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Streak instabilities in boundary layers beneath
free-stream turbulence
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The secondary instability of boundary layer streaks is investigated by means of
direct stability analysis. The base flow is computed in direct simulations of bypass
transition. The random nature of the free-stream perturbations causes the formation
of a spectrum of streaks inside the boundary layer, with breakdown to turbulence
initiated by the amplification of localized instabilities of individual streaks. The
capability of the instability analysis to predict the instabilities which are observed in
the direct numerical simulation is established. Furthermore, the analysis is shown to
identify the particular streaks that break down to turbulence farther downstream. Two
particular configurations of streaks regularly induce the growth of these localized
instabilities: low-speed streaks that are lifted towards the edge of the boundary
layer, and the local overlap between high-speed and low-speed streaks inside the
boundary layer. It is established that the underlying modes can be ascribed to the
general classification of inner and outer modes which was introduced by Vaughan &
Zaki (J. Fluid Mech., vol. 681, 2011, pp. 116–153). Statistical evaluations show
that Blasius boundary layers favour the amplification of outer instabilities. Adverse
pressure gradient promotes breakdown to turbulence via the inner mode.
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1. Introduction
Exposure of a laminar boundary layer to vortical free-stream disturbances induces

a rapid breakdown to turbulence in which the Tollmien–Schlichting (TS) instability is
bypassed. Instead, elongated perturbations commonly referred to as streaks, which are
dominated by the streamwise velocity component, are generated inside the boundary
layer. The amplitude of these streaks significantly exceeds that of the free-stream
perturbations. The resulting modulation of the velocity profile renders the streaky
boundary layer susceptible to secondary instabilities. These instabilities are high
frequency, have substantially larger growth rates than TS waves and lead to rapid
breakdown to turbulence (for recent reviews of bypass transition, see Durbin & Wu
(2007) and Zaki (2013)). The ability to predict the onset of secondary instability of
the streaky boundary layer, in realistic flow configurations, is the focus of the current
work. The computed instabilities are described in detail and related to the literature
which to date has only considered idealized streaks.
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The amplification of boundary-layer streaks, often referred to as Klebanoff
distortions, is well understood. The ‘lift-up’ mechanism described by Landahl (1975,
1980) attributes streaks to the vertical displacement of mean momentum inside the
boundary layer. This ‘algebraic’ amplification mechanism leads to energy growth
which is followed by viscous decay, and is thus often referred to as transient growth.
The process is non-modal and is therefore independent of the linear stability of the
base flow (Hultgren & Gustavsson 1981; Trefethen et al. 1993). In bypass transition
beneath free-stream turbulence, a mechanism is required to relate the free-stream
disturbance to the generation of streaks inside the mean shear.

Studies by Jacobs & Durbin (1998) and later by Zaki & Saha (2009) compared the
diffusive time scale of free-stream vortical disturbances to the mean-shear time scale,
and demonstrated a filtering effect of the boundary layer. Only low-frequency free-
stream disturbances can penetrate the shear: a phenomenon known as ‘shear sheltering’
(Hunt & Carruthers 1990). These streamwise-elongated perturbations are also the
most effective in causing the formation of streaks via non-modal, or algebraic growth
(Gustavsson 1991; Butler & Farrell 1992). In contrast to TS waves, non-modal growth
is active for all Reynolds numbers in spatial boundary layers as demonstrated by the
optimal growth studies of Andersson, Berggren & Henningson (1999) and Luchini
(2000). In accordance with the experiments of Westin et al. (1994), these works were
further able to predict that the spanwise perturbation wavelength which leads to the
streaks of highest amplitude is of the order of the boundary-layer thickness.

While streaks are a central element of bypass breakdown, these low-frequency
flow features do not immediately trigger the nonlinear processes associated with
the formation of turbulent spots (Klebanoff 1971). Streaks rather distort the
boundary-layer profile, and thereby make the flow susceptible to the development
of high-frequency secondary instabilities. In flow visualizations, these instabilities
often become manifest in streamwise meandering of the boundary-layer streaks (Asai,
Minagawa & Nishioka 2002; Mandal, Venkatakrishnan & Dey 2010). Both varicose
and sinuous modes of instabilities can be identified, which respectively correspond to
a spanwise symmetric and antisymmetric deformation of the base streak as originally
demonstrated by Swearingen & Blackwelder (1987) in the context of Görtler vortices.

Results from the present work indicate that the scenarios under which streaky
boundary layers develop secondary instabilities can be classified into two canonical
cases: (i) low-speed streaks which are lifted towards the free stream; and (ii) a
near-wall instability which can emerge in the overlap between high- and low-speed
streaks. Following the terminology introduced by Vaughan & Zaki (2011), the
corresponding instability mode is either outer or inner type. The prevalence of
either scenario depends on the parameters of the base flow.

The outer mode was identified as the dominant mechanism for streak instabilities
in zero-pressure-gradient (ZPG) boundary layers in the direct simulations of
bypass transition conducted by Jacobs & Durbin (2001). Making use of a similar
methodology, Brandt, Schlatter & Henningson (2004) later confirmed these findings
and also remarked that the majority of the streak instabilities exhibit a sinuous
pattern. Zaki & Durbin (2005) demonstrated that only two free-stream modes are
sufficient for reproducing breakdown to turbulence via excitation of an outer-mode
instability: a low-frequency perturbation that penetrates the shear and causes the
formation of the base streaks, and a high-frequency component which is sheltered
but nonetheless provides the initial excitation for the growth of the outer instability.
Andersson et al. (2001) computed the outer instability using inviscid secondary
instability theory. The base streaks in their study were steady, and were obtained
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from optimal growth analysis. The steady-base-flow assumption was relaxed in the
work of Vaughan & Zaki (2011). They examined the secondary instability of the
boundary layer when the Klebanoff streaks were generated as a response to forcing
by particular low-frequency vortical modes. Their Floquet analysis was able to more
accurately predict the threshold for instability. When the streak amplitude exceeded
17% of the free-stream speed, the outer mode became unstable.

The inner mode on the other hand originates from a near-wall velocity profile in
certain streak configurations. In a common scenario, a local overlap of the trailing
edge of a low-speed streak and the leading edge of a high-speed streak causes the
wall-normal velocity profile to become inflectional, leading to the development of a
predominantly varicose instability near the wall. Even though Mans et al. (2005) do
not distinguish inner and outer instabilities, the relatively low phase speed and the
position of the secondary instability close to the wall indicate that the varicose mode
visualized in that work is indeed of the inner type. Similar evidence suggests an inner-
mode scenario behind the breakdown in the presence of a blunt leading edge reported
by Nagarajan, Lele & Ferziger (2007).

Two approaches have been widely adopted in the literature for the study of
secondary instabilities of streaky boundary layers. The first focuses on linear stability
analyses of idealized base flows. In these studies, the base streaks are either steady
(Andersson et al. 2001; Ricco, Luo & Wu 2011) or are a response to harmonic
forcing (Vaughan & Zaki 2011). All of these works further assume strict periodicity
of the instability with respect to the spanwise coordinate. Another example in the
context of pressure gradient is the work by Marquillie, Ehrenstein & Laval (2011)
who investigated the flow over a curved wall. Since their flow was turbulent, they
constructed a base state from the mean and an average streak profile. Based on
stability analysis, Marquillie et al. (2011) reported a change from sinuous to varicose
secondary instability with increasing pressure gradient, but did not characterize the
origin of the instabilities.

A second group of studies focuses on empirical observations of instabilities of
streaky shear flows in experiments and simulations. For example, the experiments
by Elofsson, Kawakami & Alfredsson (1999) demonstrated that the streamwise and
spanwise wavenumbers of streak instabilities in channel flow are on the same order.
In boundary layers, the influence of streaks on the primary TS waves was examined
by Fransson et al. (2005). Matsubara & Alfredsson (2001) provided a detailed time
sequence of the amplification of the secondary instability of streaks themselves. By
means of particle image velocimetry (PIV) and dye visualizations, Mans, de Lange &
van Steenhoven (2007) investigated five sinuous streak instabilities, and characterized
the associated wavelengths and amplitudes. In the context of numerical simulations,
a number of studies have exploited the ability to set up flow configurations that
are difficult or impossible to achieve experimentally, but that can provide unique
knowledge of the transition process. For example, Zaki & Durbin (2005) studied
transition to turbulence due to the interaction of two pairs of free-stream vortical
modes. The simulations provided an uncluttered view of the amplification of
boundary-layer streaks, their outer instability and full breakdown to turbulence. Using
the same approach, Zaki & Durbin (2006) evaluated the influence of pressure gradient.
Both efforts did not involve any stability analyses and, by virtue of the simulation
set-up, could only examine outer streak breakdown. Further phenomenological studies
were performed by Liu, Zaki & Durbin (2008a,b) who simulated the interaction
of TS waves and boundary-layer streaks, and by Brandt & de Lange (2008) who
artificially created streak collisions which led to breakdown to turbulence.
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In summary, previous efforts have led to material advancements in the understanding
of secondary instabilities of streaky boundary layers. Theoretical studies have
attempted to characterize the stability of increasingly realistic base states. These
base flows have nonetheless remained idealized states, often obtained from the
boundary-layer response to a specific well-defined forcing, for example a streamwise
vortex (Andersson et al. 2001) or a monochromatic vortical disturbance (Vaughan &
Zaki 2011). The streaks were therefore strictly periodic in the spanwise direction, and
their instability was, in a sense, a collective instability of the entire row of streaks. In
contrast, boundary layers beneath free-stream turbulence are laden with streaks that
have different amplitudes, sizes and orientations. In this configuration, the secondary
instabilities are sporadic and localized on particular streaks.

The present work applies linear instability analysis to a boundary layer subject to
broadband forcing with free-stream vortical perturbations. The main objectives are:
(i) to determine whether linear theory can reliably predict the localized secondary
instabilities of the streaky boundary layer in this realistic flow configuration; (ii) to
characterize the possible modes of instability in bypass transition beneath free-stream
turbulence, and to relate them to the general classification into inner and outer modes;
and (iii) to establish the statistical relevance of these instabilities to breakdown in
boundary layers with pressure gradient. Both a ZPG and an adverse-pressure-gradient
(APG) case are investigated.

This paper is organized as follows: in §2, the underlying computational methods
for the direct simulations and the instability analysis are described. Section 3 provides
a detailed study of representative cases of an outer and an inner streak instability.
Characteristic quantities obtained from the instability analyses are compared to
values extracted from the direct numerical simulation (DNS) flow fields. A statistical
evaluation over a large number of instabilities is reported separately for ZPG and
APG boundary layers in §4, and concluding remarks are provided in §5.

2. Computational aspects
2.1. Direct numerical simulations

The base flow of the instability analysis is extracted from DNS of boundary layers
subject to free-stream turbulence. The simulation code solves the incompressible
Navier–Stokes equations with the finite-volume scheme described by Rosenfeld,
Kwak & Vinokur (1991). The flow field is represented in terms of the fluxes through
the faces of the control volumes. A staggered grid is used with the velocities stored at
the faces of the computational volumes and the pressure stored at the centre of each
volume. The convection term is advanced in time using an Adams–Bashforth scheme,
and a Crank–Nicolson scheme is applied for the diffusion term. Incompressible mass
conservation is enforced using the fractional step method of Kim & Moin (1985).

The methodology for simulating bypass breakdown follows the work by Jacobs &
Durbin (2001), which has since been successfully adopted in a number of studies
(e.g. Brandt et al. 2004; Schrader, Brandt & Henningson 2009; Schrader, Brandt &
Zaki 2011). The simulation domain starts at distance x̃0 from the leading edge. This
approach circumvents the computational cost associated with simulating the leading-
edge region. In the current simulations, the Reynolds number is Reδ0 = 800 based
on the inlet boundary-layer thickness. The downstream coordinate x has its origin
at the inlet of the simulation domain, x = x̃ − x̃0. The length, width and height of
the computational domain are 600 × 30 × 40. The number of grid points of the
current study was set to 2048× 192× 192 in the streamwise, spanwise and transverse
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directions, respectively. The resolution is hence slightly higher than the requirements
identified in the comprehensive grid refinement studies by Jacobs & Durbin (2001).

All lengths are normalized by the inlet boundary-layer thickness, δ0, and velocities
are normalized by the inlet free-stream speed, U∞. Downstream of the inflow plane,
the free-stream velocity follows a power law,

U∞(x)=CxβH/(2−βH). (2.1)

The Hartree parameter, βH , characterizes the acceleration of the free stream and, hence,
the applied pressure gradient. Two cases are considered herein: βH = 0 for ZPG and
βH =−0.14 for APG.

For all simulations, the boundary conditions are no slip at the wall and free stress
at the top of the computational domain. The desired pressure gradient is imposed
through a gradual increase of the domain height with downstream distance. Periodicity
is enforced in the spanwise dimension. A Blasius profile is prescribed for the mean
flow at the inlet of the computational domain in both ZPG and APG cases. This
choice leads to identical inflow conditions in the two simulations in terms of the
mean velocity profile and also the inflow turbulence which is discussed below. In this
manner, any changes in the transition mechanism can be attributed to the development
of the boundary layer in response to the pressure gradient, rather than any differences
at the inlet. The same approach was adopted in previous studies, for example the work
by Nolan & Zaki (2013).

During the flow simulation, a time sequence of three-dimensional instantaneous flow
fields UDNS(x, y, z, t) was stored. The time interval between two consecutive samples
is two time units with a total of 4000 and 8000 samples stored for the APG and
ZPG cases, respectively. Furthermore, a spanwise and temporal mean velocity field ū
is computed for all streamwise and wall-normal grid locations. The velocity-fluctuation
field is therefore given by u′(x, y, z, t)=UDNS(x, y, z, t)− ū(x, y).

The methodology for generating free-stream turbulence at the inflow plane of the
computational domain was introduced by Jacobs & Durbin (2001). The perturbation
field is represented by a weighted superposition of eigenfunctions of the continuous
spectra of the Orr–Sommerfeld and homogeneous Squire operators. Use of the
homogeneous operators is motivated by the observation that the Orr–Sommerfeld and
Squire equations are decoupled outside the shear. In addition, these eigenfunctions do
not exhibit the free-stream anisotropy that arises due to the particular normal vorticity
in the coupled Orr–Sommerfeld/Squire system (see e.g. Schmid & Henningson 2000)
and which was recently remarked by Dong & Wu (2013). In the limit y→∞, the
inlet disturbance can be expressed in terms of Fourier modes,

v(x, y, z)= v̂ exp(i(kxx+ kyy+ kzz)) (2.2)
η(x, y, z)= η̂ exp(i(kxx+ kyy+ kzz)). (2.3)

The ansatz
v̂=−i

Ak13

κ
, η̂= iBk13, (2.4)

where k13 =
√

k2
x + k2

z and κ =
√

k2
x + k2

y + k2
z , yields the following amplitudes of the

Cartesian velocity components

û= i
Akxky

k13κ
v̂+

Bkz

k13
η̂, ŵ= i

Akykz

k13κ
v̂−

Bkx

k13
η̂. (2.5)
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FIGURE 1. Free-stream decay of turbulence versus Reynolds number Rex̃ (ZPG case):
(a) r.m.s. of the velocity fluctuations, u (dashed), v (dash-dotted), w (dash-dot-dotted);
(b) turbulence length scale.

Let further θ1, θ2 and δ be uniformly distributed random angles. One then arrives at
a spatially isotropic perturbation field by relating the perturbation coefficients A and
B to the weight function F(κ) via

A= F(κ) exp(iθ1) cos δ, B= F(κ) exp(iθ2) sin δ. (2.6)

The kinetic energy of the full perturbation spectrum is hence obtained by the integral,

k =
1
2

∫
∞

0
4πκ2(ûû∗ + v̂v̂∗ + ŵŵ∗)dκ

=
1
2

∫
∞

0
4πκ2F(κ)2 dκ ≡

∫
∞

0
E(κ)dκ. (2.7)

A von Kármán spectrum, where E(κ) ∼ κ4 for large scales and E(κ) ∼ κ−5/3 in the
inertial range is obtained from the specific choice

E(κ)= Tu2
FS

1.196(κL11)
4

[0.558+ (κL11)2]17/6
L11, (2.8)

where TuFS is the turbulence intensity in the free stream, and L11 describes the peak
of the energy spectrum. Throughout this work, values of TuFS = 3% and L11 = 1 are
used.

The downstream evolution of root-mean-square (r.m.s.) of the three Cartesian
components of the free-stream perturbation field is provided in figure 1(a). A
near-isotropic, exponential decay is observed. The downstream evolution of the
integral length scale

Lk =−
k3/2

dk/dx
, (2.9)

normalized by the local boundary-layer thickness, is shown in figure 1(b).
The downstream development of the skin friction coefficient is presented in

figure 2(a). For the ZPG boundary layer, fully turbulent flow is observed for Reynolds
numbers higher than 4× 105. In the presence of the APG, the flow becomes turbulent
at Rex̃ ≈ 2× 105.

Breakdown to turbulence is preceded by the formation of boundary-layer streaks
which are dominated by the streamwise velocity component. Therefore, u′rms is often
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FIGURE 2. (a) Skin friction coefficient Cf versus Reynolds number Rex̃; (b) maximum
r.m.s. of the streamwise velocity fluctuation u′rms,max inside the boundary layer versus
Reynolds number Rex̃. The solid line represents the ZPG case, the dashed line represents
the APG case.

reported as a measure of the streak amplitude. The wall-normal maximum in u′rms is
plotted versus downstream Reynolds number in figure 2(b). The observed peak values
are 16% of the free-stream velocity for both flow configurations. In the APG case,
this maximum is nonetheless reached substantially farther upstream than in the ZPG
boundary layer.

2.2. Instability analysis
The linear stability analysis of a base state extracted from DNS flow fields follows
the approach described by Barkley & Henderson (1996) and Barkley, Blackburn &
Sherwin (2008). The eigensolver in the present work, however, is a more flexible
scheme which efficiently computes eigenvalues that match a prescribed phase speed
as well as of those that are most unstable (see appendix A).

Two-dimensional instantaneous velocity fields are extracted from the stored DNS
snapshots QDNS = (U, V, W, P)TDNS in planes normal to the downstream coordinate x
while freezing the solution time t. The dependence of the base flow in the stability
analysis on x and t is therefore parametric, and each analysis corresponds to a fixed set
of values for these coordinates. This simplification can be substantiated by the weak
time-dependence of the pretransitional base flow which is a superposition of the steady
boundary layer and low-frequency streaks. The parallel flow assumption is further
justified by the range of Reynolds numbers, Reδ ∈[1200,3000], and the high frequency
of the secondary instability modes. In primitive variables, the base state of the stability
analysis becomes Qstab(y, z; x, t)= (U, V,W, P)Tstab = (U(x, y, z, t)DNS, 0, 0, 0)T.

The secondary instability is described by the state vector q2 = (u2, p2)
T, with u2 =

(u2, v2,w2)
T. A normal mode assumption is invoked in the streamwise direction,

q2(x, y, z, t)= q̂2(y, z, t) exp(iαx), (2.10)

where α is a parameter of the calculation. The linearized stability equations can be
written as

∂

∂t
û2 =−iLû2, (2.11)

with

L= i
[(

∇∆−1
∇

T
− I
) ((

UT
stab∇

)
+
(
∇UT

stab

)T
)
+

1
Re

∇
2

]
. (2.12)
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Here, ∆−1 is the formal inverse of the Laplacian. The time evolution of the
perturbation field is then formally described by

û2(t)= A(t)û2(0), (2.13)

with the fundamental solution operator A(t). Differentiation of (2.13) with respect to
time yields

∂

∂t
A=−iLA with initial condition A(0)= I, (2.14)

which has the formal solution A(t)= exp(−iLt).
The eigenspectrum of A gives information about the modal stability of the

underlying base flow Ustab, since the time evolution of the eigenfunctions of A
is governed by the exponential law û2(t) = û2(0) exp(−iσ t). The real part of the
complex quantity σ provides the modal frequency, and its imaginary part gives
the temporal growth rate of the disturbance. Since the operator L is non-diagonal,
an explicit construction of A from the matrix exponential is numerically expensive
and is thus avoided. Instead, a subspectrum of the fundamental solution operator is
approximated using an adaptation of the implicitly restarted Arnoldi (IRAM) scheme
introduced by Sorensen (1992): see appendix A.

The boundary conditions for the velocity field of the secondary instabilities are the
impermeability condition at the wall and zero stress at the top of the domain,

u2, v2,w2 = 0 for y= 0 (2.15)

v2,
∂u2

∂y
,
∂w2

∂y
= 0 for y→∞. (2.16)

Consistent with the DNS flow field, periodic boundary conditions are enforced in the
spanwise dimension for all velocity components.

Spectral elements are employed for the spatial discretization of the stability
equations in the cross-flow plane. The number of grid points is 385 in the span
and 97 in the wall-normal direction of which 70 are situated below y= 2δ(x).

Even though the stability analysis considers frozen states of the base flow in
planes of constant streamwise coordinate, the underlying DNS data describe the
full spatiotemporal evolution of the flow field. It is thus possible to capture the
downstream development of an instability mode by applying the linear analysis to a
series of base states which are translated downstream with the instability as a function
of time. The characteristic speed which dictates the downstream displacement of the
plane of the analysis between two consecutive stability calculations is provided by
the modal phase speed, cr = σr/α.

3. Streak instabilities
This section provides a detailed study of representative cases for an outer instability

situated on a lifted low-speed streak as well as an inner mode which originates from
the intersection of a low-speed and a high-speed streak. In all cases, the base
flow is extracted from direct simulations of boundary layers subject to forcing with
broadband vortical free-stream perturbations. In addition to investigating the properties
of streak instabilities in a realistic representation of a pretransitional boundary layer,
an important second objective of this section is to establish whether linear instability
analysis can accurately capture the properties of the streak instabilities observed
in direct simulations. Therefore, characteristics of the secondary instabilities are
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FIGURE 3. Time sequence of an outer instability observed in DNS; plan view with
isosurfaces of high-speed (u′ = 0.085, light) and low-speed streaks (u′ =−0.085, dark).

identified in the DNS flow fields, and directly compared with the results obtained
from linear instability analyses.

3.1. Instability of lifted low-speed streaks: the outer mode
Outer modes originate from the shear between the free stream and lifted low-speed
streaks. This section discusses a sample case of breakdown to turbulence via the
formation of an outer mode observed in a ZPG boundary layer subject to broadband
free-stream vortical perturbations.

A time sequence of a lifted low-speed streak undergoing a sinuous instability is
provided in figure 3. Regions of constant negative and positive streamwise velocity
fluctuation are shown as dark and bright surfaces, respectively. The top frame depicts
the entire flow field which includes a spectrum of streaks over its transverse extent.
The remaining frames focus on a particular streak that develops a secondary instability
and ultimately breaks down to turbulence. In order to follow the instability, the frame
shown is translated downstream with the phase speed of the mode, cr = 0.76.

The instability becomes manifest in a streamwise undulation of the base streak
which is antisymmetric with respect to the centre line of the streak. The streamwise
extent of the instability is nonetheless significantly shorter than the length of the
underlying streak. This localized nature of the instability persists until breakdown to
turbulence. As a consequence, a spatially isolated spot forms which is both preceded
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FIGURE 4. Side view of the streak developing a sinuous outer instability at t = t0 + 70,
z= 22.6; contours of the streamwise velocity fluctuation, −0.126 u′6 0.12. Dark contours
are negative and light contours are positive values. The thick white line marks the local
boundary-layer thickness.

and succeeded by the laminar streak. Similar breakdown scenarios were reported in
the experimental studies of Matsubara & Alfredsson (2001) and Asai et al. (2007),
which indicates that breakdown was induced by an outer mode in those cases as well.

In order to elucidate the origin of the streak instability, the flow field at time t0 +

70 (second frame in figure 3) is more closely inspected. A plane at the constant
transverse position z= 22.6, at the centre of the low-speed streak is shown in figure 4.
The low-speed streak is seen to occupy the largest part of the boundary layer. The
region of the streak that develops the instability, x ≈ 150, is near the edge of the
boundary layer. This observation is consistent with the general description of the outer
instability by Vaughan & Zaki (2011, see their figure 29). However, that work only
considered idealized streaks which develop due to forcing by monochromatic vortical
modes. Therefore, their streaks were repeated in the span, and the instability was
subharmonic in that dimension. In the present case, on the other hand, the free-stream
forcing is broadband and thus the resulting streaks are less regular. In addition, the
secondary instability is localized: an important distinction that cannot be gleaned from
the side view in figure 4.

Top views of the wall-normal and spanwise velocity perturbations at t0 + 70
are shown in figure 5. The planes are located at y/δ(x) = 0.8. The instability is
evident in both the v′ and w′ contours. The wall-normal fluctuation shows a spanwise
antisymmetric pattern with similar positive and negative peaks. In contrast to v′,
the spanwise velocity perturbation is symmetric with respect to the centreline of
the streak. The streamwise phase of w′ is shifted downstream by a quarter of a
wavelength when compared with v′. The streamwise extent of the instability in
figure 5 comprises approximately two to two-and-half periods, N= 2–2.5, at this time
instance. Inspections of time series indicate that N increases during the amplification
of the instability and, at the time of breakdown to turbulence, the instability typically
comprises three streamwise periods. These results are consistent with the findings by
Lundell (2004) who destabilized streaks using acoustic forcing with different values
of N. That work concluded that N has a substantial influence on the growth rate of
the streak instability, and the maximum growth rate was recorded for N = 2.5.

In order to investigate the stability of the base flow, a plane is extracted at x= 155
from the DNS flow field and a linear stability analysis is performed as described in
§2.2. The solution time is t0, corresponding to the two topmost frames of figure 3.
The temporal growth rate of the most unstable mode is σi = 0.033 and the modal
phase speed is cr = 0.76 in units of the inlet boundary-layer thickness δ0 and
the free-stream velocity U∞. A visualization of the streamwise component of the
instability eigenfunction is provided in figure 6. Solid contour lines mark positive
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FIGURE 5. Plan view of a sinuous outer streak instability from DNS at y/δ(x)≈ 0.80 and
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FIGURE 6. Real part of the streamwise component of the eigenfunction of an outer mode
at x= 155, t= t0. Solid lines denote positive u2 and dashed lines are negative values. Grey
contours: streamwise velocity fluctuation (−0.25 6 u′ 6 0.25). (a) Full spanwise extent of
the computational domain. (b) Enlarged view. The thick white line marks the critical layer.

u2, and dashed lines mark negative u2. The background colour gives the streamwise
fluctuation field u′. Figure 6(a) shows the full spanwise extent of the computational
domain. The eigenfunction is centred around the particular low-speed streak located at
z≈ 23 which was observed in the time sequence from the DNS (figure 3) to undergo
breakdown via a sinuous instability. The zoomed-in view provided in figure 6(b)
shows that the mode is antisymmetry with respect to the base streak. Similar mode
shapes had been reported for the sinuous mode in the studies of idealized streaks by
Andersson et al. (2001) and Vaughan & Zaki (2011). However, unlike their spanwise
subharmonic streak instability, the current eigenfunction is clearly localized on the
single most unstable streak.

The three velocity components of the instability eigenfunction are shown in
figure 7. Light (dark) isosurfaces denote a positive (negative) real part. One and
a half streamwise wavelengths of the mode are visualized, where all lengths are
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FIGURE 7. Real part of the eigenfunction of an outer mode computed for x= 155, t= t0;
three-dimensional plan view with isosurfaces of positive (white) and negative (black) real
part of u2, v2 and w2.

normalized by the inlet boundary-layer thickness. One may thus directly compare the
shape of the eigenfunctions to the instability in the perturbation fields in figure 5. The
instability mode indeed exhibits the spanwise antisymmetric and symmetric patterns
for the wall-normal and spanwise velocity, respectively, as observed in the DNS. The
peak amplitude of w2 is approximately 1.8 times that of v2, both in the nonlinear
simulations and in the eigenfunction obtained from the secondary instability analysis.

In order to evaluate the changes to the secondary instability mode as it evolves
downstream, the plane of the instability analysis is translated downstream with the
flow. It is important to recall, however, that the instability analysis is inherently limited
to the computation of purely temporal growth at any given downstream position. The
convective effect and the associated downstream increase in Reynolds number during
the evolution of the instability are only taken into account by conducting a series
of analyses and translating the plane of the analysis downstream with the flow as
a function of time. Starting from the above-presented instance (x = 155, t = t0),
the stability analysis is repeated at upstream positions at earlier times as well as
at downstream planes at later times. The plane of the analysis is translated at the
phase speed of the mode 1t = 1x/cr, see §2.2. In general, the streamwise extent
over which a unique instability can be computed is restricted. The identification
of the mode fails at some upstream point where the corresponding base streak
has not yet developed a sufficiently large magnitude to support the instability. At
large downstream distances, the notion of the secondary instability analysis becomes
ambiguous once the magnitude of the instability becomes appreciable and the base
streak becomes visibly distorted. In the present case, the streamwise range of the
linear analysis was x ∈ [115, 190].
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FIGURE 8. (a) Growth rate σi of an outer mode as a function of the downstream
coordinate x, computed from linear analysis (solid) and extracted from DNS data (dashed).
(b) Phase speed cr of an outer mode as a function of the downstream coordinate x,
computed from linear analysis (solid) and extracted from DNS data (dashed).

The modal growth rates evaluated from the linear analysis and extracted from the
DNS fields are compared in figure 8(a). The former (solid line) increases up to a
peak value of σi ≈ 0.04 at x= 175, followed by a sharp drop near the region where
the growing amplitude of the streak deformation prevents the further pursuit of the
instability. The phase speed obtained by linear analysis (solid line in figure 8(b)) is
relatively insensitive to the downstream coordinate, cr∼0.78. Similar values have been
reported by Andersson et al. (2001) and Vaughan & Zaki (2011) for the outer mode.

For comparison, characteristics of the streak instabilities were extracted directly
from the DNS data. The spanwise velocity perturbation was used. The local extrema
of w′ observed in figure 5(c) are tracked in space and time as the secondary instability
develops. Their separation defines the streamwise wavelength of the secondary
instability, and the phase speed is evaluated from the mean rate of change of
their downstream positions. Similar to the approach adopted by Lundell (2004),
the magnitude of the extrema, Aw′ , is used to compute the exponential growth rate of
the instability,

σi =
1
1t

ln
(

Aw′(t+1t)
Aw′(t)

)
. (3.1)

Free-stream perturbations entering the boundary layer nonetheless cause a certain
degree of background noise. As a consequence, the definite identification of the
instability wave requires the latter to have amplified to a minimum magnitude of
approximately 1% of the free-stream velocity, effectively imposing a limit on how
far upstream the instability properties can be evaluated directly from DNS data. The
streamwise overlap between DNS and linear results is thus limited, but nonetheless
sufficient to compare the results (figure 8). A very good agreement in the growth rate
is observed between DNS and linear theory. This outcome is unexpected since the
growth rate in the DNS is spatiotemporal while that from linear analysis is purely
temporal.

The growth rates of the outer mode are substantially higher than those of the TS
wave. For example, for a Blasius base state, σi,TS = 4 × 10−4 (x = 100) and σi,TS =

3× 10−3 (x= 350).
The streamwise wavenumber, α, of the instability mode is a parameter of the

linear analysis, and its influence on the growth rate is presented in figure 9(a). The
dashed line corresponds to x = 120, and the solid line shows the result at x = 175.
The peaks of both curves approximately coincide at α≈ 0.65. In the DNS (figure 5),



Streak instabilities in boundary layers beneath free-stream turbulence 293

0.2 0.4 0.6 0.8 1.0 1.2 1.4

(a)

160 180 200
x

220 240

(b)

0

0.01

0.02

0.03

0.04

0.05

0.2

0.3

0.4

0.5

FIGURE 9. (a) Temporal growth rate σi of the instability mode as a function of
the streamwise perturbation wavenumber α for x = 125 (dashed) and x = 175 (solid).
(b) Streamwise wavenumber α of the instability as a function of the downstream
coordinate x (DNS data).
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FIGURE 10. Spatial amplitude 1z of the streak distortion as a function of the downstream
coordinate x.

the streamwise wavenumber of the mode can be obtained from the streamwise
distance between local extrema of w′, and is presented in figure 9(b). The observed
wavenumber range of α ∈ [0.47, 0.50] is in good agreement with the highest amplified
α predicted by linear theory.

DNS visualizations of u′ (figure 3) show a downstream increase in the transverse
deformation of the streak, 1z, by the secondary instability. The development of 1z is
evaluated from the spanwise positions of the extrema in w′, and is plotted in figure 10.
An exponential growth rate of approximately 0.027 is obtained, which is on the same
order as the above reported growth rate from linear theory.

Earlier studies have demonstrated that both the amplitude and the profile of the base
streak can influence the growth rate of the secondary instabilities (e.g. Vaughan &
Zaki 2011). The current streak amplitude, u′streak, is shown in figure 11; here, u′streak
is defined as the peak value of u′ along the streak of interest. The initially flat curve
indicates that the streak amplitude is saturated during the interval where the secondary
instability was evaluated. Therefore, the reported change in the growth rate (figure 8)
is not due to a variation in the streak amplitude, but rather due to changes in the
streak profile in the cross-stream plane. Since the outer mode only becomes unstable
above a critical streak amplitude, an initial stage exists prior to the region reported in
figures 8 and 11 where the growth rate crosses the stability boundary with increasing
u′streak. Once the streak amplitude saturates, the growth rate continues to change due
to the variation in the base streak profile.
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FIGURE 11. Base streak magnitude u′streak versus downstream coordinate x.

The vortical structure associated with the outer instability mode is visualized using
the λ2 criterion introduced by Jeong & Hussain (1995). Isosurfaces of λ2 = −0.003
were evaluated at time t = t0 + 70 (see figure 12). The vortex core is located at
the centre of the lifted low-speed streak. In addition, the streamwise extent of the
vortex structure approximately matches that of the instability wave. The vortex is
spanwise symmetric with respect to the underlying base streak. An inspection of the
spatial structure of the vorticity eigenfunction, ω2≡∇× u2 (not shown) demonstrates
that only the streamwise component ωx,2 shares this property while ωy,2 and ωz,2 are
antisymmetric with respect to the transverse extent of the streak.

The decomposition of the instantaneous DNS flow field into the mean and
fluctuations can be further extended into the contribution of streaks and of the
instabilities,

U = u+ u′

= u+ u′S + u′I. (3.2)

The notion of streaks is herein restricted to the streamwise velocity component,
i.e. v′S,w′S ≈ 0 and therefore v′ ≈ v′I , w′ ≈w′I . When considering the vorticity field, a
similar triple decomposition applies,

ω = ω+ω′ (3.3)
= ω+ω′S +ω′I. (3.4)

Since the mean flow is two-dimensional and the streaks are dominated by u′, a number
of simplifications are possible,

ωx = ωx︸︷︷︸
=0

+ ω′Sx︸︷︷︸
≈0

+ω′Ix (3.5a)

ωy = ωy︸︷︷︸
=0

+ω′Sy +ω
′I
y (3.5b)

ωz = ωz +ω
′S
z +ω

′I
z . (3.5c)

The streamwise vorticity component therefore provides a good measure of the
secondary instability. Isosurfaces of ω′x are presented in figure 13 for time t0 + 70.
Orange (bright) isosurfaces mark regions of positive ω′x, and purple (dark) isosurfaces
correspond to regions of negative ω′x. The streamwise extent of the vorticity
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FIGURE 12. Plan view of the sinuous outer instability with isosurfaces of λ2 = −0.003
(green) used as a vortex identification criterion for t= t0 + 70.
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FIGURE 13. Isosurfaces of positive (ω′x= 0.085, orange/bright) and negative (ω′x=−0.085,
purple/dark) streamwise vorticity. The solution time is t= t0 + 70.

perturbation coincides with the location of the streak distortion. The wavelength of the
vorticity isosurfaces matches that of the velocity perturbation. A closer investigation
of ω′x shows that the magnitude of ∂w′/∂y substantially outweighs that of ∂v′/∂z.

The governing equation for the streamwise vorticity component is

Dωx

Dt
= ωx

∂U
∂x︸ ︷︷ ︸

vorticity stretching

+ωy
∂U
∂y
+ωz

∂U
∂z︸ ︷︷ ︸

vorticity tilting

+
1

Re
∇

2ωx. (3.6)

Owing to the inviscid nature of the instability, focus is placed only on the first three
terms on the right-hand side of (3.6). An integral approach is adopted to examine the
stretching and tilting terms.

The vorticity tilting and stretching terms are integrated over a volume Vstreak, defined
as the region in which the streak amplitude is greater than 1% of the free-stream
velocity. The streamwise extent of the volume spans 25δ0 upstream and downstream
of the centre of the instability, and thus corresponds to the size of the frames shown
in figure 13.

The solid line in figure 14 gives the volume integral,

f1 :=
1

Vstreak

∫
Vstreak

∣∣∣∣ωx
∂U
∂x
+ωy

∂U
∂y
+ωz

∂U
∂z

∣∣∣∣ dV, (3.7)

which can be interpreted as a theoretical maximum for the growth of
∫

V |ωx|dV . The
magnitude of ωx will intensify only if the sign of the right-hand side matches that of
the local ωx, and therefore a second measure is devised,

f2 :=
1

Vstreak

∫
Vstreak

ωx

|ωx|

(
ωx
∂U
∂x
+ωy

∂U
∂y
+ωz

∂U
∂z

)
dV. (3.8)

This quantity is the net forcing which leads to an increase of
∫

V |ωx|dV . Figure 14
shows that f2 is positive throughout the amplification process of the mode and f2/f1≈

0.60.
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FIGURE 14. Integral vorticity forcing measures f1 (solid), f2 (dashed) and f3 (dash-dotted)
for the outer mode.

The relative importance of tilting and stretching is assessed by evaluating the
integral of the tilting term,

f3 :=
1

Vstreak

∫
Vstreak

ωx

|ωx|

(
ωy
∂U
∂y
+ωz

∂U
∂z

)
dV. (3.9)

Figure 14 shows that the tilting term contributes approximately 70% of the total
generation of ωx.

The tilting term is further expanded as

ωy
∂U
∂y
+ωz

∂U
∂z
=

(
∂U
∂z
−
∂W
∂x

)
∂U
∂y
+

(
∂V
∂x
−
∂U
∂y

)
∂U
∂z

(3.10)

= −
∂W
∂x

∂U
∂y︸ ︷︷ ︸

Ty

+
∂V
∂x
∂U
∂z︸ ︷︷ ︸

Tz

. (3.11)

The wall-normal tilting term, Ty, is nearly an order of magnitude larger than the
spanwise counterpart, Tz. The dominance of the wall-normal term is also apparent
in visualizations of isosurfaces of Ty (figure 15(a,b), respectively). The streamwise
vorticity ω′Ix of the outer mode is therefore a result of the meandering of the unstable
streak ∂W/∂x and the wall-normal shear in the base state ∂U/∂y.

3.2. Instability of streak intersections: the inner mode
The inner mode was first computed by Vaughan & Zaki (2011) in the case of
idealized streaks. Their Floquet analysis predicted a spanwise fundamental secondary
instability, with a critical layer close to the wall and a phase speed approximately
half the free-stream velocity. The present study of transition beneath free-stream
turbulence shows that localized instabilities, which can be classified as inner modes,
arise due to the local shear between low- and high-speed streaks. Configurations in
which the trailing edge of a high-speed streak is situated on top of a low-speed streak
lead to highly inflectional velocity profiles in the wall-normal direction. The presence
of an APG further promotes this effect. In that case, the majority of breakdowns are
initiated by an inner instability (§4). In the present section, breakdown via an inner
mode is investigated in an APG boundary layer characterized by a Hartree parameter
βH =−0.14.
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FIGURE 15. Isosurfaces of streamwise velocity perturbation (white, u′= 0.085; grey, u′=
−0.085) and vorticity tilting terms (blue, Ty,z = 0.002; yellow, Ty,z = −0.002). (a) Wall-
normal term Ty. (b) Spanwise term Tz. The solution time is t= t0 + 70.

A visualization of a streak configuration that leads to breakdown via amplification
of a varicose inner instability is provided in figure 16. Isosurfaces of positive (light)
and negative (dark) u′ are shown in the plan view. The topmost frame shows the
whole spanwise extent of the flow field. The magnified views in the remaining frames
show the time evolution of the particular streak that breaks down to turbulence.
The downstream position of the frames is translated with the phase speed of the
instability. Even though the streaks appear undistorted in the top frame, results from
linear stability analysis presented below show that the growth rate of the instability
has already reached a substantial magnitude. The streak subsequently develops a
streamwise pattern of local contractions which precede breakdown to turbulence. In
comparison with the evolution of the outer mode (figure 3), isosurfaces of u′ do not
provide a clear empirical view of the evolution of the inner instability.

A side view of the streamwise perturbation field u′ at z= 23.8 is shown in figure 17.
This spanwise position bisects the base streaks that develop the instability. The flow
field shows a high-speed streak whose leading edge overlaps with a low-speed streak
which is located close to the wall. The same flow configuration led to breakdown
in the phenomenological studies by Brandt & de Lange (2008) and the DNS by
Vaughan & Zaki (2011).

Contours of the velocity fluctuations in a plane located at y/δ(x)= 0.45 are shown
in figure 18. The shape of the wall-normal velocity perturbation is spanwise symmetric
with respect to the underlying base streak and shows a shape similar to that of Λ
vortices. The perturbation extends upstream in the form of two streamwise elongated
legs which are situated to the left and right of the base streak. A staggered pattern
with alternating patches of positive and negative velocity fluctuations is observed
in the streamwise direction. The spanwise fluctuation field, on the other hand, is
antisymmetric with respect to the centreline of the base streak. It also bears similarity
with the wavepacket reported in the simulations of transition under the influence
of a blunt leading edge by Nagarajan et al. (2007) and the instability analysis by
Vaughan & Zaki (2011).

Linear stability analysis is applied to a base flow extracted from the DNS data
in a cross-plane at x = 103. The solution time is t1, which is visualized in the two
topmost frames in figure 16. The streamwise component, u2, of the most unstable
eigenfunction is shown as black solid lines in figure 19(a). The eigenfunction is
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FIGURE 16. Time sequence of an inner instability from DNS; plan view with isosurfaces
of high-speed (u′ = 0.085, light) and low-speed (u′ =−0.085, dark) streaks.

centred around the particular streak which, further downstream in the DNS, exhibits
a clear instability and ultimately induces breakdown to turbulence. The zoomed-in
view in figure 19(b) shows that the mode is spanwise symmetric with respect to the
base streak. The growth rate and phase speed of the mode are σi= 0.08 and cr= 0.54,
respectively.

Similar to the outer mode, the eigenfunction of the inner streak instability is centred
around its critical layer. An inviscid analysis in the limit Re→∞ recovers the same
eigenmode as viscous stability theory, which supports the view that the mode is a
Rayleigh-type instability (see the dotted lines in figure 19(b)). The phase speed of
the inviscid mode, cr,inviscid = 0.54, matches that of the viscous analysis. However, the
inviscid stability analysis over-predicts the growth rate, σi,inviscid = 0.12.

The spatial structure of the eigenfunction of the most unstable mode is visualized
over one and a half streamwise wavelengths in figure 20. A spanwise symmetric
structure is observed for the streamwise component u2 of the instability eigenfunction,
which reflects the varicose deformation of the base streak seen in figure 16. The
wall-normal component v2 has a staggered pattern with small streamwise legs, similar
to the wall-normal fluctuation field v′ of the DNS (see figure 18(a)). A similar
agreement is observed for the antisymmetric pattern of the spanwise component w2.

The inner mode in the time series (figure 16) amplifies rapidly and induces
breakdown over a downstream distance of 30δ0. As a consequence, the streamwise
extent over which the mode can be tracked by means of both instability analysis and
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FIGURE 17. Side view of the streak configuration leading to the formation of a varicose
inner instability at z = 23.8, t = t1. Contours of the streamwise velocity fluctuation,
−0.12 6 u′ 6 0.12. The thick white line marks the edge of the boundary layer.
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FIGURE 18. Plan view of a varicose inner streak instability from DNS at y/δ(x)≈ 0.45,
t = t1 + 18. Contours of (a) streamwise (−0.17 6 u′ 6 0.17), (b) wall-normal (−0.025 6
v′6 0.025) and (c) spanwise (−0.0256w′6 0.025) velocity fluctuations. Solid black lines
mark u′ = 0.085.

the post-processing of DNS flow fields is substantially shorter than that of the outer
mode. The previously mentioned restrictions still apply: the identification of the mode
in the DNS requires a certain minimum amplitude; and the instability analysis fails
once the modal amplitude becomes substantial in the base state.

The eigenvalue of the mode computed in the linear analysis is given by the solid
line in figure 21(a). The growth rate σi increases from the start of the analysis at
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FIGURE 19. Real part of the streamwise component of the eigenfunction of an inner mode
for u2 (solid lines) computed at x = 103, t = t1 + 18. Black dotted lines mark contours
of u2inviscid computed in the inviscid limit. Grey contours: streamwise velocity fluctuation
(−0.17 6 u′ 6 0.17). (a) Full spanwise extent of the computational domain. (b) Detailed
view. The thick white line marks the critical layer.
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FIGURE 20. Eigenfunction of an inner mode computed for x = 103, t = t1 + 18; three-
dimensional plan view with isosurfaces of positive (white) and negative (black) real part
of u2, v2 and w2.

x ≈ 87 until a peak is reached approximately at the downstream location where the
amplitude of the streak distortion becomes appreciable. This behaviour is qualitatively
similar to what had been observed for the outer mode. The magnitude of the growth
rate in the present case is nonetheless substantially higher. The temporal growth rate
computed from DNS flow fields is given by the dashed line in figure 21(a). The
downstream locations of the peak growth rates of both approaches approximately
coincide. The magnitude of the growth rate computed from the DNS data is however
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FIGURE 21. (a) Growth rate σi of an inner mode as a function of the downstream
coordinate x computed from linear analysis (solid) and extracted from DNS data (dashed).
(b) Phase speed cr of an inner mode as a function of the downstream coordinate x
computed from linear analysis (solid) and extracted from DNS data (dashed).
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FIGURE 22. Temporal growth rate σi of the instability mode as a function of the
streamwise perturbation wavenumber α for x= 95 (dashed) and x= 104 (solid).

20% smaller than the linear result. In this context, it should be re-emphasized that,
even though applied at different downstream positions, the linear analysis provides a
purely temporal growth rate. The DNS data on the other hand inherently capture the
full spatiotemporal evolution.

The phase speeds are presented in figure 21(b). The stability analysis indicates a
continuous decrease in the phase speed from approximately cr = 0.63 to cr = 0.47.
Further downstream, a direct evaluation of the DNS flow field yields a nearly constant
phase speed of cr≈ 0.48. It is instructive to compare the growth rate of the secondary
instability to that of the most unstable mode of the base flow, in the absence of free-
stream turbulence. Owing to the APG, the mean velocity profile is inflectional and can
support inviscid Rayleigh-type instability. For the relevant downstream range, 50< x<
200, the growth rate increases from σi,Ray= 0.019 to σi,Ray= 0.023. While significantly
exceeding the growth rates of TS waves reported in the previous section, these values
are still smaller than those for the inner mode reported in figure 21(a).

Figure 22 shows the dependence of the growth rate from linear theory on the
streamwise wavenumber α. The highest amplified wavelengths at x= 95 and x= 104
coincide at α ≈ 2.2. This wavelength approximately matches that observed in the
DNS flow field.

The origin of the inner mode was stated earlier to be in the shear between low-
and high-speed streaks. An investigation of the influence of the streak amplitude on
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FIGURE 23. Amplitude u′streak of the high-speed (solid line) and low-speed (dashed line)
streaks as a function of the downstream coordinate x.

the growth rate of the inner instability must therefore take into account both streaks.
The peak amplitudes of the low- and high-speed streaks are presented in figure 23
versus downstream distance. The amplitudes of both streaks are significantly lower
than that of the low-speed streak associated with the outer mode that was discussed
in the previous section. These observations are consistent with the result by Vaughan
& Zaki (2011) who reported that the threshold amplitude for streak instability is lower
for the inner mode.

In order to investigate the vortex structures associated with the inner mode, the
λ2 vortex identification criterion is applied. Isosurfaces of λ2 = −0.003 are shown
in figure 24. The solution time is t1 + 18, which corresponds to the third frame in
figure 16. Streamwise-elongated vortices are observed along the flanks of the high-
speed streak, connected through an arch which is situated on top of the streak near
x'110. This Λ-shaped structure is fundamentally different from the vortical structures
seen in the case of the outer mode.

Similar to the outer mode, the streamwise component of the vorticity eigenfunction
ω2 computed by linear stability analysis matches the spatial structure of the vortex. A
visualization of the streamwise vorticity fluctuation taken from DNS data is provided
in figure 25(a). Isosurfaces of positive and negative ω′x are shown. A comparison with
the vortical structures identified in figure 24 indeed shows that the legs of the Λ
vortices coincide with locations of high ω′x. The spatial distribution of the latter is
spanwise antisymmetric with respect to the base streak with alternating patches of
positive and negative vorticity.

4. Statistical results
The characteristics of canonical examples of an outer- and an inner-streak instability

were discussed in detail in §3. In this section, these findings are complemented by
statistical data from the investigation of a large number of unique streak instabilities.
The characteristic properties of the instabilities are computed via linear analysis
only, an approach that is justified by the good quantitative agreement with DNS
demonstrated earlier. The results are separately reported for ZPG and APG boundary
layers, with a focus on the respectively prevailing type of streak instability. §4.1 is
devoted to the analysis of outer modes in ZPG boundary layers while §4.2 covers
inner modes in APG boundary layers. A direct comparison between the growth rates
of inner and outer modes is presented in §4.3.
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FIGURE 24. Plan view of the varicose inner instability with isosurfaces of λ2 =−0.003
(green) used as a vortex identification criterion for t= t1 + 18.
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FIGURE 25. (a) Isosurfaces of positive (ω′x = 0.085, orange/bright) and negative
(ω′x = −0.085, purple/dark) streamwise vorticity. (b) Isosurfaces of positive (Dω′x/Dt =
0.002, yellow/bright) and negative (Dω′x/Dt = −0.002, blue/dark) material derivative of
streamwise vorticity. The solution time is t= t1 + 18.

4.1. ZPG boundary layer
For the ZPG boundary layer, a total of 102 unique breakdown events has been
investigated, with breakdown defined as the formation of an isolated turbulent spot
which is in all spatial dimensions surrounded by laminar flow. Of these breakdowns,
80 were preceded by the formation of an outer instability situated on top of a
lifted low-speed streak. The remaining 22 breakdowns were either of a different type
(e.g. inner modes) or were inaccessible to an investigation by means of linear analysis,
and have thus been excluded from the data presented herein. The remaining set of
outer instabilities can be further separated into 73 sinuous and 7 varicose modes.

In all cases, the downstream position x and solution time t of the linear instability
analysis were chosen relative to the corresponding breakdown event. The inception
location of the turbulent spot is determined using the laminar/turbulent flow
discrimination method described by Nolan & Zaki (2013).

It was mentioned earlier that the stability analysis is only meaningful in a window
where the base streak has reached high amplitude but where the secondary instability
itself does not yet measurably deform the streak. Parameter studies demonstrated
that an interval of 100 time units before spot inception falls into this window for
the majority of outer modes. This value was consequently used for all analyses
presented herein. So as to account for the initially unknown phase speed of the
instability, the analysis was performed at three different downstream locations. Planes
normal to the streamwise coordinate are extracted 60, 70 and 80 inlet boundary-layer
thicknesses upstream the location of spot inception, corresponding to a theoretical
phase speed of cr = {0.60, 0.70, 0.80}. Owing to the localized nature of the streak
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FIGURE 26. (a) Downstream position x of the secondary instabilities and local amplitude
of their respective base streak u′streak. Each data point identifies a unique streak instability
with circles denoting sinuous and triangles varicose outer modes. The symbol colour is
darker for higher growth rates. Lines give the local PDF of the base streak amplitude.
(b) PDF of the base streak amplitude u′streak for the streaks that develop an outer mode
(bars) and for all streaks in the downstream range x ∈ [100, 300] (line).

instability, in the majority of investigated cases only one of these locations yielded
an eigenfunction representative of the instability that further downstream initiates
breakdown to turbulence.

The modal growth rates of all computed outer instabilities are presented in
figure 26(a). Each data point in the scatter plot corresponds to a unique instability;
circles denote sinuous and triangles denote varicose outer modes. Instabilities
represented by darker symbols have a higher growth rate. In general, streaks with
high magnitudes |u′streak|> 0.30 lead to the formation of more unstable modes.

In order to separately quantify the dependence of the modal growth rate on
downstream location and the base streak magnitude, the normalized correlation
coefficient

ρa,b :=
a b√
a2 b2

(4.1)

is evaluated. Here, a b denotes the covariance of the vectors a and b, and the
denominator is the product of their respective standard deviations. In the present
case, the correlation coefficient between the magnitude of the base streak and the
modal growth rate is ρ|u′streak|,σi = 0.658, indicating an appreciable influence of the
streak magnitude on the growth rate of the instability. The correlation between
downstream distance and modal growth rate on the other hand is very weak, with a
correlation coefficient ρx,σi = 0.183. A similar value ρRe,σi = 0.194 is obtained when
replacing x with the Reynolds number based on the boundary-layer thickness. The
weak dependence on Reynolds number is due to the inviscid nature of the instability.

A probability density function (PDF) of the magnitudes of the base streaks,
independent of their downstream position, is provided in figure 26(b). Bars correspond
to the set of low-speed streaks which develop secondary instabilities. The distribution
is centred around a value of u′streak ≈ −0.30. Similar findings for the magnitudes of
streaks upstream the formation of turbulent spots had been reported in experiments
by Nolan, Walsh & McElligot (2010) and in DNS studies by Nolan & Zaki (2013).
The present results further indicate positive growth rates for streak amplitudes of
more than 17%, which coincides with the critical streak amplitude reported in the
Floquet studies of Vaughan & Zaki (2011).
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FIGURE 27. (a) Growth rate σi versus the magnitude of the maximum wall-normal shear
∂u′/∂y along the critical layer. (b) Growth rate σi versus the magnitude of the maximum
spanwise shear ∂u′/∂z along the critical layer. Circles represent sinuous outer modes. Each
data point identifies a unique streak instability.
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FIGURE 28. (a) PDF of the wall distance y of the peak magnitude of the streamwise
component u2 of the instability eigenfunction. (b) PDF of the wall distance y of spot
inception.

It is further of interest to compare the particular streaks that develop instabilities
and lead to breakdown with the full spectrum of boundary-layer streaks. The solid
line in figure 26(b) gives the PDF of the magnitudes of all low-speed streaks that are
observed in the downstream range 100 6 x 6 330. The peak of this curve is located
around u′streak ≈ −0.12. By integrating the PDF, it is found that the majority (80%)
of breakdown events are due to base streaks with amplitudes |u′streak|> 0.25, and that
only 15% of the entire streak population fall into this group. It is therefore only a
small subset of streaks that contribute significantly to the onset of turbulence in bypass
transition.

The literature on Görtler vortices relates sinuous and varicose secondary instabilities
to inflectional spanwise and wall-normal u profiles. In order to investigate the
relationship between the local shear and the amplification of the outer mode, the
maxima in ∂u′/∂y and ∂u′/∂z are extracted along the critical layers of the modes.
Owing to the small number of varicose samples, only sinuous modes are taken into
account. In order to exclude the influence of the Blasius boundary layer, the shear is
computed from the perturbation velocity u′. Scatter plots for the modal growth rate σi

versus ∂u′/∂y and ∂u′/∂z are provided in figure 27. These results will be compared
with the inner instability in the next section (§4.2).

A PDF of the wall distance of the maximum u2 of the instability eigenfunction is
provided in figure 28(a). The majority of the modes are situated at a wall distance
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FIGURE 29. (a) PDF of the phase speed cr of the streak instability. (b) PDF of the
streamwise wavenumber α of the streak instability.

of 60–70% of the local boundary-layer thickness. This result is consistent with the
terminology ‘outer modes’, since they are located on top of lifted low-speed streaks.
Figure 28(b) presents a PDF of the wall-normal location of initial spot inception
during the entire time series of the ZPG simulation. A clear correlation to the
wall-normal location of the outer instability is seen in the figure.

A PDF of the modal phase speed of the outer modes is presented in figure 29, and
demonstrates that the majority of these modes indeed propagate at 60–80% of the free-
stream velocity. This compares favourably with values of 0.70U∞ found by Brandt
et al. (2004) and 0.75U∞ reported by Vaughan & Zaki (2011).

It was mentioned earlier that the streamwise wavenumber α is an input parameter of
the stability calculations. The PDF shown in figure 29 considers the value of α which
yields the highest growth rate for each streak instability. The peak of the distribution is
located at values of α≈ 0.40, which corresponds to a streamwise wavelength λx≈ 16.
Starting from its peak, the distribution gradually decays towards higher wavenumbers
while dropping sharply to zero for smaller α.

4.2. APG boundary layer
This section reports statistical results for a boundary layer subject to an APG with
Hartree parameter βH=−0.14. A total of 56 unique breakdowns has been investigated,
36 of which were inner modes. The remaining 20 instabilities were either of a
different type (e.g. outer modes) or could not be evaluated by means of linear
analysis. Of the 36 breakdowns due to inner modes, 31 were of varicose nature with
the remaining 5 showing a sinuous configuration. In contrast to the predominantly
sinuous outer mode, the frequency of occurrence of the varicose inner modes is
significantly higher than that of sinuous configurations.

Similar to the ZPG case, the solution time and downstream position of the
instability analysis are determined relative to the position of spot inception. In
order to account for the faster growth of the inner mode, the interval between the
stability computation and first occurrence of a turbulent spot is reduced to 67 time
units. Again, three different downstream locations are investigated, located 27, 33 and
40 inlet boundary-layer thicknesses upstream the point of spot inception. The covered
range of theoretical phase speeds thus is cr = {0.40, 0.50, 0.60}.

A scatter plot showing the dependence of the instability growth rate on streak
amplitude and downstream position is provided in figure 30(a). Since the investigated
modes arise between high- and a low-speed streaks, each instability is represented
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FIGURE 30. (a) Downstream location x and intensity of the positive and negative base
streaks u′streak. Each connected set of data points identifies a unique streak instability.
Circles and triangles represent sinuous and varicose inner modes, respectively. The
background contour lines give the PDF of the local amplitude for all high-speed and
low-speed streaks. (b) PDF of the difference in streak magnitude 1u′streak for the pairs
of streaks that lead to the formation of inner modes (bars) and for all streak intersections
in the downstream range x ∈ [100, 160] (line).
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FIGURE 31. (a) Growth rate σi versus the magnitude of the maximum wall-normal shear
∂u′/∂y along the critical layer. (b) Growth rate σi versus the magnitude of the maximum
spanwise shear ∂u′/∂z along the critical layer. Triangles represent varicose inner modes.
Each data point identifies a unique streak instability.

by two symbols which show the respective magnitudes of these streaks. A PDF
of the difference in amplitude 1u′streak between the high- and low-speed streak of
each inner mode is given in figure 30(b). The distribution has its peak between 20
and 30% of the free-stream velocity. The solid line gives the distribution of 1u′streak
for all observed streak intersections in the full time series of the APG case. Two
observations are noteworthy: first, the unstable streak configurations have 1u′streak
larger than the mean value; second, integration of the area under the curve shows
that approximately half of all streak intersections may lead to the amplification of
an instability. However, it should be noted that this overlapping low- and high-speed
streak configuration only occurs in 8.4% of the total population of streaks.

Figure 31 shows the relation between the shear due to boundary-layer streaks and
the growth rate of the instabilities. Data points represent the maximum values of
∂u′/∂y and ∂u′/∂z along the critical layer of the instability. A correlation coefficient
of ρAPG

∂u′/∂y,σivar = 0.784 demonstrates a nearly linear dependence of the growth rate of
the varicose mode on the wall-normal shear at its critical layer. However, the modal
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FIGURE 32. (a) PDF of the wall distance y of the peak magnitude of the streamwise
component u2 of the instability eigenfunction. (b) PDF of the wall distance y of spot
inception.
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FIGURE 33. (a) PDF of the phase speed cr of the streak instability. (b) PDF of the
streamwise wavenumber α of the streak instability.

growth rate of the varicose modes is nearly uncorrelated with the spanwise shear,
ρAPG
∂u′/∂z,σivar = 0.278. Furthermore, ∂u′/∂z in the case of the varicose inner modes is

nearly three times smaller than that for the sinuous outer modes (see figure 27).
The term inner modes refers to the instability being situated relatively close to the

wall. A PDF of the wall distance of the peak of the streamwise component u2 of the
instability eigenfunction is presented in figure 32. Accordingly, more than 90% of the
inner modes are indeed located in the lower half of the boundary layer. Figure 32(b)
provides the wall distance of spot inception for the entire time series in the DNS, and
shows that the majority of breakdowns occur within y 6 0.30δ(x). Direct comparison
with the results for spot inception in the ZPG case (cf. figure 28(b)) shows a clear
shift towards smaller wall distances in the APG flow. This shift was first reported by
Nolan & Zaki (2013), and is herein explained in terms of the dominance of the outer
instability in ZPG and the inner mode in APG.

A PDF of the phase speed of the inner modes is presented in figure 33(a). A
relatively narrow distribution is observed with nearly all investigated samples located
in a window at 50% of the free-stream velocity. Evaluations for the outer mode
presented in the previous section (cf. figure 29(a)) show that the majority of the
outer modes have a phase speed in excess of 0.60U∞. The distribution of the most
unstable streamwise wavenumber of the inner modes is reported in figure 33(b). The
wavenumber range is 1.0 . α . 2.2. Direct comparison with the results for the outer
mode indicates an appreciable shift towards higher wavenumbers.
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FIGURE 34. Growth rate σi of the most unstable eigenfunction: outer (white) and inner
(black) modes. (a) ZPG case. (b) APG case.

4.3. Competition between outer and inner modes
The studies of bypass transition conducted by Jacobs & Durbin (2001) indicated that
breakdown in ZPG boundary layers is in the majority of cases preceded by an outer
instability. The results presented here confirm this view. Assuming that the amplitude
of the instability at time t is given by ‖u2(t)‖=‖u2(0)‖ exp(σit), two explanations for
the described behaviour are possible:

(a) the amplitude of the initial condition ‖u2(0)‖ is larger for the outer mode than
for the inner mode;

(b) the growth rate σi of outer modes is generally higher than that of the inner mode
in ZPG.

From a physical point of view, (a) relates to the flow receptivity to external
perturbations and (b) relates to the nature of the secondary instability of the streaky
boundary layer.

In the previous sections (§§4.1 and 4.2), secondary instability analyses were
performed ahead of spot inception at three upstream planes. Only the mode with
the largest growth rate among all three planes of investigation was retained since
it identified the unstable streak that led to spot formation. In this section, the most
unstable mode (optimized over all α) from each of the three planes is included in
the statistics. As such, instabilities that have large growth rates, but do not induce
breakdown to turbulence, be it due to their small initial amplitude or other effects,
are included in the statistic.

For the ZPG boundary layer, a total of 296 samples were investigated. In 265
of these cases, the most unstable eigenfunction was an outer streak instability. The
remaining 31 instabilities, equivalent to 10% of all modes, were of the inner type.
A PDF of the growth rate of the most unstable mode is provided in figure 34(a).
The black portion of each bar denotes the contribution of inner modes and the white
portion denotes the contribution of outer modes. The most unstable mode is indeed of
outer type. This result establishes that the current ZPG boundary layer is inherently
more susceptible to outer instabilities, and breakdown is therefore more likely near
the edge of the boundary layer: a likelihood potentially augmented by the free-stream
forcing.

When turning to the APG case, previous results clearly demonstrated an increased
relevance of the inner mode. Since shear sheltering favours the seeding of outer
instabilities, the importance of the inner mode can only be explained in terms
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of an increase in the growth rate. Following the same approach as in the ZPG
case, the stability results of all downstream locations of all time instances are
again counted as separate samples. Of the computed 165 instabilities, 95 are of the
inner type and 70 are of the outer type. A PDF of the growth rate is provided
in figure 34(b). Accordingly, the most unstable modes are predominantly of the
inner type. Furthermore, the growth rates of these modes significantly exceed the
maximum growth rates observed in the ZPG case (see figure 34(a)). It can therefore
be concluded that APG substantially promotes the amplification of inner instabilities.

5. Conclusion

Linear stability analysis was applied to DNS flow fields of a boundary layer
exposed to moderate levels of free-stream turbulence. The broadband vortical forcing
from the free-stream turbulence leads to the generation of a spectrum of streaks
inside the boundary layer. Two configurations of boundary-layer streaks often become
hosts for localized, secondary instabilities: (i) the intersection of high-speed and
low-speed streaks within the boundary layer; and (ii) low-speed streaks, which are
lifted towards the free stream. Detailed studies show that these instabilities, despite
their localized nature, can be ascribed to the general classification of inner and outer
modes introduced by Vaughan & Zaki (2011).

It was shown that two-dimensional linear analyses, applied to cross-sections of the
flow field, can predict the secondary instability substantially upstream of where it can
be clearly identified in the DNS fields. In the stability analysis, the most unstable
eigenfunction is localized around one particular streak in the base state. The same
streak in the DNS will indeed, at a later time and farther downstream, develop a
secondary instability and become a site for the onset of breakdown to turbulence.
It was further possible to track the mode as it evolves downstream. A quantitative
comparison with data computed from DNS time series showed good agreement with
the growth rates and phase speeds from linear theory. The spatial structure of the
eigenfunction further matches that of the instability pattern identified in the DNS data.

The evolution of a typical outer mode situated on top of a lifted low-speed streak
was investigated in detail. The spatial structure of the mode leads to the streamwise
meandering appearance of the host streak. Statistical evaluations showed that the
magnitude of the base streak which leads to outer instabilities is between 20 and
35% of the free-stream speed. In addition, the wall-normal position of the peak in the
eigenfunction for the outer mode is in good agreement with the location of turbulent
spot inception in the ZPG boundary layer.

An example of an inner instability which arises in the overlap region between
a low- and a high-speed streak was also discussed in detail. The inner mode is
predominantly varicose. Its growth is accompanied by the formation of characteristic
hairpin vortices that extend along the flanks of the base streak. Statistical evaluations
showed an appreciable correlation between the growth rate of the varicose inner mode
and the wall-normal shear along its critical layer.

A direct comparison of the growth rates of inner and outer modes finally showed
that the most unstable mode in a ZPG boundary layer is of outer type in 90% of all
cases. The prevalence of outer modes in the ZPG case is thus primarily a property
of the linear stability of the streaky boundary layer. This bias changes in favour of
the inner mode if an APG is applied, and the instability growth rate in also increased
appreciably. These results are in agreement with the locations of spot inception
recorded from the DNS flow fields.
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The ability of linear analysis to accurately capture the secondary instabilities
of realistic flow fields can be beneficial in a variety of scenarios. These include
computational techniques that can model the amplification of streaks but not their
secondary instability, for example the boundary region equations (Leib, Wundrow
& Goldstein 1999). In experiments, the instability analysis may be applied to two-
dimensional velocity fields obtained, for instance, by PIV in order to explain empirical
observations. In the context of flow control, the analysis can identify the most unstable
streaks as a candidate for actuation downstream of the measurement location. The
methodology can also be applied to examine new mechanisms of breakdown such as
the nonlinear optimal initial conditions in the studies by Cherubini et al. (2010, 2011).

Appendix A. Eigenvalue solver

In order to efficiently compute a subspectrum of A ∈ Cn×n, a sequence of
j = {1, . . . , k} orthogonal bases V j := [v1, v2, . . . , vj] ∈ Cj×n is constructed from
the repeated application of A to a random start vector v1,

hj = V H
j Avj (A1)

f j = Avj − V jhj (A2)
vj+1 = f j/‖f j‖. (A3)

The first two lines of this procedure describe a classical Gram–Schmidt
orthogonalization. The vector h in (A1) is the projection of Avj onto the present
base V j. In (A2), the components of the base that are in the direction of Av are
subtracted from the latter. Let Hk := [h1, h2, . . . , hk], then the above scheme yields
the Arnoldi factorization

AV k = V kHk + f ke
T
k , (A4)

where ek ∈Rk×1
= (0, . . . , 0, 1)T is the kth unit vector. The operator H ∈Ck×k is upper

Hessenberg and hence allows the efficient computation of its eigenspectrum σ(Hk)

through QR decomposition. The elements of this Ritz spectrum are an exact subset
of the spectrum of A if and only if f k = 0. It is easily seen that this requirement is
identically fulfilled if V kV H

k Avk =Avk. In this case, Avk is a linear combination of the
basis vectors vk, so that the columns of V k span an invariant subspace of A. Relatively
large base lengths k are generally required for sufficiently small factorization residuals
f k, promoting in turn high computational cost and memory requirements.

A more efficient approach is thus pursued, in which the size of k is limited by
implicitly restarting the factorization once its length has reached a certain threshold
(Sorensen 1992, 2002). The initial condition v+ of the restarted factorization is
a combination of Ritz eigenvectors. In addition to reducing the computational
requirements, this approach provides control over which part of the spectrum of
A is approximated by the Ritz spectrum. In the present work, the requirement is
to compute the eigenvalues that are most unstable or that most closely match a
prescribed complex phase speed ctarget. In the first case, the Ritz spectrum is sorted
by the imaginary part of the eigenvalues, and in the second case by the absolute
distance in the complex plane of each eigenvalue to the prescribed phase speed. The
p = m − k, 0 < k < m eigenvalues that have the smallest real part or the greatest
distance to ctarget are subsequently used as shifts in a p-step Francis QR factorization
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FIGURE 35. (a) Contours of the streamwise velocity fluctuation u′ from the validation
case courtesy of Dr Luca Brandt. Solid (dashed) lines denote positive (negative)
fluctuations from u′ =±0.035 to u′ =±0.35 in increments of 0.063. (b) Contours of the
absolute of the streamwise component of the instability eigenfunction from ‖u2‖= 0.01 to
‖u2‖ = 0.045 in increments of 0.005. The thick dashed line marks the critical layer.

(Golub & Van Loan 1996) of (Hm −µjI), j= 1, 2, . . . , p, resulting in

AV+m = V+mH+m + f meT
mQ, (A5)

where V+m = V mQ, H+m = QHHmQ and Q = Q1Q2, . . . , Qp. The Qj ∈ Cm×m are the
orthogonal operators obtained in each of the p shifted QR steps. Since Hm is
Hessenberg, each Qj inherits this property. It follows that the first k− 1 elements of
the last row of Q, and thus of the vector eT

mQ are zero. The first k columns of (A5)
therefore give the k-step Arnoldi factorization

AV+k = V+k H+k + f ke
T
k . (A6)

The spectrum of H+k now comprises the k Ritz eigenvalues that are closest to the
prescribed complex phase speed. Application of another p steps (A1)–(A3) to (A6)
yields the next iteration of (A5).

Appendix B. Validation of the linear stability algorithm

This section contains a validation of the numerical method used for the linear
stability analyses conducted in the context of this work. As mentioned earlier, the
former comprises two independent parts, namely a linear flow solver as well as the
eigenvalue solver described in the previous section. It should be mentioned that both
methods have been validated independently of each other. In the interest of brevity,
only a combined validation of the whole numerical approach is reported here.

The base flow for the validation case has been kindly provided by Dr Luca Brandt
and is identical to that used in Andersson et al. (2001) as well as Brandt et al.
(2003). It describes a Blasius boundary layer distorted by a steady streak which is
obtained from the nonlinear response of the boundary layer to forcing with the linearly
optimal conditions calculated by Andersson et al. (1999). Periodicity in the spanwise
dimension vindicates the limitation of the transverse extent of the computational
domain to a single streak. A visualization of the streamwise velocity fluctuation u′ is
provided in figure 35(a). The peak value of u′ is 35% of the free-stream velocity at
the centre of the low-speed streak.
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Re σi Brandt et al. (2003) σi present method cr present method

283 0.0518 0.0515 0.842
1415 0.0905 0.0900 0.827
5660 0.0973 0.0967 0.823

TABLE 1. Secondary instability growth rates from Brandt et al. (2003) as well as
calculated with the present numerical method for a set of Reynolds numbers and a
streamwise instability wavenumber of α= 1.70. Data from Brandt et al. (2003) have been
rescaled.

Contour lines of the streamwise component u2 for the most unstable eigenfunction
computed with the present method are shown in figure 35(b). The mode is located on
top of the backward jet at the centre of the computational domain and is thus, under
the terminology used throughout this work, identified as an outer instability. The shape
of u2 is antisymmetric with respect to the centreline of the base streak, indicating a
sinuous type of mode. In general, the shape of the eigenfunction is in good agreement
with the result presented in figure 12 of Andersson et al. (2001).

Brandt et al. (2003) computed the modal growth rate in dependence of the Reynolds
number for the same base flow. Table 1 provides a comparison of their values to the
results obtained with the presently employed numerical method. The relative difference
in the respective modal growth rates is less than 1% in all cases.
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