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Streaks in pre-transitional boundary layers are analysed and their properties are
extracted from direct numerical simulation data. Streaks that induce breakdown to
turbulence via secondary instability are shown to differ from the remainder of the
population in various attributes. Conditionally averaged flow fields establish that they
are situated farther away from the wall, and have a larger cross-sectional area and
higher peak amplitude. The analysis also shows that the momentum thickness acts as
a similarity parameter for the properties of the streaks. Probability density functions
of the streak amplitude, area, and shear along the streaks, collapse among the
various pressure gradients when plotted as a function of the momentum thickness. A
prediction scheme for laminar–turbulent transition based on artificial neural networks
is presented, which can identify the streaks that will eventually induce the formation
of turbulent spots. In comparison to linear stability theory, the approach achieves a
higher prediction accuracy at considerably lower computational cost.
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1. Introduction
Breakdown to turbulence in boundary layers exposed to moderate levels of

free-stream turbulence is often preceded by the amplification of highly energetic
streaks and their secondary instability. The recent study by Hack & Zaki (2014a)
showed that linear instability analysis applied to cross-flow planes can capture the
properties of the instabilities and identify the streaks that will likely induce transition
to turbulence farther downstream. The present work compares the characteristics of
those streaks to the remainder of the population and examines whether a data-based
approach using artificial neural networks (ANN) can further improve the accuracy
and the performance of the predictions to the levels required in real-time applications.

1.1. Streak instabilities in pre-transitional boundary layers
Boundary layers subjected to moderate levels of free-stream perturbations frequently
bypass the natural transition mechanism via Tollmien–Schlichting waves and break
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down to turbulence earlier upstream. At the core of the bypass process is the growth
of streamwise elongated perturbations known as Klebanoff streaks. The origin of
the highly energetic streaks lies in the displacement of the mean momentum of
the boundary layer due to small wall-normal velocity perturbations (Landahl 1975,
1980). Although the mean shear generally shields the boundary layer from external
disturbances (Hunt & Carruthers 1990), this so-called shear sheltering is weakest
for the low-frequency disturbances (Zaki & Saha 2009) which are most effective in
generating streaks (Gustavsson 1991; Butler & Farrell 1992; Zaki & Durbin 2005).
The streaks promote the growth of high-frequency secondary instabilities which
ultimately induce the nonlinear processes associated with breakdown to turbulence.
The present focus is on the attributes of streaks that are linked to their secondary
instability and, as a result, the onset of turbulence spots (for a review of the entire
bypass transition process, see Zaki (2013)).

In flow visualizations, streak instabilities are often observed as localized undulations
of the host streaks (see e.g. Matsubara & Alfredsson 2001) that can be either
varicose or sinuous. The controlled experiments by Asai, Minagawa & Nishioka
(2002) excited both modes of streak instabilities in boundary layers and showed that
the varicose mode induces hairpin vortices while the sinuous mode generates a train
of quasi-streamwise vortices with vorticity of alternating sign. Elofsson, Kawakami
& Alfredsson (1999) generated streak-like structures in plane Poiseuille flow using
wall blowing and suction and evaluated the phase speed and growth rates of the
secondary instabilities. The experimental work by Mans, de Lange & van Steenhoven
(2007) examined five streaks in boundary layers exposed to static grid turbulence.
Particle image velocimetry (PIV) studies by Mandal, Venkatakrishnan & Dey (2010)
identified inflectional instantaneous velocity profiles in streaky boundary layers which
they credited with the amplification of varicose instabilities. Marquillie, Ehrenstein
& Laval (2011) extracted individual low-speed streaks in channel flow subject to
an adverse pressure gradient and performed instability analyses on the conditional
average; they too predicted varicose-type instabilities. Meanwhile the nonlinear studies
by Cossu et al. (2011) identified threshold amplitudes for spanwise disturbances which
lead to breakdown of streaks via a sinuous instability.

Vaughan & Zaki (2011) classified the secondary instabilities of streaks into
‘outer’ and ‘inner’ modes based on the wall-normal locations of their critical
layers. Phenomenological observations in direct numerical simulations (DNS) of
bypass transition by Jacobs & Durbin (2001) and Brandt, Schlatter & Henningson
(2004) indicated that in zero-pressure-gradient (ZPG) boundary layers, breakdown to
turbulence is predominantly initiated by outer instabilities situated on top of low-speed
streaks at the edge of the boundary layer. Statistical data from DNS time series
collected by Hack & Zaki (2014a) established that indeed more than 80 percent of
all spot formations in ZPG boundary layers are preceded by an outer streak instability.
That work also showed that an adverse pressure gradient significantly enhances the
relevance of the inner instabilities.

Earlier investigations of streak instabilities by means of linear stability analysis
considered idealized base states comprising streaks that were either steady (Andersson
et al. 2001) or harmonic in time (Vaughan & Zaki 2011) and strictly periodic in the
spanwise dimension. The predicted instabilities were therefore collective, i.e. of the
entire row of streaks. Hack & Zaki (2014a) relaxed this condition by applying
the instability analysis to cross-flow planes extracted from DNS of transitional
boundary layers. Their base state hence comprised a spectrum of streaks with different
amplitudes and proportions. The resulting instabilities were localized and could be
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FIGURE 1. (Colour online) Visualization of a streaky boundary layer undergoing bypass
transition. Light isosurfaces are high-speed streaks (u′= 0.085) and dark surfaces are low-
speed streaks (u′ =−0.085). Turbulence is visualized using isosurfaces of the λ2-criterion
(λ2 =−0.005).

attributed to individual streaks. This approach led to probability distributions for the
amplitudes of the base streaks that induce the growth of the instabilities, in contrast
to the discrete values for the critical streak amplitudes found in earlier studies. The
implication is that, while the amplitude is an important factor, other properties of
the base streaks, such as their shape and position in the cross-flow plane, are also
relevant. These attributes have not been examined in the literature and are herein
contrasted for innocuous streaks and the ones which initiate breakdown to turbulence.

A visualization of a transitional boundary layer from DNS is presented in figure 1.
Only particular streaks among the entire population promote the formation of turbulent
spots via secondary instabilities. While linear analysis can identify those streaks and
the secondary instability modes, the approach entails the solution of a computationally
expensive eigenvalue problem and does not identify the streak characteristics which
are complicit in promoting the secondary instability. A more nimble approach is
sought herein to characterize the streaks in the pre-transitional boundary layer and to
identify the subset of streaks that induce breakdown to turbulence.

1.2. Artificial neural networks
The concept of artificial neural networks can be traced back to the original perceptron
devised by Rosenblatt (1958). It has since been successfully applied to a variety of
tasks from different disciplines. A typical neural network of the kind used in the
present work consists of a number of computing units, sometimes referred to as
neurons in analogy to biology, which are arranged in layers. The output of each
neuron is given by the evaluation of the associated basis function at the sum of
all inputs. In so-called supervised learning, the network is initialized with random
parameters and applied to a prototypical data set with known target values for the
requested outputs. For example, by means of the popular backpropagation algorithm
(see e.g. Rumelhart & McClelland 1986), the weights that connect the neurons in
different layers are adjusted so as to minimize the discrepancy between the predicted
and target values, measured by a suitably chosen norm. ANN of sufficient complexity
are universal approximators in the sense that, for an appropriate choice of parameters,
such as network topology and number of neurons, they can represent any continuous
function as long as the associated subspace is compact, i.e. closed and bounded
(Hornik 1991).

In the field of fluid dynamics, several studies have sought to take advantage of
the capabilities of artificial neural networks. Lee et al. (1997) employed ANN to
construct an adaptive controller for reducing viscous drag in turbulent channel flow.
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The spanwise wall shear measured by an array of probes was used as input to
the neural network, which was trained to produce a pattern of wall blowing and
suction that reduced viscous drag by weakening near-wall turbulent streaks. Baldi
& Hornik (1989) demonstrated that the training of an ANN with linear basis
functions to perform an identity mapping on a data set effectively performs a linear
principal component analysis (PCA) on these data. Building on this result, Milano &
Koumoutsakos (2002) constructed a nonlinear model of wall turbulence using a neural
network with nonlinear basis functions. The nonlinear approach provided a more
accurate model of the near-wall velocity fields at limited additional computational
cost. More recently, Gautier et al. (2015) demonstrated a mechanism for the control
of flow separation using genetic programming.

The present work aims to harness the capabilities of ANN in a novel approach to
predict bypass transition in boundary layers. The objective is to efficiently and reliably
identify the particular pre-transitional streaks that will eventually break down to
turbulence via secondary instability. The velocity information in the DNS flow fields
is compressed through the extraction of characteristic features of the boundary-layer
streaks. These features differentiate properties of innocuous and unstable streaks.
Although the latter represent a small fraction of the population, they are of principal
importance in the laminar-to-turbulent transition process. These low-dimensional data
are then passed on to an artificial neural network which provides a prediction of the
likelihood of breakdown to turbulence. Section 2 provides analyses of streak data
from DNS time series. In § 3, the prediction scheme, along with results for boundary
layers subject to streamwise pressure gradients, are presented. Concluding remarks
are presented in § 4.

2. Analysis of boundary-layer streaks
The starting point of the analysis is to contrast the streaks that cause breakdown to

turbulence (referred to as B streaks) and the remainder of the population (referred to
as NB streaks) by comparing attributes of both classes. Ahead of the presentation of
the computational method and results, it is helpful to recall the physical mechanism
of breakdown to turbulence in streaky boundary layers. While the low-frequency
streaks are unable to directly initiate the short-scale nonlinear effects associated with
the formation of turbulent spots, the shear surrounding the streaks promotes the
growth of high-frequency exponential instabilities. A time series of a boundary-layer
streak breaking down to turbulence via such instability is provided in figure 2. The
topmost panel shows the entire spanwise extent of the computational domain in a
ZPG boundary layer. Light and dark isosurfaces mark high-speed and low-speed
streaks, respectively. From the second frame, the visualization focuses on a single
low-speed streak located near the edge of the boundary layer. At later times, the
instability increasingly distorts the base streak until the high-frequency oscillations
induce nonlinear interactions and a turbulent spot emerges. The sinuous nature of
the streak deformation is typical for the class of outer instabilities which account for
the majority of streak breakdowns in zero- and favourable-pressure-gradient boundary
layers. Inner modes, which originate from the local shear at the intersection of
high and low-speed streaks inside the boundary layer, only become dominant in the
presence of strongly adverse pressure gradients. The present study hence focuses on
the outer type of streak instability.

In the following, the computational approaches used in the flow simulations and in
the analysis of the boundary-layer streaks are described. The remainder of the section
is dedicated to a quantitative characterization of the B and NB populations of streaks.
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FIGURE 2. (Colour online) Breakdown of a boundary-layer streak via sinuous outer
instability. Plan view with isosurfaces of high-speed (u′ = 0.085, light) and low-speed
streaks (u′=−0.085, dark). The shade of the low-speed streaks is indicative of the distance
to the wall.

2.1. Computational aspects and feature extraction
The flow fields in the present study are computed from DNS of transitional boundary
layers. Descriptions of the simulation set-up and mean-flow statistics are provided
by Nolan & Zaki (2013). The computational algorithm is based on a finite-volume
formulation of the incompressible Navier–Stokes equations (Rosenfeld, Kwak &
Vinokur 1991). Mass conservation is enforced using the fractional step method by
Kim & Moin (1985). Velocities are normalized by the free-steam convective speed
at the inlet of the computational domain, U∞,0, and lengths are normalized by the
momentum thickness at that location, θ0. The Reynolds number based on the inlet
momentum thickness is Re0 = 108. The simulation domain starts at position x̃0
downstream of the leading edge and the shifted streamwise coordinate is x = x̃ − x̃0.
The length, width and height of the computational domain are 4300, 285 and 215
inlet momentum thicknesses, respectively, and the number of grid points in these
dimensions are 2049, 193 and 193. Bypass transition is initiated by superimposing
the Blasius profile at the inflow of the computational domain with an isotropic
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free-stream disturbance field. The turbulence intensity in the free stream at the inflow
is TuFS=3 %. During the runtime of the simulations, a total of 4000 three-dimensional
snapshots of the instantaneous flow fields are stored. The velocity fluctuations are
computed from the instantaneous velocity field by subtracting a time and spanwise
averaged mean,

u′(x, y, z, t)≡ u(x, y, z, t)− u(x, z). (2.1)

In addition to a ZPG case, a favourable-pressure-gradient (FPG) boundary layer with
Hartree parameter βH = 0.11 and a case with weakly adverse pressure gradient (APG),
βH =−0.07, are considered. In the work by Nolan & Zaki (2013), a stronger adverse
pressure gradient (βH=−0.14) was also simulated, where the inner instability was the
dominant mechanism. For this reason, we have not considered that case in the present
work where the focus in on the prediction of outer streak instabilities which are the
prevalent mechanism over a wide range of flow configurations.

The skin-friction coefficient,

Cf =
µ
∂U
∂y

∣∣∣∣
y=0

1
2ρU2∞(x)

, (2.2)

is plotted in figure 3(a) versus the streamwise coordinate, x, for all cases. Earlier
studies reported that in the presence of moderate levels of free-stream disturbances,
the transition locations recorded for different pressure gradients nearly collapsed when
plotted as a function of the momentum thickness (see e.g. Dunham 1972). The present
results show a similar tendency. In figure 3(b), the skin-friction coefficient is repeated
as a function of the momentum thickness Reynolds number, Reθ ≡U∞(x)θ/ν. In this
scaling, the streamwise positions of transition onset for all three pressure gradients
are in close proximity. The momentum thicknesses from the present simulations are
reported in figure 3(c) as a function of the streamwise Reynolds number. The skin-
friction minimum, which is commonly associated with the onset of transition, is also
marked on the figure and is located at θ ≈ 3 in all three flow configurations. Finally,
figure 3(d) shows the local intermittency, defined as the fraction of time during which
the flow at a specific location is turbulent.

The analysis of the properties of the streaks is performed in cross-planes of the
DNS flow fields such as the example in figure 4. The background contours mark the
streamwise velocity fluctuation, u′. Black and white line contours identify u′ = 0.05,
and u′=−0.05, and delimit the respective region of interest for each streak, Ωs. The
following features are extracted from the streaks.

(i) Peak streamwise intensity su. The peak amplitude is defined as the maximum of
the absolute of the streamwise velocity fluctuation, su ≡maxΩs |u′|.

(ii) Peak wall-normal intensity sv. The maximum of the absolute of the wall-normal
fluctuation is defined as sv ≡maxΩs |v′|. Although the streaks are predominantly
streamwise velocity perturbations, they are generated by the lift-up mechanism
as a response to v′ forcing. In addition, wall-normal disturbances are amplified
during the secondary instability of boundary-layer streaks prior to breakdown to
turbulence.

(iii) Area sA. The cross-sectional area of the streak is computed as the integral of the
region delimited by Ωs, viz. sA ≡

∫
Ωs

dy dz.
(iv) Momentum sM. The streamwise momentum is related to the kinetic energy of the

streak. It is computed as the integral of the streamwise velocity fluctuation over
the region of interest, sM =

∫
Ωs

u′ dy dz.
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FIGURE 3. (a) Skin-friction coefficient Cf as a function of the streamwise coordinate x.
(b) Skin-friction coefficient Cf as a function of the momentum thickness Reynolds
number Reθ . (c) Momentum thickness θ as a function of the streamwise coordinate x.
(d) Intermittency γ as a function of the streamwise coordinate x. ZPG (solid), FPG
(dashed) and APG (dash-dotted) cases.

(v) Spanwise shear sz. The spanwise shear has been shown to correlate with
the growth rate of outer streak instabilities (see Hack & Zaki 2014a). It is
approximated by dividing the peak streamwise fluctuation by half the streak
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FIGURE 4. Streak features in a cross-plane. Background contours give the streamwise
velocity fluctuation, u′. Contour lines at u′ = 0.05 (black) and u′ =−0.05 (white) indicate
the region of interest of each streak.

width, sz = 2(su − 0.05)/sW , where the width is defined as the maximum extent
of Ωs in the spanwise dimension z, sW =maxz Ωs −minz Ωs.

(vi) Wall-normal shear sy. Although outer streak instabilities are primarily related
to the spanwise shear, the wall-normal shear can be an important quantity to
identify those streaks that develop instabilities. It is computed by dividing the
peak streamwise fluctuation by half the streak height, sy=2(su−0.05)/sH , where
the height is defined as the maximum extent of Ωs in the wall-normal dimension
y, sH =maxy Ωs −miny Ωs.

(vii) Wall distance peak sd. The distance between the wall and the location where
the absolute value of u′ has its maximum, sy = ysu . Since high-frequency free-
stream perturbations are increasingly sheltered as they penetrate the boundary
layer towards the wall, streaks that are lifted closer to the boundary-layer edge
may have a higher chance of developing a secondary instability and inducing
breakdown.

(viii) Momentum thickness sθ . The local momentum thickness is directly related to the
streamwise Reynolds number.

In order to contrast the properties of NB and B streaks, each streak in the DNS time
series is assigned to one of the two classes by the following procedure: (i) recording
of spot formation throughout the time series, (ii) identification of individual streaks,
(iii) tracking of the streak evolution in time and (iv) association of spots with
particular streaks.

The starting point is the capturing of the inception of turbulent spots in initially
laminar flow. The spot detection algorithm starts from the approach introduced by
Nolan & Zaki (2013), and is based on the local standard deviation of the sum of
the v′ and w′ fluctuation fields. Applying the method by Otsu (1979), the flow field
is separated into laminar and turbulent regions such that the intra-class variance is
minimized. The formation of a turbulent spot is recorded if an isolated region of
turbulence is observed at a location that was occupied by laminar flow at the previous
time step, and subsequently persists for at least 100 time units. This last condition
makes the approach more robust by removing short-term ‘blips’ that may be the result
of free-stream perturbations entering the boundary layer. The coordinates of the spot
inception locations as well as the corresponding time in the flow evolution are stored
in a database, xbm = {x, y, z, t}bm .
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In a second step, the individual streaks in the time series of three-dimensional
flow fields are identified. The streak detection procedure builds on the algorithm
described by Nolan & Zaki (2013) and starts by computing the centroids of patches
of positive and negative u′ in cross-flow planes within the laminar flow regime.
Streaks are identified by establishing the downstream connectivity of the extrema in
the cross-flow planes. Objects whose length is less than a specified threshold, here
80 inlet momentum thicknesses, are discarded, and the coordinates of the centrelines
of the remaining streaks are stored in a database, xs

t = {x, y, z; t}s.
In order to categorize streaks as B or NB, the entire history of each streak is

gathered by tracking it in the time series. The outcome is a database which provides
access to all instances of streaks via a unique identifier xsn ={x(t), y(t), z(t)}sn . Finally,
the streaks are linked to the spots. Since streaks are only identified in the laminar
regime, they cannot coexist with a turbulent spot situated at the same coordinates.
The algorithm therefore compares the spatial coordinates of the spots, xbm , with those
of the streaks one snapshot prior to spot inception. Two databases are generated
which contain the properties of the B and NB classes of streaks.

2.2. Comparison of B and NB streaks in ZPG boundary layers
The methodology described in § 2.1 allows a distinction between B and NB streaks. A
comparison of the two classes can shed light on why particular streaks break down
to turbulence. An overview of the difference between the two classes is provided by
the conditionally averaged field at a given downstream position x,

{u′}±(x, y, z̃)≡ 1
N±

N±∑
n=1

G(zn±)u′(x, y, zn±), (2.3)

where subscripts ‘+’ and ‘−’ denote high- and low-speed streaks, respectively. The
linear operator G(zn±) translates the velocity field for each streak in the span such
that its local u′ extremum is aligned at the spanwise location z̃= 0.

The conditional averages for low-speed streaks of classes B and NB at two
different downstream locations are contrasted in figure 5. The number of samples is
approximately 33 000 NB and 300 B. In all cases, the streamwise vortices which effect
the lift-up process and lead to the amplification of streaks are evident. Comparison
of the two classes indicates that streaks which belong to the B class (i.e. will
induce breakdown to turbulence) have a relatively higher amplitude, particularly at
x= 1754. They are also located farther away from the wall than their NB counterparts.
Furthermore, the distance to the surrounding high-speed streaks appears to be smaller
for B streaks than for NB structures, which suggests stronger spanwise shear. While
the conditionally averaged NB streaks resembles an ellipse, the B conditionally
averaged structure develops into a trapezoidal shape. The widening near the edge of
the boundary layer is in part a result of the streak meandering due to the amplification
of secondary instabilities, see e.g. figure 2.

Probability density functions (PDFs) of the features of both classes of streaks are
presented in figure 6. The respective mean values as well as the relative differences
are reported in table 1. The results mirror the trend observed in the visualizations of
the conditionally averaged flow field. All features have appreciably higher values in
the case of B streaks. In particular, the peak streamwise and wall-normal fluctuations
of the B streaks considerably exceed the values of the NB class.
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FIGURE 5. Conditionally sampled low-speed streaks not leading to breakdown (a,c) and
leading to breakdown (b,d) at downstream positions x= 1321 (θ = 2.5, a,b) and x= 1754
(θ = 3, c,d). The background contour and lines indicate the streamwise velocity fluctuation,
−0.18 < {u′}− < 0.12. White lines mark {u′}− = −0.05 and indicate the conditionally
sampled region of interest. Arrows give the spanwise and wall-normal fluctuations. The
local boundary-layer thickness is marked by the dashed white line.

Feature Mean NB Mean B Relative difference (B− NB)/NB (%)

Peak u′, su 0.156 0.270 +73.4
Peak v′, sv 0.0083 0.0213 +156.9
Area, sA 110.5 168.2 +52.2
Momentum, sM 11.10 23.54 +112.0
Spanwise shear, sz 0.0158 0.0273 +73.3
Wall-normal shear, sy 0.0174 0.0278 +59.7
Wall distance, sd 8.68 10.89 +25.5

TABLE 1. Mean values of features of NB and B streaks and relative difference in ZPG
boundary layer at x= 1321 (θ = 2.5).

A principal component analysis (PCA) of the streak properties is presented in
figure 7. The first three principal components are shown. In both the NB and B cases,
the momentum and the area are closely correlated. On the other hand, there appears
to be no direct link between su and sv. Despite the vertical velocity contributing
to the amplification of streaks, only the low-frequency component is relevant. In
addition, the v perturbations introduced by free-stream vortical disturbances decay
appreciably while the streaks are formed and intensify (see e.g. Andersson, Berggren
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FIGURE 6. Probability density functions of streak features for ZPG boundary layer. NB
streaks (solid) and B streaks (dashed) at x= 1321 (θ = 2.5).

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

0.2
0.2

0.6
0.6

–0.2 –0.2
–0.6 –0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

0.2
0.2

0.6
0.6

–0.2 –0.2–0.6 –0.6

Component 2 Component 1
Component 2 Component 1

C
om

po
ne

nt
 3 Shear z

Shear z
Shear y

Shear y

Downstream location

Downstream location

Momentum

Momentum
Wall distance

Wall distance

Area
Area

(a) (b)

FIGURE 7. (Colour online) Principal component analysis of the features extracted from
NB streaks (a) and B streaks (b).

& Henningson 1999). The amplification of v in the boundary layer occurs farther
downstream when the secondary instabilities start to amplify. As a result, sv does not
correlate well with su. Although the principal components of the B and NB classes
differ, in both cases the first three components describe virtually the same fraction
(approximately 82 %) of the total variance of the eight features considered.

2.3. Influence of streamwise pressure gradient
The skin-friction curves presented in figure 3(a) indicated that a favourable pressure
gradient delays breakdown to turbulence while adverse pressure gradient promotes
it. The question arises whether this behaviour is due to a change in the number of
streaks in the boundary layer, or whether the size of the streak population remains
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FIGURE 8. Normalized frequency of occurrence of streaks versus (a) downstream
coordinate x and (b) momentum thickness θ . ZPG (solid), FPG (dashed) and APG
(dash-dotted) cases. Symbols indicate the onset of transition to turbulence.

unaffected. Figure 8(a) shows the frequency of occurrence of all boundary-layer
streaks per unit spanwise width from both the NB and B classes. The frequency
of occurrence is similar in all cases, but highest in the presence of the favourable
pressure gradient and lowest for the adverse pressure gradient. The trend is consistent
with the faster growth of the boundary-layer thickness in decelerating flow, and as
a result the formation of wider streaks and lower number density in that case. This
result also indicates that the early breakdown in the APG case is not due to an
increased rate of streak formation. When plotted versus the momentum thickness, the
three curves for the entire population converge downstream of transition onset. The
similar decay rates across pressure gradients can be explained with reference to the
spreading of turbulence spots in the transition zone. While the spread angle measured
from the spot inception location is known to be wider in decelerated flows (see e.g.
Gostelow, Melwani & Walker 1996), the volume growth rate of the turbulent patches
is insensitive to the pressure gradient (see figure 30 by Nolan & Zaki 2013). As
a result, the streaks are depleted in the transition zone at a similar rate across the
different pressure gradients.

Other features of the populations of streaks also collapse when plotted as a function
of the momentum thickness. Figure 9 shows the peak streamwise and wall-normal
velocity fluctuation, the wall-normal and spanwise shear and the streak cross-sectional
area versus θ for the ZPG, FPG and APG cases. The relative difference between the
three cases is less than ten percent over the entire downstream range. These results
demonstrate that the momentum thickness governs not only the location of transition
onset in pressure-gradient boundary layers, but also the properties of the streaks.

The significance of the momentum thickness as a scaling parameter for the streaks
can be demonstrated further by considering PDFs recorded at identical θ . Normalized
distributions of the peak amplitude, the cross-sectional area and the wall-normal
and spanwise shear of the streaks at θ ≈ 3 are provided in figure 10. This location
coincides with the onset of transition for all three pressure gradients. In each case,
the curves representing the three different pressure gradients are in close agreement.

Corbett & Bottaro (2000) investigated optimal growth in pressure-gradient boundary
layers and found that the momentum thickness led to a ‘universal’ behaviour of the
perturbation kinetic energy of the streaks. Here we compare the conditionally sampled
u-perturbation fields of NB and B streaks from the DNS of bypass transition. The
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FIGURE 9. Mean streak attributes as a function of the streamwise coordinate (a–e) and of
the momentum thickness ( f –j). ZPG (solid), FPG (dashed) and APG (dash-dotted) cases.
(a, f ) Peak streamwise amplitude, (b,g) peak wall-normal fluctuation, (c,h) wall-normal
shear, (d,i) spanwise shear and (e,j) cross-section area.

results for streaks from the ZPG, FPG and APG cases at θ = 3 are presented in
figure 11. For each class of streaks, the isocontours of the streamwise velocity
fluctuation in the cross-flow plane largely coincide across pressure gradients. In
particular, the deformation of the contours in case of the B streaks is present in all
three flow conditions.

3. Feature-based classification of streaks
The analysis presented in § 2 showed that the properties of NB streaks can differ

appreciably from those of B streaks. In the following we examine whether this
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FIGURE 10. PDFs computed at θ = 3. ZPG (solid), FPG (dashed) and APG (dash-dotted)
cases. Peak streamwise amplitude, peak wall-normal fluctuation, wall-normal shear and
spanwise shear and cross-section area.

information can be harnessed to predict breakdown to turbulence by using the features
extracted from the streaks as inputs to an artificial neural network. The section starts
with a brief description of the methodology followed by results for a ZPG boundary
layer. Finally, the generalization abilities of the network are tested by examining the
accuracy of the predictions in favourable and weak adverse pressure gradients.

3.1. Artificial neural network
ANN are universal approximators which can represent any continuous, smooth
function. One of the most common applications of ANN is pattern recognition
and classification where their capability to generalize, i.e. to correctly classify data
contaminated by noise, is particularly useful. In the present case, the objective is to
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FIGURE 11. (Colour online) Isocontours of the streamwise fluctuation component, {u′}−,
of conditionally sampled low-speed streaks at θ = 3. (a) NB streaks. (b) B streaks. ZPG
(black), FPG (blue/dark grey) and APG (red/light grey) cases.
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FIGURE 12. Topology of the artificial neural network used in the present study.

use combinations of the streak features extracted from the DNS time series in order
to forecast whether a specific sample will induce breakdown to turbulence farther
downstream.

The general topology of the neural network used in this study is presented in
figure 12. The circles represent the computational units, or neurons, of the network,
which are arranged in three layers. Each neuron in a specific layer is connected
to all the neurons in the adjacent layers but not to neurons in its own layer. The
connections between the neurons are associated with variable weights which determine
the behaviour of the ANN. A sigmoid activation function is used so that the output
(or activation) of each neuron is given by

qn
k =

1
1+ exp(−pn

k)
. (3.1)

Here, n indicates the layer of the neuron and k is the number of the computing unit
within that layer. With the exception of the input layer (n= 1), the input into a neuron
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is the weighted sum of the activations of the neurons in the previous layer,

pn
k =
∑

j

wn
k,jq

n−1
j , (3.2)

where the index j spans all weights that connect the computing unit with all units on
the previous layer n− 1. In terms of a matrix-vector product, equation (3.2) can be
written as,

pn =W nqn−1. (3.3)

Let N n denote the number of neurons on the nth layer, then pn ∈ RN n×1, W n ∈
RN n×N n−1 and qn−1 ∈RN n−1×1. The features extracted from the cross-sections of the
instantaneous fields are used as inputs and the output P indicates whether a streak
will break down to turbulence.

All weights connecting the neurons are initialized to random values. During a
learning process, the outputs of the ANN are compared to target values and the
weights are adjusted so that the prediction error is minimized. Online learning is
adopted where the weights are re-evaluated after each sample in the learning data set
has been processed. The adjustments to the weights are computed from the gradient
of the weights with respect to the error in a simple scheme known as backpropagation
(see e.g. Rumelhart & McClelland 1986).

The generation of the target values used in the learning process builds on the
database of NB and B streaks. When a spot forms at any position along the length of
a streak, the target value indicating whether the streak will break down to turbulence,
T , is locally increased over a spatial region comparable to the extent of newly formed
spots (see figure 13). For all earlier occurrences of the same streak, streamwise
advection is taken into account, and the section is shifted upstream by a distance
1x=−ū1tspot, where ū is the local streamwise mean velocity and 1tspot is the time
difference to the formation of the spot. In addition, the initially sharp distribution
is slightly diffused in the streamwise dimension in order to take into account the
increased uncertainty at earlier time instances.

The adjustment of the weights during the training process requires a large amount
of data. In general, the complexity of the ANN scales with the quantity and quality of
the available training data. Once the training process is completed, a single prediction
of a network with one hidden layer requires just two matrix-vector products (see (3.3)).
The associated computational effort is several orders of magnitude lower than that
of the solution of the relatively large two-dimensional eigenvalue problems which
arise from classical linear stability theory (e.g. Hack & Zaki 2014a). Computational
efficiency is thus a core advantage of the ANN approach which makes the concept
suitable for real-time applications. It is not a substitute, however, to linear analyses
which can identify the instability mode and, hence are the foundation for the design
of the ANN.

3.2. Prediction in ZPG boundary layer
This section examines the prediction of streak breakdown in ZPG boundary layers.
The network is trained using the streak database generated from a time series of 4000
flow fields computed using DNS of bypass transition in boundary layers subject to
moderate free-stream turbulence, TuFS = 3 %. Features are collected from streaks at
18 equidistant cross-planes in the region 200< Reθ < 350. The training data set used
to adjust the weights of the ANN comprises approximately 30 000 instances of NB
streaks and 300 instances of B streaks. The performance of the network is improved
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FIGURE 13. (Colour online) Target value T used in the training of the neural network
versus downstream coordinate at three time instances. Regions identified as turbulent by
the discrimination scheme are coloured in green.

by replicating B samples so that the data set used in the actual training procedure
contains an equal number of B and NB streaks. The accuracy of the neural network
is evaluated using an independent test data set which is obtained from a second DNS
time series of the same length and which contains a similar number of approximately
30 000 NB and 300 B streak samples.

The performance of the network is measured in terms of the relative prediction
accuracy,

A ≡ 1
M

M∑
m=1

1− |Pm −Tm|, (3.4)

where Pm is the prediction made by the neural network and Tm is the target value of
the mth sample. The initialization of the weights and the order of the samples during
the training process can influence the classification accuracy of the neural network.
The following results are thus based on the mean prediction accuracy, defined as
the arithmetic average of the predictions of 100 neural networks with individually
randomized initial weights and training order.

While the data presented in § 2.2 provide a general indication which features are
the best identifiers of unstable streaks, the number of all meaningful permutations
remains large. A more systematic approach is therefore pursued. First, each of the
eight features of the streaks is used as the single input of an ANN with one input
neuron. The prediction accuracy computed in this set-up is presented in figure 14(a),
where the features have been ranked from high to low A . The results show that
the peak wall-normal fluctuation is the most significant feature which yields the



60 M. J. P. Hack and T. A. Zaki

Feature Features

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(a) (b)

Sh
ea

r 
z

W
al

l d
is

ta
nc

e

A
re

a

T
he

ta

Sh
ea

r 
y

M
om

en
tu

m

M
om

en
tu

m

FIGURE 14. Mean prediction accuracy A of the neural network. Markers indicate two
standard deviations. (a) Single input feature. (b) Accumulated input features.

best performance. This outcome can be due to the role of the v-perturbation in the
amplification of streaks via the lift-up process. Furthermore, v′ amplifies appreciably
during the secondary instability of the streaks, unlike, for example u′, which is
predominantly set by the primary streak amplitude. As such, sv can enable both
long-term and short-term forecasts as it can identify streaks that will develop high
magnitudes farther downstream as well as streaks that are already distorted by
secondary instabilities and will shortly give rise to a turbulent spot. On the other
hand, the spanwise as well as the wall-normal shear and the wall distance prove to be
relatively peripheral in the identification of unstable streaks when used in isolation.

A second setting seeks to maximize the prediction accuracy by combining the input
features. Starting from the single input which yielded the best performance, i.e. sv,
more features are added in the order of their individual performance. To accommodate
the increasing complexity associated with the growing number of inputs, the number
of hidden neurons is 64 times the number of input features. Therefore, the first
network which only examined a single input included 64 hidden neurons, while
the network which examined the entire set of eight input features had 512 neurons
in its single hidden layer. The results of this study are presented in figure 14(b).
Supplementing the peak wall-normal velocity fluctuation with the streak amplitude
yields a moderate improvement of A . Also, addition of the cross-section area does not
improve the prediction accuracy in the present set-up. This outcome can be attributed
in part to a certain redundancy between the area and the streamwise momentum and
peak fluctuation which are already included in the input. The classification accuracy
improves when the spanwise shear surrounding the streaks is taken into account.
While figure 14(a) showed that the shear alone is a relatively ineffective predictor,
its relevance increases when it is considered in conjunction with the preceding
features. The result is in line with the recent study by Hack & Zaki (2014a) who
demonstrated a clear correlation between the spanwise shear and the growth rate of
secondary instabilities. In a separate set of computations, a network based on the
features sv, su, sy, sd and sθ and an increased number of 1280 neurons in the hidden
layer achieved an average prediction accuracy of 93 % with a standard deviation of
2.8 %. Overall, these results establish that a feature-based approach can accurately
identify streaks that will break down to turbulence.

3.3. Application to FPG and APG boundary layers
An advantageous attribute of neural networks is their capability to generalize, that is
to correctly classify unknown and potentially noisy inputs. This generalization ability
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FIGURE 15. Mean prediction accuracy A of the neural network trained for the ZPG case
and applied to the FPG case. Markers indicate two standard deviations. (a) Single input
feature. (b) Accumulated input features.
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FIGURE 16. Mean prediction accuracy A of the neural network trained for the ZPG case
and applied to the APG case. Markers indicate two standard deviations. (a) Single input
feature. (b) Accumulated input features.

was, within narrow bounds, already examined in the study of the ZPG boundary layer
since the predictions were made on test data that were independent from the data used
to adjust the weights of the network. In order to further examine the generalization
capabilities, a network trained with data from the ZPG time series is applied to make
predictions on breakdown in FPG and APG boundary layers.

Similar to the ZPG boundary layer, transition in the presence of a moderate
favourable pressure gradient is predominantly induced by outer streak instabilities,
although the transition process is significantly delayed (see Hack & Zaki 2014b). For
the FPG case, figure 15(a) shows the prediction accuracy when using only a single
input in the training (ZPG data) and testing (FPG data) of the network. In comparison
to the earlier results based on test data from ZPG, the prediction accuracy decreases.
In particular, the peak wall-normal fluctuation is less predictive in this scenario. The
streamwise momentum and the peak streamwise fluctuation both give the best results
with an accuracy above 60 %. The combination of all available features leads to a
prediction accuracy of 82 %.

Results for the APG case are presented in figure 16. The left panel again ranks
the inputs and shows that the use of either the peak streamwise fluctuation or the
streamwise momentum leads to an accuracy approximately 65 %. Similar to the FPG
case, sv is less relevant than in the ZPG boundary layer. When accumulating features,
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the best accuracy of approximately 82 % is again achieved when all the input variables
are included. It should be pointed out that in the moderate adverse-pressure-gradient
flow (βH =−0.08), breakdown to turbulence is still predominantly initiated by outer
streak instabilities situated on top of lifted low-speed streaks (see Nolan & Zaki 2013).
A study was also conducted for the stronger adverse pressure gradient, βH = −0.14.
In that case, the best performance obtained by combining all available input features
was A ≈ 0.61. In this scenario, inner modes which amplify at the local intersection of
low-speed and high-speed streaks play an important role. However, the inner instability
did not contribute appreciably to the training of the ANN since the training set was
obtained from a ZPG configuration where the outer modes are the dominant streak
instabilities.

4. Conclusions

In bypass transition to turbulence the laminar boundary layer is laden with streaks
with various sizes, amplitudes and orientations. While the streaks have long been
speculated to be complicit in the sporadic inception of turbulence spots, only recently
was their secondary instability computed in detail. The localized instabilities, however,
only affect a very small fraction of streaks among a population of largely innocuous
structures. The objectives of the present work were to describe the population of
streaks in terms of a low-dimensional set of features; to differentiate streaks that have
a high likelihood of breaking down based on these data; and to use this information
in the design of an efficient algorithm that can identify the particular ones which are
prone to break down to turbulence.

The streaks were identified in time series from DNS, and their attributes were
evaluated. Databases of streaks that lead to breakdown to turbulence and of innocuous
ones were constructed, and several characteristic parameters were compared. Streaks
that induce breakdown to turbulence are generally characterized by higher amplitudes
and are located farther away from the wall than the remainder of the population.
The latter observation is consistent with their secondary instability being due to an
outer instability, and exposure to forcing by free-stream perturbations. Extension of
the analysis to adverse- and favourable-pressure-gradient boundary layers showed
that the momentum thickness acts as a similarity parameter which collapses various
mean streak attributes such as the wall-normal and spanwise shear, the cross-section
area and the peak amplitude. Furthermore, the probability density functions of the
streak amplitude, peak wall-normal fluctuation, wall-normal and spanwise shear and
cross-sectional area also collapse among the various pressure gradients when plotted
at the same value of the momentum thickness. Conditional sampling of streaks at the
same momentum thickness led to virtually identical velocity perturbation fields for
all three mean pressure gradients. In addition, the conditional sampling showed that
the unstable streaks tend to be distorted in shape and lifted away from the wall.

The extracted features were used as inputs to an ANN designed to predict the
streaks which initiate breakdown to turbulence. The proposed approach is significantly
more efficient than the solution of an eigenvalue problem arising from classical linear
stability theory. For ZPG boundary layers, the key individual predictors of the streak
likelihood to become unstable were its wall-normal and streamwise perturbation
velocities. When various inputs are combined, their aggregate led to an accuracy of
the forecasts of approximately 90 %. The largest improvement of performance was
the addition of the wall-normal height of the streak, which is consistent with the
outer nature of its instability. In order to test the generalization capabilities of the
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method, the neural network trained on the ZPG data was applied to make predictions
on the breakdown of streaks in FPG and APG boundary layers. In these cases,
the streamwise perturbation and momentum of the streak were the most important
indicators of stability. With all the features included, the network still achieved
prediction accuracies in excess of 80 %, which demonstrates the flexibility of the
approach. Finally, we wish to emphasize that the prediction scheme is not limited
to DNS data. The extraction of the streak features from individual cross-flow planes
renders the approach compatible with experimental planar measurement techniques,
for example two-dimensional particle image velocimetry. In this context, the presented
scheme can lead to new avenues for efficient control of transition to turbulence based
on accurate real-time identification of unstable streaks.
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