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Two-phase laminar mixing layers are susceptible to shear-flow and interfacial instabilities, which
originate from infinitesimal disturbances. Linear stability theory has successfully described the early
stages of instability. In particular, parallel-flow linear analyses have demonstrated the presence of
mode competition, where the dominant unstable mode can vary between internal and interfacial
modes, depending on the flow parameters. However, the dynamics of two-phase mixing layers can
be sensitive to additional factors, such as the spreading of the mean flow. In addition, beyond the
early linear stage, the amplitude of the instability waves becomes finite and nonlinear effects
become appreciable. As a result, an accurate description of the evolution of the mixing layer must
account for nonlinear interactions including the generation of higher harmonics of the instability
waves and the modification of the mean flow. These effects are investigated herein using the
framework of the nonlinear parabolized stability equations. The formulation includes nonparallel
effects, nonlinear modal interactions, a coupled mean flow correction, and finite amplitude
deformation of the interface. Mode competition between liquid and interfacial modes is
investigated. We demonstrate that nonparallelism and streamwise evolution of the flow can
significantly alter the predictions of locally parallel, linear stability analyses. This is followed by a
discussion on nonlinear interactions of two- and three-dimensional instability waves. It is shown
that nonlinear effects can serve dual purposes. On one hand, they can be a limiting mechanism for
the growth of instability waves. On the other hand, they can destabilize high frequency, linearly
stable modes, and thus lead to the generation of smaller scale features in the flow. © 2010 American
Institute of Physics. #doi:10.1063/1.3425788$

I. INTRODUCTION

The mechanics of two-fluid shear flows is significant in
many engineering applications, where the growth of the in-
terface is the primary consideration. For example, the insta-
bility of two-fluid flows affects the aerodynamic lift of air-
foils in the presence of wall films such as deicing agents, the
heat transfer rates of sheared film flows, and the breakup of
capillary jets. Apart from direct numerical simulation !DNS",
the majority of investigations to date have relied on linear or
weakly nonlinear analyses of the two-fluid instability prob-
lem. The nonlinear behavior of these instability waves has
not, however, been extensively investigated. In the current
work, we employ a nonlinear formulation based on the
parabolized stability equation !PSE" approach in order to
study the evolution of disturbance waves in spatially devel-
oping, two-fluid, laminar mixing layers. With this framework
we are able to show how nonlinearity and mean flow modi-
fications can significantly alter the growth of instability
modes.

Linear stability theory !LST" has led to the discovery of
a wealth of possible instability mechanisms in two-fluid
shear flows. Some of these mechanisms are associated with
the mean shear, while others are attributed to the presence of
the two-fluid interface. The original work of Miles1,2 identi-
fied the critical layer mechanism in the study of wave gen-
eration by wind. Yih3 demonstrated the existence of a long
wavelength interfacial instability, which is entirely due to the

viscosity discontinuity between the two fluids. Also, within
the class of interfacial modes is a short-wavelength instabil-
ity, which was discovered by Hooper and Boyd4 and later
explained by Hinch,5 Renardy and Joseph,6,7 and Yiantsios
and Higgins.8 Finally, at high shear rates, a short-wavelength
liquid mode emerges.9 Another classification of two-fluid in-
stabilities was proposed by Boomkamp and Miesen.10 They
carried out a detailed analysis of the perturbation energy
budget, similar to the analysis of Hu and Joseph,11 and dis-
tinguished instability mechanisms based on the energy trans-
fer from the mean flow to the disturbance.

In light of the wealth of possible instabilities, the notion
of mode competition was discussed by Yecko et al.12 They
investigated the instability of laminar, two-fluid mixing lay-
ers and highlighted a shift of the most dominant instability
from interfacial to liquid modes at low frequency. In that
work, the growth rate of each mode was considered individu-
ally. The potential for energy amplification due to nonmodal
effects was investigated by Yecko and Zaleski.13 Their tran-
sient growth analysis follows the methodology originally
used by South and Hooper14 and van Noorden et al.15 for
bounded two-fluid flows.

All of the above studies exist within the context of linear
theory and are therefore applicable only at the early stage
development of the wave. Interactions between instability
waves are typically ignored by these theories, and the devel-
opment of the mean flow is also assumed to be independent
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of the growth of the disturbances. In order to account for
some of this phenomenology, a number of weakly nonlinear
theories for two-phase flows have been proposed.16–19 The
majority of these formulations are based on the Stuart–
Landau, Ginzburg–Landau, or Kuramoto–Sivashinsky equa-
tions. For marginally unstable instability waves near the bi-
furcation point, Stuart–Landau and Ginzburg–Landau
theories allow an instability wave amplitude equation to be
developed which accounts for a limited set of nonlinear in-
teractions. King and McCready built upon the Stuart–Landau
theory of Sangalli et al.20,21 to include cubic and quadratic
modal interactions in two-fluid bounded flows. As a result,
they encountered situations where instability waves grew to
a steady-state amplitudes due to energy transfer to higher
frequency linearly stable modes. For small wavenumber,
long-wave disturbances, the Kuramoto–Sivashinsky equation
allows the temporal evolution of the wave amplitude to be
captured. Formulations based on this theory have been used
to study the effect of harmonic forcing in channel flows18

and uncovered the existence of a mean flow shift.
Experimental studies have confirmed some aspects of

weakly nonlinear theory. For instance, the work of Khomami
and Su22 and Khomami et al.23 verified that linear theory
could accurately describe the initial dynamics of interfacial
instabilities. However, up to this point, most studies have
focused on temporally growing disturbances in fully devel-
oped channel or pipe flows. This ignores some flows where
the evolving mean flow can also lead to dampening of insta-
bilities, such as two-fluid boundary layers or mixing layers.
In addition, weakly nonlinear theories are generally valid
only in the long wavelength limit or near the bifurcation
point. These limitations exclude their application to spatially
developing flows with strongly amplified instability waves.

An alternative approach to accurately predicting nonlin-
ear instabilities in two-phase flow is DNS of the Navier–
Stokes equations. Early work by Lombardi et al.24 has con-
sidered a flat interface in turbulent shear flows. Later efforts,
for example, the work of Fulgosi et al.,25 have accounted for
interface deformation using boundary conforming grids. Cur-
rently, DNS capabilities can track the evolution of the distur-
bance wave from its initial generation to ligament and drop-
let formation.26–29 In order to account for complex
deformations of the interface, accurate interface tracking
schemes have been developed, such as volume of fluid,30

level set,31,32 or diffuse interface33 methods. These methods,
while very capability enabling, also present “severe numeri-
cal challenges”34 when scaling to real-world problems. Due
to their computational cost, DNS has been reserved for the
study of a spectrum of perturbations interacting with an in-
terface, i.e., turbulent flows.

Stability theory has continued to provide valuable in-
sight into the early dynamics of two-fluid shear flows. Such
insight is not easily extracted from direct computations of the
Navier–Stokes equations, which are also computationally
prohibitive for examining all possible stability mechanisms.
Therefore, in this paper we develop an efficient and accurate
nonlinear instability wave formulation to study finite ampli-
tude disturbances in spatially developing, two-phase shear
flows. Our approach extends the PSE framework introduced

by Bertolotti et al.35 Originally used in the study of boundary
layer transition, the PSE since been applied to complex
geometry,36 aeroacoustics,37 combustion,38 and other applica-
tions. The nonlinear two-phase PSE formulation described
herein provides a means to track the evolution of instability
waves and the interface. It also consistently incorporates the
effects of nonparallelism, nonlinearity, and mean flow distor-
tions.

Our work seeks to address several open questions re-
garding the effects of nonparallelism and nonlinearity in the
context of laminar two-fluid mixing layers. For instance, the
phenomena of mode competition between liquid and interfa-
cial instabilities have been studied by Yecko et al.12 using
parallel linear stability analysis. The nature of this competi-
tion is unknown in a spatially developing flow and is herein
investigated. Also, by comparing the results from both linear
and nonlinear stability computations, we demonstrate the ef-
fects of modal interactions and finite interface deformations
on the growth of instability waves. We also demonstrate the
modification of the mean flow due to finite amplitude distur-
bances.

The discussion of our work proceeds in the following
order. In Sec. II, we present the formulation of the nonlinear
stability equations. This framework is applied to the problem
of mode competition in Sec. III. A comparison of several
linear and nonlinear two-phase mixing layers is presented in
Sec. IV. In Sec. V we discuss the effects of individual non-
linear mechanisms on the dynamics of the interfacial wave.
Finally, the summary and conclusions of our work are given
in Sec. VI.

II. METHODOLOGY

A. Governing equations

As shown in Fig. 1, we begin the analysis by considering
a two-dimensional incompressible laminar mixing layer
composed of two immiscible fluids. The velocities u, density
!, and viscosity " of this system can be identified with either
the upper fluid or lower fluid using the subscript 1 !upper" or
2 !lower" where necessary. The free-stream velocities in the
upper and lower fluid are given by U1 and U2, respectively.
Furthermore, all variables used in this study have been non-
dimensionalized by the velocity U1, initial shear layer vor-
ticity thickness #0, and material properties of the upper
stream. Thus, the density and viscosity of the upper stream
are given by !1="1=1, and the lower stream values are de-
fined by the ratios !r=!2 /!1 and "r="2 /"1. The Navier–
Stokes equations governing such a system can be written as

(a) Physical configuration

f(x, t)

(b) Mapped configuration

f̄(ξ)

FIG. 1. Schematic of a two-fluid incompressible mixing layer in the !a"
physical !x ,y" coordinate system and !b" transformed !$ ,%" coordinates.
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# · u = 0, !1a"

!
Du
Dt

= − #P +
"

Re
#2u !1b"

with the Reynolds number Re=!1U1#0 /"1. In addition, the
velocity u and stress tensor ! for the two fluids must satisfy
interfacial conditions applied at the location y= f!x ,z , t",

%u · n̂& = 0, %u · t̂& = 0, !2a"

%! · n̂& = %P&n̂ − &'n̂, %! · t̂& = 0, !2b"

where n̂ and t̂ denote the unit normal and tangent vectors to
the interface, respectively, & is the surface tension coeffi-
cient, ' is the interfacial curvature, and % • & signifies a jump
across the fluid boundary: %q&=q 'y=f+ −q 'y=f−. As discussed in
Sec. II B, the mean pressure difference across the interface
%P̄& can be neglected when constructing the mean interfacial
conditions, but the jump in perturbation pressure %p̃& must be
considered. In the formulation presented below, we show
how these conditions can be enforced exactly at the interface
location and not at the nominal interface height, as in linear
theory. Using these definitions, the Weber number can be
written as We=!1U1

2#0 /&. In addition, the interface location
f!x ,z , t" is governed by the evolution equation

Df

Dt
= v . !2c"

For subsonic mixing layers where the ratio U2 /U1(0, the
instability waves which propagate through the system are
convectively unstable throughout the entire domain.39 There-
fore, tracking the evolution of the interfacial instability wave
will require a spatial stability formulation and also require
capturing the downstream spreading of the mean flow.

By decomposing the vector of flow variables )
= #u v w P$T into a time-independent mean )̄ and perturba-
tion component )̃,

) = )̄!x,y" + )̃!x,y,z,t" , !3"

where )̃ possesses zero time average, i.e., )̄̃=0, the solution
of Eqs. !1" and !2" proceeds in two stages. The mean flow
variables )̄ are determined by solving the forced boundary
layer approximation of the Navier–Stokes equations; the per-
turbation components )̃ are determined using the PSE for-
mulation. The solutions of the two components are coupled
through the nonlinear forcing terms that arise from higher
order terms in )̃. A similar decomposition for the interface
location f!x ,z , t"= f̄!x ,z"+ f̃!x ,z , t" ensures that large ampli-
tude interface deformations are also handled consistently be-
tween the mean flow and the perturbation solutions. At the
inlet, the mixing layer is harmonically forced using a spec-
trum of time varying, linearly unstable, discrete instability
waves.

B. The mean flow equation

Although many choices of the mean flow components
)̄= #Ū V̄ 0 P̄$T are available for a two-fluid mixing layer,
few choices are suitable for the purposes of this study. The
mean flow profiles should account for the spreading nature of
the mean flow, changes to the mean interface location, and
also be able to accommodate corrections arising from the
interactions with the disturbance components !see Fig. 2".
This prohibits the use of simpler choices such as the analytic
profiles used by Yecko et al.,12 or the self-similar mixing
layer. While the self-similar mixing layer accounts for the
spreading of the mean flow, it does not allow for any change
to the mean interface location.

In this work, we adopt a more general approach and
calculate the mean flow profile using as slightly modified
version of the two-fluid boundary layer equations. The solu-
tion to these boundary layer equations is coupled to the so-
lution of the perturbation components of flows, with the
added advantage that both solutions can be solved in a para-
bolic manner !see Sec. II C 2". In the following discussion,
we present the derivation of the mean flow equations, as well
as the appropriate boundary conditions and solution method.

The governing equations for the mean flow components
)̄ can be derived by substituting the decomposition !3" into
the Navier–Stokes equations !3" and applying a time aver-
age. Because the perturbation components possess zero time
average, terms which are first order in )̃ are eliminated. Fol-
lowing the standard boundary layer observations that
changes in the cross-stream direction are larger than in the
streamwise direction, several approximations are then ap-
plied to simplify the mean equations. The streamwise and
cross-stream pressure gradients are negligible, as are the sec-
ond derivative terms $2 /$x2. The V̄ momentum equation can
also be eliminated, resulting in the following equations for
the mean flow:

$Ū

$x
+

$V̄

$y
= 0, !4a"

!Ū
$Ū

$x
+ !V̄

$Ū

$y
−

"

Re
$2Ū

$y2 = Fx,BL, !4b"

USS(y)

U(1, y) U(25, y) U(50, y)

y = 0

y = f(x)

FIG. 2. !Color online" Schematic of spatially evolving mean flow, showing
the inlet velocity profile USS!y", mean velocity profile Ū!x ,y" at x
=1,25,50, and the deviation of mean interface location y= f̄!x" away from
y=0.
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D f̄

Dt
= V̄ . !4c"

The nonlinear term Fx,BL on the right hand side of Eq. !4b"
arises from quadratic and higher order terms in )̃, which can
be of finite amplitude and can possess a nonzero mean !see
Sec. II C 2".

At the cross-stream boundaries, the velocities should ap-
proach their free-stream values,

Ū!y = *" = U1, Ū!y = − *" = U2, V̄!y = *" = V1
SS,

!5a"
V̄!y = − *" = V2

SS,

and the initial profile at x=0 is given by

Ū!x = 0,y" = USS!y" . !5b"

Both the initial profile USS!y" and the boundary conditions
V1,2

SS at y= +* are found from the self-similar solution of the
laminar two-fluid mixing layer, which is fully described in
Appendix A and by White.40 Because large disturbances
caused by the perturbations appear far downstream and are
confined to the sheared region of the flow, they have little
effect on the mean flow at the inlet and in the free stream.
Thus, the self-similar solution can be applied at the inlet and
as boundary conditions at y= +*. At the inlet location x
=x0, the velocity profile is chosen such that the vorticity
thickness #,!x0"=#0=1.

A set of mean interface conditions, which are consistent
with the mean flow equations !4", can be derived by taking
the time average of Eq. !3" and assuming all variables can be
separated into mean and fluctuating components. Hence, the
interfacial velocity conditions

(%u · n̂&) = 0, (%u · t̂&) = 0,

where ( • ) indicates time averaging, yield the time-
independent conditions

%Ū& = 0, %V̄& = 0. !6a"

A similar time average of the stress conditions gives

(%!̄ · n̂&) = %P̄& − &'̄, (%!̄ · t̂&) = 0,

where the mean stress tensor -̄ij ="!$Ūi /$xj +$Ūj /$xi" and
the curvature '= '̄!x"+ '̃!x , t". The slowly evolving nature of
the spatial mixing layer implies that the mean curvature '̄
remains small. Indeed, computations of '̄ for the mixing lay-
ers of interest indicate it is of the order O!10−5" and can be
safely neglected. Additionally, the mean normal of the inter-
face remains close to n̄̂= !0,1 ,0". After applying the condi-
tion that %P̄&=0 and the boundary layer approximation that
$V̄ /$x is of the order of O!Re−1" smaller than $Ū /$y in -̄xy,
the final result for the stress conditions are

*"
$Ū

$y
+ = 0, *"

$V̄

$y
+ = 0. !6b"

Note that the interfacial conditions !6a" and !6b" are applied
at the mean interface location y= f̄ . Through the use of the

coordinate mapping discussed in Sec. II C 1, we find that the
perturbation interfacial conditions can also be applied at the
same location. These interfacial conditions for the perturba-
tion variables are given in Sec. II C 2.

The solution to the mean flow is found by solving Eq.
!4" with conditions !5" and !6". This solution is advanced
downstream from the inlet using a Crank–Nicolson scheme
with fourth order central differencing in y, similar to algo-
rithms presented in Ref. 41. Accounting for the mean flow
correction, however, introduces an additional complication to
the standard boundary layer solution. The downstream
marching must be synchronized with the PSE solution to
allow for the exchange of mean flow information and forcing
terms Fx,BL, which is calculated in the process of solving the
stability modes.

The evolution of the streamwise velocity profile Ū!y" for
a typical mixing layer, with parameters U2 /U1=0.03, !r
=10, and "r=2, is shown below in Fig. 3!a". The width of
the mixing layer, as defined by the momentum thickness

.!x" = ,
−*

*

!- Ū!y" − U2

U1 − U2
.-1 −

Ū!y" − U2

U1 − U2
.dy ,

is plotted in Fig. 3!b". For the mixing layers used in this
study, the typical spreading rate was relatively small, on the
order of d. /dx/0.025 in this particular case.

C. The perturbation equations

By inserting the using the decomposition !3" in the
Navier–Stokes equations and removing the time-independent
base flow components )̄, the equations governing the pertur-
bation variables )̃= #ũ ṽ w̃ p̃$T can be written as

" · ũ = 0, !7a"

!- $ũ
$t

+ !ũ · ""Ū + !Ū · ""ũ. + "p̃ −
"

Re
"2ũ

= − !ũ · "ũ , !7b"

−2 0 2
0

0.2

0.4

0.6

0.8

1 (a)Ū(x, y)

y

0 20 40
0

1

2

3

4
(b)θ(x)

x

FIG. 3. !Color online" !a" The mean velocity profile Ū!x ,y" at different
streamwise positions: x=0 !—", x=25 !--", and x=50 !− ·− ". !b" The mo-
mentum thickness .!x". The mixing layer parameters are given by U2 /U1
=0.03, !r=10, and "r=2.
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D f̃

Dt
= ṽ , !7c"

along with the appropriate interfacial conditions imposed at
y= f!x , t". Note that Eq. !7b" remains an exact rearrangement
of the momentum equation !1b" for the perturbation velocity
ũ, and no assumptions have been made so far regarding the
perturbations )̃ other than its time dependence. In this study,
we emphasize the role of nonlinear and finite amplitude ef-
fects, which prohibits making any small-amplitude or linear-
izing assumptions where ')̃' / ')̄'/1. As we describe in Secs.
II C 1 and II C 2, the solution to Eq. !7" is found by first
transforming to a coordinate system following the interfacial
wave and then parabolizing the system according to the PSE
formulation.

1. Coordinate transformation

In order to account for the effects of the finite deforma-
tion of the interface, the interfacial conditions !2a" and !2b"
should always be applied at the physical location y
= f!x ,z , t" and not about a linearized location at y=0. How-
ever, imposing the conditions at the time dependent wave
height f!x ,z , t" presents additional difficulties when attempt-
ing to use a frequency domain representation for the distur-
bance components )̃. By using a coordinate transformation
to map the physical domain to a computational domain
where the interface is static, we can avoid these difficulties in
enforcing the interface conditions,

- = t ,

$ = x ,
!8"

% = y − H!$,%,0,-" ,

0 = z .

In the mapped coordinates !8", the interface is permanently
located at %= f̄!$ ,0" !see Fig. 1", and the coordinate mapping
function H satisfies the condition H!$ ,%= f̄ ,0 ,-"= f̃!x ,z , t".
Therefore, the instantaneous interface location y= f̄ + f̃ is al-
ways mapped to %= f̄ . We note that this coordinate transform
does not allow for a multivalued interface deformation
#f!x ,z , t" and H!$ ,% ,0 ,-" are required to be single valued$.
Hence, although large amplitude interface deformations can
occur, the coordinate mapping precludes the two-phase sys-
tem from cresting or undergoing vortex roll-up. The exact
form of H!$ ,% ,0 ,-" will be discussed in Sec. II C 2.

From the coordinate transformation given by Eq. !8", the
derivatives in physical space are transformed according to
the following expressions:

$

$t
=

$

$-
+ g-

$

$%
,

$

$x
=

$

$$
+ g$

$

$%
,

!9"
$

$y
=

$

$%
+ g%

$

$%
,

$

$z
=

$

$0
+ g0

$

$%
,

where the coefficients are given by

g- =
−

$H

$-

1 +
$H

$%

, g$ =
−

$H

$$

1 +
$H

$%

,

g% =
1

1 +
$H

$%

− 1, g0 =
−

$H

$0

1 +
$H

$%

.

Using the derivative transforms !9" in Eq. !7" allows us to
write the perturbation equations in a coordinate system fol-
lowing the interfacial wave and also eliminates the need to
carry a separate Eq. !7c" to track the location of the interface.
In this coordinate system, the complete equations for mass
and momentum conservation !7a" and !7b" can be written as

$ ũ

$$
+

$ ṽ
$%

+
$w̃

$0
= − g$0 $Ū

$%
+

$ ũ

$%
1 − g%0 $V̄

$%
+

$ ṽ
$%
1

− g00 $w̃

$%
1 , !10a"

!- $ ũ

$-
+ Ū

$ ũ

$$
+ ũ

$Ū

$$
+ V̄

$ ũ

$%
+ ṽ

$Ū

$%
. +

$ p̃

$$
− "#!$,%,0"

2 ũ

= − !-ũ
$ ũ

$$
+ ṽ

$ ũ

$%
+ w̃

$ ũ

$0
. − g$

$ p̃

$%

− !#g- + !Ūg$ + V̄g%" + !ũgx + ṽgy + w̃gz"$
$

$%
!Ū + ũ"

+
2"
Re
-g$

$2ũ

$$ $ %
+ g%

$2

$%2 !Ū + ũ" + g0

$2ũ

$% $ 0
.

+
"

Re
-g1

$

$%
!Ū + ũ" + g2 $2

$%2 !Ū + ũ". , !10b"

!- $ ṽ
$-

+ Ū
$ ṽ
$$

+ ũ
$V̄

$$
+ V̄

$ ṽ
$%

+ ṽ
$V̄

$%
. +

$ p̃

$%
− "#!$,%,0"

2 ṽ

= − !-ũ
$ ṽ
$$

+ ṽ
$ ṽ
$%

+ w̃
$ ṽ
$0
. − g%

$ p̃

$%

− !#g- + !Ūg$ + V̄g%" + !ũgx + ṽgy + w̃gz"$
$

$%
!V̄ + ṽ"

+
2"
Re
-g$

$2ṽ
$$ $ %

+ g%
$2

$%2 !V̄ + ṽ" + g0

$2ṽ
$% $ 0

.
+

"

Re
-g1

$

$%
!V̄ + ṽ" + g2 $2

$%2 !V̄ + ṽ". , !10c"
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!- $w̃

$-
+ Ū

$w̃

$$
+ V̄

$w̃

$%
. +

$ p̃

$0
− "#!$,%,0"

2 w̃

= − !-ũ
$w̃

$$
+ ṽ

$w̃

$%
+ w̃

$w̃

$0
.

− !#g- + !Ūg$ + V̄g%" + !ũgx + ṽgy + w̃gz"$
$

$%
!W̄ + w̃"

+
2"
Re
-g$

$2w̃

$$ $ %
+ g%

$2w̃

$%2 + g0

$2ṽ
$% $ 0

.
+

"

Re
-g1

$w̃

$%
+ g2$2w̃

$%2. , !10d"

using the following definitions for the Laplacian #!$,%,0"
2 and

g1, g2 factors:

#!$,%,0"
2 =

$2

$$2 +
$2

$%2 +
$2

$02 , g1 =
$g$

$$
+

$g%

$%
+

$g0

$0
,

g2 = g$
2 + gy

2 + g0
2.

2. Nonlinear instability wave formulation

For a convectively unstable, slowly evolving mean flow,
Bertolotti et al.35 showed that it was possible to parabolize
the perturbation equations !7" and reduce them to a system
which can be marched downstream to track the streamwise
evolution of instability waves. This approach has been pre-
viously applied to single-phase mixing layers, jets, and
boundary layers and is extended here to the two-phase prob-
lem. The methodology presented below is analogous to the
PSE formulation used in Cheung and Lele,42 although sev-
eral differences are noted below.

The physical observation which underlies PSE theory is
that the spatial variations of the mean flow occur on a much
longer scale !L" than the wavelength !2" of a characteristic
disturbance. Given these two disparate length scales in the
problem, it is then possible to separate the disturbances into
slowly and rapidly varying components. Streamwise changes
to quantities such as the mode shape, wavelength, and
growth rate are presumed to be small on the short length
scale. These slowly varying assumptions can be verified a
posteriori, as shown in Sec. II C 4.

In deriving the perturbation equations, we must empha-
size that no linearization step has been employed, and we
explicitly allow for the possibility that perturbations grow
from small amplitude to finite amplitude disturbances.
Hence, the utility of the nonlinear PSE !NPSE" formulation
arises from the inclusion of nonlinear terms and its ability to
capture finite amplitude effects.

The first major assumption in deriving the NPSE is the
following normal mode representation for the disturbances:

)̃!$,%,0,-" = 2
m,n

M,N

)̂mn!$,%"Amn!$"exp3i3n0 − i,m-4 ,

!11"

where the amplitude factor Amn!$" is written as

Amn!$" = 4mnexp5i,
0

$

5mn!$!"d$!6 . !12"

In Eqs. !11" and !12", an initial amplitude 4mn is provided for
each shape function )̂mn, which also corresponds with an
associated streamwise wavenumber 5mn, spanwise wave-
number 3n, and temporal frequency ,m. In contrast to paral-
lel LST, both )̂mn and 5mn are functions of the streamwise
variable $.

The slow variation in )̃ and 5 in the streamwise direc-
tion translate to the following assumptions on the PSE
system:

$2

$$2 )̂mn!$" / O!1" and
$2

$$25mn!$" / O!1" , !13"

such that the second order derivatives can be neglected in
comparison to the first order derivatives. In addition, the rate
of evolution of the mean flow is assumed to be slow such
that

1
Re

$)̄

$$
/ O!1" and

$2)̄

$$2 / O!1" !14"

and can be neglected in the analysis as well.
In a similar manner, we can express H!$ ,% ,0 ,-" from

Eq. !8" using the modal expansion,

H!$,%,0,-" = 2
m,n%0

M,N

4mnĥmn!%"

6exp5i,
0

$

5mn!$!"d$! + i3n0 − i,m-6 .

The frequencies ,m and wavenumbers 5mn, 3n are chosen to
correspond to the same frequencies and wavenumbers used
in Eq. !11", and the functions ĥmn!%" are chosen such that
$ĥ /$%=0 at %= f̄ , and ĥ!%"→0 as %→ +*. For the pur-
poses of this formulation, ĥmn!%" is taken to be a set of
smooth functions in %, which decay exponentially away from
the interface at the same rate as the linear stability eigen-
modes. To satisfy the kinematic condition !7c" at the inter-
face, we also require that

ĥmn!% = f̄" =
v̂mn! f̄"

i#5mnŪ! f̄" − ,m$
,

where v̂mn is the vertical velocity shape function given by the
PSE solution.

Inserting Eqs. !11" and !12" and the assumptions !13"
and !14" into the perturbation equations !10" yields the fol-
lowing set of nonlinear disturbance equations:

i5mnûmn +
$ ûmn

$$
+

$ v̂mn

$%
+ i3nŵ = F!,mn, !15a"
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!-− i,m + i5mnŪ +
$Ū

$$
.ûmn + !V̄

$ ûmn

$%
+ !

$Ū

$%
v̂mn

+ i5mnp̂mn +
"

Re
05mn

2 + 3n
2 −

$2

$%21ûmn

+ #!Ū − 2i5mn"$
$ ûmn

$$
+ 7

$ p̂mn

$$
− "i

$5mn

$$
ûmn

= Fx,mn, !15b"

!-− i,m + i5mnŪ +
$V̄

$%
.v̂mn + !V̄

$ v̂mn

$%
+ !

$V̄

$$
ûmn

+
$ p̂mn

$%
+

"

Re
05mn

2 + 3n
2 −

$2

$%21v̂mn

+ #!Ū − 2i5mn"$
$ v̂mn

$$
− "i

$5mn

$$
v̂mn = Fy,mn, !15c"

!#− i,m + i5mnŪ$ŵmn + !V̄
$ŵmn

$%
+ i3np̂

+
"

Re
05mn

2 + 3n
2 −

$2

$%21ŵ + #!Ū − 2i5mn"$
$ŵmn

$$

− "i
$5mn

$$
ŵ = Fz,mn, !15d"

which form the basis for the NPSE method. The right hand
side of Eq. !18" contains the nonlinear forcing functions Fmn,
which are composed of higher order products of the distur-
bances )̃ and the mapping function H!$ ,% ,0 ,-". The zero-
frequency forcing terms couple the perturbation equations to
the mean flow equations !4", i.e., Fx,BL=Fx,00.

In addition to Eq. !14", an additional normalization con-
dition must be included to make Eq. !18" solvable. The need
for this normalization condition arises from the form of the
representation used in Eq. !11". Because both )̂mn!$ ,%" and
5mn!$" are dependent on $, streamwise changes in )̃ can be
absorbed into either variable. To remove this ambiguity in
the representation, we apply the integral norm

,
−*

*

!0ûmn
$ ûmn

$$
+ v̂mn

$ v̂mn

$$
+ ŵmn

$ŵ

$$
1d% = 0. !16"

Physically, this particular normalization condition can be in-
terpreted as preserving the kinetic energy of the shape func-
tion components as the solutions are marched downstream.
Although many different normalization conditions have been
proposed,35 the normalizations most typically used in litera-
ture adopt a similar form to Eq. !16" in order to limit any
rapid changes from occurring in the shape functions.

When examining the results of PSE simulations, it
should be noted that different choices of the normalization
will lead to different streamwise changes in )̂ and 5. There-
fore, comparisons between different types of simulations
should involve quantities that account for this flexibility in

the representation !11". This issue is addressed again in Sec.
IV A, where the modal energy is defined and used in the
comparison of linear and NPSE results.

An additional modification was also necessary to elimi-
nate upstream propagating characteristics from destabilizing
the PSE solution. Following the recommendations of
Haj-Hariri,43 the streamwise pressure derivative was modi-
fied in the x-momentum equation. This was accomplished by
setting the control parameter 7=0 in Eq. !15a" and omitting
the $p̂ /$$ derivative, resulting in the following expression
for the pressure gradient in physical coordinates:

$ p̃

$$
= 2

m,n
i5mnp̂mnAmn!$"ei3nz−i,mt.

Different choices for the parameter 7 and their implications
are described in the analysis of Li and Malik.44 To accom-
modate the change in phase at the interface, the interfacial
conditions

%ûmn& = 0, %v̂mn& = 0, %ŵmn& = 0, !17a"

*− p̂mn + 2"
$ v̂mn

$%
+ = −

ik2v̂mn

WeM
, *"0 $ ûmn

$%
+ i5v̂mn1+ = 0

!17b"

are applied for each shape function )̂mn at location %= f̄ , and
where k2=5mn

2 +3n
2, and M =5mnŪ! f̄"−,.

The final perturbation equations which we wish to solve
can be written in operator form as

Lmn3)̂mn4 = Fmn/Amn. !18"

Using the matrices A, B, C, D, E, G, M, and N defined in
Appendix B, the linear operator Lm can be expressed as

Lmn = − i,mG + i5mnA + B
$

$%
+ C

$2

$%2 + i3nD + E

+ M
$

$$
+

$5mn

$$
N . !19"

The initial boundary and boundary conditions necessary to
solve this parabolic problem are given by

)̂mn = )̂mn
OS!%", 5mn!0" = 5mn

OS at $ = 0,
!20"

)̂mn → 0 as % → +* .

Along with the normalization condition !16" and interfacial
conditions !17", Eqs. !18"–!20" define the two-fluid NPSE
formulation used in this work. The linear PSE !LPSE" for-
mulation can be recovered by setting Fmn=0 and eliminating
the forcing term F̄ from the mean flow equation !4b".

At the start of the PSE simulations, the initial shape
functions )̂mn

OS!%" and wavenumbers 5mn
OS are provided by so-

lutions to the Orr–Sommerfeld !OS" equations. These OS
solutions are computed for a parallel mean flow given by
Ū= #Ū!$=0,%" ,0 ,0$, as detailed in Appendix C. A discrete
set of forcing frequencies was chosen by selecting a funda-
mental mode ,0 with an initially unstable growth rate at the
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inlet. The resulting Strouhal number for the fundamental fre-
quency is then given by St0=,0#0 / !289U". In addition,
higher harmonics of this fundamental were also included at
the frequencies ,m=m,0 for integer values of m. Thus, the
physical inlet perturbation can be written as

)̃!$ = 0,%,0,-" = 2
m,n

4mn)̂mn
OS!%"e−im,0-+i3n0.

For all modes, the initial amplitudes 4mn were generally less
than 0.1% of the free-stream velocity.

Although the previous description of the NPSE formula-
tion generally follows Cheung and Lele,42 several distinct
differences should be noted. Most noticeably, the two-phase
incompressible nature of the current flow requires the addi-
tion of the coordinate mapping !8" and interfacial conditions
!17". In addition, the compressible formulation of Cheung
and Lele used a self-similar mean flow and corrected the
mean flow via a zero frequency mode rather than forcing the
boundary layer equations !4" directly. These changes are also
reflected in the solution procedure discussed below.

3. Solution procedure

The computational methodology for solving perturbation
equations !18" and !16" and mean flow equations !4" is simi-
lar to the numerical algorithms described in Refs. 38 and 42
and are summarized here for the sake of completeness. The
NPSE !18" was discretized using the fourth order central
differencing in % and advanced in the streamwise direction
using the first order implicit Euler method. Therefore, if the
operator !19" is written as Lmn=Lmn+Mmn!$ /$$"
+Nmn!$5mn /$$", then the discretized form of Eq. !18" will
become

#!9$"Lmn
i+1 + Mmn

i+1 + !5mn
i+1 − 5mn

i "Nm
i+1$)̂mn

i+1

= Mmn
i+1)̂mn

i +
Fmn

i+1

Amn
i+19$ . !21"

Grid stretching in the cross-stream direction and a variable
streamwise step size efficiently allocated grid points to loca-
tions where higher gradients were expected. The nonlinear
terms Fmn were calculated in the time domain and Fourier
transformed into the frequency domain before solving Eq.
!21". The zero frequency nonlinear terms F00 in physical

space were used as the nonlinear forcing term to the mean
flow boundary layer equations !4".

In order to satisfy the normalization condition and Eq.
!21" simultaneously, an iterative solution process was em-
ployed at each streamwise position. At a particular $i and
iteration level j, the mean flow equations !4" and the distur-
bance equation !21" for each mode were solved to obtain
)̄i+1,j, f̄ i+1,j, and )̂mn

i+1,j at the next point $i+1. The wavenum-
bers 5mn

i+1 were updated at each iteration level by using a
discretized form of the normalization condition

5mn
i+1,j+1 = 5mn

i+1,j −
i

9$

7!!ûmn
i+1,j"! · !ûmn

i+1,j − ûmn
i,j "d%

7!'ûmn
i+1,j'2d%

. !22"

The iteration process continued until the difference '5mn
i+1,j+1

−5mn
i+1,j' fulfilled a specified tolerance level, at which point

the PSE solution was advanced to the next streamwise posi-
tion. By solving both the mean flow equations and the dis-
turbance equations simultaneously at each iteration level, a
fully consistent solution was obtained for the mean flow )̄,
shape functions )̂mn, and interface height f̄ .

4. Validation

For configurations where the mean flow is exactly par-
allel and no streamwise variations exist, then the results of
LPSE and LST should agree. Such a case can be used to
validate the results of the LPSE calculations. For instance, in
Fig. 4, we consider the stability of a parallel-flow mixing
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FIG. 4. !Color online" Validation of the LPSE for a two-phase mixing layer with U2 /U1=0.30, !r=10, "r=2, We=300, and Re=150. The results of the
parallel-flow LST are shown in dots !!", while the LPSE results at x=12 are shown in solid lines !—". !a" The wavenumber 5r!x" and growth rate −5i!x", !b"
the streamwise velocity shape function 'û!y"', and !c" the cross-stream velocity shape function 'v̂!y"'.
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FIG. 5. !Color online" For the two-phase mixing layer with parameters !r
=10, "r=2, Re=150, and We=300, and the second derivative !a" 'd25 /d$2'
and !b" $2: /$$2. Liquid modes at frequencies of ,=0.50 !--" and ,=0.75
!—".
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layer using both LPSE and LST. In this flow, the mean flow
is taken to be “frozen” at x=0 with no normal velocity, i.e.,
Ū= #Ū!y" ,0$. In addition, all streamwise derivatives of the
mean flow have been eliminated.

Because any x-dependence has been eliminated from this
problem, the solution to the LPSE system should not vary as
the equations are marched downstream. In this case, both the
shape functions )̂ and wavenumbers 5 should remain fixed
at their inlet values provided by the OS equation. As shown
in Fig. 4!a", this is indeed the case, as both the LST and
LPSE wavenumbers and growth rates agree throughout the
entire domain. No changes are also seen between the LPSE
shape functions )̂ and the LST equivalents. Thus, the results
of this test case verify that the LPSE system recovers the
results of LST in the absence of streamwise variations.

For flows that vary in the streamwise direction, two sets
of assumptions must be checked to ensure the validity of the
PSE solution. The first set of assumptions presumes that the
mean flow evolves slowly relative to the size of the instabil-
ity wave. The second set of assumption !13", which states
that higher order derivatives of )̂ and 5 can be neglected,
should be examined as well.

To examine the first set of assumptions, we compare the
mean flow’s rate of spreading to the typical length scale for
an instability wave. In order to measure the rate at which the
mean flow evolves, we use the mean momentum thickness
.!x". From ., we can then construct an approximate length
scale L=. / !d. /dx" over which the mean flow evolves. For
the slowly varying assumptions to hold, we require the mean
flow to evolve much slower than the wavelength of the in-

stability wave, or equivalently, the ratio ;PSE=2 /L to be a
small parameter, generally of the order O!Re−1". In terms of
the wavenumber 5r, the requirement becomes

;PSE 8
1

5r.

d.

dx
8 O0 1

Re
1 .

For the !r=10, "r=2, Re=150, and We=300 mixing layer
used in Sec. III !corresponding to mean flow profiles shown
in Fig. 3", the small parameter ;PSE/0.0044–0.0146 for the
most unstable mode, which suggests that the slowly varying
mean flow assumptions are applicable.

To verify the second set of assumptions, we can also
compute the magnitude of the neglected second derivative
terms a posteriori. In Fig. 5!a", we find that 10−4

< 'd25 /d$2'<5610−2 for the liquid modes, with most of the
variation occurring within the first couple steps of the PSE
simulation. The changes in the wavenumber 5 fall within the
O!Re−1" limit, and thus d25 /d$2 can be neglected in the PSE
formulation. For streamwise changes in the shape function
)̂, we consider the integrated shape function

: = ,
−*

*

'û'2 + 'v̂'2 + 'ŵ'2d% .

The second derivatives of : are shown in Fig. 5!b". Again,
most of the variation occurs with the first few vorticity thick-
nesses downstream and quickly decays. With '$2: /$$2'
<0.04, we find that this term can also be neglected in the
derivation of the PSE, in accordance with the slowly varying
assumptions.
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FIG. 6. !Color online" LST computed wavenumbers 5r and growth rates −5i for the liquid and interfacial modes of a mixing layer with U2 /U1=0.03, !r
=10, and "r=2, at the streamwise positions x=0 !—", x=5 !--", and x=10 !− ·− ".
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FIG. 7. !Color online" Mode competition for the mixing layer shown in Fig. 6. !a" Growth rate −5i!x", !b" wavenumber 5r!x", and !c" amplitude gain G10!x"
for the interfacial mode !--" and liquid mode !—" at a frequency of ,=0.75. Thick lines correspond to predictions from the locally parallel LST, while thin
lines from the LPSE simulations. The circles !"" correspond to the initial conditions provided by LST.
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III. MODE COMPETITION

To illustrate the important effects present in a nonparal-
lel, slowly diverging mean flow, we first consider the stream-
wise evolution of growth rates for different mode types in a
two-phase mixing layer. Prior studies by Yecko et al.12 have
emphasized the distinction between various viscous modes in
two-phase mixing layers. They found that the most unstable
mode can be either a Tollmien–Schlichting !TS"-type liquid
mode or an interfacial mode, depending on the parameters of
the flow. The results of locally parallel, linear stability analy-
ses have shown that at low frequencies, the TS liquid modes
generally dominate over the interfacial modes, while the re-
verse is true at higher frequencies.

However, local parallel-flow analyses only provide an
incomplete picture regarding the mode competition between
liquid and interfacial modes. The growth rates obtained by
LST are valid only for a particular streamwise position,
whereas in reality, the spreading of the mean flow will cause
these growth rates to evolve downstream !see Fig. 6". As
shown in Fig. 6, the growth rate of the most unstable fre-
quency decreases quickly with downstream distance for liq-
uid modes. Over the same distance, LST predicts that the
decrease in the maximum growth rate is less severe for in-
terfacial modes, which makes the outcome of mode compe-
tition unclear as the mixing layer evolves. A better descrip-
tion of mode competition can be supplied through a PSE
analysis of the liquid and interfacial mode behavior, which
will capture the effects from mean flow spreading and
nonparallelism.

In the current study, we consider the growth rates of the
interfacial and liquid modes of a mixing layer with the pa-
rameters U2 /U1=0.03, !r=10, "r=2, We=300, and Re
=150, whose dispersion relation is given in Fig. 6. By keep-
ing the wave amplitudes relatively small and limiting the
domain to the initial development region of the mixing layer
!where x<30", the linear formulation suffices for the current
example. In addition, moderately unstable instability waves
are used in this part of the study. Although the most unstable,
low frequency liquid mode could be examined using LPSE,
the relatively high gain and fast growth rate introduces the
possibility of finite amplitude effects. Thus, we delay the
discussion of nonlinearity and the behavior further down-
stream until the following section and concentrate on mode
competition below.

First, we consider the evolution of an interfacial mode
and a liquid mode which are equally unstable !near the fre-
quency ,=0.75 in Fig. 6" at the inlet, according to locally
parallel LST predictions. Once in the LPSE simulations,
however, the initial guesses for the growth rate −5i are ad-
justed to accommodate for the nonparallel effects and the
presence of a streamwise varying mean flow, resulting in the
interfacial mode being almost twice as unstable. As the
LPSE modes evolve further downstream, we find that the
growth rates for both modes slowly decrease, but whereas
the liquid mode becomes stable near x=10, the interfacial
remains unstable #see Fig. 7!a"$. The rapid decay and satura-
tion of the liquid mode results leads to gain factor Gmn!x"
= 'Amn!x" /Amn!0"', which is several orders of magnitude
smaller compared to the interfacial mode #Fig. 7!b"$.

In the second example we again compare the behavior of
the interfacial and liquid modes, but at a lower frequency
!,=0.50", where LST predicts the liquid mode to dominate
over the interfacial mode according to the dispersion relation
shown in Fig. 6. The corresponding PSE predictions are
shown in Fig. 8. We can see that the growth rates for both
modes are adjusted once in the LPSE simulation, and the
liquid mode does remain slightly dominant until approxi-
mately x=3. The liquid mode continues to decay beyond this
point, however, and the interfacial mode eventually over-
takes the liquid mode downstream.

When comparing the streamwise evolution to the locally
parallel LST results, we find that the presence of nonparallel

0 10 20 30

0

0.1

0.2

0.3
(a)−αi(x)

x

0 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5
(b)

x

αr(x)

0 10 20 30
0

10

20

30

40

50
(c)G(x)

x

FIG. 8. !Color online" Mode competition for the mixing layer shown in Fig. 6. !a" Growth rate −5i!x", !b" wavenumber 5r!x", and !c" amplitude gain G10!x"
for the interfacial mode !--", liquid mode !—" at a frequency of ,=0.50. Thick lines correspond to predictions from the locally parallel LST, while thin lines
from the LPSE simulations. The circles !"" correspond to the initial conditions provided by LST.
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generally depresses the growth rate for liquid modes, and
increases the growth rate for interfacial mode. This is seen in
both the low frequency and high frequency examples men-
tioned above. Taking these observations into account, we
conclude that while the predictions of locally parallel LST
may be valid at a particular location of the mixing layer,
capturing nonparallel effects and the streamwise evolution of
the mean flow is essential to determining the downstream
behavior of an interfacial wave.

IV. LINEAR AND NONLINEAR COMPUTATIONS

In the following section, we compare and contrast the
effects of nonlinearity on both liquid and interfacial modes in
two-phase laminar mixing layers. The results of two mixing
layers are considered. The first mixing layer is similar to the
case shown in Sec. III !!r=10, "r=2, and We=300" with a
higher velocity ratio U2 /U1=0.30 in order to hasten the on-
set of nonlinear effects. The Reynolds number based on the
velocity shear Re9U=!1!U1−U2"#0 /"1 is defined to be
Re9U=100, which causes nonparallel effects to become evi-
dent early on in the mixing layer. At higher Reynolds num-
bers, the basic nonlinear mechanisms remain unchanged, but
the extent of the linear region of the flow is increased, result-
ing in higher amplitude gain before the onset of nonlinearity.
This case is used in the study of nonlinearity in the develop-
ment of two-dimensional interfacial and liquid modes. The
direct calculations of Boeck et al.27 also studied low

Reynolds number mixing layers with similar parameters !!r

=10 and We/36–360" and noted that the interfacial defor-
mation in such cases eventually led to more complex ligature
and droplet formation. The parameters for the second mixing
layer are discussed in Secs. IV C and V.

The discrete forcing spectrum of the mixing layer is cho-
sen to span the range of unstable frequencies at the inlet. As
shown in Fig. 9, the lower frequency modes are generally
selected to be near the most unstable frequency from the
initial dispersion relation. Included in this forcing spectrum
are additional high frequency modes, which are initially
stable at the inlet. These modes are responsible for the gen-
eration of smaller scale features of the flow and are required
to absorb the energy which is transferred out of the lower
frequencies.

For spatially evolving mixing layers, two mechanisms
can lead to the saturation of the low frequency fundamental
mode. First, the spread of the mean flow will naturally
dampen the growth of the mean flow, eventually causing it to
become neutral and saturate. However, the fundamental
mode can also quickly transition to a neutral or decaying
wave as a result of the aforementioned interaction with
higher harmonics. A comparison between the linear simula-
tions !which capture the first mechanism" and nonlinear
simulations !which capture both" will help distinguish the
effects between the two.
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FIG. 10. !Color online" !a" Instantaneous perturbation vorticity contours for the interfacial mode forcing in the !r=10, "r=2 mixing layer. !b" The streamwise
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|û10|
40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

(c)

x

FIG. 11. !Color online" !a" Instantaneous perturbation vorticity contours for the liquid mode forcing in the !r=10, "r=2 mixing layer. !b" The streamwise
velocity shape function 'û10!y"' at x=131. !c" The maximum interfacial wave height max3f!x , t"4, as computed by the nonlinear !—" and linear !--" simulations.
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A. Two-dimensional mixing layers

We first examine the effects of nonlinearity on the inter-
facial wave growth in the two-dimensional, !r=10, "r=2
mixing layer. For the interfacial mode, the instantaneous in-
terfacial location f!x , t" and perturbation vorticity for the
mixing layer is plotted in Fig. 10!a". Immediately adjacent to
the vorticity contours we also plot the streamwise velocity
shape function û10 at the position x=189 and corresponding
instant in time #Fig. 10!b"$. Note that the discontinuity in the
shape function occurs at the physical position of the interface
and not at the nominal interface height y=0. In Fig. 10!c" we
compare the growth of the interface between the nonlinear
and linear simulations. During the initial region x<140, the
growth of the interface shows little difference between the
nonlinear and the linear cases. However, further downstream
the enhanced growth of the nonlinear interfacial modes is
visible, where the amplitude of the interface is approximately
40% larger in the presence of nonlinearity at the position
x=190.

An even more dramatic difference is seen in the mixing
layer forced by liquid instability modes, where the presence
of nonlinearity acts to suppress the growth of the interface. A
corresponding set of figures for the liquid modes is shown in
Fig. 11, using the same layout as in Fig. 10. Note that the
spatial extent of the streamwise shape function û10 is larger
in the liquid case than the interfacial case. As seen in Fig.

11!c", the initial growth of the interface is largely linear for
x<60, but eventually nonlinear effects limit the maximum
amplitude of the interface to f!x , t"/0.2. Purely linear simu-
lations predict that the liquid modes continue to grow expo-
nentially and will ultimately reach unphysically large inter-
face deformations. As a result of this particular example, we
can see how nonlinearity plays a major role in the saturation
mechanism of instability waves. The dependence of the final
saturation amplitude on initial conditions is further discussed
in Sec. V.

A better understanding of the interfacial wave behavior
in this two-phase mixing layer can be found by examining
the modal energy and amplitude development of individual
instability modes. For the two-phase mixing layers in this
study, we define the integrated modal energy for a particular
shape function )̂mn! = )̂mn!$ ,%"Amn!$" as

Emn!x" = ,
−*

*

!!'ûmn! '2 + 'v̂mn! '2 + 'ŵmn! '2"d% . !23"

Because Emn includes both streamwise varying parts of the
solution !)̂ and 5", it is independent of the choice of the
normalization !16". This provides a better measure of the
instability wave’s evolution than the growth rate 5i alone
since 5i can change based on the normalization. In addition,
the modal energy represents a physical quantity which can be
used to examine nonlinear processes, such as saturation and
modal interactions.

Figure 12 presents the modal energy behavior for the
fundamental and first harmonic interfacial modes in the !r
=10, "r=2 mixing layer, as calculated by the NPSE, LPSE,
and parallel-flow LST. The largest differences are seen in the
behavior of the fundamental mode in simulations with and
without nonparallel effects. As mentioned in the earlier dis-
cussion on mode competition !Sec. III", the presence of non-
parallel effects and streamwise changes greatly enhances the
growth of the fundamental mode and, as a consequence, the
LST computations vastly underpredict the energy content in
E10 when compared to the PSE computations.

The inclusion of the nonlinear terms leads to two visible
effects in the development of the interfacial modes. The
growth of the fundamental mode is slightly enhanced, and
nonlinearity also excites higher harmonics which were pre-
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FIG. 12. !Color online" Streamwise development of the integrated modal
energy Emn!x" for the interfacial modes in the !r=10, "r=2 mixing layer.
The different line styles correspond to nonlinear !—", linear !--", and LST
!− ·− " computations.
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FIG. 13. !Color online" Amplitude factor 'Amn!x"' of !a" the fundamental )̂10 and !b" the second harmonic )̂30 of the interfacial mode in the !r=10, "r=2
mixing layer. The different line styles correspond to nonlinear !—" and linear !--" computations.
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viously stable. For example, during the linear region of the
flow, the second harmonic E30 decays exponentially, but is
subsequently excited after x(150 #Fig. 12!b"$.

The growth of the amplitude factor Amn!x" for each in-
stability mode reflects the same trends seen in the modal
energy. In Fig. 13, the nonlinear calculations show a slightly
larger growth of the fundamental mode amplitude, and the
excitation of the second harmonic is clearly visible in the
downstream regions of the mixing layer.

The effect of the nonlinear interactions on higher fre-
quency instability modes can also be seen through a similar
analysis of the modal energy and amplitudes for the liquid
modes in the same mixing layer. In the initial development
region of the mixing layer, very little difference is seen be-
tween the three formulations for the fundamental liquid
mode #Fig. 14!a"$. However, further downstream of the inlet
the effects of the nonparallel flow become apparent as the
LST calculations of the modal energy diverge from the PSE
calculations. As the instability modes reach finite amplitudes,
the distinction between the linear and the nonlinear formula-
tions also becomes visible. In the absence of nonlinearity, the
fundamental mode continues to grow exponentially down-
stream, whereas nonlinear interactions should cause the
mode to saturate at energies near Emn/3610−3. Some of
this energy is transferred to higher harmonics of the system,

such as the )̂20 mode, which grows several orders of magni-
tude as the fundamental mode reaches saturation. The ob-
served growth and saturation of the fundamental mode is
similar to the behavior of the disturbances studied by Boeck
et al.27 Their work also found that the interface grew expo-
nentially, as per linear theory, before nonlinearly saturation
with gains around G/104–105. The general patterns of en-
ergy exchange and saturation are also qualitatively consistent
with the results of Li et al.28 and Li and Renardy.29 A dis-
cussion of individual nonlinear effects, such as the influence
of the mean flow correction on the growth of instability
waves, is presented in Sec. V.

Similar to the interfacial case, nonlinear effects also play
a major role in the streamwise development of previously
unimportant instability modes. Although the first harmonic
)̂20 is weakly unstable according to the dispersion relation in
Fig. 9!a", it quickly becomes neutrally stable as the mean
flow spreads, before being excited by the fundamental mode
as mentioned above. For the )̂30 and )̂40 modes, which are
initially stable at the inlet, the nonlinear interactions with
other unstable modes result in their immediate excitation and
eventual destabilization #see Fig. 14!b"$. While linear theory
predicts that these modes simply decay and are negligible
downstream #Fig. 15!b"$, the results of the nonlinear theory
suggest that they serve as an energy sink and could reach
amplitudes comparable to the lower frequency modes. There-
fore, the nonlinear amplification of the )̂20 or )̂40 mode
downstream of the inlet region may be responsible for the
creation of smaller scale ripples on top of an interfacial
wave.

B. Energy transfer

The above discussion of modal energy considered only
the total energy accumulated by each mode. Although the
transfer of energy could be inferred, a more precise descrip-
tion of the energy transfer mechanisms occurring inside the
nonlinear mixing layer is also possible. Through the energy
budget analysis of Appendix D, we can define a modal en-
ergy transfer coefficient as
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FIG. 14. !Color online" Streamwise development of the integrated modal
energy Emn!x" for the liquid modes in the !r=10, "r=2 mixing layer. !a" The
fundamental E10 and first harmonic E20 modes, and !b" the second E30 and
third harmonic E40 modes. The different line styles correspond to nonlinear
!—", linear !--", and LST !− ·− " computations.
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FIG. 15. !Color online" Amplitude factor 'Amn!x"' of !a" the fundamental )̂10 and !b" the first harmonic )̂20 for the liquid modes in the !r=10, "r=2 mixing
layer. The different line styles correspond to nonlinear !—" and linear !--" computations.
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T̂kl!x;mn,m!n!" = 2,
−*

*

'F̂x,mn
! ûm!n!' + 'F̂y,mn

! v̂m!n!'

+ 'F̂z,mn
! ŵm!n!'d% . !24"

The coefficient T̂kl!x ;mn ,m!n!" gives amount of energy
transferred to mode !k , l" through the interaction of mode
!m ,n" with mode !m! ,n!". These energy transfer coefficients
can be used in conjunction with Ekl!x" to examine modal
interactions more precisely.

In Fig. 16, we consider the modal energy interactions for
the fundamental and first harmonic mode of the !r=10, "r
=2 mixing layer discussed in the previous section. The plots
of T̂kl!10,m!n!" in Fig. 16!a" illustrate the interactions of the
!m ,n"= !1,0" mode with other !m! ,n!" modes. The strongest
energy transfer occurs when the mode is self-interacting
#T̂kl!10,10"$: quadratic interactions between the fundamental
!1,0" and itself will lead to energy transferred to/from the
mean mode !k , l"= !0,0" and the first harmonic !k , l"= !2,0".
The second strongest interaction !T̂kl!10,20"" leads to energy
transfer to/from the fundamental !1,0" and second harmonic
!3,0". The remaining interactions are weaker by several or-
ders of magnitude. Although the coefficients T̂kl!mn ,m!n!" in
Eq. !24" do not provide the direction of energy transfer, an
examination of the corresponding linear and nonlinear Emn
figures suggests that energy is transferred out of the funda-
mental mode into the mean flow and first harmonic.

Figure 16!b" shows the energy interactions of the first
harmonic !m ,n"= !2,0". The primary interaction takes place
with the fundamental !T̂kl!20,10"", which leads to energy
transfer to/from the !1,0" and !3,0" modes. The second most
significant interaction, T̂kl!20,20", takes energy from the first
harmonic and redistributes it to the mean flow correction
!0,0" and the !4,0" mode. The higher frequency interactions
are less significant, although they can still contribute to en-
ergy transfers to the !1,0" and !2,0" modes.

The results of these mixing layers suggest that nonlinear
effects can serve dual purposes, both as a limiting mecha-
nism for the growth of instability waves and can also cause
the amplification of higher frequency, linearly stable modes.
The general observation that initially stable, higher fre-
quency modes are still dynamically important in predomi-

nantly linear flows is consistent with previous findings in
other mixing layer studies.42 These findings also underscore
the limitation of using local, linear analysis in such a study:
the dynamical evolution of two-phase instability waves can-
not be accurately predicted from using the information pro-
vided by a single mode, or at a single position of the mixing
layer.

C. Three-dimensional mixing layers

In this section we examine the development of three-
dimensional instability waves using the second two-phase
mixing layer. The parameters of this mixing layer are given
by !r=2, "r=1, and We=300 using the same Re9U as the
previous mixing layer. The discrete forcing frequencies for
the liquid modes, shown in Fig. 17 along with the inlet dis-
persion relation, encompass both low frequency, linear un-
stable modes and higher frequency, linearly stable modes. In
this particular mixing layer, the liquid modes are the domi-
nant instability modes, which perturb the interface, and also
include a sufficiently broad spectrum of unstable spanwise
harmonics, which can interact with other two- and three-
dimensional modes.

The inclusion of these spanwise harmonics provides an
opportunity to examine the growth of three-dimensional
structures in two-phase mixing layers. In previous DNS stud-
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FIG. 16. !Color online" Streamwise modal energy transfer T̂kl!x ;mn ,m!n!" for the liquid modes in the !r=10, "r=2 mixing layer. !a" Energy interaction
T̂kl!x ;10,m!n!" between the fundamental mode !1,0" and other modes !m! ,n!". !b" Energy interaction T̂kl!x ;20,m!n!" between the first harmonic mode !2,0"
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FIG. 17. !Color online" The initial dispersion relation for the liquid mode in
the !r=2, "r=1 mixing layer, showing the 3=0 forcing frequencies. The
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are forced. The higher harmonics with initially stable growth rates are not
shown.

052103-14 L. C. Cheung and T. A. Zaki Phys. Fluids 22, 052103 !2010"

Downloaded 21 May 2010 to 155.198.69.103. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



ies of single-phase, compressible and incompressible mixing
layers,45 oblique modes were observed to play a role in the
development of streamwise rib vortices and the spanwise
“kinking” of vortex rollers. Although the current mixing lay-
ers under consideration do not display the same vortical
structures, three-dimensional effects have been shown to be
important in the formation of liquid fingers and droplets in
the two-fluid case.46

In using NPSE to simulate the !r=2, "r=1 mixing layer
with liquid modes, two spanwise forcing schemes were em-
ployed: one in which the primary forcing mode was )̂11

!with spanwise wavenumber 3=0.10" and the other with )̂12
!and 3=0.20" as the primary forcing mode. Similar to the
findings of Widnall,47 we observe that the initial growth rates
of the instability waves were relatively insensitive to the
spanwise wavenumber at low 3, but the oblique modes are
responsible for the development of different spanwise struc-
tures downstream.

The comparison of the interfacial wave heights com-
puted by the nonlinear and linear simulations is consistent
with the results of the two-dimensional mixing layers in Sec.
IV A. Because the linear predictions do not properly capture
the saturation mechanism for instability waves, they gener-
ally tend to overestimate the growth of the interface com-
pared to the equivalent nonlinear computations !Fig. 18".
From the results of the three-dimensional mixing layers, we

find that substantial energy transfer occurs between not only
between modes with different harmonics but also between
modes with different spanwise wavenumbers. In Figs. 19!b"
and 20!c", we see that the primary energy transfer route oc-
curs in the excitation of an immediate harmonic by the pri-
mary forcing mode !i.e., between )̂11 and )̂21 and between
)̂12 and )̂22". However, in all simulations, the growth of the
two-dimensional modes was still affected by the presence of
the oblique modes. In Figs. 19!a" and 20!a", we find that the
growth of the )̂10 mode is noticeably increased throughout
the streamwise domain, while the )̂20 mode gains additional
energy near the saturation point of the primary forcing mode.
Additionally, in Figs. 19 and 20, it should be noted that the
linear predictions are obtained from the LPSE calculations.

More prominent differences between the two forcing
schemes can be observed in the three-dimensional interfacial
wave patterns that develop. As illustrated in Fig. 21, forcing
due to the )̂12 mode leads to greater spanwise variation, as
expected. This forcing method produces larger height differ-
ences between adjacent wave crests in the spanwise direction
and enforces the idea that higher frequency oblique modes
are important to the development of liquid fingers. An ex-
amination of the three-dimensional patterns produced by the
linear simulations yielded unphysically large amplitude
variations in the spanwise z direction.

V. DISCUSSION OF NONLINEAR EFFECTS

From the results of Sec. IV, we have seen that nonlinear
effects can both limit the growth of the instability modes, but
also excite previously stable high frequency modes. In the
following discussion, we use the capabilities of this formu-
lation to examine individual nonlinear effects including the
influence of the mean flow correction and the effect of the
initial amplitude on the saturation mechanism.

In the context of single-fluid mixing layers, previous
studies have demonstrated that appropriately accounting for
the mean flow correction is essential in capturing the stream-
wise development of instability waves and the vortical dy-
namics in shear flows.42 In the context of the two-fluid mix-
ing layer, we can isolate the effect of the corrected mean flow
by comparing simulations both with and without the mean
flow forcing term Fx,BL in Eq. !4b". For the two-dimensional
!r=2, "r=1 mixing layer, the results can be seen in Fig. 22.
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FIG. 19. Modal energy Emn for liquid modes in the !r=2, "r=1 mixing layer, with the primary forcing originating from the )̂11 mode. The different line styles
correspond to nonlinear !—" and linear !--" calculations, with the thick line !—" representing the primary forcing mode.
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In the situation where only mode-to-mode nonlinear interac-
tions were allowed, the eventual saturation of the fundamen-
tal mode occurred at higher amplitudes, and the first har-
monic mode absorbed larger amounts of energy, when
compared against the fully coupled solution with the mean
flow correction. Correspondingly, the absence of the mean
flow correction leads to larger wave amplitudes for the inter-
face.

In addition, we find that the inclusion of the mean flow
correction is also responsible for deformations to the mean
interface location f̄!x". Typical linear theories, using a lami-

nar mean flow for the mixing layer, generally specify a zero
vertical velocity at the centerline, causing the mean interface
to remain at y=0. However, in the nonparallel, spatially
evolving mixing layer, the upper and lower streams experi-
ence different convective decelerations, and nonlinear inter-
actions can introduce a nonzero mean vertical velocity at the
centerline, which causes the mean interface to deform !Fig.
23". As the Weber number increases, modifications to f̄!x"
appear earlier upstream, and even at higher levels of surface
tension, the mean interface location is still displaced. This
result is qualitatively consistent with the earlier work of Re-
nardy and Renardy,18 who also observed a long-wave modu-
lation of the interface height in two-layer Couette–Poiseuille
flow. Their formulation, however, did not incorporate a mean
flow correction and also enforced interfacial boundary con-
ditions at the nominal interface location.

The fully nonlinear instability wave formulation also al-
lows us to explore the effects of the initial inlet amplitudes
on the eventual growth of the interfacial instability modes.
Previous studies on compressible mixing layers have found
that the saturation amplitude of instability modes is relatively
independent of the initial amplitudes used to force the dis-
crete modes at the inlet. This observation is also consistent
with the results of the two-phase mixing layers in this study.
In Fig. 24, we compute the modal energies for the !r=2,
"r=1 mixing layer using several different initial amplitudes
for the fundamental mode !40=1610−7, 2.5610−7, and 5
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FIG. 20. Modal energy Emn for liquid modes in the !r=2, "r=1 mixing layer, with the primary forcing originating from the )̂12 mode. The different line styles
correspond to nonlinear !—" and linear !--" calculations, with the thick line !—" representing the primary forcing mode.

FIG. 21. Spanwise plot of instantaneous interfacial wave height f!x ,z , t" for
liquid modes in the !r=2, "r=1 mixing layer. !a" Primary forcing from )̂11

mode. !b" Primary forcing from )̂12 mode.
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FIG. 22. !Color online" Modal kinetic energy Emn for liquid modes in the
!r=2, "r=1 mixing layer. The different line styles correspond to nonlinear
calculations !—", linear calculations !--", and nonlinear calculations with no
mean flow correction !#—".
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610−7". Regardless of the initial amplitude, the eventual
saturation amplitude of the fundamental mode was near E10
810−3, although the saturation location moved upstream
with increasing 40. Altering the initial amplitude of the fun-
damental had little effect on the eventual saturation ampli-
tudes of higher harmonics #see Fig. 24!b"$. The onset of non-
linear growth in the higher harmonics, however, occurred
more rapidly with increasing 40.

VI. CONCLUSIONS

In this investigation, we have been motivated by the
need to extend the parallel-flow, linear stability analysis of
two-fluid mixing layers to regimes where spatial evolution
and nonlinear effects are considerable. Using a formulation
based on the PSEs, we systematically investigated the influ-
ence of nonlinear mode and mean flow interactions, the
mean flow correction, and finite amplitude effects on the
growth of the two-fluid interface.

We find that the spatial evolution of the mixing layer and
nonparallel effects play a significant role in determining the
outcome of mode competition between liquid modes and in-
terfacial modes. While parallel-flow LST can provide local
predictions of the dominant mode at a given set of param-
eters, they fail to accurately capture the growth of modes
downstream. Our results show that some interfacial modes,
which are initially less unstable, can substantially amplify
due to the spreading of the mean flow grow and overtake
liquid modes at the same frequency.

Comparisons between linear and nonlinear calculations,
and parallel-flow LST showed that obtaining the correct am-
plitude growth for the instability waves required a proper
accounting of the nonlinear modal interactions and mean
flow correction. As the mixing layer develops downstream,
energy is transferred from the fundamental mode to higher
harmonics, which preserves or amplifies smaller scale fea-
tures in the interfacial wave. Some energy is also transferred
to the mean flow, which subsequently alters the mean loca-
tion f̄!x ,z" of the interface. Investigations into the sensitivity
of the inlet forcing amplitudes also revealed that neither the
final saturation amplitudes nor the excited amplitude of the
harmonics is dependent on the initial magnitudes of the in-
stability waves.
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APPENDIX A: MEAN FLOW SIMILARITY SOLUTION

The similarity solution to the two-fluid mixing layer
problem was derived by Lock48 and is available in Ref. 40. It
was recommended that the details of the solution be included
here for completeness. This self-similar solution provides the
inlet and free-stream boundary conditions for the mean flow
described in Sec. II B. The Blasius-type similarity variable =
for each individual stream is defined as

= j 9 y: U1

2x" j/! j
,

where the index j denotes either the upper !j=1" or lower
!j=2" stream. The similarity function >!=" is related to the
nondimensional velocity in each stream by

> j!!=" 9
Ūj!="

U1
.

Substitution of these definitions into the boundary layer
equations yields a Blasius-type ordinary differential equation
for each stream

> j& + > j> j" = 0. !A1"

At the upper and lower limits, the velocities should approach
the two free-stream velocities, leading to the following
boundary conditions:

>1!!+ *" = 1, >2!!− *" = U2/U1. !A2"
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The interfacial conditions are satisfied by imposing the fol-
lowing equalities on > at ==0:

>1!0" = >2!0", >1!!0" = >2!!0", >1"!0" =:!2"2

!1"1
>2"!0" .

!A3"

In our work, the boundary value problems !A1"–!A3" are
solved using a shooting method and adaptive Runge–Kutta
integration. Once the solution > j is determined, the self-
similar velocities in physical space can be found through the
relations Ūj

SS=U1> j! , V̄j
SS=:? jU1 / !2x"!=> j!−> j" and trans-

lated to physical coordinates,

ŪSS!x,y" =5Ū1
SS#=!x,y"$ , = @ 0,

Ū2
SS#=!x,y"$ , = < 0,

6
V̄SS!x,y" =5V̄1

SS#=!x,y"$ , = @ 0,

V̄2
SS#=!x,y"$ , = < 0.

6
At the virtual origin of the mixing layer, the sudden mating
of the high-speed and low-speed streams gives rise to a dis-
continuity in the velocity profile. The discontinuity leads to a

singularity in the self-similar solution at this location. To
avoid this singularity, we initialize the mixing layer at a dis-
tance far downstream of the virtual origin. Hence, all results
in this work have been presented using the coordinate x
=x!−x0, where x! originates at the virtual origin and x0 is the
distance from the virtual origin to the location where
#,!x0"=#0=1. The vorticity thickness #,!x" of the mixing
layer is defined by

#,!x" =
U1 − U2

'dŪ/dy'max

.

APPENDIX B: PSE OPERATOR

For the LPSE operator

Lmn = − i,mG + i5mnA + B
$

$%
+ C

$2

$%2 + i3nD + E

+ M
$

$$
+

$5mn

$$
N

acting on the vector )̂mn= #ûmn v̂mn ŵmn p̂mn$T, the matrices
A, B, C, D, E, G, M, and N are given by

A =;!Ū 0 0 1

0 !Ū 0 0

0 0 !Ū 0

1 0 0 0
<, B =;!V̄ 0 0 0

0 !V̄ 0 1

0 0 !V̄ 0

0 1 0 0
<, C = −

"

Re;
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
< ,

D =;!W̄ 0 0 0

0 !W̄ 0 0

0 0 !W̄ 1

0 0 1 0
<, E =;

!
$Ū

$$
+

"

Re
!5mn

2 + 3n
2" !

$Ū

$%
!

$Ū

$0
0

!
$V̄

$$
!

$V̄

$%
+

"

Re
!5mn

2 + 3n
2" !

$V̄

$0
0

!
$W̄

$$
!

$W̄

$%
!

$W̄

$%
+

"

Re
!5mn

2 + 3n
2" 0

0 0 0 0

< ,

G =;! 0 0 0

0 ! 0 0

0 0 ! 0

0 0 0 0
<, N = −

i"

Re;
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
<, M =;

!Ū − 2i5mn
"

Re
0 0 7

0 !Ū − 2i5mn
"

Re
0 0

0 0 !Ū − 2i5mn
"

Re
0

1 0 0 0

< .
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In our calculations, the matrices have been simplified by ne-
glecting the spanwise mean flow, i.e., W̄=0, and by assuming
that the mean flow is independent of the spanwise coordi-
nate, i.e., )̄= )̄!x ,y" only.

APPENDIX C: INLET FORCING
AND LST FORMULATION

The solution to the parallel-flow, linear stability problem
provides the inlet conditions to the PSE problem and is the
basis for comparison with LPSE results in Secs. III and IV.
At the starting location $=$0, the mean flow is assumed to be
parallel and nonspreading so that Ū= Ū!%" and V̄=0. The
perturbation equations !7" can then be reduced to the spatial
OS equation, a single ordinary differential equation for the
vertical velocity perturbation v̂,

i Re
!

"
#M!D2 − k2" − M"$v̂mn = !D2 − k2"2v̂mn, !C1"

where D=d /d%, k2=52+32, and M!%"=5Ū!%"−,. Because
the amplitudes of the perturbations are assumed to be small
at the inlet, the interfacial conditions

* $ v̂mn

$%
+ − * $M

$%
+ v̂mn

M
= 0, %v̂mn& = 0, !C2"

*− p̂mn + 2"
$ v̂mn

$%
+ = −

ik2v̂mn

WeM
,

!C3"*"0 $2v̂mn

$%2 + 0k2 −
M"
M

1v̂mn1+ = 0

are applied at the location %= f̄!$0"=0. In the free-stream %
→ +*, we apply the boundary conditions

i Re
!

"
#M1,2!D2 − k2"$v̂mn − !D2 − k2"2v̂mn = 0.

In addition to the OS equation !C1", the Squire equation for
the vorticity Âmn can also be formulated as

-D2 − 0k2 +
i!M

"
Re1.Âmn =

i!

"
Re 3Ū!v̂mn

with the interfacial conditions %Âmn&=0 and %"$Â /$%&=0.
Once the solutions to the OS and Squire equations are found,
the other linear stability eigenfunctions ûmn

OS, ŵmn
OS, and p̂mn

OS

can be determined from linear combinations of v̂mn
OS and Âmn

OS

and their derivatives. The shape function at the inlet of the
PSE solution can then be constructed as )̂mn!$0 ,%"
= #ûmn

OS v̂mn
OS ŵmn

OS p̂mn
OS$T, where the eigenmodes are scaled

such that max3'ûmn' , 'v̂mn' , 'ŵmn'4=1. As mentioned in Sec.
II C 2, the inlet perturbations in the time domain can be writ-
ten as

)̃!$ = 0,%,0,-" = 2
m,n

4mn)̂mn
OS!%"e−im,0-+i3n0,

where 4mn were generally less than 0.1% of the free-stream
velocity U1.

APPENDIX D: ENERGY TRANSFER

Following the analysis of Chu,49 a mechanical energy
balance equation can be derived by considering the perturba-
tion equation !7b". When multiplied by the perturbation ve-
locities ũi,

ũi5!0 $ ũi

$t
+ ũj

$Ūi

$xj
+ Ūj

$ ũi

$xj
1 −

$&̃ij

$xj
6 = ũiF̃i, !D1"

the following conservation equation for the kinetic energy
!ũiũi /2 can be written:

D
Dt
0!ũiũi

2
1 + !ũiũj

$Ūi

$xj
−

$

$xj
!ũi&̃ij" + &̃ij

$ ũi

$xj
= ũiF̃i.

!D2"

Here, we assume the perturbation stress tensor can be written
as &̃ij = P̃#ij + -̃ij = P̃#ij +"!$ũi /$xj +$ũj /$xi" and the operator
D /Dt=$ /$t+ Ūj$ /$xj. When Eq. !D2" is integrated over the
entire domain 7, and the boundary conditions in which the
velocities ũi and stresses &̃ij vanish at infinity have been
applied, we arrive at the balance equation

DẼ

Dt
+ P̃ + :̃ = Ĩ + T̃ . !D3"

The energy Ẽ, production P̃, dissipation :̃, interfacial energy
Ĩ, and energy transfer T̃ terms in Eq. !D3" have been defined
as

Ẽ =, !

2
ũiũid7, P̃ =, !ũiũj

$Ūi

$xj
d7 ,

:̃ =, -̃ij
$ ũi

$xj
d7, Ĩ = %ũi&̃ijn̂j&, T̃ =, F̃iũid7 ,

respectively. The production and dissipation terms are analo-
gous to the terms found in the kinetic energy budgets for
turbulent flows. The interfacial energy term Ĩ can be sepa-
rated into contributions from the work done by shear stress
and normal stress components, as done by Boomkamp and
Miesen.10 For instance, if the interface remains relatively
flat, then the tangential and normal energy components take
the form

ĨTAN = *ũ"0 $ ũ

$y
+

$ ṽ
$x
1+, ĨNOR = *ṽ0− p̃ + 2"

$ ṽ
$y
1+ .

However, of particular interest is the energy transfer term T̃,
which is the main source of energy redistribution among
modes when the nonlinear forcing term is present in Eq.
!7b". We can express T̃ in terms of the individual frequency
components by considering the modal expansion
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T̃ =, 02
m,n

F̂mne−i,mt+i3nz1 · 0 2
m!,n!

ûm!n!e
−i,m!t+i3n!z1d7

=, 2
m,n

2
m!,n!

F̂mn · ûm!n!e
−i!,m+,m!"t+i!3n+3n!"zd7

=, 2
k,l

T̂kle
−i,kt+i3lzd7 .

If we define T̂kl!mn ,m!n!"= F̂mn · ûm!n! with the relations
,k=,m+,m! and 3l=3n+3n!, then the individual fre-
quency components T̂kl can be expressed as

T̂kl = 2
mn,m!n!

T̂kl!mn;m!n!" , !D4"

where the summation occurs over all values of !m ,n" and
!m! ,n!" which fit the criteria above. Thus, the modal energy
transfer coefficients T̂kl!mn ,m!n!" can be interpreted as the
amount of energy transferred to mode !k , l" through the in-
teraction of mode !m ,n" with mode !m! ,n!". Because of the
symmetry of shape functions, the interaction of between the
!m ,n" and !m! ,n!" modes can affect up to four other modes:
!k , l"= !m+m! ,n+n!" , !m−n! ,n+n!" , !m+m! ,n−n!" , !m
−m! ,n−n!". To examine the streamwise development of the
modal energy transfer, we consider the positive definite
quantity T̂kl!x ;mn ,m!n!",

T̂kl!x;mn,m!n!" = 2,
−*

*

'F̂x,mn
! ûm!n!' + 'F̂y,mn

! v̂m!n!'

+ 'F̂z,mn
! ŵm!n!'d% , !D5"

which has been multiplied by 2 to ensure compatibility with
the modal energy definition in Eq. !23",

Emn!x" = ,
−*

*

!!'ûmn! '2 + 'v̂mn! '2 + 'ŵmn! '2"d% .
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