. (2.2)

With increasing x, the thickness of the Stokes layer in the DNS, δw, becomes
proportional to

√
2πT/ν. The boundary-layer thickness, δ, on the other hand, grows

with downstream distance. Therefore, beyond a small region near the inlet, the ratio
δw/δ decays monotonically.

The time-harmonic forcing introduces a periodic component into the flow field.
Hence a triple decomposition of flow variables is adopted,

a=
〈a〉ϕ︷ ︸︸ ︷

ā+ ãϕ + a′︸ ︷︷ ︸
a′′

, (2.3)

where ā denotes the spanwise and time average, ãϕ is the periodic component and a′ is
the stochastic fluctuation. The quantity 〈a〉ϕ is the average at a particular phase, ϕ(t)=
(1/T)mod(t, T), and comprises the time-averaged mean and the periodic component.
The quantity a′′ is the sum of the periodic component and the stochastic fluctuation.

For finite distances to the leading edge, the phase-averaged velocity profile w̃(y, t)
obtained from DNS differs from the analytical Stokes layer profile (2.2). This
difference is presented in figure 2(a), and is quantified using the integral measure,

qT(x)= 1
Tδw

∫ T

0

∫ ∞
0

‖w̃−WStokes‖
W0

dydt. (2.4)

The deviation of w̃ from the Stokes profile increases for longer oscillation periods, but
remains at least two orders of magnitude smaller than w̃.

In order to initiate bypass transition in the simulations, the Blasius profile at
the inlet to the computational domain is supplemented with a moderate level
of free-stream turbulence with intensity TuFS = 3 %. Following Jacobs & Durbin
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(2001), the inlet perturbations can be expressed as a weighted superposition of
eigenfunctions of the continuous spectra of the homogeneous Orr–Sommerfeld and
Squire operators. This approach inherently avoids the free-stream bias towards the
streamwise component in the coupled Orr–Sommerfeld/Squire problem, which was
recently pointed out by Dong & Wu (2013). Downstream of the inflow plane,
the evolution of the flow is computed by direct simulations and therefore takes
into account non-parallel and nonlinear effects. The methodology has been adopted
successfully in a number of earlier studies (e.g. Brandt et al. 2004; Schrader, Brandt
& Henningson 2009; Schrader, Subir & Brandt 2010). It faithfully reproduces
the mechanics of bypass transition as demonstrated by a number of comparisons
with experiments. For example, Brandt et al. (2004) and more recently Nolan &
Zaki (2013) showed that the streamwise energy amplification and the downstream
development of the shape factor agree with the results by Matsubara & Alfredsson
(2001). The measurements by Mandal, Venkatakrishnan & Dey (2010) showed good
agreement between the properties of their streaks and those observed by Jacobs &
Durbin (2001). Matsubara & Alfredsson (2001) concluded that their results ‘provide
an experimental verification of the simulated picture’.

The simulation set-up adopted herein excludes the leading-edge region. In two
earlier studies, Nagarajan, Lele & Ferziger (2007) and later Ovchinnikov, Choudhari
& Piomelli (2008) performed simulations of the entire plate including the leading
edge. Their results showed that, when the leading edge is blunt or the free-stream
turbulence intensity is relatively high, leading-edge receptivity can become important
and should be taken into account. Their simulations also affirmed, however, that the
approach adopted herein accurately captures the bypass transition mechanism that is
active in the case of a slender leading edge.

The amplitudes of the individual inlet perturbations are assigned such that a von
Kármán spectrum is obtained in the free stream,

E(κ)= Tu2
FS

L5κ4

C(1+ (κL)2)17/6
, (2.5)

where TuFS is the free-stream turbulence intensity, and κ =
√

k2
x + k2

y + k2
z is the

magnitude of the wavenumber vector. The length scale L is related to the integral
scale L11 = (1/TuFS)

∫∞
0 u′(x)u′(x+ r)dr by L= (55C/9π)L11. A choice of C= 0.688

leads to a peak of the energy spectrum at unit wavelength. The most energetic
perturbations thus have wavelengths of the order of the boundary-layer thickness.

The downstream evolution of the perturbation field in the free stream is given
in figure 3 for a reference simulation in the absence of wall oscillation. A nearly
isotropic decay of the root mean square (r.m.s.) velocity fluctuations, which follows
the power law TuFS∼ x̃−0.69, is captured in figure 3(a). Figure 3(b) shows the integral
length scale

Lk = k3/2

ε
, (2.6)

where k is the turbulence kinetic energy and ε is the rate of energy dissipation,
evaluated in the free stream and normalized by the local boundary-layer thickness.
After an initial decay, the normalized length scale remains virtually constant over
the remainder of the computational domain. A similar trend was observed in the
experimental study by Kurian & Fransson (2009).
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FIGURE 3. Free-stream decay of turbulence: (a) r.m.s. of the velocity fluctuations u′
(dashed), v′ (dash-dotted), w′ (dash-double dotted) versus Reynolds number. (b) Turbulent
length scale Lk normalized by the local boundary-layer thickness δ versus Reynolds
number.

3. Integral performance measures
This section provides an overview of the effect of the wall oscillation on the

transition process. Selected results obtained from the DNS are presented, and focus
is placed on statistical measures that demonstrate the potential of the forcing to delay
bypass breakdown.

The skin friction coefficient

Cf =
µ
∂U
∂y

∣∣∣∣
y=0

1
2ρU2∞

(3.1)

along the flat plate is reported in figure 4(a) for a range of forcing periods and
a constant forcing amplitude, W0 = 0.25. In agreement with the direct simulations
by Jacobs & Durbin (2001), and the experimental studies of Roach & Brierley
(1990), the maximum Cf at transition onset overshoots the turbulence correlation,
Cf , turbulent = 0.455 ln−2(0.06 Rex̃) (White 2005). The downstream locations of the onset
and completion of transition for all cases are identified by the first local minimum
and the subsequent local maximum of the Cf curve, respectively. The corresponding
Reynolds numbers, Rex̃,s and Rex̃,e, are plotted in figure 4(b) versus the forcing period.
For the reference case without forcing (given by T = 0), the transition process spans
the Reynolds-number range 2× 105 6 Rex̃ 6 3.8× 105, or 350 6 Reθ 6 650, where θ
is the momentum thickness.

The effect of the forcing on transition depends on the period of the spanwise flow.
For the shortest period, T = 10, only a marginal deviation from the unforced reference
case is observed, with transition completed at Rex̃≈4.3×105. In this context, it should
be noted that the thickness of the Stokes layer scales as δw ∼

√
T . Hence, for very

short forcing periods, δw is small compared to the Blasius boundary-layer thickness,
δw/δ� 1. In these cases, the spanwise flow is primarily limited to a region very close
to the wall. For longer forcing periods, the thickness of the Stokes layer becomes
larger, and has a more substantial influence on the transition process.
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FIGURE 4. (a) Skin friction coefficient. Reference simulation (R, solid) and forcing with
amplitude W = 0.25 and periods T = 10 (T1, grey dash-dotted), T = 40 (T2, grey dashed),
T = 67 (T3, grey dash-double dotted), T = 100 (T4, black dash-dotted), T = 200 (T5, black
dashed) and T = 400 (T6, black dash-double dotted). (b) Reynolds number at the onset
(Rex̃,s, circles) and completion (Rex̃,e, diamonds) of transition.

Forcing with periods T ∈ [40, 250] generally has two effects. The location of
transition onset is shifted downstream. In addition, the transition region is extended in
the streamwise direction. For the particular case T=200, the flow is still intermittently
laminar at the end of the simulation domain, which corresponds to Rex̃ = 9.86× 105.
The remainder of this work focuses primarily on this particular case of ‘optimal’
forcing.

Any further increase of the forcing period beyond the optimal value quickly
diminishes the delay in transition. The oscillation period T = 300 yields virtually
identical values for transition onset and completion as the reference simulation. For
T = 400, laminar–turbulent breakdown is accelerated and fully turbulent flow is
established farther upstream than in the absence of spanwise forcing.

A wealth of earlier studies investigated the potential of spanwise wall oscillation
to reduce drag in turbulent flows. The skin friction curves for the forcing periods of
T = 40 and T = 67 reproduce this behaviour. After the completion of transition, the
local wall shear in these cases remains between 10 and 12 % below the correlation
for fully turbulent flow. In wall units, these forcing periods are T+= 59 and T+= 99,
and the present forcing amplitude W0 = 0.25U∞ is equivalent to W+ = 5.81. Choi
(2002) observed a reduction of drag in a turbulent boundary layer by approximately
45 % at T+ = 100 and a higher amplitude W+ = 15. For the same forcing period and
a slightly lower amplitude W+0 = 12, Touber & Leschziner (2012) achieved a skin
friction reduction by 38 % in fully turbulent channel flow. More recently, Lardeau &
Leschziner (2013) found that the optimal forcing period of turbulent boundary layers
is approximately T+ = 70.

In order to determine whether transition delay yields an energetic advantage, the
power requirement of the spanwise forcing, Pforcing, must be taken into account. The
net energetic gain is

Pnet(x) = Pprop, ref (x)− Pprop, forced(x)− Pforcing(x)

= 1Pprop − Pforcing, (3.2)

where Pprop, ref and Pprop, forced are the propulsion powers in the reference and forced
cases. Results for Pnet are provided in figure 5(a) for a range of forcing periods. Very
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FIGURE 5. (a) Net savings. (b) Relative performance. Forcing with amplitude W = 0.25
and periods T = 10 (T1, grey dash-dotted), T = 40 (T2, grey dashed), T = 67 (T3, grey
dash-double dotted), T = 100 (T4, black dash-dotted), T = 200 (T5, black dashed) and
T = 400 (T6, black dash-double dotted).

short periods (T = 10) show the most negative energetic balance. This outcome is
due to a negligible reduction of overall drag, combined with a relatively high power
requirement, since Pforcing ∼ 1/

√
T . When the forcing period is increased, transition

delay and a continuously decreasing power requirement of the forcing lead to an
optimum Pnet at T = 200. Beyond this forcing period, there is a sharp increase in
overall drag and thus Pprop, which outweighs the further decrease in the forcing power
requirement. For T = 400, the acceleration of the breakdown process causes 1Pprop to
become negative.

The relative energetic performance,

ζ = 1Pprop(x)
Pforcing(x)

, (3.3)

normalizes the power savings by the power input into the spanwise forcing.
Figure 5(b) presents ζ for a range of forcing periods and shows that the energetic
savings at the optimal forcing period outweigh the power requirement of the transverse
forcing by a factor of four.

The statistical results presented so far clearly demonstrate the ability of the wall
forcing to reduce viscous drag, and motivate an examination of the underlying
behaviour of the flow. A concise overview of the influence of the forcing on the
transition process is provided by the space–time diagrams in figure 6. The contours
represent the level of the streamwise velocity at a particular spanwise position for
a long span of time. Dark regions correspond to fully turbulent flow. Each of the
‘wedges’ pointing upstream represents the formation of a single turbulent spot. It is
seen that, in the presence of the forcing, the frequency of occurrence of breakdown
events is markedly reduced.

In the subsequent sections, the cause of the change in transition location and the
frequency of spot inception are examined. The influence of the optimal wall forcing on
boundary-layer streaks is discussed, followed by a study of the secondary instability
of the base flow.

4. Effect of optimal forcing on the pre-transitional boundary layer
Laminar boundary-layer streaks are a central element in bypass transition. Even

though they are dominated by the streamwise velocity component, the streaks amplify
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FIGURE 6. Space–time diagrams of the streamwise velocity, u, recorded at y/δ(x)= 0.40.
(a) Unforced reference case. (b) Optimal forcing.

due to a displacement of the mean momentum by relatively weaker wall-normal
perturbations. This section presents a comprehensive analysis of the influence of the
spanwise forcing on the streaks themselves, as well as on the lift-up mechanism that
causes them.

4.1. Boundary-layer streaks
In the pre-transitional boundary layer, the streamwise stochastic fluctuations, u′,
provide a suitable starting point to examine the influence of the forcing on the
streaks. Contours of the r.m.s. of u′ are provided in figure 7. The reference case shows
continuous growth of the fluctuation amplitude upstream of Rex̃,s, with the maximum
located at y/δ(x) ≈ 0.4. This compares favourably with the experimental studies by
Matsubara & Alfredsson (2001), who located the peak of the streamwise velocity
fluctuation at 1.3 times the local displacement thickness, or equivalently y/δ(x)≈ 0.45.
A local peak is reached at the centre of the transition zone, Rex̃ ≈ 3× 105. Once the
flow has become fully turbulent, the position of the maximum u′rms moves closer to
the wall and is located at approximately 5 % of the local boundary-layer thickness.
In the presence of the forcing (figure 7b), initial streak growth remains below the
levels observed for the reference case. The results suggest that the amplification of
streaks is delayed to larger Rex̃.

The effect of the spanwise oscillatory flow on the streaks is also apparent in
instantaneous flow fields. For the purpose of comparison, figures 8 and 9 show
contours of u′ from the reference and the optimal forcing simulations. The plane
views are at constant y/δ(x), and thus follow the growth of the boundary layer. The
top panel shows the free stream, where the perturbations decay as they are convected
downstream in both cases. The three remaining panels are within the boundary layer.

Since they are generated by lift-up, the streaks close to the edge of the boundary
layer are generally slower than the surrounding fluid, u′ < 0. On the other hand,
near-wall streaks (y/δ(x) = 0.20) are characterized by a velocity surplus relative
to the mean flow, u′ > 0. Inside the boundary layer, the formation of streaks is
significantly weakened by the spanwise oscillatory flow (figure 9). The influence
of the forcing is most apparent at y/δ(x) = 0.20, where w̃ is highest among the
shown planes. The flow field in that view is free from Klebanoff streaks upstream
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FIGURE 8. Top views, unforced reference simulation. Contours of the stochastic
fluctuation of the streamwise velocity component −0.20 6 u′ 6 0.20.

of x ≈ 350. Relative to figure 8, the flow fields under the influence of the forcing
clearly indicate an absence of energetic streaky structures in the boundary layer.
Isolated streamwise-elongated features are observed, which are nonetheless shorter
in extent than those in the reference case. The flow remains laminar, without any
localized breakdown events, until a sudden change to fully turbulent flow near x≈ 800
(Rex̃ = 6.67× 105).

In order to examine the spectral content of the fluctuation field, the energy
frequency spectrum is evaluated,
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FIGURE 9. Top views, optimal forcing. Contours of the stochastic fluctuation of the
streamwise velocity component, −0.20 6 u′ 6 0.20. The dashed vertical line gives the
location where the plane crosses the spanwise Stokes layer.

Êu(F)=
(∫ ∞
−∞

u′(t) exp(−2πiFt)dt
)2

, (4.1)

where F = 106ων/U2
∞ is the non-dimensional frequency. It should be noted that the

lowest frequency at the inflow is F = 480, which is relatively high in comparison
to that of the streaks. As demonstrated in earlier works, nonlinear interactions
lead to the rapid broadening of the spectrum and the maximum shifts towards the
low-frequency streamwise-elongated streaks (Jacobs & Durbin 2001; Brandt et al.
2004). The spectrum for the reference and forced cases at the downstream position
x = 170 (Rex̃ = 1.62 × 105), which is located upstream of spot inception, is given
in figure 10. At this location, the local thickness of the spanwise Stokes layer is
δw(x)/δ(x) = 0.32. The energy of the streamwise velocity component is primarily
in the low-frequency range and decreases logarithmically with increasing frequency
for both the reference and unforced cases. The presence of the forcing nonetheless
reduces the energy contained in low-frequency perturbations by more than an order
of magnitude. This finding affirms that the decrease in u′rms can be attributed to the
weakening of the streaks in the presence of spanwise wall oscillation.

Farther downstream, at x = 400, the flow in the reference simulation has become
intermittent, and an increase of the energy in high-frequency perturbations is recorded
in the spectra. A similar trend is observed for the forced case, although, in absolute
terms, the energy level remains substantially below the reference case for all F.
At this downstream position, the local thickness of the spanwise Stokes layer is
δw(x)/δ(x)= 0.21.
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FIGURE 10. Temporal energy spectra of the streamwise velocity fluctuation u′, evaluated
at y/δ(x)= 0.4: (a) x= 170; (b) x= 400. Reference simulation (solid) and optimal forcing
(dashed).

The spectral make-up of the disturbance field in terms of the spanwise perturbation
wavenumber, kz, is evaluated as

Eu(kz, F)=
(∫ ∞
−∞

∫ ∞
−∞

u′(z, t) exp(−i2π(Ft+ kzz))dtdz
)2

. (4.2)

Results for the reference and optimally forced cases are compared in figure 11.
The spectra show small energy content at low Reynolds number owing to the
absence of low-frequency disturbances at the inlet. Downstream of that region, the
reference simulation develops highly energetic perturbations, with a peak at spanwise
wavenumber kz≈ 1.4. The corresponding spanwise wavelength is approximately twice
the local boundary-layer thicknesses, which is representative of the pre-transitional
streaks. Transition to turbulence downstream of Rex̃ ≈ 2 × 105 is characterized by a
redistribution of energy, which causes Eu(kz, F= 16) to decay. In the presence of the
wall motion, the initial amplification of low-frequency perturbations is substantially
reduced. The level of Eu remains below that of the reference case throughout the
investigated range of Reynolds numbers.

4.2. Lift-up mechanism
In order to examine the mechanism for the weakening of the streaks, the budget of
the kinetic energy in the streamwise velocity fluctuation, ku = 1

2 u′u′, is considered,

ul
∂

∂xl
ku︸ ︷︷ ︸

Cu

+ u′u′l
∂

∂xl
u︸ ︷︷ ︸

Pu

=− 1
ρ

∂

∂x
u′p′︸ ︷︷ ︸

Ru

− ν ∂
∂xl

u′
∂

∂xl
u′︸ ︷︷ ︸

Du

− 1
2
∂

∂xl
u′lu′u′︸ ︷︷ ︸

Tu

+ν ∂2

∂xl∂xl
ku. (4.3)

The terms in this equation describe the advection (Cu), production (Pu), pressure
redistribution (Ru), dissipation (Du) and turbulent transport (Tu) of disturbance kinetic
energy. Since ku is dominated by the streaks, the production term, Pu, is directly
related to amplification of streaks via the lift-up process. The boundary layer integrals
of the production, dissipation, convection and pressure reduction terms of ku for both
the reference and optimally forced cases are presented in figure 12. A significant
reduction in Pu is observed in the presence of the wall motion, where the streaks are
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over the local thickness of the boundary layer. Production (Pu, circles), dissipation (Du,
squares), convection (Cu, diamonds) and pressure redistribution (Ru, triangles). Reference
(solid) and forced (dashed) cases.

also weaker. Outside a small region near the inflow, the dissipation of kinetic energy
is also significantly lower in the forced case.

In order to further assess the influence of the wall forcing on the lift-up mechanism,
the joint probability density function (PDF) of u′ and v′, or G(u′, v′), is evaluated. The
probability P for a pair of values (u′, v′) to lie within the interval [u′1, u′2] × [v′1, v′2]
is obtained by integrating G(u′, v′),

P([u′1, u′2] × [v′1, v′2])=
∫ v′2

v′1

∫ u′2

u′1
G(u′, v′)du′dv′. (4.4)

The free-stream behaviour of the fluctuation field at the wall distance y/δ(x) =
1.6 is given in figure 13(a). The circular contours reflect the isotropy of the free-
stream perturbation field. Inside the boundary layer, the shape of the contour lines
is stretched in the u′ direction and compressed in the v′ direction. The reduced extent
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of the joint PDFs with respect to v′ can be attributed to the combined effects of shear
sheltering and wall blocking. The formation of Klebanoff streaks within the boundary
layer causes the expansion of the joint PDFs in the direction of u′. In the reference
case, the joint PDFs become increasingly biased towards quadrants II (ejections: u′<
0, v′ > 0) and IV (sweeps: u′ > 0, v′ < 0) inside the boundary layer. Both sweeps
and ejections are markedly weakened in the presence of the forcing. This effect is
most noticeable close to the wall, where the magnitude of the spanwise base flow is
highest.

In order to examine whether there exists a preferential orientation in spectral space
for energy amplification, the quantity

εu =
∫ δ(x)

0
log Eu, forced − log Eu, ref dy (4.5)

is considered. Here, E is the kinetic energy as a function of F and kz. The results for
the streamwise and wall-normal fluctuations, respectively, are shown in figure 14(a,b).
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FIGURE 14. Difference between the energy of reference and optimally forced cases at
x= 65, integrated over the extent of the boundary layer. (a) Streamwise component −26
εu 6 0. (b) Wall-normal component −0.7 6 εv 6 0.7.

When considering u′, it should be emphasized that εu is negative for all F and kz. The
difference is most pronounced in the region F< 200, kz< 10, which is associated with
boundary-layer streaks.

The difference in the spectra of v′, on the other hand, contains regions of both
positive and negative εv. The energy in the forced case is highest along rays starting
at the origin, and pointing towards F = 1300, kz = 10, marked by the dashed line in
figure 14(b). The non-dimensional frequency is related to the streamwise wavenumber
of the perturbations via kx = FU2

∞/(106cν), where c is the phase speed of the
disturbance. Assuming c ∈ [0.4, 0.85], the angle of these rays ranges from 14 to 6◦.
This angle has been explained using a model problem and comparing the diffusive
and convective time scales of free-stream perturbations (Hack & Zaki 2012). Owing to
the wall forcing, the base flow is three-dimensional. Disturbances whose wavenumber
vector is perpendicular to the shear vector can preferentially diffuse into the boundary
layer.

4.3. Streak amplitudes
The discussion of the amplitude of boundary-layer streaks has thus far relied on
statistical measures of u′. For example, it was shown that the r.m.s. of u′ decreases
under the influence of the spanwise wall forcing. These results do not, however,
differentiate the part of u′ that indeed forms the streaks from the surrounding
perturbations, since the entire disturbance field is sampled indiscriminately. In order
to identify particular streaks, the methodology described by Nolan & Zaki (2013) is
applied to time series that comprise 4000 snapshots from each of the reference and
the optimally forced cases.

First, laminar flow regions are isolated using a laminar–turbulent discrimination
technique. The local extrema of u′ are subsequently identified in cross-flow planes,
and streaks are reconstructed by connecting the extrema across adjacent planes. Using
this approach, the streaks can be identified (see figure 15) and traced in space–time
as Lagrangian objects. The spatial coordinates of streak s are given by xs(t), and its
amplitude is A s

u (xs, t)≡ u′(x= xs, t).
The average of the amplitudes of all streaks, Au = (1/S) ∑s A s

u , is shown in
figure 16 as a function of the downstream coordinate. Generally, the amplitudes of
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FIGURE 16. Amplitudes of high-speed (black) and low-speed (grey) streaks for reference
(solid) and optimally forced (dashed) cases versus downstream position.

high-speed and low-speed streaks are approximately equal, in both the reference and
forced cases. For the former, an increase in the amplitude with x is observed, and
Au grows from 0.09 at x = 50 to 0.16 at x = 300. In the presence of the spanwise
flow, the averaged amplitudes are significantly lower, and the relative difference to
the reference simulation grows with downstream distance. At x= 300, the forcing has
caused a reduction in the streak amplitude by a factor of two.

The PDFs of A s
u for both the reference and forced cases at x= 170 are presented

in figure 17. Solid lines mark a fit for a type I general extreme value distribution.
Inspection of the reference simulation shows that the peak of the PDF is located at
approximately 15 % of the free-stream velocity for both high- and low-speed streaks.
The wall forcing, on the other hand, leads to substantially narrower PDFs, with
amplitudes of the majority of the streaks below 10 % of the free-stream velocity. It
also eliminates high-amplitude streaks, A s

u > 0.25. Further analysis of the effect of
the wall motion on the streaks is presented in figure 18, where the phase-averaged
amplitude, 〈Au〉, is plotted versus the phase of the base flow at x= 170. In the forced
case, the streak amplitude oscillates twice per base-flow period between 〈Au〉 = 0.07
and 0.10. This frequency doubling is expected since the wall oscillation is symmetric
in the positive and negative spanwise directions. Despite this preferential amplification
at ϕ ≈ 0.15 and ϕ ≈ 0.65, the streak amplitudes remain significantly weaker in the
presence of the forcing relative to the reference simulation.
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FIGURE 18. Amplitudes of high-speed (black) and low-speed (grey) streaks for reference
(solid) and optimally forced (dashed) cases versus the phase of the base flow at x= 170.

Boundary-layer streaks initiate breakdown to turbulence via the amplification of
secondary instabilities. The recent study by Hack & Zaki (2014) established a clear
correlation between the amplitudes of streaks and the amplification rates of these
instabilities. In that work, it was shown that the mean amplitude of the subset of
streaks that cause breakdown to turbulence is approximately 30 % of the free-stream
speed. This level of streak amplitude is nearly absent in the forced case. It is therefore
expected that these streaks will be less likely to develop secondary instabilities – a
point that is examined in detail in the next section.

5. Secondary instability and breakdown
The results presented so far have shown a substantial weakening of the boundary-

layer streaks at the optimal wall oscillation. The low-frequency streaks themselves,
however, do not immediately cause the formation of turbulent spots. Breakdown to
turbulence is rather a consequence of high-frequency secondary instabilities of the
streaky base state. The purpose of the present section is to relate the weaker boundary-
layer streaks in the forced flow to the reduced frequency of turbulent-spot inception
via the analysis of secondary instabilities.
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5.1. Secondary instability analysis
The computational approach to investigate the secondary instability of the streaky
boundary layer is based on the work of Blackburn & Sherwin (2004) and Barkley,
Blackburn & Sherwin (2008). The base flow of the stability analysis is given by
instantaneous velocity profiles in the cross-flow plane that are extracted from DNS
fields. The dependence of the base flow on x and t is therefore parametric. This
approach is motivated by the weak time dependence of the streaky base state. For
the present case with optimal forcing (T = 200), the time scale of the wall motion
substantially exceeds that of the streak instabilities. The locally parallel base state of
the instability analysis is Qstab(y, z; x, t)= (U, V,W, P)Tstab = (u(x, y, z, t)DNS, 0, 0, 0)T.
The secondary instability is described by the state vector q2(x, y, z, t)= (u, v, w, p)T2 ,
which leads to the ansatz q=Qstab + q2 for the perturbed base state.

A normal-mode assumption is adopted in x,

q2(x, y, z, t)= q̂2(y, z, t) exp(iαx), (5.1)

where α is the streamwise instability wavenumber. The streak instability is assumed to
be small in magnitude, so that quadratic terms may be neglected. The time evolution
of u2 = (u, v,w)T2 is hence described by the linear relation

∂

∂t
û2 =−iLû2, (5.2)

where
L= i[(I −∇1−1

∇ · )(Ustab · ∇)+ (∇Ustab) · ] + 1
Re
∇2, (5.3)

and 1−1 is the formal inverse of the Laplacian. Integration of (5.2) gives

û2(t)= A(t)û2(0), (5.4)

with the fundamental solution operator A = exp(−iLt). The time dependence of
an eigenfunction û2 of L with corresponding eigenvalue σ is hence given by
û2(t) = û2(0) exp(−iσ t). The investigated base flow is exponentially stable if the
imaginary part σi of all eigenvalues is negative, and unstable otherwise. The numerical
method for computing a subspectrum of L is based on the IRAM scheme introduced
by Sorensen (1992). The boundary conditions for the secondary instability at the wall
and at the top of the computational domain are

u2, v2,w2 = 0 for y= 0, (5.5)

v2,
∂u2

∂y
,
∂w2

∂y
= 0 for y→∞. (5.6)

Consistent with the DNS flow field, periodicity is enforced in the spanwise dimension.
A visualization of a representative eigenfunction of a secondary streak instability is

provided in figure 19. Background contours show the streamwise fluctuation field and
lines indicate the eigenfunction of the most unstable secondary instability. The top
panel shows the entire spanwise extent of the computational domain and demonstrates
that the eigenfunction is localized around a single low-speed streak. The two lower
panels provide enlarged views of the streamwise and spanwise components of the
instability eigenfunction. In the case of the streamwise component, the eigenfunction
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FIGURE 19. Eigenfunction of a streak instability (lines) and streamwise velocity
fluctuation field −0.30 6 u′ 6 0.30 (greyscale contours). (a) Entire spanwise extent of
the domain with streamwise component of the eigenfunction. (b) Enlarged view with
streamwise component of the eigenfunction. (c) Enlarged view with spanwise component
of the eigenfunction. Dashed lines are negative values, and solid lines are positive values.
The thick white line marks the critical layer.

is situated along the flanks of the streak and shows a spanwise antisymmetric
configuration, such that u2 is positive on the right-hand side and negative on the
left-hand side of the streak. The eigenfunction of the spanwise component is situated
on top of the streak and is spanwise symmetric with respect to the host streak. The
combined effect of the two components is a sinusoidal deformation of the host streak,
which grows in amplitude and eventually leads to the inception of a turbulent spot.

In order to examine the impact of the wall forcing on the amplification of secondary
instabilities, a statistical approach using a large number of stability analyses is pursued.
The time interval between two consecutive analyses is 1tstab = 20. This time interval
ensures that different phases of the oscillatory base flow are examined. A total of
200 time instances were investigated at the downstream position x = 170. It should
be noted that the streamwise wavenumber α is an input parameter of the linear
analysis. Therefore, at each time instance, six stability computations over the range
α ∈ [0.3, 1.3] were performed. This choice is motivated by earlier studies (Hack &
Zaki 2014), which examined the range of α in detail. Only the maximum growth rate
is included in the reported statistics. Furthermore, it should be pointed out that the
instability analysis is purely temporal and thus differs from the DNS, which captures
the spatio-temporal evolution of the instabilities. In a recent study, however, Hack &
Zaki (2014) have demonstrated that the temporal analysis can accurately capture the
properties of the secondary instabilities of streaks.
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FIGURE 20. PDFs of the growth rate σi of the streak instabilities, evaluated at x= 170.
(a) Unforced reference case. (b) Optimal forcing.

The results from the current stability analyses are presented in figure 20. The mean
growth rate of the secondary instabilities halves from σi, ref = 0.023 in the reference
case to σi, forced = 0.011 under the influence of the wall forcing. This reduction affects
all growth rates in excess of 0.02. The work by Hack & Zaki (2014) demonstrated that
secondary instabilities with higher growth rates can be directly related to breakdown
via turbulent spots. The current analysis thus explains the reduced frequency of
occurrence of turbulent spots in the presence of the spanwise wall forcing, which
was shown in the space–time diagram (figure 6).

5.2. Formation of turbulent spots
For a closer study of the influence of the wall motion on the formation of turbulent
spots, the space–time diagram from figure 6 is repeated in figure 21 for a longer time
interval, t ∈ [0, 8000]. Comparison of the reference and forced cases substantiates the
earlier observation of a lower rate of spot formation in the forced flow. In order to
quantitatively corroborate the visual impression from the figure, the laminar–turbulent
discrimination technique is employed, and the inception of turbulent spots is recorded.
PDFs of the downstream position of spot inception are shown in the two lower panels
of figure 21. It is seen that in the reference case practically all spots form upstream
of x≈ 400. In the presence of the forcing, the average location of spot formation is
shifted downstream, with the peak of the distribution located at x≈ 800.

The laminar–turbulent discrimination method may also be used to determine the
fraction of time for which the flow at a given downstream location is turbulent. The
indicator function Γ (x, y, z, t) is set to unity if the flow is turbulent and to zero if the
flow is laminar. Intermittency is then defined as the time and spanwise average of Γ ,

γ (x, y)= lim
t∗→∞

1
t∗Lz

∫
t∗

∫
Lz

Γ (x, y, z, t)dzdt, (5.7)

and the local peak intermittency is

γp(x)=max
y
γ (x, y). (5.8)

Figure 21 shows that the flow in the reference simulation becomes fully turbulent at
x≈ 600 (Rex̃= 5.06× 105). In the presence of the forcing, the flow approaches γp= 1
at the downstream end of the computational domain, at x= 1200 (Rex̃ = 9.86× 105).
The delay in breakdown to turbulence has been attributed to the weaker streaks in the
pre-transitional flow and their reduced secondary instability.
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FIGURE 21. (a,b) Space–time diagrams of the streamwise velocity, u, at y/δ(x) =
0.40. (c,d) PDFs of the location of spot inception. The grey line gives the local peak
intermittency γp. (a,c) Unforced reference case. (b,d) Optimal forcing.

6. Discussion
6.1. Variation of the forcing amplitude

The wall forcing is characterized by its period, T , and its amplitude, W0. While the
influence of T was comprehensively examined in § 3, the forcing amplitude has so far
been kept constant at W0= 0.25. In order to provide a qualitative understanding of the
influence of the forcing amplitude on the transition process, additional simulations
were performed at various W0. For the two forcing periods T = {40, 200}, two
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additional amplitudes W0 = 0.10 and W0 = 0.40 were examined. All other parameters,
including the turbulent inlet condition and the grid resolution, remained unchanged.

Further study of the period T = 40 is motivated by the earlier reported reduction of
skin friction in fully turbulent boundary layers at similar forcing periods (e.g. Lardeau
& Leschziner 2013). The skin friction coefficient is shown in figure 22(a). Both the
onset and the completion of the transition process are increasingly shifted downstream
with growing forcing amplitude. After the completion of transition, the local skin
friction remains below the characteristic level of fully turbulent flow. This effect is
more pronounced for higher forcing amplitudes, and thus qualitatively matches the
results in various studies of viscous drag reduction in turbulent bounded shear flows.

A second series of computations was performed for T = 200. This particular
oscillation period was the optimal configuration with respect to transition delay
and reduction in viscous drag at W0 = 0.25. The local skin friction coefficient
is shown in figure 22(b), and demonstrates a strong dependence of the transition
process on the amplitude of the forcing. For W0 = 0.10, the onset of transition is
at the same downstream position as for W0 = 0.25, yet the streamwise extent of the
transition region itself is substantially shortened. An increase in the forcing amplitude
to W0 = 0.40 sharply reverses the stabilizing effect of the forcing, and a very rapid
breakdown to turbulence is observed, with transition starting upstream of the unforced
case, at x≈ 100. Fully turbulent flow is observed as early as x≈ 300.

The fluctuation field in the case T=200, W0=0.40 shows a clear phase dependence
as demonstrated by the phase-averaged space–time diagrams provided in figure 23.
Contours show the spanwise standard deviation of the fluctuation field,

〈u′〉rms =
(

1
NLz

∑
N

∫ Lz

0
u′ 2dz

)1/2

, (6.1)

where N = 20 is the number of sampled periods of the base flow. The periodicity is
most prominent at the considered wall distance, y/δ(x)= 0.30, which is slightly lower
than the location of the peak u′ associated with Klebanoff streaks.

Results for the streamwise velocity component are shown in figure 23(a). A
structure of alternating bands of high and low 〈u′〉rms is observed with half the period
of the base flow. In other words, each forcing period contains two intervals during
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FIGURE 23. Phase-averaged space–time diagrams: (a) 〈u′〉rms; (b) 〈v′〉rms. Forcing with
T = 200, W0 = 0.40.

which the fluctuations grow, separated by intervals in which the fluctuations decay
again. The bands are aligned at an angle to the abscissa, which corresponds to a
characteristic ‘speed’ cc ≈ 0.60 with which the perturbation field travels downstream.
As the flow becomes increasingly turbulent, the bands smear out and finally form a
continuous region of high 〈u′〉rms.

The standard deviation of the wall-normal velocity fluctuation, v′, shows a very
similar behaviour (figure 23b). While the magnitude of 〈v′〉rms is initially lower
than for the streamwise component, the observed angle of the bands is approximately
identical. It is also clear that the phases of the streamwise and wall-normal fluctuations
match, indicating a simultaneous amplification and decay of the two components.

Making use of the methodology introduced in § 5.2, spot formation in the case
T = 200, W0 = 0.40 is investigated. Figure 24(a) shows a probability distribution
for the formation of turbulent spots as a function of the phase of the base flow,
irrespective of the downstream position at which breakdown occurs. Two mildly
pronounced peaks are observed, which indicates that the frequency of breakdown to
turbulence is the first harmonic of the base flow frequency. This phase dependence
becomes more evident if the downstream position of the turbulent spots is incorporated
to compute a corrected phase of spot inception using the phase speed cc = 0.60. In
figure 24(b), two well-defined maxima are seen, indicating a strong phase dependence
of breakdown to turbulence in the case of high-amplitude forcing. Top views of the
flow field for this case, T = 200 and W0 = 0.40, are provided in figure 25. These
visualizations indicate a generally high perturbation level inside the boundary layer.
The perturbations are relatively short in the streamwise direction and hence clearly
differ from typical boundary-layer streaks.

6.2. Variation of the forcing waveform
A generalization of the wall forcing to arbitrary, but nonetheless time-periodic,
waveforms has been undertaken by Cimarelli et al. (2013) in the context of fully
turbulent channel flow. At the optimal parameters, sinusoidal forcing outperformed
all other investigated waveforms. If the forcing parameters deviated from their global



88 M. J. P. Hack and T. A. Zaki

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.0

2.5(a) (b)

PDF

FIGURE 24. PDFs of the phase of spot inception. (a) Uncorrected phase, ϕ(t).
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FIGURE 25. Top views, forcing with T = 200, W0 = 0.40. Fluctuation of the streamwise
velocity component, −0.10 6 u′ 6 0.10.

optimum, however, other forcing waveforms yielded better performance. For sinusoidal
forcing, the time dependence of the shear angle,

ψτ ≡ arctan
(
∂W
∂y

/
∂U
∂y

)
,

in planes parallel to the wall is also sinusoidal, and there exist intervals of slowly
varying ψτ (see figure 26a). In their investigation of fully turbulent channel flow,
Touber & Leschziner (2012) remarked upon the importance of this state of lingering
shear strain. They asserted that the very slow reorientation of the shear during phases
of lingering allows turbulent streaks sufficient time to amplify in the instantaneous
direction of the shear-strain vector. Touber & Leschziner (2012) concluded that drag
reduction is undermined if the duration of the lingering state exceeds the time span
for the generation of streaks.
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FIGURE 26. Shear angle ψτ versus the phase of the base flow at x= 170 and y/δ(x)=
0.20 (dashed-dotted), y/δ(x) = 0.45 (dashed) and y/δ(x) = 0.70 (dashed-double dotted).
(a) Sine wave. (b) Square wave.

Additional flow simulations with triangle and square waveforms for the wall velocity
were performed, and their influence on transition was determined. A continuously
differentiable expression for the triangle wave is given by the Fourier series

Wtriangle(y= 0, t)= 8
π2

∞∑
k=0

(−1)k

(2k+ 1)2
sin
(
(2k+ 1)

2π

T
t
)
, (6.2)

from which the first 16 terms were retained. A graphical representation of this
approximation is given by the dashed-dotted line in figure 27. A Fourier expansion
of the square wave, on the other hand, suffers from Gibbs oscillations. Therefore, the
square wave was instead approximated by the following C1 differentiable form,

Wsquare(y= 0, t)=



W0 sin
(

2π
t

4a

)
, 0< t 6 a,

W0, a< t< T/2− a,

W0 sin
(

2π

(
1
2
− T

8a
+ t

4a

))
, T/2− a 6 t 6 T/2+ a,

−W0, T/2+ a< t< T − a,

W0 sin
(

2π

(
1− T

4a
+ t

4a

))
, T − a 6 t 6 T,

(6.3)

where the constant a is small compared to the oscillation period, a = 0.02T . The
resulting wall-oscillation profile is shown as the dashed-double dotted line in figure 27,
and the shear angle is provided in figure 26(b). At y/δ(x) = 0.20, the behaviour of
ψτ still resembles the square wave at the wall. For larger wall distances, the phase
dependence of the shear angle approaches a sine wave.

The forcing amplitudes were chosen such that the power requirements in the
laminar region are in all cases equal to that of the sinusoidal forcing. The respective
amplitudes and r.m.s. of the spanwise velocity at the wall are provided in table 1.

Flow simulations were performed for all three forcing profiles and an oscillation
period T = 200. All other parameters, including those of the free-stream turbulence at
the inlet were unchanged. The skin friction coefficient is plotted in figure 28(a), and
demonstrates that forcing with the triangle wave yields nearly identical results to the
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FIGURE 27. Spanwise velocity component at the wall, w(0, t), normalized to identical
forcing power requirement, Pforcing: sine wave (solid), triangle wave (dash-dotted) and
square wave (dash-double dotted).

W0 wrms(y= 0)

Sine 0.250 0.178
Triangle 0.302 0.188
Square 0.186 0.165

TABLE 1. Properties of forcing waveforms for identical power input, Pforcing.
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FIGURE 28. Variation of the forcing waveform: reference simulation (solid); sine wave
(dashed); triangle wave (dash-dotted); square wave (dash-double dotted). (a) Skin friction
coefficient Cf over downstream Reynolds number Rex̃. (b) Net energetic advantage Pnet
over downstream Reynolds number Rex̃.

sinusoidal oscillation. Application of the square wave, on the other hand, preserves
laminar flow farther downstream, up to Rex̃ ≈ 3.8 × 105. The energetic balance is
reported in figure 28(b). Since the power input is identical in all cases, the net
power savings are directly related to the reduction in propulsion power, 1Pprop. The
downstream shift in transition location in the case of the square wave leads to an
increase in Pnet by approximately 20 % at a Reynolds number Rex̃ ≈ 6.2× 105.
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The results establish that the sudden change of the spanwise velocity in the case
of the square wave stabilizes the laminar flow regime more effectively than the
sinusoidal forcing. Since the swift change in W(0, t) is the high-frequency part of
the wall motion, its influence decays quickly in y, and a sinusoidal time dependence
is recovered away from the wall (cf. figure 26). Nearer to the wall, however, the
form of the square wave is still discernible and more effectively delays the onset of
transition.

The discussion in this section highlights two observations: First, an increase in the
oscillation amplitude does not necessarily enhance stability, and can in fact cause
transition to shift farther upstream than the reference flow. Second, the sinusoidal wall
oscillation did not yield the best performance, for a fixed power input. Both these
trends should be compared to the literature on drag reduction in fully turbulent flows
where (i) an increase in the amplitude of wall oscillation enhances drag reduction
and (ii) the sine wave is the optimal forcing waveform. As such, while the current
study was originally motivated by previous work on fully turbulent configurations, the
influence of the wall motion on transition is markedly different.

7. Conclusions

The potential to affect bypass breakdown to turbulence via time-harmonic wall
forcing was investigated by means of DNS. For suitable forcing parameters, the onset
of transition can be shifted downstream appreciably, and the length of the transition
region can be significantly extended. It was also demonstrated that the decrease in
theoretical propulsion power due to the delay of the fully turbulent flow significantly
outweighs the power requirement of the wall forcing.

The transition process is sensitive to the forcing parameters. Starting with very short
periods of oscillation, an increase in T enhances drag reduction until an optimum
is reached. Longer periods rapidly diminish, and even reverse, the stabilization of
the laminar regime. As a result, for periods of approximately twice the optimal
value, transition occurs upstream of the unforced reference case. A qualitatively
similar behaviour is observed when increasing the amplitude of the forcing beyond
its optimal value. Analysis of the phase of spot inception showed that breakdown
to turbulence in these cases is correlated with a particular phase of the wall forcing
cycle. The focus, however, was placed on the optimal forcing parameters where
transition was substantially delayed.

Instantaneous fields and statistical results demonstrated that the optimal oscillation
frequency significantly weakened boundary-layer streaks in the pre-transitional flow.
Sampling of the properties of large numbers of individual streaks demonstrated
that the forcing leads to narrower distributions for the streak amplitudes of both
high-speed and low-speed streaks. The averaged amplitudes of laminar streaks are
reduced by up to 50 % in comparison to the reference case. In addition, linear
stability analyses confirmed a substantial reduction of the growth rates of secondary
streak instabilities in the presence of the forcing. These results explain the reduced
frequency of occurrence of turbulent spots observed in the DNS.

Finally, a study of different waveforms for the spanwise wall forcing was performed.
It was shown that, for identical power input into the wall movement, an oscillation
described by a square wave can shift the onset of transition farther downstream than
sinusoidal forcing. Apart from the increased efficiency, forcing with a square wave
also demands a 40 % lower peak value of the spanwise wall velocity than sinusoidal
forcing.
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