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An exact representation of the nonlinear triad
interaction terms in spectral space
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Spectral analysis of the Navier–Stokes equations requires treatment of the convolution
of pairs of Fourier transforms f̂ and ĝ. An exact, tractable representation of the
nonlinear terms in spectral space is introduced, and relies on the definition and
manipulation of a combination matrix. A spectral energy equation is derived where
the nonlinear triad interactions are expressed using the combination matrix. The
formulation is applied to the problem of homogeneous, isotropic turbulence. By
finding the solution in an appropriate canonical basis, the energy spectrum in the
inertial range E(k) ∼ ε2/3k−5/3 is derived from the Navier–Stokes equations without
invoking dimensional scaling arguments.
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1. Introduction

The complexity of turbulence has inspired novel techniques to examine its dynamics.
Three approaches have collectively shaped our understanding of turbulence to
date: initially, progress was possible only through inventive theoretical modelling
and analysis of carefully measured experimental data. Later, large-scale numerical
simulations became feasible and have continued to provide a remarkable level of
detail in resolving turbulence. While non-intrusive and fully resolved measurements
are the primary hurdle to experiments, numerical simulations are constrained by
the ability to access high Reynolds numbers. The two techniques have therefore
been complementary and have arguably outpaced progress in theory, which has been
hindered by the difficulties associated with the nonlinear terms in the Navier–Stokes
equations. In one of the most fundamental flow configurations, namely homogeneous
isotropic turbulence, both experiments and numerical simulations have conclusively
verified the robustness of the −5/3 ‘law’ for the wavenumber energy spectrum in the
inertial range (Sreenivasan 1995; Yeung & Zhou 1997). On the other hand, theoretical
deductions from the Navier–Stokes equations have remained elusive. As such, the
−5/3 ‘law’ is often referred to as the Kolmogorov phenomenology (Domaradzki &
Rogallo 1990; Zhou 1993a) because its derivation has remained reliant on scaling
assumptions. In this work, the derivation of the −5/3 scaling is tackled directly,
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starting from the Navier–Stokes equations, and by invoking the minimum number of
assumptions.

The study of decaying homogeneous isotropic turbulence often starts by invoking
a Fourier representation of the turbulence fields. In Fourier space, the nonlinear
advection term in the Navier–Stokes equations becomes a convolution integral,
and a triad interaction term in the turbulence kinetic energy equation. Despite
being conservative, and therefore contributing only to energy exchange between
Fourier modes, this term is at the heart of many of the interesting questions in
the literature. For example, the original phenomenology by Kolmogorov (1941a,b)
suggests a cascading flux of energy from one wavenumber to another. However, it
is not clear from the nonlinear terms in the energy equation whether the energy
flux and the associated triad interactions are indeed local in wavenumber space.
Studies have therefore focused on evaluating the spectral energy transfer from direct
numerical simulations (Domaradzki & Rogallo 1990; Zhou 1993a,b). Similarly, the
nonlinear term plays a central role in the sweeping hypothesis (Kraichnan 1964),
where large-scale eddies advect smaller eddies past an Eulerian observer, causing
‘broadening’ of the energy frequency spectra (Tennekes 1975). This view, however,
conflicts with the Kolmogorov phenomenology of local interactions in wavenumber
space. The problem is further muddied by the finite correlation between the large
and small wavenumbers (Praskovsky et al. 1993). Notwithstanding these conceptual
challenges, the decay of the energy wavenumber spectra in the inertial range has
demonstrated a robust −5/3 slope (Sreenivasan 1995; Yeung & Zhou 1997), as
predicted by the Kolmogorov phenomenology. It is, for instance, independent of the
sweeping hypothesis since the action of large-scale eddies on smaller ones does not
appear in the energy wavenumber spectra, but rather affects only the higher-order
spectra (Zhou, Praskovsky & Vahala 1993; Zhou, Matthaeus & Dmitruk 2004).
Despite its robustness, the −5/3 ‘law’ has not been possible to derive directly from
the Navier–Stokes equations.

The primary difficulty in working with the spectral Navier–Stokes equations is
appropriately accounting for all nonlinear interactions. An analytical treatment requires
some means of tracking energy transfer from two arbitrary wavenumbers p and q into
a third wavenumber k. Previous attempts have relied on either a direct computation
of all triad interactions or phenomenological models for the modal energy transfer.
However, an exact and tractable analytical representation for triad interactions in
spectral space is still missing and is sought herein. Using the proposed formulation,
we then derive the spectral energy equation for homogeneous, isotropic turbulence
and derive the −5/3 decay rate in the inertial range.

A description of the fundamental studies and literature regarding energy transfer
in homogeneous isotropic turbulence can be found in the review by Sreenivasan &
Antonia (1997) and the text by Lesieur (2008). Of particular relevance is the work
discussing triad interactions and the detailed behaviour of the energy transfer function
(Orszag 1970; Domaradzki & Rogallo 1990; Waleffe 1992, 1993). These studies raised
the importance of considering local versus non-local triad interactions in simulations
of isotropic turbulence (Yeung, Brasseur & Wang 1995; Zhou & Rubinstein 1996).
Several phenomenological models have also been developed to help understand the
nature of these interactions. For instance, Domaradzki (1992) introduced a self-similar
scaling for the modal energy transfer, and the eddy-damped quasinormal Markovian
(EDQNM) theory of Orszag (1970) has been verified by the results of Ohkitani &
Kida (1992). Spectral eddy viscosity models have also been used since the work of
Heisenberg (1948). More recent work in large-eddy simulations (Lesieur, Montmory
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& Chollet 1987; Métais & Lesieur 1992) has also employed models which account
for energy transfer in the unresolved part of the wavenumber spectrum.

The principal goal of this work is to introduce a new methodology for expressing
the nonlinear terms in the Navier–Stokes equations and, using this analytical approach,
to derive the −5/3 law from the Navier–Stokes equations without any scaling
arguments and with minimal assumptions. The methodology is introduced in § 2,
where the convolution of two Fourier transforms f̂ and ĝ is expressed using a
combination matrix. In § 3, we formulate the Navier–Stokes equations in spectral
space with explicit dependence on the wavenumber k. In § 4, the corresponding
spectral energy equation is developed for homogeneous, isotropic turbulence, and an
analytical solution for the energy spectrum in the inertial range is found.

2. The Fourier representation
At the most fundamental level, the challenge of nonlinearity stems from the spectral

representation for the product of two functions h(x) = f (x)g(x). Here, the functions
h(x), f (x) and g(x) are assumed to be periodic and sufficiently well behaved to permit
the following discrete Fourier representation,

f (x)=
∞∑

p=−∞
f̂ peipx, g(x)=

∞∑
q=−∞

ĝqeiqx, h(x)=
∞∑

k=−∞
ĥkeikx. (2.1a–c)

In the notation âp
i , the superscript p refers to the pth Fourier component, −∞6 p 6

+∞, and the subscript i refers to the ith spatial dimension, i= {1, 2, 3}. Throughout
this analysis, the summation convention is not used in order to avoid confusion.

Inserting the Fourier representation (2.1) into the multiplication h(x)= f (x)g(x), we
can determine the composition of each Fourier component ĥk,

ĥk =
∑

p+q=k

f̂ pĝq =
∞∑

p=−∞
f̂ pĝk−p. (2.2)

Here, in the first equality, the sum occurs over each triplet of indices that satisfy the
condition p+ q= k, while in the second equality, the coefficients ĝ are offset from f̂
by k− 2p. The above statement is the discretized convolution ĥ= f̂ ∗ ĝ.

The ultimate goal is to determine the relationship between ĥk and any other
coefficient ĥk′ without any restrictions or offsets. A simpler representation of the
summations (2.2) is therefore needed, and is achieved by introducing the combination
matrix

Cpq,k =
{

0, p+ q 6= k
1, p+ q= k

(2.3)

which merely codifies the convolution operation in matrix form. Note that the
combination matrix can be related to the Kronecker delta via Cpq,k = δp+q,k. Using
(2.3), the summation (2.2) can be written in the bilinear form

ĥk =
∞∑

p=−∞

∞∑
q=−∞

f̂ pCpq,kĝq. (2.4)

The form in (2.4) involves a summation over all p and q, with all of the indicial
unsightliness handled by Cpq,k. Much further mathematical manipulation is possible if
we adopt the infinite dimensional vectors



178 L. C. Cheung and T. A. Zaki

ĥ=



...

ĥ−1

ĥ0

ĥ+1

...

 , f̂ =



...

f̂−1

f̂ 0

f̂+1

...

 , ĝ=



...

ĝ−1

ĝ0

ĝ+1

...

 , (2.5a–c)

and start to examine Cpq,k in matrix form. If k is treated as a fixed parameter, then the
individual elements of Cpq,k can be written in terms of an infinite dimensional matrix,
e.g. for k= 0, k=−1, k=+1, and so forth:

[
Cpq,0

]=C,0 =



. .
.
. .
.

0 0 1 . .
.

0 1 0

. .
.

1 0 0

. .
.
. .
.


, (2.6a)

C,−1 =



. .
.
. .
.
. .
.

0 1 0

. .
.

1 0

. .
.

0

. .
.


, C,+1 =



. .
.

0 . .
.

0 1 . .
.

0 1 0

. .
.
. .
.
. .
.


. (2.6b,c)

At this point a pattern emerges: the diagonal of 1s in C,0 appears directly on the
southwest-northeast diagonal, while for C,−1 it lies directly above it, and for C,+1,
all 1s appear directly below it. Furthermore, a demotion operator D = [Dpq] and a
promotion operator P = [Ppq] are defined in terms of the permutation matrices,

D=



. . .

. . . 0

. . . 1 0

0 1 0
. . .

. . .
. . .


, P =



. . .
. . .

. . .

0 1 0

0 1
. . .

0
. . .

. . .


. (2.7a,b)

These operators relate C,∓1 to C,0 via C,−1=DC,0 and C,+1=PC,0. Taking this one
step further, we can see that C,k+1 =PC,k, and that any matrix Cpq,k can be related
to the original Cpq,0 after repeated application of the P operator:

C,k = (P)k C,0. (2.8)
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Finally, from the definition of the operators D and P in (2.7), it can also be verified
that DP = I , where I is the infinite dimensional identity operator. Therefore, only one
of the two operators needs to be defined, since D= (P)−1. Once (2.8) is inserted into
(2.4), we can rewrite the expression for ĥk as

ĥk = f̂ · (P)k C,0ĝ. (2.9)

One final step is needed before we can demonstrate the utility of this approach
in the context of the Navier–Stokes equations. The matrix power (P)k in (2.9) is
expressed in terms of a diagonal matrix in order to explicitly show the dependence
of k inside each ĥk. This uses the fact that (P)k = Σ(Λ)k(Σ)−1, where the column
vectors of Σ are the eigenvectors of P , and Λ is a diagonal matrix composed of the
eigenvalues λi of P . Inserting this expression into (2.9) yields

ĥk = f̂ ·Σ(Λ)kΣ−1C,0ĝ. (2.10)

The powers of the matrix Λ can be easily computed. In fact, because the eigenvalues
of any permutation matrix have a unit magnitude (|λi| = 1), we can see that

(Λ)k =


. . .

eikθ−1

eikθ0

eikθ1

. . .

 (2.11)

where 06 θi< 2π. Hence, it is possible to see from (2.11) that the difference between
ĥk and any other component ĥk′ lies only in the phase factors in the matrix (Λ)k. In
the next section, we apply these concepts to the nonlinear terms of the Navier–Stokes
equations.

3. The Navier–Stokes equations
In this section, we seek to rewrite the Navier–Stokes equations in spectral

space using the formulation introduced in § 2. The governing equations for an
incompressible, viscous fluid in physical space are

∇ · u= 0; ∂u
∂t
+ u · ∇u=− 1

ρ
∇p+ ν∇2u (3.1a,b)

where u(x, t) is the velocity, p(x, t) is the pressure, and we assume constant density ρ
and kinematic viscosity ν. For the purposes of this study, we also assume that the flow
is homogeneous in all three dimensions within a sufficiently large periodic domain
L× L× L, such that u(x, t) and p(x, t) can be written in terms of Fourier expansions

u(x, t)=
∑

k

ûk
(t)eik·x, p(x, t)=

∑
k

p̂k(t)eik·x. (3.2a,b)

In three dimensions, k = (k1, k2, k3) and ûk = (ûk
1, ûk

2, ûk
3

)
. The magnitude of the

wavevector k is given by k2=|k|2= k2
1+ k2

2+ k2
3. Since the velocity field is real valued,
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the Fourier coefficients in (3.2) must obey the relation ûk = (û−k
)∗, where ∗ denotes

the complex conjugate. To multiply two velocity fields u(x, t) and v(x, t), we also
define the combination matrix Cpq,k analogously to (2.3),

Cpq,k =
{

0, p+ q 6= k
1, p+ q= k.

(3.3)

From (3.3), the following properties of Cpq,k are evident:

Cpq,k=Cqp,k, Cpq,k=C(−p)(−q),−k, Cpq,k=Cp(−k),−q,
∑

r

Cpr,kCrq,k= δpq. (3.4a–d)

As in the previous section, we can also relate any combination matrix Cpq,k to the
zero-wavenumber Cpq,0 through a set of promotion operators P1, P2, P3, such that
Cpq,k= (P1)

k1(P2)
k2(P3)

k3Cpq,0. Note that it is not possible to write the operators P1,
P2, P3 in any unique row–column format; they depend on how one orders the (x, y, z)
elements in Cpq,0. Regardless, the same properties discussed in § 2 still apply.

The continuity equation (3.1a) is simple to express in spectral form, where
a differentiation of (3.2a) yields

∑
i kiûk

i = 0. The pressure equation is also
straightforward to derive. By taking the divergence of (3.1b) and invoking the
continuity constraint, the pressure Poisson equation ∇2p=−ρ∇ · (u · ∇u) is obtained.
Inserting (3.2), and using (3.3) in this equation produces the equivalent form in
spectral space:

p̂k = ρ

k2

∑
i,j

∑
p,q

(piqj)
(
ûp

j Cpq,kûq
i

)
. (3.5)

Lastly, for the nonlinear convective term in (3.1b), it can be written in spectral space
as

(u · ∇u)k = i
∑
p,q


(
ûp

1q1Cpq,kûq
1 + ûp

2q2Cpq,kûq
1 + ûp

3q3Cpq,kûq
1

)(
ûp

1q1Cpq,kûq
2 + ûp

2q2Cpq,kûq
2 + ûp

3q3Cpq,kûq
2

)(
ûp

1q1Cpq,kûq
3 + ûp

2q2Cpq,kûq
3 + ûp

3q3Cpq,kûq
3

)
 . (3.6)

However, the expression in (3.6) is still not sufficiently compact to manipulate easily.
For instance, the x convective term can be written in a bilinear matrix form as

(u · ∇u)k1 = i
∑
p,q

ûp
1

ûp
2

ûp
3

 ·
q1Cpq,k 0 0

q2Cpq,k 0 0
q3Cpq,k 0 0

ûq
1

ûq
2

ûq
3

 . (3.7)

Here, each element appearing in a vector or matrix is assumed to be infinite
dimensional, so the matrices in the middle of (3.7) are 3× 3 block matrices, where
the matrix qiCpq,k is also infinite-dimensional. If we define

Γ
pq,k

ij,m =
0 0 q1Cpq,k

0 0 q2Cpq,k

0 0 q3Cpq,k

0 I 0
0 0 I
I 0 0

m

(3.8)

where the powers m= 1, 2, 3 and I ≡ δpq is the infinite identity matrix, then we can
compactly represent the entire nonlinear convective term as

(u · ∇u)km = i
∑
p,q

∑
i,j

ûp
i Γ

pq,k
ij,m ûq

j . (3.9)
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Inserting (3.5) and (3.9) into (3.1b), the final form of the spectral Navier–Stokes is∑
m

kmûk
m = 0, (3.10a)(

∂

∂t
+ νk2

)
ûk

m + i
∑
p,q

∑
i,j

ûp
i Γ

pq,k
ij,m ûq

j =
−ikm

k2

∑
i,j

∑
p,q

(piqj)
(
ûp

j Cpq,kûq
i

)
. (3.10b)

By introducing Cpq,k, we have thus far expressed the Navier–Stokes in a spectral
form (3.10) which explicitly shows the dependence on the wavenumber k. Note that
no approximations have been made other than that the representation (3.2) holds.

4. The spectral energy equation
In this section, we demonstrate the utility of the new representation of the nonlinear

terms in spectral space, and derive some insight into the energetics of the flow. We
focus on homogeneous, isotropic decaying turbulence and derive analytical solutions
to an otherwise impenetrable problem.

The absence of a mean flow leads to one immediate simplification. In the
summations over all wavenumbers

∑
p,q(•), we do not include the zero wavenumbers

p = 0 and q = 0, since the coefficients û0 are zero in this case. If a mean flow is
present in the system, these wavenumbers would be handled separately, or a different
basis would be selected.

To form an energy equation, we first define an inner product,

(ak, bk)=
3∑

i=1

ak
i

(
bk

i

)∗
. (4.1)

We take the dot product of ûk and (3.10b), and eliminate the pressure term through
the use of the continuity equation,(

∂ ûk
m

∂t
+ νk2ûk

m + i
∑
p,q

∑
i,j

ûp
i Γ

pq,k
ij,m ûq

j , ûk
m

)
+ c.c.= 0 (4.2)

where c.c. stands for the complex conjugate. Using the notation (ûk
, ûk

) = |ûk|2,
equation (4.2) can be written as

∂

∂t
|ûk|2 + 2νk2|ûk|2 + iGk = 0 (4.3)

where the nonlinear term Gk is defined to be

Gk =
∑

m

∑
p,q

∑
i,j

ûp
i Γ

pq,k
ij,m ûq

j

(
ûk

m

)∗ −∑
m

∑
p,q

∑
i,j

(
ûp

i Γ
pq,k

ij,m ûq
j

(
ûk

m

)∗)∗
. (4.4)

The nonlinear term Gk at first appears unwieldy, but it can be manipulated into a more
meaningful form. Using some algebra and the fact that ûk = (û−k

)∗, it is rewritten as

Gk =
∑

m

∑
p,q

∑
i,j

(
ûp

i Γ
pq,k

ij,m ûq
j

(
ûk

m

)∗)−∑
m

∑
p,q

∑
i,j

((
û−p

i

) (
Γ

qp,k
ji,m

)∗ (
û−q

j

) (
û−k

m

)∗)
.

(4.5)
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This allows us to shift the indices by adopting the new wavenumbers p′ =−p, q′ =
−q, k′ =−k, and using the identity Γ

qp,k
ji,m =−Γ

q′p′,k′
ji,m . The result is

Gk =
∑

m

∑
p,q

∑
i,j

(
ûp

i

(
Γ

pq,k
ij,m + Γ

qp,k
ji,m

)
ûq

j ·
(
ûk

m

)∗)
. (4.6)

By introducing the symmetric matrix Apq,k
ij,m =Γ

pq,k
ij,m +Γ

qp,k
ji,m , the spectral energy equation

(4.2) can be expressed as(
∂

∂t
+ 2νk2

)
Ê(k)=−i

∑
m

∑
p,q

∑
i,j

(
ûp

i A
pq,k
ij,m ûq

j

)
ûk

m, (4.7)

where Ê(k) ≡ |ûk|2. This form of the equation is preferable to that given by (4.2).
Not only are the nonlinear interactions entirely contained within the symmetric matrix
Apq,k

ij,m , but also the sum over these nonlinear terms appears exactly in the quadratic
form Q= xTAx, which will be exploited in the next section.

4.1. Reducing the system to canonical form

In (4.7), the triad interaction term involving ûp, ûq and ûk was retained on the right-
hand side. The nonlinear term acts to redistribute energy among the wavenumbers
p, q and k, and the utility of the matrices Cpq,k, Γ

pq,k
ij,m and Apq,k

ij,m will be crucial to
its subsequent analysis. On the left-hand side of (4.7) are the viscous term and the
temporal evolution of Ê .

Rather than solve (4.7) in its current form, we choose to adopt a basis for ûp
i where

the term ûp
i A

pq,k
ij,m ûq

j appears in canonical form. In doing so, off-diagonal products of
ûp

i and ûq
j are eliminated and (4.7) simplifies substantially. However, instead of simply

diagonalizing the matrix Apq,k
ij,m alone, we seek to find a basis where both

∑
ûp

i A
pq,k
ij,m ûq

j

and the supplementary quadratic form
∑

ûp
i W

pq
ij ûq

j are reduced to canonical form.
From standard linear algebra, finding the basis where both xTAx and xTWx are
reduced to canonical form is possible if xTWx is positive-definite, and is equivalent
to solving the generalized eigenvalue problem Ax = αWx. The desired basis ξ then
satisfies the condition ξTAξ = αξTWξ , where α can be determined through the
eigenvalues of the matrix W−1A. Note that finding such a basis also yields the
stationary values of xTAx, i.e. points where the quadratic form is locally maximum
or minimum.

An appropriate choice for the weight matrix Wpq
ij is crucial. Using Wpq

ij = Cpq,0δij

results in
∑

ûp
i W

pq
ij ûq

j = |û|2 and maximizes the quadratic form with respect to the
standard energy norm. However, this leads to some immediate problems because the
eigenvalues of the matrix

[
Cpq,0δij

]−1 Apq,k
ij,m are not well behaved. In Apq,k

ij,m and Γ
pq,k

ij,m ,
the entries of the matrices are directly proportional to pi, meaning that the elements
of the matrix approach infinity the further one ventures away from the centre of the
matrix sub-block – leading to unbounded eigenvalues. The remedy is to use Wpq

ij =
pCpq,0δij. This operator represents the absolute value of flux terms which involve the
k= 0 wavenumber in the triad interactions. Using this definition of Wpq

ij , we find the
canonical basis with respect to∑

p,q

∑
i,j

ûp
i W

pq
ij ûq

j =
∑

p

p|ûp|2 =
∑

p

pÊ(p). (4.8)
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Inserting this canonical basis in (4.7) results in the following equation for Ê :

∂

∂t
Ê(k)+ 2νk2Ê(k)=−i

∑
m

(∑
p

αp
mpÊ(p)

)
ûk

m, (4.9)

where αp
m are the eigenvalues of the matrix

[
Wpq

ij

]−1 Apq,k
ij,m =

[
pCpq,0δij

]−1 Apq,k
ij,m . As

shown in appendix A, these eigenvalues are O(1), are independent of both m and the
wavenumber k, and can be used to simplify (4.9) to the following form:

∂

∂t
Ê(k)+ 2νk2Ê(k)=−i

∑
m

α

(∑
p

pÊ(p)
)

ûk
m, (4.10)

where α is the averaged component of αp
m and is independent of p.

To convert the summations into an integral over a continuous variable, we split the
sum over the three-dimensional index p= (p1, p2, p3) into two separate pieces,∑

p

pÊ(p)=
∞∑

p′=0

p′
∑
|p|=p′

Ê(p). (4.11)

The inner summation occurs over all Ê(p) for which |p| = p′, and the outer sum totals
all contributions from these spherical shells from 0 6 p′ <∞. The interior sum can
be equivalently stated as the area of the shell 4πp′2 multiplied by the average energy
〈Ê〉 of modes in the shell: ∑

|p|=p′
Ê(p)= 4πp′2〈Ê〉. (4.12)

Here, as in Domaradzki & Rogallo (1990), we define the average of a function f (k)
as 〈f (k)〉 = (∑k f (k)

)
/N(k), where the number of modes in each shell is given by

N(k)= 4πk2. The spherically symmetric spectral energy density is defined as

E(k)= 4πk2
〈

1
2 |ûk|2

〉
. (4.13)

Combining this average and (4.13) allows us to rewrite the spectral density as

E(k)= 4πk2

N(k)

∑
|k|=k

1
2
|ûk|2 = 1

2

∑
|k|=k

Ê(k), (4.14)

which inserted into (4.11) yields∑
p

pÊ(p)= 2
∞∑

p′=0

p′E(p′). (4.15)

We now convert the sum over p into a continuous integral and assume the
wavenumbers p and k vary continuously from 0 to ∞,

∑
p

pÊ(p)≈ 2
∫ ∞

0
p′E(p′)dp′ = 2

(∫ k̃

0
p′E(p′)dp′ +

∫ ∞
k̃

p′E(p′)dp′
)
. (4.16)
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In (4.16), we have split the integral into two intervals: the first includes the energy
containing range and the inertial range of the energy cascade, and the second is over
the dissipation range of the spectrum. In this analysis we define a wavenumber k̃
near the boundary between the inertial range and the dissipation range. From previous
experiments and computations we know that in the dissipation range (k > k̃), the
spectral energy density decays exponentially, while in the inertial range (k < k̃) the
decay follows a power law. Hence, we assume the second integral contributes less
and can be neglected.

Inserting the results of (4.16) into (4.9) gives

∂

∂t
Ê(k)=−i

∑
m

αm

(
2
∫ k̃

0
p′E(p′)dp′

)
ûk

m (4.17)

after neglecting the contribution of the viscous term in the inertial range. Summing
this equation over all wavenumbers k, and then multiplying each side by its complex
conjugate yields(

∂

∂t

∑
k

Ê(k)
)(

∂

∂t

∑
k

Ê(k)
)∗
=
∣∣∣∣∣
(∑

k

i
∑

m

αm

(
2
∫ k̃

0
p′E(p′)dp′

)
ûk

m

)∣∣∣∣∣
2

. (4.18)

The right-hand side of (4.18) can be related to the energy dissipation rate ε by
examining the summation over k and using the definition of the spectral energy density
E(k):

∂

∂t

∑
k

Ê(k)= ∂

∂t

∑
k

∑
|k|=k

Ê(k)≈ 2
∂

∂t

∫ k̃

0
E(k)dk= 2ε. (4.19)

This simplifies (4.18) to

(2ε)2 =
(∑

k

i
∑

m

αm

(
2
∫ k̃

0
p′E(p′)dp′

)
ûk

m

)

×
(∑

k′
−i
∑

n

αn

(
2
∫ k̃

0
pE(p)dp

)
(ûk′

n )
∗
)
. (4.20)

On the right-hand side of (4.20), a summation over two wavenumbers k and k′ occurs:

ε2 =
∑
k,k′

α2

(∫ k̃

0
pE(p)dp

)2 ∑
m,n

ûk
m(û

k′
n )
∗. (4.21)

After examining the sums in terms of spherical shells with k = |k| and k′ = |k′|, the
only terms which survive in the case of isotropic homogeneous turbulence are those
for which k= k′ (e.g. § 9.2 of Durbin & Reif 2001), leading to

ε2 = α2

(∫ k̃

0
p′E(p′)dp′

)2 ∑
k

∑
|k|=k

∑
m,n

ûk
m

(
ûk

n

)∗
. (4.22)
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This can also be written in terms of integrals over the spectral energy density E(k)
as

ε =√2α

(∫ k̃

0
k′E(k′)dk′

)(∫ k̃

0
E(k′)dk′

)1/2

. (4.23)

At this point, (4.23) is a nonlinear integral equation for E(k) which can be solved
by taking the derivative with respect to k̃:

k̃E(k̃)

(∫ k̃

0
E(k′)dk′

)1/2

+ E(k̃)
2

(∫ k̃

0
k′E(k′)dk′

)(∫ k̃

0
E(k′)dk′

)−1/2

= 0. (4.24)

Here we have assumed that k̃ is sufficiently large such that ε is independent of k̃.

Multiplying through by
(∫ k̃

0 E(k′)dk′
)1/2

and simplifying the algebra results in the
equation

1
2

(∫ k̃

0
k′E(k′)dk′

)
+
(∫ k̃

0
E(k′)dk′

)
k̃= 0. (4.25)

Taking two further derivatives of the equation with respect to k̃ gives this equation in
terms of the simple first-order ODE

3
2

k̃
d

dk̃
E(k̃)+ 5

2
E(k̃)= 0. (4.26)

The solution to (4.26) is E(k̃)∼ k̃−5/3, which, when introduced into (4.23), produces
the expected energy spectrum in the inertial range (Kolmogorov 1941b):

E(k̃)= Cε2/3k̃−5/3. (4.27)

The present analysis relied on introducing the combination matrix Cpq,k, and using
it to express the nonlinear terms of the Navier–Stokes. Throughout the analysis, the
triad-interaction terms are retained in their entirety without any modelling assumptions.
By recasting them in canonical form, we can accurately predict the behaviour of the
energy spectra in the inertial range for homogeneous isotropic turbulence at high
Reynolds number. Only two principal assumptions were introduced, namely that E(k)
decays sufficiently fast for k> k̃ and that ε is independent of k̃. As such, (4.27) was
derived without any scaling arguments, and by appealing directly to the Navier–Stokes
equations.

5. Conclusions

In this study, we introduced a new methodology for manipulating the nonlinear
terms in the Navier–Stokes equations. Using this methodology, we have determined
the appropriate canonical form for expressing the nonlinear terms, and presented
an analytical derivation of the −5/3 law from the Navier–Stokes equations without
any scaling arguments and with minimal assumptions. This result is therefore the
theoretical complement to experimental and numerical verifications of the −5/3 law
(e.g. Sreenivasan 1995; Yeung & Zhou 1997).
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By introducing a combination matrix Cpq,k, an exact, tractable representation
of nonlinear triad interactions is shown to be possible. Using this matrix in the
governing equations, all of the interactions between two wavenumbers p and q can be
conveniently accounted for, and the dependence on k is explicitly shown. Subsequently,
the spectral energy equation is derived for homogeneous, isotropic turbulence. By
casting the nonlinear terms in a canonical form, we obtain a representation of the
nonlinear operator in Fourier space which is amenable to further manipulation. The
outcome is the ability to express the nonlinear operator in terms of the energy density
(4.8) rather than a convolution (4.7). With this representation, we derive the −5/3
decay rate of the energy wavenumber spectrum in the inertial range without any
scaling arguments.

Future work can apply the concepts presented herein to various problems related
to homogeneous isotropic turbulence. Examples include the behaviour of the energy
spectra dissipation range; the importance of sweeping motions (Kraichnan 1964;
Tennekes 1975) which do not appear in the energy spectra but could affect higher
order spectra (Zhou et al. 2004; Zhou 2010); and turbulent scalar transport in
homogeneous turbulence (Corrsin 1951).

Appendix A

In this appendix, we compute the eigenvalues αp
m of the matrix [Wpq

ij ]−1Apq,k
ij,m .

Starting from the choice of the weight matrix given in § 4, we first need to determine
the inverse of Wpq

ij . This is made possible through the identity∑
q

Cpq,kCqr,k = δpr (A 1)

for any arbitrary wavenumber vector k. Using this identity, we can compute
[
Wpq

ij

]−1

as [
Wpq

ij

]−1 = [pCpq,0δij
]−1 = 1

p
Cpq,0δij. (A 2)

Next we examine the structure of the matrix Apq,k
ij,m = Γ

pq,k
ij,m + Γ

qp,k
ji,m . Without loss of

generality, we choose to express Apq,k
ij,m in two dimensions and for m= 1; the results

are equally valid for other choices as well.

Apq,k
ij,1 =

(
p1Cpq,k 0
p2Cpq,k 0

)
+
(

p1Cpq,k p2Cpq,k

0 0

)
=Cpq,k

(
2p1 p2
p2 0

)
(A 3)

Multiplying (A 2) by (A 3) gives

[
Wpq

ij

]−1 Apq,k
ij,1 =

I

p
Cpq,0Cpq,k

(
2p1 p2
p2 0

)
. (A 4)

To find the eigenvalues α of the above matrix, we seek solutions where the following
determinant vanishes:∣∣∣∣Cpq,0Cpq,k

p

(
2p1 p2
p2 0

)
−
(
αδpq 0

0 αδpq

)∣∣∣∣= 0. (A 5)
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We can use (A 1) along with the promotion operator to rewrite Cpq,0Cpq,k = (P)kδpq,
and the property of the promotion and demotion operator given in § 2 allows (A 5) to
be written as ∣∣∣∣Cpq,0Cpq,k

p

(
2p1 p2
p2 0

)
−
(
α(P)k(D)k 0

0 α(P)k(D)k
)∣∣∣∣

= ∣∣(P)k∣∣ ∣∣∣∣(2p1I − αq(D)k p2I
p2I −αp(D)k

)∣∣∣∣= 0. (A 6)

Computing the block-matrix determinant and manipulating the algebra gives the result
that

∣∣2p1pα(D)k − α2p(D)2k + p2
2I
∣∣ = 0. Here we express powers of the demotion

operator (D)k in terms of the diagonal matrix Λ through (D)k =Σ (Λ)k (Σ)−1, and
inserting into the above result gives∣∣Σ (2p1pα(Λ)k − α2p(Λ)2k + p2

2(Λ)
0
)
Σ−1

∣∣= 0. (A 7)

For this equation to hold, we find that every diagonal term must be zero:

2p1pαeikθi − α2p2e2ikθi + p2
2 = 0, (A 8)

where ekθi are the diagonal elements of Λ. If we substitute the variable α̃= αekθi and
solve the quadratic equation for α̃, we find

α̃
p
1 =

1
p

[
p1 ±

√
p2

1 + p2
2

]
= p1

p
± 1, (A 9)

which has a maximum value of max
{
α̃

p
1

}= 2. In (A 9), α̃p
1 is composed of two parts:

a directional component α̃′ = p1/p, which depends on p, and an averaged component
α̃1 = ±1, which is independent of p. When (A 9) is inserted into (4.9), the only
surviving component is α̃1, due to the fact that Ê(k)= Ê(−k). Using this fact, along
with the observation that α̃m is independent of the choice of m, allows (4.9) to be
rewritten as

∂

∂t
Ê(k)+ 2νk2Ê(k)=−i

∑
m

α

(∑
p

pÊ(p)
)

ûk
m. (A 10)
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