
Lesion Mask-based Simultaneous
Synthesis of Anatomic and Molecular

MR Images using a GAN

Pengfei Guo1, Puyang Wang2, Jinyuan Zhou3,
Vishal M. Patel1,2, Shanshan Jiang3

1 Department of Computer Science, Johns Hopkins University, MD, USA
2 Department of Electrical and Computer Engineering, Johns Hopkins University,

MD, USA
3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA

sjiang21@jhmi.edu

Abstract. Data-driven automatic approaches have demonstrated their
great potential in resolving various clinical diagnostic dilemmas for pa-
tients with malignant gliomas in neuro-oncology with the help of con-
ventional and advanced molecular MR images. However, the lack of
sufficient annotated MRI data has vastly impeded the development of
such automatic methods. Conventional data augmentation approaches,
including flipping, scaling, rotation, and distortion are not capable of
generating data with diverse image content. In this paper, we propose a
method, called synthesis of anatomic and molecular MR images network
(SAMR), which can simultaneously synthesize data from arbitrary ma-
nipulated lesion information on multiple anatomic and molecular MRI
sequences, including T1-weighted (T1w), gadolinium enhanced T1w (Gd-
T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR),
and amide proton transfer-weighted (APTw). The proposed framework
consists of a stretch-out up-sampling module, a brain atlas encoder, a
segmentation consistency module, and multi-scale label-wise discrimina-
tors. Extensive experiments on real clinical data demonstrate that the
proposed model can perform significantly better than the state-of-the-art
synthesis methods.
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1 Introduction

Malignant gliomas, such as glioblastoma (GBM), remain one of the most ag-
gressive forms of primary brain tumor in adults. The median survival of patients
with glioblastomas is only 12 to 15 months with aggressive treatment [15]. For
the clinical management in patients who finish surgery and chemoradiation, the
treatment responsiveness assessment is relied on the pathological evaluations
[16]. In recent years, deep convolutional neural network (CNN) based medi-
cal image analysis methods have shown to produce significant improvements
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over the conventional methods [2, 6]. However, a large amount of data with rich
diversity is required for training effective CNNs models, which is usually un-
available for medical image analysis. Furthermore, lesion annotations and image
prepossessing (e.g. co-registration) are labor-intensive, time-consuming and ex-
pensive, since expert radiologists are required to label and verify the data. While
deploying conventional data augmentations, such as rotation, flipping, random
cropping, and distortion, during training partly mitigates such issues, the perfor-
mance of CNN models still suffer from the limited diversity of the dataset [18].
In this paper, we propose a generative network which can simultaneously syn-
thesize meaningful high quality T1w, Gd-T1w, T2w, FLAIR, and APTw MRI
sequences from input lesion mask. In particular, APTw is a novel molecular
MRI technique, which yields a reliable marker for treatment responsiveness as-
sessment for patients with post-treatment malignant gliomas [8, 17].

Recently Goodfellow et al. [5] proposed generative adversarial network (GAN)
which has been shown to synthesize photo-realistic images. Isola et al. [7] and
Wang et al. [14] applied GAN under the conditional settings and achieved impres-
sive results on image-to-image translation tasks. When considering the genera-
tive models for MRI synthesis alone, several methods have been proposed in the
literature. Nguyen et al. [13] and Chartsias et al. [3] proposed CNN-based archi-
tectures integrating intensity features from images to synthesize cross-modality
MR images. However, their inputs are existing MRI modalities and the diversity
of the synthesized images is limited by the training images. Cordier et al. [4]
used a generative model for multi-modal MR images with brain tumors from a
single label map. However, the input label map contains detailed brain anatomy
and the method is not capable of producing manipulated outputs. Shin et al.
[11] adopted pix2pix [7] to transfer brain anatomy and lesion segmentation maps
to multi-modal MR images with brain tumors. However, it requires to train an
extra segmentation network that provides white matter, gray matter, and cere-
brospinal fluid (CSF) masks as partial input of synthesis network. Moreover, it
is only demonstrated to synthesize anatomical MRI sequences. In this paper, a
novel generative model is proposed that can take arbitrarily manipulated lesion
mask as input facilitated by brain atlas generated from training data to simul-
taneously synthesize a diverse set of anatomical and molecular MR images.

To summarize, the following are our key contributions: 1. A novel condi-
tional GAN-based model is proposed to synthesize meaningful high quality multi-
modal anatomic and molecular MR images with controllable lesion information.
2. Multi-scale label-wise discriminators are developed to provide specific super-
vision on the region of interest (ROI). 3. Extensive experiments are conducted
and comparisons are performed against several recent state-of-the-art image syn-
thesis approaches. Furthermore, an ablation study is conducted to demonstrate
the improvements obtained by various components of the proposed method.

2 Methodology
Fig. 1 gives an overview of the proposed framework. Incorporating multi-scale
label-wise discriminators and shape consistency-based optimization, the gener-



Lesion Mask-based Synthesis of Anatomic and Molecular MRI 3

Fig. 1. An overview of the proposed network. (a) Generator network. (b) Multi-scale
Label-wise discriminators. Global averaging pooling is used to create the factor of 2
down-sampling input. (c) U-net based lesion segmentation module. We denote lesion
shape consistency loss as LC .

ator aims to produce meaningful high-quality anatomical and molecular MR
images with diverse and controllable lesion information. In what follows, we de-
scribe different parts of the network in detail.

Multi-modal MRI Sequence Generation. Our generator architecture is
inspired by the models proposed by Johnson et al. [9] and Wang et al. [14]. The
generator network, consists of four components (see Fig. 1(a): a down-sampling
module, an atlas encoder, a set of residual blocks, and a stretch-out up-sampling
module. A lesion segmentation map of size 256 × 256 × 5, containing 5 la-
bels: background, normal brain, edema, cavity caused by surgery, and tumor,
is passed through the down-sampling module to get a latent feature map. The
corresponding multi-model atlas of size 256 × 256 × 15 (details of atlas genera-
tion are provided in Section 3) is passed through an atlas encoder to get another
latent feature map. Then, the two latent feature maps are concatenated and are
passed through residual blocks and stretch-out up-sampling module to synthe-
size multi-model MRI slices of size 256 × 256 × 5.

The down-sampling module consists of a fully-convolutional module with 6
layers. We set the kernel size and stride equal to 7 and 1, respectively for the
first layer. For down-sampling, instead of using maximum-pooling, the stride of
other 5 layers is set equal to 2. Rectified Linear Unit (ReLu) activation and batch
normalization are sequentially added after each layer. The atlas encoder has the
same network architecture but the number of channels in the first convolutional
layer is modified to match the input size of the multi-model atlas input. The
depth of the network is increased by a set of residual blocks, which is proposed
to learn better transformation functions and representations through a deeper
perception [18]. The stretch-out up-sampling module contains 5 similar sub-
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modules designed to utilize the same latent representations from residual blocks
and perform customized synthesis for each sequence. Each sub-module contains
one residual learning block and a symmetric architecture with a down-sampling
module. All convolutional layers are replaced by transposed convolutional layers
for up-sampling. The synthesized multi-model MR images are produced from
each sub-model.

Multi-scale Label-wise Discriminators. In order to efficiently achieve large
receptive field in discriminators, we adopt multi-scale PatchGAN discriminators
[7], which have identical network architectures but take multi-scale inputs [14].
Conventional discriminators operate on the combination of images and condi-
tional information to distinguish between real and synthesized images. How-
ever, optimizing generator to produce realistic images in each ROI cannot be
guaranteed by discriminating on holistic images. To address this issue, we pro-
pose label-wise discriminators. Based on the radiographic features, original lesion
segmentation masks are reorganized into 3 ROIs, including background, normal
brain, and lesion. Specifically, the input of each discriminator is the ROI-masked
combination of lesion segmentation maps and images. Since proposed discrimi-
nators are in a multi-scale setting, for each ROI there are 2 discriminators that
operate on original and a down-sampled scales (factor of 2). Thus, there are in
total 6 discriminators for 3 ROIs and we refer to these set of discriminators as
D = {D1, D2, D3, D4, D5, D6}. In particular, {D1,D2},{D3,D4}, and {D5,D6}
operate on original and down-sampled versions of background, normal brain,
and lesion, respectively. An overview of the proposed discriminators is shown in
Fig. 1(b). The objective function for a specific discriminator LGAN (G,Dk) is as
follows:

LGAN (G,Dk) = E(x̂,ŷ)[logDk(x̂, ŷ)] + Ex̂[log(1−Dk(x̂, Ĝ(x)))], (1)
where x and y are paired original lesion segmentation masks and real multi-model
MR images, respectively. Here, x̂ , ck � x, ŷ , ck � y, and Ĝ(x) , ck � G(x),
where � denotes element-wise multiplication and ck corresponds to the ROI
mask. For simplicity, we omit the down-sampling operation in this equation.

Multi-task Optimization. A multi-task loss is designed to train the generator
and discriminators in an adversarial setting. Instead of only using the conven-
tional adversarial loss LGAN , we also adopt a feature matching loss LFM [14] to
stabilize training, which optimizes generator to match these intermediate rep-
resentations from the real and the synthesized images in multiple layers of the
discriminators. For a specific discriminator, LFM (G,Dk) is defined as follows:

LFM (G,Dk) =

T∑
i

1

Ni

[
‖D(i)

k (x̂, ŷ)−D(i)
k (x̂, Ĝ(x)‖22

]
, (2)

where D
(i)
k denotes the ith layer of the discriminator Dk, T is the total number of

layers inDk andNi is the number of elements in the ith layer. If we perform lesion
segmentation on images, it is worth to note that there is a consistent relation
between the prediction and the real one serving as input for the generator. Lesion
labels are usually occluded with each other and brain anatomic structure, which
causes ambiguity for synthesizing realistic MR images. To tackle this problem, we
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propose a lesion shape consistency loss LC by adding a U-net [10] segmentation
module (Fig. 1(c)), which regularizes the generator to obey this consistency
relation. We adopt Generalized Dice Loss (GDL) [12] to measure the difference
between predicted and real segmentation maps and is defined as follows:

GDL(R,S) = 1−
2
∑N

i risi∑N
i ri +

∑N
i si

, (3)

where R denotes the ground truth and S is the segmentation result. ri and si
represent the ground truth and predicted probabilistic maps at each pixel i,
respectively. N is the total number of pixels. The lesion shape consistency loss
LC is then defined as follows:

LC(x, U(G(x)), U(y)) = GDL(x, U(y)) +GDL(x, U(G(x))), (4)
where U(y) and U(G(x)) represent the predicted probabilistic maps by taking
y and G(x) as inputs in the segmentation module, respectively. The proposed
final multi-task loss function for the generator is defined as:

L =

6∑
k=1

LGAN (G,Dk) + λ1

6∑
k=1

LFM (G,Dk) + λ2LC(x, U(G(x)), U(y)), (5)

where λ1 and λ2 two parameters that control the importance of each loss.

3 Experiments and Evaluations

Data Acquisition and Implementation Details. 90 postsurgical patients
were involved in this study. MRI scans were acquired by a 3T human MRI scan-
ner (Achieva; Philips Medical Systems). Anatomic sequences of size 512 × 512
× 150 voxels and Molecular APTw sequence of size 256 × 256 × 15 voxels
were collected. Detailed imaging parameters and preprocessing pipeline can be
found in supplementary material. After preprocessing, the final volume size of
each sequence is 256 × 256 × 15. Expert neuroradiologist manually annotated
five labels (i.e. background, normal brain, edema, cavity and tumor) for each
patient. Then, a multivariate template construction tool [1] was used to create
the group average for each sequence (atlas). 1350 instances with the size of 256
× 256 × 5 were extracted from the volumetric data, where the 5 corresponds to
five MR sequences. For every instance, the one corresponding atlas slice and two
adjacent (in axial direction) atlas slices were extracted to provide human brain
anatomy prior. We split these instances randomly into 1080 (80%) for training
and 270 (20%) for testing on the patient level. Data collection and processing
are approved by the Institutional Review Board.

The synthesis model was trained based on the final objective function Eq.
(5) using the Adam optimizer [1]. λ1 and λ2 in Eq. (5) were set equal to 5 and
1, respectively. Hyperparameters are set as follows: constant learning rate of 2
×10−4 for the first 250 epochs then linearly decaying to 0; 500 maximum epochs;
batch size of 8. For evaluating the effectiveness of the synthesized MRI sequences
on data augmentation, we leveraged U-net [10] to train lesion segmentation mod-
els. U-net [10] was trained by the Adam optimizer [1]. Hyperparameters are set
as follows: constant learning rate of 2 ×10−4 for the first 100 epochs then lin-
early decaying to 0; 200 maximum epochs; batch size of 16. In the segmentation
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training, all the synthesized data was produced by randomly manipulated lesion
masks. For evaluation, we always keep 20% of data unseen for both of the syn-
thesis and segmentation models.

APTw 𝑇2w 𝐹𝐿𝐴𝐼𝑅 𝑇1w Gd-𝑇1w

Real

Our

Shin et al.

pix2pix

Pix2pixHD

-5% 5%

Fig. 2. Qualitative comparison of different methods. The same lesion mask is used to
synthesize images from different methods. Red boxes indicate the lesion region.

Lesion Mask APTw 𝑇2w 𝐹𝐿𝐴𝐼𝑅 𝑇1𝑤 Gd-𝑇1𝑤

-5% 5%

(a) (b)

(c) (d)

(e) (f)

-5% 5%

Lesion Mask APTw 𝑇2w 𝐹𝐿𝐴𝐼𝑅 𝑇1𝑤 Gd-𝑇1𝑤

Fig. 3. Examples of lesion mask manipulations. (a) Real images. (b) Synthesized images
from the original mask. (c) Synthesized images by mirroring lesion. (d) Synthesized
images by increasing tumor size to 100%. (e) Synthesized images by replacing lesion
from another patient. (f) Synthesized images by shrinking tumor size to 50%. In lesion
masks, gray, green, yellow, and blue represent normal brain, edema, tumor, and cavity
caused by surgery, respectively.
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MRI Synthesis Results. We evaluate the performance of different synthesis
methods by qualitative comparison and human perceptual study. We compare
the performance of our method with the following recent state-of-the-art syn-
thesis methods: pix2pix [7], pix2pixHD [14], and Shin et al. [11]. Fig. 2 presents
the qualitative comparison of the synthesized multi-model MRI sequences from
four different methods. It can be observed that pix2pix [7] and pix2pixHD [14]
fail to synthesize realistic looking human brain MR images. There is either an
unreasonable brain ventricle (see the last row of Fig. 2) or wrong radiographic
features in the lesion region (see the fourth row of Fig. 2). With the help of
probability maps of white matter, gray matter and CSF, Shin et al. [11] can pro-
duce realistic brain anatomic structures for anatomic MRI sequences. However,
there is an obvious disparity between the synthesized and real APTw sequence
in both normal brain and lesion region. The boundary of the synthezied lesion
is also blurred and uncertain (see red boxes in the third row of Fig. 2). The
proposed method produces more accurate radiographic features of lesions and
more diverse anatomic structure based on the human anatomy prior provided
by atlas.
Human Perceptual Study. To verify the pathological information of the syn-
thesized images, we conduct the human perceptual study by an expert neuro-
radiologist and the corresponding preference rates are reported in Table 1. It is
clear that the images generated by our method are more preferred by an expert
neuroradiologist than others showing the practicality of our synthesis method.

Table 1. Preference rates corresponding to the human perceptual study.

Real Our Shin et al. [11] pix2pixHD [14] pix2pix [7]

100% 72.1% 65.6% 39.3% 16.4%

Data Augmentation Results. To further evaluate the quality of the syn-
thezied images, we perform data augmentation by using the synthesized images
in training and then perform lesion segmentation. Evaluation metrics in BraTS
[2] challenge (i.e. Dice score, Hausdorff distance (95%), Sensitivity, and Speci-
ficity) are used to measure the performance of different methods. The data aug-
mentation by synthesis is evaluated by the improvement for lesion segmentation
models. We arbitrarily control lesion information to synthesize different number
of data for augmentation. The detail of mechanism for manipulating lesion mask
can be found in supplementary material. To simulate the piratical usage of data
augmentation, we conduct experiments in the manner of utilizing all real data.
In each experiment, we vary the percentage of synthezied data to observe the
contribution for data augmentation. Table 2 shows the calculated segmentation
performance. Comparing with the baseline experiment that only uses real data,
the synthesized data from pix2pix [7] and pix2pixHD [14] degrade the segmenta-
tion performance. The performance of Shin et al. [11] improves when synthesized
data is used for segmentation, but the proposed method outperforms other meth-
ods by a large margin. Fig.3 demonstrates the robustness of the proposed model
under different lesion mask manipulations (e.g. changing the size of tumor, mov-
ing lesion location, and even reassembling lesion information between patients).
As can be seen from this figure, our method is robust to various lesion mask
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manipulations.

Table 2. Quantitative results corresponding to image segmentation when the synthe-
sized data is used for data augmentation. For each experiments, the first row reports
the percentage of synthesized/real data for training and the number of instances of
synthesized/real data in parentheses. Exp.4 reports the results of ablation study.

Exp.1: 50% Synthesized+ 50% Real (1080 + 1080)
Dice Score Hausdorff95 Distance Sensitivity Specificity

EdemaCavityTumorEdemaCavity Tumor EdemaCavityTumorEdemaCavityTumor
pix2pix [7] 0.589 0.459 0.562 13.180 21.003 10.139 0.626 0.419 0.567 0.995 0.998 0.999

pix2pix HD [14] 0.599 0.527 0.571 17.406 8.606 10.369 0.630 0.494 0.570 0.996 0.998 0.999
Shin et al. [11] 0.731 0.688 0.772 7.306 6.290 6.294 0.701 0.662 0.785 0.997 0.999 0.999

our 0.794 0.813 0.821 6.049 1.568 2.293 0.789 0.807 0.841 0.997 0.999 0.999
Exp.2: 25% Synthesized+ 75% Real (540 + 1080)

pix2pix [7] 0.602 0.502 0.569 10.706 9.431 10.147 0.640 0.463 0.579 0.995 0.999 0.998
pix2pix HD [14] 0.634 0.514 0.663 17.754 9.512 9.061 0.670 0.472 0.671 0.996 0.999 0.999
Shin et al. [11] 0.673 0.643 0.708 14.835 7.798 6.688 0.664 0.602 0.733 0.997 0.999 0.998

our 0.745 0.780 0.772 8.779 6.757 4.735 0.760 0.788 0.805 0.997 0.999 0.999
Exp.3: 0% Synthesized + 100% Real (0 + 1080)

Baseline 0.646 0.613 0.673 8.816 7.856 7.078 0.661 0.576 0.687 0.996 0.999 0.998
Exp.4: Ablation Study

w/o Stretch-out 0.684 0.713 0.705 6.592 5.059 4.002 0.708 0.699 0.719 0.997 0.999 0.999
w/o Label-wise D 0.753 0.797 0.785 7.844 2.570 2.719 0.735 0.780 0.783 0.998 0.999 0.999

w/o Atlas 0.677 0.697 0.679 13.909 11.481 7.123 0.691 0.689 0.723 0.997 0.999 0.998
w/o LC 0.728 0.795 0771 8.604 3.024 3.233 0.738 0.777 0.777 0.997 0.999 0.999

Our 0.794 0.813 0.821 6.049 1.568 2.293 0.789 0.807 0.841 0.998 0.999 0.999

Ablation Study. We conduct extensive ablation study to separately evaluate
the effectiveness of using stretch-out up-sampling module, label-wise discrimina-
tors, atlas, and lesion shape consistency loss LC in our method using the same
experimental setting as exp.1 in Table 2. The contribution of modules for data
augmentation by synthesis is reported in Table 2 exp.4. We find that when atlas
is not used in our method, it significantly affects the synthesis quality due to the
lack of human brain anatomy prior. Losing the customized reconstruction for
each sequence (stretch-out up-sampling module) can also degrade the synthesis
quality. Moreover, dropping either LC or label-wise discriminators in the train-
ing reduces the performance, since the shape consistency loss and the specific
supervision on ROIs are not used to optimize the generator to produce more
realistic images.

4 Conclusion

We proposed an effective generation model for multi-model anatomic and molec-
ular APTw MRI sequences. It was shown that the proposed multi-task optimiza-
tion under adversarial training further improves the synthesis quality in each
ROI. The synthesized data can be used for data augmentation, particularly for
those images with pathological information of malignant gliomas, to improve the
performance of segmentation. Moreover, the proposed approach is an automatic,
low-cost solution to produce high quality data with diverse content that can be
used for training of data-driven methods.
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In our future work, we will generalize data augmentation by synthesis to
other tasks, such as classification. Furthermore, the proposed method will be
extended to 3D synthesis once better quality molecular MRI data is available
for training the models.
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