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Abstract We consider a turbulent channel flow, where a scalar point source with a time-
harmonic intensity releases a substance that can be modeled as a passive scalar. With the
source location known, our objective is to estimate the time history of the source intensity
based on sensor measurements at different locations downstream of the source by adopting
an adjoint approach. It is shown that the proposed algorithm reproduces the original coher-
ent sinusoidal wave of the scalar source accurately from the chaotic scalar signals measured
by our sensors. By systematically changing the source-sensor distance and the pulsation
frequency of the source, we clarify how these two factors affect the estimation accuracy.
The proposed scheme is also applicable to estimation with multiple sensors. We demon-
strate that increasing the number of sensors improves the estimation greatly when the scalar
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is released from a source away from the wall, where large-scale eddies dominate the scalar
dispersion. In contrast, the estimation performance remains poor even with multiple sensors
when the scalar source is located near the wall, where the source information is quickly lost
due to the strong turbulence activity and the scalar diffusion in the near-wall region.

Keywords Source characterization · Passive scalar transport · Channel flow · Inverse
problem · Sensors · Direct numerical simulation

1 Introduction

Olfactory search strategies have a broad range of applications. Recently, they have attracted
attention for identifying the location and intensity of the source of harmful chemical sub-
stances or pollutants released into the environment [1, 2]. In low-Reynolds-number flows,
where molecular diffusion is dominant, spatial continuity of the chemical distribution and
low advection velocities allow for search strategies based on the local concentration gradi-
ent to be successful. For high-Reynolds-number flows, a released agent is quickly dispersed
into the turbulent medium, and the tasks of locating and characterizing the source become
much more challenging [3].

Search strategies have been proposed in order to identify the location and intensity of a
source using signals obtained by a series of sensors placed within the fluid domain [4, 5].
These methods can be classified into two categories: adaptive and model-based algorithms.
Adaptive search algorithms are based on learning the relationship between the source char-
acteristics and the sensor signals treating the fluid system as a black box [6, 7]. Most of
them are inspired by the trajectories of animals and insects when searching for food or mat-
ing [8–10]. On the other hand, model-based approaches (e.g., Bayesian inference methods,
minimum information entropy criteria, optimal sensor positioning, etc. [11–17]) extend the
prediction capability of classical adaptive algorithms by explicitly incorporating the scalar
transport equation. While such model-based algorithms are found to perform very well in
simple and controlled environments, it is still uncertain how they perform in realistic sce-
narios (e.g. three-dimensional flows and complex geometries with obstacles) and in the
presence of measurements errors [18]. Moreover, their superiority with respect to the intu-
itive nature-inspired adaptive approaches remains to be verified [19]. Meanwhile, recent
rapid progress of numerical simulation techniques for turbulent flows and associated scalar
transport enable detailed reproduction of the spatio-temporal evolution of complex flow and
scalar fields. Utilizing such datasets, it is possible to achieve significant advancement in the
efficacy of model-based scalar source identification algorithms.

The present work develops a model-based source characterization strategy, where the
reconstruction of the time-trace of the source intensity is formulated as a variational prob-
lem. The algorithm requires the solution of an adjoint field in order to minimize a cost
function representing the error between measured and estimated signals. We assume that
the source location is known and the signal from a series of sensors placed in the flow field
is used to iteratively correct the source intensity based on the adjoint field of the original
physical (forward) problem.

The developed algorithm is tested in one of the most simplest canonical flows, namely,
a fully developed turbulent channel flow. This flow configuration is chosen because huge
information on turbulent statistics and flow structures has been accumulated during the last
few decades. While the flow field is close to homogeneous turbulence around the center
of the channel, it becomes more anisotropic due to strong shear with approaching the wall.
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This allows us to evaluate the estimation performance in a systematic way by changing the
distance of sensor and scalar source from the wall.

We consider an ideal situation in which the complete information of the entire velocity
field in the search domain is known. First, we perform a forward simulation of turbulent
scalar transport from a prescribed scalar source. Then, we record the time evolution of the
concentration at the sensor location downstream, as well as the complete velocity field at
each time step. In the second step, we attempt to reconstruct the scalar source intensity
based on the sensor signal and the velocity information.

Throughout this work, uncertainties in the velocity field are not taken into account. Even
in such an ideal situation, scalar source estimation is a difficult task, since the information
on the scalar source is dispersed and diffused in space due to turbulent transport and molec-
ular diffusion. The objective of the present study is to clarify how the rapid variation in time
of the scalar source intensity and the source-sensors distance affect the estimation perfor-
mance. In addition, we also discuss how the proximity of the source to the wall can affect
the accuracy of the estimation.

2 Problem Setup

In the present study, a fully developed turbulent channel flow is considered. All variables
are non-dimensionalized by the friction velocity uτ and the half height of the channel h,
while superscript (.)+ is used to indicate quantities expressed in wall units. The computa-
tional domain is shown in Fig. 1. The streamwise, wall-normal and spanwise directions are
denoted x, y and z, respectively. The dimensions of the computational domain are 5π and
π in the x and z directions. A scalar source is present inside the channel and a series of
k sensors are placed in the region downstream of the source in order to estimate its inten-
sity. We consider the origin of our coordinate system to be on the bottom wall, as shown
in Fig. 1. The source and the kth sensor positions are xs and xm,k . The location of the kth
sensor relative to the source is given by xm,k − xs .

We consider a Newtonian and incompressible fluid. The flow field is governed by the
Navier-Stokes and continuity equations,

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ 1

Reτ

∂2ui

∂xj ∂xj

,
∂uj

∂xj

= 0. (1)

5 hh

x

y

z

2h
Source

Sensors

Fig. 1 Schematic of the computational domain and the coordinate system
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The flow is driven by a constant pressure gradient. Although the Reynolds number of
practical turbulent flows is typically high, we consider a moderate-Reynolds-number flow in
order to validate and assess the present source reconstruction strategy. The friction Reynolds
number is Reτ ≡ uτh/ν = 150, where ν is the kinematic viscosity. For the velocity field,
periodic boundary conditions are applied in the streamwise and spanwise directions, while
no-slip conditions are imposed at the top and bottom walls.

Figure 2 shows the time-averaged streamwise velocity profile u and the root-mean-
square (RMS) value of the three velocity components compared with reference data from
[20] at the same Reτ . The good agreement between the present results and the reference
data validates the present simulation.

Assuming a passive scalar, the scalar field c(x, t) is governed by the following advection-
diffusion equation,

∂c

∂t
+ uj

∂c

∂xj

= 1

Pe

∂2c

∂xj ∂xj

+ φ(t)δ(x − xs), (2)

where Pe is the Péclet number, δ(.) is the Dirac’s delta function, and φ(t)δ(x − xs) repre-
sents a scalar source located at xs with an intensity that changes in time according to φ(t).
In the most general case, the spatial function δ(.) centered at xp is an arbitrary function with
compact support which satisfies,

∫
�

g(x)δ(x − xp)d� = g(xp) and

∫
�

δ(x − xp)d� = 1,

where g(x) is a generic function of space and � indicates the entire computational volume.
In the present work we used a steep Gaussian function that satisfies the two conditions
above and with a support extending over a few grid points in order to avoid the Gibbs effect
that would arise by using a spatial delta function.

Fig. 2 Fundamental turbulent statistic in the present flow condition. At left: Mean velocity profile (con-
tinuous line) plotted together with the y+ curve and Nijuradse’s logarithmic law (dashed line). At right:
root-mean-square values of fluctuating velocity components. Symbols and continuous lines represent
respectively the present results and those from database [20] at the same Reτ
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The following boundary conditions are imposed on the scalar field,

c(x, t = 0) = 0; ∇c · n

(
≡ ∂c

∂xj

· nj

)
= 0 at ∂�, (3)

where ∂� and n represent the channel walls and their outward normal vectors, respectively.
The no-scalar-flux boundary condition at the wall in Eq. 3 at right has been imposed in order
to minimize the effect of the wall boundaries on the scalar field. In addition, In the stream-
wise and spanwise directions the scalar is removed in proximity of the domain boundaries
in order to avoid it from re-entering at the opposite side by virtue of the periodic conditions
in these two directions.

We consider the following time trace of the source,

φ(t) = 1

2
{1 + cos (2πf t + π)} . (4)

The scalar source intensity is normalized by its maximum value. It should be noted that
since the scalar transport equation (2) is linear, the amplitude of the scalar source does not
affect the present results. Despite the fact that the present approach does not pose any con-
strain on the time trace of the source profile to be reconstructed, we use a single sinusoidal
wave for φ(t). This choice provides the opportunity to assess how the accuracy of the scalar
source estimation is affected by the frequency of the source and the streamwise separa-
tion of the sensor. We also note that any waveform of φ(t) can be expressed as a linear
superposition of sinusoidal waves.

The Péclet number is chosen to be Pe = Reτ , which means the Schmidt Number is
set to be unity, i.e., Sc = Pe/Reτ = 1. The flow and scalar fields are solved using a
pseudo-spectral code for DNS of channel flow. For the spatial discretization, Fourier modes
are employed in the streamwise and spanwise directions, while Chebyshev polynomials are
used in the wall-normal direction. The number of modes employed in the streamwise, wall-
normal and spanwise directions are 128 × 65 × 64 respectively, which yields grid spacings
	+

x ≈ 12, 0.08 < 	+
y < 4.9, 	+

z ≈ 5. The present numerical scheme and the grid
resolution have been previously validated for DNS of turbulent scalar transport [21].

In general, both the source intensity and location are unknown. Here, however, we
assume that the source location is given, so that only the time trace of its intensity φ(t) is
sought. Using the signal collected on a single sensor located at xm (or multiple sensors with
positions xm,k) we aim to identify the function φ(t) which provides a signal that matches
the measured one at the sensor location.

3 Characteristics of the Scalar Plume in the Forward Scalar Transport
Problem

Figure 3 shows a series of contours for the scalar field plotted in the x − y plane. In these
figures, the release intensity is constant in time, and the source is placed at y+ = 150 (A),
y+ = 50 (B) and y+ = 10 (C) from the bottom wall. For each source location, the top
panel shows an instantaneous view of the scalar field c, the middle panel shows the time-
average of the scalar field c and the third panel shows contours of the RMS value of the
scalar fluctuation crms .
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Fig. 3 Visualization of the scalar field released from a source with constant intensity placed at different
distances from the bottom wall: y+

s = 150 (A), y+
s = 50 (B), y+

s = 10 (C). For each case three images are
shown, from the top to the bottom: contour of the instantaneous scalar field c, of the time-averaged scalar
field c and of scalar fluctuation crms . Contours are taken on the x - y plane. White dots are used to mark the
source location

Due to turbulent transport, the scalar released is rapidly dispersed though the entire flow
field. The plume, initially continuous in proximity of the source, separates into smaller
patches which are transported along different paths downstream. Bigger patches break up
into smaller ones due to the turbulent mixing, and the intensity of smaller patches decreases
by the effect of molecular diffusion, up to the point where only a thin scalar trace remains.
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The original signal leaving the source location therefore diminishes as it is advected within
the flow.

Turbulent scalar transport phenomena can be characterized by two distinct processes,
namely, dispersion and diffusion. The first effect causes the signal, which is initially con-
centrated at a single point, to be dispersed inside the channel wider volume. The second
effect works locally, and damps the scalar field fluctuations at microscopic scales. It is
important to clarify that the first phenomenon is simply the spatial dispersion of the source
signal: if we are able to collect all the generated patches, we do not incur any deterioration
of the original source signal. The second phenomenon, on the other hand, being the result
of mixing at molecular level implies an attenuation of the source signal. In this case, we
face an irreversible deterioration process, and we are not able to reconstruct the original
source intensity time-trace, but only time-averaged properties of the source. This difference
between dispersion and diffusion is captured in the scalar transport equation (2). The for-
mer is attributed to the advection term, while the latter to the molecular diffusion term. In
the limit of an infinitely large Schmidt number, the latter effect can be neglected, so that the
scalar is dispersed only due to the advection term. In such an ideal case, although the scalar
patches would spread within the flow domain, the scalar concentration of each fluid ele-
ment is maintained in time, so that the source information can in principle be reconstructed.
It should be emphasized, however, that the two phenomena are generally coupled in real-
ity. Therefore, it is possible that locally increased turbulence mixing causes break-up into
small-scale scalar patches and the stretching of these patches, and consequently enhances
the effectiveness of molecular diffusion.

While the instantaneous contours of c in Fig. 3 capture the first phenomenon, the effect
of diffusion can be seen by considering the contours of the RMS value of scalar fluctu-
ation crms . As the distance from the source increases the average intensity of the scalar
decreases, together with the level of fluctuations measured by crms . In the case of a source
with time-dependent intensity, we can expect to loose details of the source intensity pro-
file, in particular high-frequency fluctuations, and to be able to reconstruct accurately the
intensity profile of a rapidly changing source only in the region where crms is appreciable.

Different locations in turbulent channel flow are dominated by different transport mech-
anisms. This is evident in Fig. 3 showing how the instantaneous plume shape, the average
c field and crms contours change when the source location moves closer to the wall (from
A to C). While in the center of the channel transport is dominated by the motion of larger
eddies and the dispersion of the plume, close to the wall the increased mixing leads to the
occurrence of a region where diffusion effects become stronger. As a result, the extension
of the plume of crms is smaller (C). Scalar fluctuations are indeed attenuated faster than the
case with the source at the center of the channel (A).

While the effect of scalar dispersion on the source reconstruction process can be
mitigated by collecting more information in the domain (i.e. adding more sensors), the
deterioration of the source signal due to diffusion is more difficult to overcome, and the
source-sensor distance must be reduced in order to increase the sensor sensitivity to the
source.

4 Adjoint Approach for Estimation of the Scalar-Source Intensity

Identification of the source intensity history φ(t) can be formulated as a minimization prob-
lem of the following cost functional J , representing the difference between the predicted
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scalar concentration c(xm,k, t) at the kth sensor location xm,k and the measurement M(t),
over the time horizon t ∈ (0, T ),

J ≡
∫ T

0

1

2

∑
k

{
c(xm,k, t) − M(t)

}2
dt. (5)

An additional regularization term, penalizing the high-frequency temporal fluctuations
of the source, is often implemented in the cost function above for similar inverse problems.
The definition of the form and the weighting coefficient of this term, however, is not trivial,
and selecting a not suitable value can translate in applying a low-pass frequency filter to
the source, with the risk of canceling frequency contents of the source profile that we want
to reconstruct. Since there is no systematic way of determining this term, and considering
that our main purpose is to clarify how the source pulsation frequency affects the estimation
performance, we decided to not include any regularization term, so that the estimated source
intensity is purely determined by the sensing signal.

Minimizing J under the constraint of Eq. 2 is equivalent to minimizing the Hamiltonian,

H = J −
∫ T

0

∫
�

c∗
{

∂c

∂t
+ uj

∂c

∂xj

− 1

Pe

∂2c

∂xj ∂xj

− φ(t)δ(x − xs)

}
dtd�. (6)

Here, c∗(x, t) corresponds to a Lagrange multiplier and is called the adjoint field. In
order to consider variations due to a small change in the source intensity φ(t), we introduce
the Fréchet differential,

H ′ = DH

Dφ
φ′, J ′ = DJ

Dφ
φ′, c′ = Dc

Dφ
φ′, (7)

where the prime indicates a perturbation caused by an infinitesimal change in φ. Applying
Fréchet differential to Eq. 6, we obtain

H ′ = J ′ −
∫ T

0

∫
�

c∗
{

∂c′

∂t
+ uj

∂c′

∂xj

− 1

Pe

∂2c′

∂xj ∂xj

− φ′(t)δ(x − xs)

}
dtd�. (8)

Applying integration by parts to Eq. 8, we reach the following expression:

H ′ = c′
〈{

∂c∗

∂t
+ ∂c∗uj

∂xj

+ 1

Pe

∂2c∗

∂xj ∂xj

+
∑

k

Erk(x, t)δ(x − xm,k)

}
+ φ′c∗δ(x − xs )

〉
+ B,

(9)
where Erk(x, t) = c(xm,k, t) − M(t) is the error of the predicted scalar at the sensor,

c(xm,k, t), with respect to the true measurement, M(t). The error is expressed as a function
of both x and t to be included in the spatio-temporal integral. The brackets < . > indicate
the spatio-temporal integration over � and t ∈ (0, T ). The last term in Eq. 9, namely B, is
a boundary term,

B =
〈
−∂

(
c∗c′)
∂t

− ∂
(
c∗c′uj

)
∂xj

+ 1

Pe

∂

∂xj

(
c∗ ∂c′

∂xj

− c′ ∂c∗

∂xj

)〉
. (10)

It should be noted that B has a divergence form, so its time-volume integration is equiv-
alent to the boundary integral. As with the scalar field c, the adjoint scalar is also removed
in the streamwise and spanwise directions in proximity of the domain boundaries and there-
fore both c and c∗ are equal to zero at these locations. Considering the boundary conditions
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for Eq. 3 and the fact that u is zero at the walls, in order for B to vanish it is required to
apply the following initial and wall boundary conditions:

c∗(x, t = T ) = 0, ∇c∗ · n = 0 at ∂�. (11)

By setting the first term in Eq. 9 to zero, the following adjoint equation for the scalar
field is obtained,

∂c∗

∂t
+ ∂(c∗uj )

∂xj

= − 1

Pe

∂2c∗

∂xj ∂xj

−
∑

k

Erk(x, t)δ(x − xm,k). (12)

By introducing the new time coordinate, t∗ = T − t , the above equation can be recast
as a forward problem in t∗, with positive diffusion. In terms of the new time variable, the
adjoint equation becomes,

∂c∗

∂t∗
− ∂(c∗uj )

∂xj

= 1

Pe

∂2c∗

∂xj ∂xj

+
∑

k

Erk(x, t)δ(x − xm,k) (13)

which represents the advection-diffusion equation for the adjoint field c∗, with similar com-
putational complexity as the forward problem for c, and using the same velocity data with
opposite sign. When the adjoint equation (13) is solved subject to the above initial and
boundary conditions, Eq. 9 becomes

H ′ = 〈
φ′c∗δ(x)

〉
. (14)

In order to ensure that H ′ decreases, the scalar source is updated according to the
following formula,

φ′(t)
(
≡ φn+1(t) − φn(t)

)
= −αc∗(0, t), (15)

where α is a positive coefficient. A straightforward approach to determine the optimal value
of the coefficient α is presented in Appendix A.

As a first step, a series of forward simulations of scalar transport from point sources with
different pulsating frequencies are carried out. The resultant reference signal at each sensor
location is obtained. These data represent the measurement profiles M(t) to be matched.
The full spatio-temporal data of the velocity field in the computational domain throughout
an entire time horizon is also stored during this initial run and used in all subsequent ones
(for both forward and adjoint scalar field calculations). No measurement errors are included
in this study.

Given an arbitrary initial source profile φ(t)0, the herein presented algorithm requires
between 4 and 8 iterations (one iteration entails a forward-adjoint loop) to accurately recon-
struct the source profile. The total simulated time horizon is equal to 3 time units, and it
has been chosen in order to include at least 6 full periods of the source profile at the lowest
frequency considered (f = 2).

5 Results and Observations

5.1 Single sensor

We first consider the results for a single sensor. A single source is located at the center of
the channel, i.e., (xs, ys, zs) = (1, 1, π/2), which corresponds to a distance from the walls
equal to y+

s = 150. The sensor is placed directly downstream of the source. The source
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intensity pulses with the sinusoidal profile given by Eq. 4. Both the source pulsating fre-
quency f and the source-sensor distance xm−xs are systematically changed, f = 2, 4, 8, 16
and xm − xs = 3, 6, 9, 12, in order to assess the effect of these two parameters on the
performance of our algorithm.

Figure 4(A) shows the scalar field in the x - y plane at the center of the channel in the
forward (physical) simulation with the source pulsating frequency of f = 4. The contour
is a visualization of the instantaneous scalar field taken at time t = 2 and clearly shows
how the scalar is dispersed and diffused by the turbulent flow field. Below in the same
figure, contours of the instantaneous adjoint fields generated by each sensor at xm −xs = 3,
6, 9 and 12 from the source are shown in Fig. 4 (B - E) respectively. Time is equal to
t∗ = T − 2, and all figures correspond to the first iteration of our algorithm. The adjoint
field appears as a series of negative scalar patches released from the sensors and advected
upstream by the same velocity field of the reference case with an opposite sign (see, Eq. 13).
As these patches cross the source location, they provide the time trace of the gradient of
φ(t) that is used to update the source profile after each forward-adjoint loop (see, Eq. 15).
With subsequent iterations, the error between measured and estimated signals at the sensor
location progressively decreases, and therefore the intensity of the adjoint scalar field also
reduces. When the error vanishes, the adjoint scalar field is also nullified (see, Eq. 13).

Figure 5 shows the time traces of the scalar source and sensor signals obtained for the
same case with f = 4. At left the true source profile (dashed line) is compared with the
reconstructed profile (continuous line), while at right the reference sensor signal (dashed
line) is compared with the one obtained by performing a forward simulation using the
reconstructed source (continuous line). From top to bottom, the source-sensor distance is
increased xm − xs = 3, 6, 9 and 12. The intensity of the original scalar source is cap-
tured only for certain time instants, and the estimated scalar source contains a higher
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Fig. 4 Contour of scalar field c in the x - z plane at the center of the channel in the case of f = 4. (A):
reference forward scalar field at t = 2. (B)-(E): adjoint scalar field c∗ generated in the first iteration process
at sensor locations of xm − xs = 3 (B), 6(C), 9(D), 12(E). Time is t∗ = T − 2. Source and sensor positions
are marked with yellow dots.
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Fig. 5 Source profile and sensor signal for the case f = 4. From the top to the bottom, the distance sensor-
source increases as xm − xs = 3, 6, 9 and 12. At left: comparison between the true sinusoidal source profile
(dashed line) and the estimated source profile (continuous line); at right: comparison between the measure-
ment (continuous line) and reconstructed (dash line) sensor signal. Only data within the time frame t = 1 - 2
are shown

frequency noise. Since measurement and modeling errors are not part of this calculation, the
observed estimation error can be attributed to the dispersion and diffusion effects discussed
in Section 3.

At the right side of Fig. 5, where the reference sensor signal is compared with the esti-
mated one, we observe very good agreement between the two profiles. On one hand, this
confirms that our algorithm is correctly modifying the source in order to match the reference
data. On the other hand, this observation supports the more important conclusion that, with
only one sensor available, different scalar source profiles can give a similar signal at the
sensor location. In particular, it is clear that for specific time instants the reconstructed time
trace of the source intensity is very low compared to the true profile despite the fact that the
signal at the sensor location matches the reference sensor profile. This is because the scalar
patches released at these particular instants do not pass by the sensor location, so that no
significant sensor signal is obtained. In such cases, no clue regarding the source information
can be obtained, and therefore the source intensity is not accurately reconstructed.

Figure 6 shows at left the frequency spectra of the reconstructed source traces, Eφ(f ),
and at right the spectra of the reference signals at the sensor, Es(f ), for the different xm−xs

considered with fixed f = 4. The mean value has been subtracted from the data before the
spectral analysis in order to remove the component at zero frequency. We can clearly see
that the single frequency f = 4 carried by the original sinusoidal source profile is accom-
panied by a wider range of frequencies. However, it is particularly interesting to note that,
while the intensity of this component steadily decreases in the sensor signal with increasing
distance xm, it remains prominent in all the reconstructed source profiles. This underlines
how our algorithm is able to reconstruct the main frequency of the true source intensity
profile despite the deterioration of the signal at the sensor location for increasing xm.
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Fig. 6 Frequency spectra of the reconstructed source profiles (left) and of the reference sensors signals
(right) generated by the true source. Source frequency f = 4. In the figure on the left, a circle has been used
to represent the single frequency content of the true source

In order to quantitatively evaluate the estimation performance for each combination
of source frequency and source-sensor distance, we introduce two performance indices,
namely, the correlation coefficient and L2-norm between the true (φtrue) and reconstructed
(φrec) source intensity profiles. These two quantities are defined as,

Rφtrueφrec ≡
(∫

(φtrue(t) − φ̄true)(φrec(t) − φ̄rec)
)2

∫
(φtrue(t) − φ̄true)2

∫
(φrec(t) − φ̄rec)2

L2,φtrueφrec ≡ 1

T

∫ T

0
‖φtrue(t) − φrec(t)‖2,

where the overline indicates time-average quantities.
In Fig. 7, the correlation coefficient (left) and L2-norm of the error (right) are presented

as a function of x − xs and f . Along the horizontal axis the source frequency f changes
from 2 to 16, while on the vertical axis the sensor distance xm increases from 3 to 12. It is
clear how the estimation capability decreases with increasing the frequency of the source
and the source-sensor distance. Both parameters contribute to enhancing the dispersion of
the scalar before it reaches the sensor. However, the contours shown in Fig. 7 underline that
when x − xs is short, the decrease in estimation performance is mainly influenced by the
source-sensor distance (contour lines are nearly horizontal for xm = 3 - 6), while as xm is
further increased both parameters jointly influence the estimation performance.

In order to distinguish between the effects of the source-sensor distance and the pulsating
frequency on the estimation performance, we plot in Fig. 8 the time-averaged concentra-
tion and scalar fluctuation along the line connecting the source and sensor. Note that these
statistics are integrated for a sufficiently long period to ensure their convergence. While
the average scalar concentration can be directly correlated to the probability to catch a sig-
nal at a given location, the RMS value of scalar fluctuations is a measure of the transient
content of the scalar signal, and thus the portion of the signal that contains the time vari-
able information about the source. The average scalar concentration is independent of the
source frequency and decreases rapidly moving away from the source. This causes a rapid
deterioration of the present estimation performance due to the lack of signal at the sensor.
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Fig. 7 Correlation coefficient (left) and L2-norm (right) of true and reconstructed source intensity profile.
Source frequency changes along the horizontal axis as f = 2, 4, 8 and 16, while along the vertical axis the
source-sensor distance increases as xm − xs = 3, 6, 9 and 12. Red marks indicate the performed cases

The effect of the source frequency, on the other hand, appears only in the scalar fluctuation
shown in Fig. 8 at right, and becomes relatively larger with increasing the source-sensor dis-
tance. This can be attributed to the fact that the scalar patches released at a higher frequency
have smaller spatial scales, and this enhances the scalar dissipation. The present result sug-
gests that slight deterioration of the estimation performance with increasing the pulsation
frequency observed in Fig. 7 can be linked to the lower scalar fluctuations, or larger scalar
dissipation, in forward simulation.

Another interesting comparison between the true and reconstructed source profiles can
be made by comparing their time-averaged values. While the correlation coefficient and
L2-norm can provide a measure of the discrepancies between the shapes of the true and

Fig. 8 Statistics of the scalar field plotted along a line connecting the source and sensor for different source
frequencies f . Left: time-averaged scalar concentration. Right: RMS value of scalar fluctuation
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reconstructed profiles, the average value is a measure of the amount of scalar released per
unit time from the source. If we imagine the scalar to be a pollutant for example, it is
clear how the ability to estimate this quantity is crucial in order to identify its impact on
the surrounding environment. In the range of source pulsation frequencies considered, this
average intensity is not sensitive to the source frequency, and decreases with increasing
source-sensor distance. It varies from 0.38 for xm − xs = 3 down to 0.28 for xm − xs = 12.
Since the average of the true profile is 0.5, the estimated amount of released scalar is 24 %
to 44 % lower than its actual value. This large error can be attributed to the dispersion of the
scalar patches by the turbulent transport once released from the source. The measurement
by a single sensor is not sufficient to accurately estimate the amount of released scalar. This
problem can be overcome by introducing multiple sensors as discussed below.

5.2 Multiple sensors

The algorithm presented in Section 4 can make use of the measurements from multiple sen-
sors without additional computational cost relative to the case with one sensor. The adjoint
equation to be solved in this case will simply include multiple forcing terms of the right
hand side, one for each sensor. Here, we examine how the use of multiple sensors can be
beneficial when reconstructing the source intensity profile using measurements far away
from the source.

We consider a series of 17 sensors placed at a fixed downstream distance xm − xs = 12
and distributed in the cross-flow plane. We place multiple sensors within the scalar wake
downstream of the source such that they collect most of the released scalar. A single sensor
is then placed directly downstream of the source. Then, a first set of sensors is placed around
the first one plus a second set in the outer region of the scalar plume. The pattern used for
the 17 sensors is shown in Fig. 9, and the detailed information on the sensor locations can
be found in Appendix B.

Figure 9 shows an instantaneous visualization of the forward and ajoint field. The
source pulsating frequency is set to be f = 4. Iso-surfaces of the instantaneous scalar
field c from the reference forward simulation and the adjoint field c∗ for the first back-
ward simulation are shown in blue and red, respectively. Each scalar patch crossing a
sensor location in the forward simulation at time t defines a forcing term in the adjoint
equation at the corresponding sensor location in the backward simulation at time t∗ = T − t

(see Eq. 13).
Figure 10 compares the true and reconstructed source intensity profiles after 6 iterations.

The reconstructed source intensity profile agrees the true one better than that estimated by
a single sensor when f = 4, xm − xs = 12, shown in Fig. 5 in Section 5.1. The correlation
coefficient of the reconstructed and true profiles is 0.832 while the L2-norm of the error is
0.152. Estimation of the amount of scalar released is 0.455 and the prediction error is 9 %,
which is also improved with respect to the single sensor case.

By using multiple sensors the amount of information collected from the flow field
increases. The use of multiple sensors increases the probability of intercepting scalar
patches that would be missed by a single sensor.

5.3 Source placed at different channel heights

In this section we investigate the performance of the algorithm when the source is placed
at different channel heights. While large-scale eddies dominates turbulent scalar dispersion
around the center of the channel, moving closer to the wall, smaller-scale eddies become
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Fig. 9 Iso-surfaces of the forward scalar field (blue) produced by the true source profile, and adjoint field
(red). Source location is y+

s = 150 from the bottom wall. In the figure at the bottom right: locations of the
17 sensors on the cross-flow plane at x − xs = 12

more dominant and the presence of near-wall turbulence structures changes the transport
mechanism. They influence the present estimation performance.

We first consider two heights: y+
s = 50 and y+

s = 10. The first location is closer to
the wall but still outside the buffer layer, while the second is inside it. We again use 17
sensors at the downstream distance of 12 from the source, with a stencil similar to the one
used in Section 5.2 maintaining one sensor directly downstream of the source with an inner
and outer rings of sensors, but we deform the stencil slightly in order to fit it close to the
wall. Images of the instantaneous scalar fields and source profiles comparisons are shown
in Fig 11, 12 for the case with y+

s = 50 and Figs 13, 14 for the case with y+
s = 10. The

pulsating frequency of the source is set to be f = 4.
In Figs. 11 and 13 the iso-surfaces of the reference forward scalar field c and of the

backward adjoint field c∗ are depicted in blue and red, respectively. In the first case, with
the source placed at y+

s = 50 from the bottom wall, the different scalar patches, released
at each pulsation of the source, are still separated and identifiable. In the second case, with

Fig. 10 Comparison between the true (dashed line) and reconstructed (continuous line) source profiles,
f = 4, multiple sensors, source location is y+

s = 150
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Fig. 11 Iso-surfaces of the forward scalar field (blue) produced by the true source profile, and adjoint field
(red). Source location is y+

s = 50. In the figure at the bottom right: locations of the 17 sensors on the
cross-flow plane at x − xs = 12

the source in the buffer layer, the increased stretching and low velocities close to the wall
enhance diffusion of the original signal, with the scalar patches becoming indistinguishable.
This change in the transport mechanism that occurs close to the wall causes an irremediable
loss of information about the source intensity history.

In Figs. 12 and 14 the true and reconstructed source intensities are compared. In Fig. 12,
even though the source has been moved towards the wall, at y+

s = 50, the main scalar
transport remains dominated by the larger eddies. As a result, the effect of the wall is still
inappreciable, and does not adversely affect the performance of our algorithm. The corre-
lation coefficient of the true and reconstructed source profiles is kept high as 0.808 and the
L2-norm error is as low as 0.157, while the average intensity of the reconstructed source is
0.476, within 5 % from the true value (Fig. 13).

In Fig. 14 on the other hand, it is clear that relocating the source down inside the buffer
layer changes the transport mechanism and deteriorates the original signal, loosing de facto

Fig. 12 Comparison between the true (dashed line) and reconstructed (continuous line) source profiles,
f = 4, multiple sensors, source location is y+

s = 50
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Fig. 13 Iso-surfaces of the forward scalar field (blue) produced by the true source profile, and adjoint field
(red). Source location is y+

s = 10 from the bottom wall. In the figure at the bottom right: locations of the 17
sensors on the cross-flow plane at x − xs = 12

any chance to reconstruct the time trace of the original source intensity. The poor estimation
performance is quantified by the correlation coefficient, Rφφ = 0.151 and the L2-norm,
L2 = 0.326. The time-average of the reconstructed source intensity is however 0.513, which
is within an error of 3 % of the true value. This means that despite the fact that we are
collecting sufficient scalar to be able to estimate correctly the average source intensity, the
signal reaching our sensor has deteriorated to the point where an accurate reconstruction of
the true time trace of the source becomes impossible.

In order to identify a possible scaling of the algorithm performance as a function of the
distance from the wall, the performance of the algorithm is plotted along the channel height
in Fig. 15. Additional calculations have been carried out placing the source at y+

s = 20
and y+

s = 30, always using 17 sensors. The resultant correlation coefficient is normalized

Fig. 14 Comparison between the true (dashed line) and reconstructed (continuous line) source profiles,
f = 4, multiple sensors, source location is y+

s = 10
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by the value obtained when the sensor and source are located at the center of the channel
as Rφφ/Rφφ y+=150. At left, the performance is compared with the weighted average of the
RMS values of scalar fluctuation at all sensor locations. This is defined as:

Crms =
∑

kcrms(xm,k) ∗ c(xm,k)∑
kc(xm,k)

. (16)

As the source is moved close to the wall, Crms decreases. This causes deterioration of
the algorithm performance. In Fig. 15 at right, a comparison between the same performance
curve and a measure of the mean shear 1 − du/dy+ is presented. Due to the normalization
by the wall-unit, its value is 0 at the wall and 1 at the center of the channel. The decrease
in performance as we approach the wall is qualitatively similar to the trend in 1− du/dy+.
The mean shear stretches the scalar patches that becomes more and more intense as the
source approaches the wall. As a result, molecular diffusion is more effective close to the
wall. This effect should be the main cause of decrease in performance close to the wall.
In addition, the reduced advection velocity close to the wall increases the time required to
cover the distance between the source and the sensors, allowing for a longer time for the
molecular viscosity to degrade the scalar signal.

A similar effect of the mean shear on the velocity and scalar fields close to the wall is
presented in [22] and [23], where it is shown that the mean shear enhances viscous/scalar
dissipation so that high-frequency fluctuations are suppressed, whereas only low-frequency
fluctuations can penetrate the near-wall layer.

5.4 Measurement errors

So far, we have investigated the estimation performance without measurement and modeling
errors. Although detailed analyses of these uncertainties are left for future work, we briefly
address here how the measurement noise affects the present estimation performance. This

Fig. 15 Comparison between the estimation performance with turbulence properties. The correlation coef-
ficient between the reconstructed and true source profiles are plotted by solid squares together with the RMS
values of scalar fluctuation (left) and the mean shear (right). All variables are normalized by the values at the
channel center



Flow Turbulence Combust (2016) 97:1211–1233 1229

Fig. 16 Comparison between the unperturbed and perturbed signal for the sensor with maximum inten-
sity (left) and comparison between the reconstructed source intensity profile when using unperturbed and
perturbed measurements (right). Only a limited time frame of the entire time horizon considered is shown

was done by adding random noise with normal distribution to all 17 sensor signals. The
RMS value of the noise is set to be 20 % and 40 % of the maximum of the averaged scalar
signals among 17 sensors. For this analysis, a source with frequency f = 4 was located at
the center of the channel (y+ = 150), and the same arrangement of 17 sensors previously
adopted for this configuration was used (see Appendix B).

The results are presented in Fig. 16. At left, the unperturbed and perturbed signals for the
sensor with maximum time-averaged intensity are shown. A large separation in frequency
can be confirmed between the added noise and the original signal. At right, the recon-
structed source profile obtained using the unperturbed measurements is compared with the
one obtained with perturbed signals. As can be seen, the effect of measurement errors on the
reconstructed signal is not significant The correlation coefficient between the true source
and its reconstruction using unperturbed measurements is 0.874, and it decreases to 0.873
(< 1 %) and 0.805 (−8 %) in presence of the noise with its magnitude of 20 and 40 %,
respectively.

The proposed algorithm is therefore robust to high-frequency measurement errors (i.e.
noise), since high-frequency fluctuations in the adjoint scalar forcing term are rapidly
damped. It is interesting to contrast the effect of high frequency source terms in the adjoint
(measurement) and the forward (source) equations. In the adjoint, the rapid damping elimi-
nates measurement errors and enhances robustness of our algorithms. On the other hand, in
the forward problem the scalar signal from a rapidly oscillating source decays quickly and
is therefore difficult to reconstruct.

6 Conclusions

In the present work, we introduced an algorithm to reconstruct the time trace of the intensity
of a scalar source at a known location inside a fully developed turbulent channel flow. The
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time trace of source intensity was given by a sinusoid with different frequencies, and was
reconstructed using a series of sensors downstream.

While the reconstructed source profile can generate signals at the sensors locations that
perfectly match the measurements, the difference in the true and reconstructed source pro-
files indicates that part of the information on the scalar source is lost during turbulent
transport processes. The reconstruction performance is generally affected by two phenom-
ena: scalar dispersion and diffusion. The former represents convective transport which
separates an initially continuous plume into small scalar patches. The latter represents an
irreversible process caused by molecular diffusion that eliminates spatial inhomogeneities
in the scalar field.

In the single sensor case, the source reconstruction performance deteriorates when
increasing the source-sensor distance and the source pulsation frequency. While both these
parameters jointly cause a decrease in performance, the source-sensor distance dominates
when xm −xs < 6, whereas the effect of the pulsation frequency emerges only at larger dis-
tances. The rapid decrease in performance due to scalar dispersion can be correlated to the
rapid reduction in the average scalar concentration, while the effect of the source frequency
far from the source is due to the suppression of scalar fluctuations, which is enhanced with
increasing the pulsating frequency. The discrepancy between the time-averaged intensities
of the true and reconstructed source suggests that a single sensor cannot accurately estimate
the amount of scalar released. This is due to a large amount of scalar not crossing the sensor
location.

In order to mitigate the effects of dispersion, we examined how increasing the number
of sensors can reduce the loss of information. This does not require any additional compu-
tational cost for the proposed algorithm, since the use of multiple sensors translates only
into having multiple forcing terms in the adjoint field calculation. With multiple sensors the
source profile can be accurately reconstructed even with sensors located at large distances
from the source (x − xs = 12).

While the center of the channel is dominated by the turbulent transport realized by the
larger eddies, close to the wall the transport mechanism changes, and diffusion effects
become stronger since the advection velocity is low and the scalar patches are stretched
more significantly by the mean shear. In order to investigate the performance decrease
in this flow regime, additional simulations were performed placing the source inside the
buffer layer, at y+ = 10. In this configuration, when the sensors are far from the source
(x − xs = 12), it is not possible to reconstruct the source profile with sufficient accuracy.
The reconstruction of its average intensity, however, is still accurate.

The robustness of the algorithm to a random noise on the measurement has been verified.
In presence of high-intensity noise the correlation coefficient between the reconstructed and
true source profiles reduces with respect to the case that used unperturbed measurements by
less than 10 % only. A diffusive property of the adjoint equation helps in this case, damping
high-frequency fluctuations generated by noisy forcing terms.

We verified the effectiveness of the proposed algorithm, and evaluated how dispersion
and diffusion affects the accuracy of the source reconstruction. Loss of information due to
dispersion is mitigated by using additional sensors. Diffusion, on the other hand, leads to an
irreversible loss of information, and precludes the possibility of reconstructing accurately
the time-trace of the source.

The present study considers ideal situations, where the full velocity information is avail-
able. It is of great interest how the estimation performance is affected by uncertainties in
the velocity data. In addition, we assumed that the source location is given, whereas in
many applications it is unknown. The present estimation strategy can be extended to these
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problems. Moreover, the multiple sensors have been arranged in the present work in an
ad-hoc manner, and therefore an optimal arrangement should be sought in future work.
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Appendix A: Optimal Value of the Coefficient α

As shown in Eq. 15, c∗(0, t) provides only the direction to modify the current estimate of φ,
whereas the optimal amplitude α is unknown. However, we can exploit the linearity of the
scalar transport equation (2) to derive the optimal value of α with the following procedure:

– Assuming cn(xm,k, t) is the current estimate of the scalar field at the kth sensor location
(superscript n identifies the current iteration number), the error Erk(t) at the sensor is
given by the difference between the prediction and the measurement, i.e., Ern

k (t) =
cn(xm,k, t) − M(t).

– We solve the adjoint equation (13) with Ern
k (t) as a source term at each sensor location,

and the resulting adjoint field at the source location, c∗(0, t), is obtained.
– Instead of updating the source intensity in accordance with Eq. 15 using an ad-hoc value

of α, we first solve a forward equation (2) with scalar source term φ(t) = c∗(0, t) (i.e.
α = 1), and store the response c̃(xm,k, t) at the sensor location xs .

– With c̃(xs , t), the predicted concentration cn+1(xm,k, t) at the sensor location for an
arbitrary value of α can be expressed as,

cn+1(xm,k, t) = cn(xm,k, t) − αc̃(xm,k, t).

– Hence, the cost function J in the next time step (n + 1) is given by,

J n+1(t) =
∫ T

0

1

2

∑
k

{
cn+1(xm,k, t) − M(t)

}2
dt

=
∫ T

0

1

2

∑
k

{
cn(xm,k, t) − αc̃(xm,k, t) − M(t)

}2
dt

=
∫ T

0

1

2

∑
k

[
α2c̃(xm,k, t)

2 − 2αc̃(xm,k, t)
{
cn(xm,k, t) − M(t)

} + B
]
dt,

where B represents the terms that do not include α.
– The optimal value of α that minimizes J n+1 can then be determined from,

dJ n+1

dα
=

∫ T

0

∑
k

[
αc̃(xm,k, t)

2 − c̃(xm,k, t)E
n
r (xm,k, t)

]
dt = 0,

so that

αoptimal =
∫ T

0

∑
kc̃(xm,k, t)E

n
r (xm,k, t)dt∫ T

0

∑
kc̃(xm,k, t)2dt

. (17)

– The scalar source in the next iteration (n + 1) is therefore be updated in accordance
with Eq. 15 using the optimal value of α from Eq. 17
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Appendix B: Sensors Positions

The positions of the source and sensors for all considered cases are listed in this section.
The coordinates are expressed in accordance with the setup presented in Section 2 and
non-dimensionalized by the half height of the channel h.

Table 1 Source and sensor
positions for the case with one
sensor

xs ys zs

1.0000 1.0000 1.5708

xm,k ym,k zm,k

4.0000 1.0000 1.5708

7.0000 1.0000 1.5708

10.0000 1.0000 1.5708

13.0000 1.0000 1.5708

Table 2 Source and sensors positions for the case with multiple sensors. The same sensor pattern was used
for both cases with source at y+

s = 10 and y+
s = 20

y+
s = 150 y+

s = 50 y+
s = 30 y+

s = 10 & 20

xs ys zs xs ys zs xs ys zs xs ys zs

1.0 1.0 1.5708 1.0 0.3333 1.5708 1.0 0.2 1.5708 1.0 0.0667 1.5708

1.0 0.1333 1.5708

xm,k ym,k zm,k xm,k ym,k zm,k xm,k ym,k zm,k xm,k ym,k zm,k

13.0 1.0000 1.5708 13.0 0.0667 1.5708 13.0 0.0667 1.5708 13.0 0.0667 1.5708

13.0 1.0000 0.7854 13.0 0.0667 0.7854 13.0 0.0667 0.7854 13.0 0.0667 0.7854

13.0 1.0000 2.3562 13.0 0.0667 2.3562 13.0 0.0667 2.3562 13.0 0.0667 2.3562

13.0 1.5000 1.5708 13.0 0.3333 1.5708 13.0 0.2000 1.5708 13.0 0.5000 1.5708

13.0 1.5000 0.7854 13.0 0.3333 0.7854 13.0 0.2000 0.7854 13.0 0.5000 0.7854

13.0 1.5000 2.3562 13.0 0.3333 2.3562 13.0 0.2000 2.3562 13.0 0.5000 2.3562

13.0 0.5000 1.5708 13.0 0.7333 1.5708 13.0 0.5600 1.5708 13.0 0.2500 1.5708

13.0 0.5000 0.7854 13.0 0.7333 0.7854 13.0 0.5600 0.7854 13.0 0.2500 0.7854

13.0 0.5000 2.3562 13.0 0.7333 2.3562 13.0 0.5600 2.3562 13.0 0.2500 2.3562

13.0 0.7500 1.5708 13.0 0.2001 1.5708 13.0 0.1335 1.5708 13.0 0.1584 1.5708

13.0 0.7500 1.1781 13.0 0.2001 1.1781 13.0 0.1335 1.1781 13.0 0.1584 1.1781

13.0 0.7500 1.9635 13.0 0.2001 1.9635 13.0 0.1335 1.9635 13.0 0.1584 1.9635

13.0 1.2500 1.5708 13.0 0.5335 1.5708 13.0 0.3402 1.5708 13.0 0.3750 1.5708

13.0 1.2500 1.1781 13.0 0.5335 1.1781 13.0 0.3402 1.1781 13.0 0.2500 1.1781

13.0 1.2500 1.9635 13.0 0.5335 1.9635 13.0 0.3402 1.9635 13.0 0.2500 1.9635

13.0 1.0000 1.1781 13.0 0.3333 1.1781 13.0 0.2000 1.1781 13.0 0.0667 1.1781

13.0 1.0000 1.9635 13.0 0.3333 1.9635 13.0 0.2000 1.9635 13.0 0.0667 1.9635
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