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Learning to Segment Brain Anatomy from 2D
Ultrasound with Less Data
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Abstract—Automatic segmentation of anatomical landmarks
from ultrasound (US) plays an important role in the management
of preterm neonates with a very low birth weight due to the
increased risk of developing intraventricular hemorrhage (IVH)
or other complications. One major problem in developing an
automatic segmentation method for this task is the limited
availability of annotated data. To tackle this issue, we propose
a novel image synthesis method using multi-scale self attention
generator to synthesize US images from various segmentation
masks. We show that our method can synthesize high-quality US
images for every manipulated segmentation label with qualitative
and quantitative improvements over the recent state-of-the-
art synthesis methods. Furthermore, for the segmentation task,
we propose a novel method, called Confidence-guided Brain
Anatomy Segmentation (CBAS) network, where segmentation
and corresponding confidence maps are estimated at different
scales. In addition, we introduce a technique which guides
CBAS to learn the weights based on the confidence measure
about the estimate. Extensive experiments demonstrate that the
proposed method for both synthesis and segmentation tasks
achieve significant improvements over the recent state-of-the-
art methods. In particular, we show that the new synthesis
framework can be used to generate realistic US images which can
be used to improve the performance of a segmentation algorithm.

Index Terms—Ultrasound, brain, deep learning, ventricle, sep-
tum pellecudi, preterm neonate, confidence map, segmentation,
synthesis.

I. INTRODUCTION

According to the World Health Organization, 15 million
babies are born preterm each year [1]. Although, advance-
ments made in neonatal care have increased the survival
rates, majority of these infants are at risk for long-term
complications such as cerebral palsy, cognitive-behavioral and
learning impairments. In premature infants, one of the most
common brain injury is intraventricular hemorrhage (IVH)
[2]. These hemorrhages result in ventricle dilation, which
can lead to serious brain damage if not properly treated.
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Fig. 1. (a) Original brain US image. Brain ventricular segmentation obtained
using (b) pix2pix [5], (c) U-net [6], (d) Wang et al.[7], (e) CBAS (ours). (f)
ground-truth brain ventricular regions.

Ventricle dilation is also associated with white matter atrophy
(hydrocephalus ex-vacuo). Therefore, monitoring of ventricle
volume change in neonates is clinically important in order to
determine the correct intervention. On the other hand absence
of septum pellucidum is used as a valuable landmark for
the diagnosis of abnormalities, such as septo-optic dysplasia,
in the central nervous system (CNS) [3], [4]. The main
imaging modality currently employed for monitoring brain
abnormalities in preterm neonates is two-dimensional (2D)
ultrasound (US) due to its real-time safe imaging capabilities.
However, high levels of noise and various imaging artifacts,
and irregular shape deformation of ventricles, results in the
inability to localize the site and extent of brain injury, or
to predict neurologic outcomes in identifying IVH or other
abnormalities from US data. Being a user dependent imaging
modality causes additional difficulties during data collection
since a single-degree deviation angle by the operator can
reduce the signal strength by 50%. Current clinical practice
involves manual measurement of ventricle or investigation
of septum pellucidum presence from the collected scans by
clinicians. Due to previously mentioned difficulties, related
to US imaging, this is an error prone and time consuming
process.

In order to automate the ventricle segmentation and mea-
surement process, various groups have proposed automatic
segmentation methods. In [9], a fully automated atlas-based
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Fig. 2. (a) Input segmentation mask. Synthesized image using (b) pix2pix [5] (c) pix2pixHD [8] (d) MSSA (ours) (e) Original image corresponding to the
segmentation mask in (a). The second row consists of the zoomed portions of the image inside the red box in the first row.

segmentation pipeline was developed for segmenting 3D vol-
umetric US data. Validation results performed on 30 3D
US scans, obtained from 14 patients, achieved a mean Dice
similarity coefficient (DSC) and maximum absolute distance
of 76.5% and 1 mm, respectively. The reported computation
time for segmenting a single 3D volume was 54 mins [9].
Atlas-based volumetric US segmentation was also proposed
in [10]. Validation performed on 16 subject scans achieved a
mean DSC of 0.70. Computation time was not reported. A
semi-automatic method, for segmenting volumetric US scans,
was proposed in [11]. Mean absolute distance between the
manual and semi-automatically segmented contours was 2.17
mm. Subject size and processing time was not reported [11]. In
order to improve the accuracy and computation time, methods
based on deep learning have been investigated [12], [7]. In
[12], a U-net based [6] network architecture was proposed.
Reported mean DSC value and computation time were 0.81
and 5 seconds per volume (0.01 seconds per slice) respectively
for 15 volumes obtained from 14 patients. In [7], a multi-scale-
based network architecture was proposed for segmentation of
2D US scans. Validation studies performed on 687 scans,
obtained from 10 subjects, achieved a mean DSC value of
0.90 with a computation time of 0.02 seconds.

Although, deep learning methods have resulted in increased
accuracy and computation time, most of the previous work
has been validated on scans with enlarged ventricles. If the
foreground anatomical structure is to be segmented, traditional
convolutional neural network (CNN) architectures fail since
there is not enough positional information to localize small
brain anatomy as they are significantly smaller compared to
the background anatomical structure. The same is also valid
for segmenting densely packed small brain anatomy (small
ventricles and septum pellecudi appearing in the middle of the
US scan). Finding small anatomical structure using a CNN
architecture is difficult since resolution of small features is
gradually lost and resulting coarse features can miss the details
of small structures [13]. For example, methods like pix2pix
[5], U-net [6], and Wang et al. [7] fail to segment the brain
ventricular region from the US images as shown in Fig. 1.

These methods end up segmenting the non-ventricular region
as the brain ventricular region. This is mainly due to the lack
of special attention given to small ventricles while learning
the network weights. Finally, due to the high complexity
and variability in the ventricles shape, the traditional CNN
architectures result in over or under segmentation (Fig. 1).

To address this problem, we propose a method called,
Confidence-guided Brain Anatomy Segmentation (CBAS) net-
work, where we make use of the aleatoric uncertainty and
define confidence scores at each pixel which are data depen-
dent. Uncertainty can be modeled in two ways – epistemic and
aleatoric uncertainties as explained in [14], [15]. In order to
achieve better performance in tasks like medical image seg-
mentation, [16], [17], [18] modeled epistemic uncertainty for
learning the CNN network weights. Uncertainty has also been
used to efficiently leverage unlabeled data in a semi-supervised
setting for atrium segmentation [19]. Some methods like [20],
[21], [22] use boundary information to enhance medical image
segmentation. To handle different brain anatomy structures in
2D US scans, we define data dependent aleatoric uncertainty
as the confidence scores that are computed by the confidence
blocks in CBAS. These blocks essentially indicate how confi-
dent the CBAS network is about the segmentation output. This
confidence score will be low for the regions where the error
is high and vice-versa. Thus CBAS learns to differentiate the
erroneous regions and gives special attention to those regions
in subsequent layers while computing the segmentation output.
We present a novel method for fully automatic ventricles and
septum pellecudi segmentation with varying size from 2D US
scans. Note that this is the first approach that uses uncertainty
in 2D US segmentation. We validate our method on 1629 US
scans obtained from 20 different subjects.

One of the major problems in medical image analysis
is the limited number of annotated data. Obtaining clinical
annotations is also a difficult, expensive and time consuming
process as expert radiologists are needed. For very specific
tasks like the one addressed in this paper, the availability of
datasets is also very scarce. As most of the current state-of-
the-art segmentation methods require a considerable amount
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of data to train the network, using them for tasks with less
data does not guarantee a good performance. As a result,
novel image synthesis methods are proposed in the literature
to synthesize meaningful high quality data that could be added
to the training dataset.

Over the past few years, image synthesis and image-to-
image translation tasks have been dominated by Generative
Adversarial Networks (GANs) [23] and its variations. In this
approach, a generator is trained to synthesize an image from
random noise while a discriminator, which is trained on
both real and synthesized images tries to classify whether
the image is real or was synthesized by the generator (i.e.
fake). Both networks are trained in a min-max way such that
they act as adversaries of each other. While using GANs in
medical imaging to synthesize new images solves the issue
of limited availability of data, the problem of annotations
still exists in this setup. Isola et al. [5] proposed using a
conditional generative adversarial network (cGAN) [24] to
solve the image-to-image translation tasks where the network
is trained to learn the mapping between an image across
two different domains. In the medical imaging community,
several works ([25], [26], [27], [28], [29], [30]) have adapted
this idea to synthesize images from one modality to another
modality such as MRI to CT, T1 MRI to T2 MRI etc. Since
this method can be used for any translation task, it can be
used for image synthesis from segmentation labels where the
network is trained to translate the segmentation mask of an
image into a realistic US image. Zhao et al. [31] showed that
multiple realistic-looking retinal images can be synthesized
from just the annotation masks using this method. Bailo et al.
[32] used cGAN to generate blood smear image data from
segmentation masks corresponding to microscopic images.
Diverse set of new images were also achieved by manipulating
the segmentation labels. Jaiswal et al. [33] used a capsule
cGAN to synthesize microscopic data of cortical axons.

Though many methods exist for medical image synthesis,
most of them only deal with generating low resolution images.
Different from MRI and CT image synthesis using GAN,
ultrasound image synthesis is a more difficult task. One of the
main reason is the manual data collection aspect of ultrasound.
Even with healthy pathology, the orientation of the ultrasound
transducer will effect the quality of the collected data and
subsequent image analysis methods. In Fujioka et al. [34]
breast US images were synthesized using a GAN-based ap-
proach [35]. The authors however fail to show any quantitative
analysis or usefulness of the synthesized images. In [36], fetal
US images were synthesized from tracked B-mode US data.
Validation experiments were performed on US data obtained
from a fetus ultrasound examination phantom. Simulation of
realistic in vivo US data is a more challenging problem as soft
tissue properties vary significantly depending on the imaged
subject and orientation of the transducer [36]. In [37], GANs
were used to simulate intravascular US (IVUS) data using
convolution networks. Most of the synthesis methods that use
only convolutional networks fail to capture very long range
dependencies in the image due to the relatively low receptive
field of convolution. This can be clearly seen by comparing
the performance of different synthesis methods as shown in

Fig. 2. It can be observed that pix2pix [5] synthesizes very
poor quality image and pix2pixHD [8] fails to capture the fine
details of the ultrasound image towards the edges. To tackle
this issue, we propose a novel attention-based method that
can synthesize realistic brain US images from a ventricle and
septum pellecudi segmentation masks. We use a multi-scale
generator architecture with multi-scale self-attention modules
that guides the network to capture the long range dependencies
while also synthesizing high resolution images. A sample
synthesized image using our method is shown in Fig 2(d). As
compared to the other synthesis methods, the proposed method
produces sharper images from the input segmentation masks.
Using the proposed synthesis model, numerous realistic US
images can be synthesized by manipulating the segmentation
masks that is fed into the network. As the images are directly
synthesized from the manipulated segmentation masks, there is
no need for annotation of the synthesized data. By performing
extensive experiments, we show that these synthesized images,
when added to the training data, increase the performance of
the segmentation network.

This paper makes the following contributions:
• A novel synthesis network is proposed using a multi-scale

generator guided by self-attention modules to synthesize
realistic US images from the segmentation masks.

• A novel US image segmentation method, called CBAS,
is proposed which generates the segmentation maps at
different scales along with the confidence maps, to guide
subsequent layers the network by blocking the propaga-
tion of errors in the segmentation map at lower scale,
while computing final output segmentation.

• A novel loss function is introduced to train CBAS which
makes use of the computed confidence maps and the
corresponding segmentation maps.

• Extensive experiments are conducted to show the sig-
nificance of the proposed synthesis and segmentation
networks. Furthermore, an ablation study is conducted
to demonstrate the effectiveness of different parts of our
networks. We also show that the synthesized images are
useful as they can be used to improve the segmentation
performance.

Rest of the paper is organized as follows. Details of the
proposed uncertainty-guided segmentation method are given
in Section II. Section III gives details regarding the proposed
self-attention based synthesis method. Experimental results as
well as ablation study details are given in Section IV. Finally,
Section V concludes the paper with a brief summary and
discussion.

II. CONFIDENCE-GUIDED BRAIN ANATOMY
SEGMENTATION (CBAS)

Let the set of brain US scans be denoted as B and the
corresponding set of brain ventricle segmentation maps as S .
Our aim is to estimate the brain ventricle segmentation map
ŝ for a given brain US scan x ∈ B. To address this problem
unlike many deep learning-based methods that directly esti-
mate the brain ventricle segmentation map, we take a different
approach in which we first estimate the segmentation map
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Fig. 3. An overview of the proposed CBAS network. The aim of the CBAS network is to estimate the brain anatomy segmentation for the given brain US
image. CBAS learns the segmentation maps and computes confidence maps to guide the network. To achieve this, we introduce SB and CB networks and
feed their outputs to the subsequent layers. Note that in the confidence maps blue corresponds to 1 and red corresponds to 0.

s and the corresponding confidence map c. We define the
confidence map c, that represents the confidence score at each
pixel which resembles the measure of how much the network
is certain about the computed value in the segmentation
map. Our proposed method, CBAS, judiciously combines the
segmentation and confidence information at lower scales to
block the propagation of errors in the segmentation ŝ×2 while
computing the final segmentation map ŝ. Fig. 3 gives an
overview of the proposed CBAS network. As it can be seen
from this figure, we estimate the segmentation map ŝ×2 and
the confidence map c×2 at scale ×2 (0.5 scale of x) and they
are fed back to the subsequent layers in a way that blocks the
errors in ŝ×2 using c×2.

In CBAS, we estimate the segmentation maps at two
different scales, i ∈ {×1,×2}, i.e ŝ×1 (same size as x)
and ŝ×2 (0.5 scale as x), and the corresponding confidence
maps c×1 and c×2. To estimate these segmentation maps, we
construct our base network (BN) using U-Net [6] and Res-Net
[38] architectures with the ResBlock as our basic building
block. To increase the receptive field size, we introduce
dilation convolutions in the ResBlock, as shown in Fig. 3,
where Conv l× l (m,n) contains instance normalization [39],
Rectified Linear Unit (ReLU), Conv (l × l) - convolutional
layer with kernel of size l× l, where m and n are the number
of input and output channels, respectively. Note that all
convolutional layers in BN are densely connected [40]. The
BN network consists of the following sequence of layers:
ResBlock(1,32)-Avgpool-ResBlock(32,32)-Avgpool-
ResBlock(32,32)-
ResBlock(32,32)-ResBlock(32,32)-ResBlock(32,32)-
Upsample-ResBlock(32,32)-
Upsample-ResBlock(33,16)-Conv3× 3(16,1),

where Avgpool is the average pooling layer, and Upsample is
the upsampling convolution layer.

A. CBAS Network

Segmentation networks are prone to misclassify the labels
near the edges of brain ventricles. Hence a brain ventricle
segmentation method requires special attention in those re-
gions where the network may go wrong. To address this issue,
one can estimate brain ventricle segmentation at different
scales, and estimate the confidence map which indicates the
regions where the method can go wrong. Confidence map
highlights the regions where the network is certain about
the segmentation values by producing high confidence values
(i.e nearly 1) and assigning low confidence scores for those
pixels where the network is uncertain. In this way, highlighting
the regions in the confidence map and combining them with
the segmentation map, we block the propagation of errors in
segmentation, and make the network more attentive in the
erroneous regions. To estimate these pairs of segmentation and
the corresponding confidence map, we introduce Segmentation
Block (SB) and Confidence Block (CB) in our base network
(BN) and construct our CBAS network as shown in Fig. 3.

B. Segmentation and Confidence Blocks

Feature maps at half-scale are given as input to the Seg-
mentation Block (SB) to compute the segmentation map s×2.
SB has a sequence of four convolutional layers. We feed the
estimated segmentation maps and the feature maps as inputs to
CB for computing the confidence score at every pixel, which
indicates how certain the network is about the segmentation
value. CB has a sequence of four convolutional layers. Details
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Fig. 4. An overview of the proposed MSSA network. The MSSA network takes in a segmentation mask and synthesizes the corresponding realistic looking
synthetic ultrasound image. G denotes the generator. D1 and D2 denote the discriminators across each scale.

of convolutional layers in SB and CB blocks are shown in
Table V (in Appendix A).

Given an US image x, we estimate the segmentation maps
(ŝ×1 and ŝ×2) as well as the corresponding confidence maps
(c×1 and c×2) as shown in Fig. 3. We propose a confidence-
guided loss function to train the CBAS network which uses
a pair of segmentation and confidence maps (i.e {ŝ×1, c×1}
and {ŝ×2, c×2}).

C. Loss for CBAS

Likelihood-based framework can be used to optimize the
CBAS network parameters (θ) as follows,

θ̂ = argmax
θ

P (fθ(x)|x; θ) = argmax
θ

P (ŝ|x; θ), (1)

where P (.) is the probability function, fθ(.) represents the
CBAS network, ŝ = fθ(x). To find the optimal network
parameters θ̂, P (ŝ|x; θ) needs to be maximized. For simplicity
to solve this optimization problem, let us assume P (ŝ|x; θ) is
a Gaussian distribution. As our goal is to minimize the error
between ŝ and the actual segmentation map (s) of x, we denote
the mean of distribution P (.) as s and variance as σ2. Thus
our objective from Eq. 1 becomes,

θ̂ = argmax
θ

log(P (ŝ|x; θ))

θ̂ = argmax
θ
− 1

σ2
‖ŝ− s‖22 + log(

1

σ2
).

(2)

In the above Eq. 2, variance (σ2) can be inferred in two ways
as explained in [14], [15], (i) Epistemic uncertainty, which is
explained as the model uncertainty given enough data to train,
and (ii) Aleatoric uncertainty that captures noise inherent in the
observations, which is data dependent. Epistemic uncertainty
can be formulated as variational inference to compute variance.
Aleatoric uncertainty can be formulated as MAP (maximum-
aposterior) or ML (maximum-likelihood) inference. Here, in
our method we attempt to address uncertainty caused in
outputs due to different sizes of brain ventricles and sensor
noise which is inherent in brain US images. Following the
ML inference, we can formulate 1

σ2 as the confidence score

(c), i.e finding a confidence score at every pixel in the
output which depends on the input brain ultrasound scan.
We compute these confidence scores using CB (confidence
block) as explained in the earlier sections. Computing these
confidence scores benefits us in learning the network weights
as the erroneous regions have low confidence scores. Note
that, to capture the erroneous regions, the confidence score
should be estimated pixel-wise. We will benefit in guiding the
network by recognizing the regions which are prone to make
errors if we estimate the confidence scores pixel-wise. Note
that values in the confidence map at every position will be in
the range of [0, 1]. Thus, we modify Eq. 2, to accommodate
these properties of the confidence scores as follows

θ̂ = argmax
θ
− 1

σ2
‖ŝ− s‖22 + log

(
1

σ2

)
θ̂ = argmax

θ

∑
j

∑
k

− 1

σ2
jk

‖ŝjk − sjk‖22 + log

(
1

σ2
jk

)
θ̂ = argmax

θ

∑
j

∑
k

−cjk‖ŝjk − sjk‖22 + λ log(cjk),

(3)

where j and k are dimensions of s and ŝ. Since our task
is segmentation, we construct our Loss function by replacing
the L2-norm in the above Eq. 3 with the cross-entropy loss as
follows,

L(ŝ, s) =
∑
j

∑
k

cjkLCE(ŝjk, sjk)− λ log(cjk), (4)

where

LCE(ŝjk, sjk) = −sjk log(ŝjk)− (1− sjk) log(1− ŝjk).

Since we are estimating the segmentation maps at two different
scales, we extend this loss to train CBAS as follows,

Lfinal =
∑

i∈{×1,×2}

∑
j

∑
k

cijkLCE(ŝijk , sijk)− λ log(cijk).

(5)
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Qualitative results on test images. (a) Input brain ultrasound image. (b) pix2pix [5]. (c) U-Net [6]. (d) UDe-Net [6], [40]. (e) Wang et.al [7]. (f) CBAS
(ours) (g) Ground-truth ventricle segmentation.

TABLE I
COMPARISON WITH PIX2PIX [5], U-NET[6], UDE-NET[6], [40], WANG ET AL.[7]. RESULTS SHOWN CORRESPOND TO MEAN VALUES AND VARIANCE.

Method DICE IoU(%) Parameters
pix2pix[5] 0.8584 ± 0.025 77.96 ± 0.031 11.1MB
U-Net[6] 0.8538 ± 0.024 77.90 ± 0.028 6.7MB

UDe-Net[6], [40] 0.8598 ± 0.017 78.09 ± 0.018 6.7MB
Wang et.al[7] 0.8725 ± 0.016 79.28 ± 0.014 24.9MB

CBAS 0.8813 ± 0.008 80.25 ± 0.010 6.7MB
CBAS (with synthetic data generated using MSSA) 0.8901 ± 0.063 81.03 ± 0.061 6.7MB

III. MULTI-SCALE SELF ATTENTION (MSSA) GUIDED
SYNTHESIS

As the CBAS network is data-driven like most other deep
learning methods, the performance of it is based on the size
of training dataset. Collection of any medical image data and
performing annotations of the same is a cumbersome and
expensive process. An approach to deal with this issue is
to generate meaningful synthetic data which can be used to
boost the segmentation performance. To this end, we propose
an image synthesis network that is trained to generate real-
looking US images given segmentation masks. Inspired from
[8], we propose a multi-scale generator and discriminator
networks to produce high-quality US images. Multi-scale
networks have been used to generate stable high-resolution
images [8]. However, they still fail to capture long-range
dependencies in the US images. This makes the synthesized
images look unrealistic with many artifacts near the edges of
the anatomical structures. To avoid this from happening, we
propose a self-attention guided method where the self-attention

module [41] is used to leverage the small-range capturing
ability of the convolution blocks. The proposed network is
called Multi-Scale Self-Attention network (MSSA) Network.

A. MSSA Network

Using the same notations as in Section II, the problem
statement can be viewed as an image translation task of
synthesizing x̂ from a given brain ventricle segmentation mask
s. During training, a segmentation map s such that s ∈ S is
taken as input and its corresponding US scan x such that x ∈ B
is taken as the ground truth. The network we propose has a
multi-scale generator architecture where the first part of the
generator operates on the original scale of the segmentation
mask s and the second part of the generator operates on a
down scaled (by 2) version of the segmentation mask s×2.
The proposed self-attention guided block operates on the down
scaled version. Each self attention module [42][41] has three
1×1 convolution filters that are applied to the convolution



7

feature maps. The output of each of the 1×1 convolution layers
can be represented as

K(x) =Wkx,

Q(x) =Wqx,

V (x) =Wvx,

where Wk,Wq and Wv are the 1×1 convolution filters and
x is the convolutional feature maps. To get the self-attention
feature maps, we perform dot product as follows

αi,j = softmax(K(xi)
TQ(xj))

oj =

N∑
i=1

αi,jV (xi)

where αi,j indicates the amount of attention the model gives
while synthesizing the jth position from the ith location. The
output self attention feature maps is the collection of the
individual feature vectors oj where j goes from 1 to N .

The segmentation mask is first passed through a convolu-
tional layer followed by an attention module which captures
the dependencies of the image in its feature space. It is
followed by a series of residual blocks [38]. We use another
self-attention module at the end of residual blocks to get the
self-attention feature maps. These are concatenated with the
feature maps that are generated from the generator at the
original scale. The resulting concatenated feature maps are
then further passed through the residual blocks before passing
them through transpose convolution layers to get the US
image. Owing to the high resolution of the synthesized image,
we use a two scale discriminator that works on the original
as well as the down scaled (by 2) version of the real and
synthesized image. The discriminator architecture across both
scales are patch based fully convolutional networks [43]. It
should be noted that more scales can be added to the proposed
network if the computation time is not of a concern. The
Generator architecture has the following sequence of blocks:

Half Scale Part:
ConvBlock1(1,64)
ConvBlock2(128)-ConvBlock2(256)-
ConvBlock2(512)-ConvBlock2(1024)- SelfAttentionBlock,
ResBlock(1024)× 9,
ConvBlock3(512)-ConvBlock3(256)-
ConvBlock3(128)-ConvBlock3(64)-
ConvBlock1(1,1)-SelfAttentionBlock.

Full-Scale Part:
ConvBlock1(1,32)-ConvBlock2(64)-
(Output of this is added with the self attention maps from the
Half Scale part.)
ResBlock(64)× 3,
ConvBlock3(32)-ConvBlock1(1,1).

The discriminator architecture has the following sequence
of blocks:
ConvBlock(64),ConvBlock(128),
ConvBlock(256),ConvBlock(512).

The details about the layers in each of the above blocks is
explained in the appendix. The overall network architecture

is illustrated in Fig 4. We perform certain geometric transfor-
mations like translation, rotation and resizing of the segmen-
tation masks to obtain new segmentation maps that have the
possibility of existing in the real world. The intensity of these
transformations are decided after making careful evaluations
on the resultant maps such that they do not represent anything
that is impossible to occur in real time. This helps us produce
a numerous amount of new segmentation masks and their
corresponding ultrasound images (using our MSSA Network),
thus introducing new data into the training set which enhances
the generalization of segmentation network.

B. Loss for MSSA Network

Let G denote the generator network and D1, D2 denote
the discriminator networks. Our objective function to train the
overall network is as follows

min
G

(( max
D1,D2

∑
k=1,2

LGAN (G,Dk)) + λ1
∑
k=1,2

LFM (G,Dk)),

(6)
where

LGAN (G,Dk) = E(x,s) logDk(x, s)

+ Ex[(log(1−Dk(x,G(x)))], (7)

and

LFM(G,Dk) = E(x,s)

T∑
i=1

1

Ni
‖[logDi

k(x, s)−Di
k(x,G(x))]‖22

are the two loss functions in the overall objective function. It
can be noted that x is the US scan that is to be synthesized and
s is the input segmentation mask. LGAN is the standard GAN
loss which is the sum of expectation over the discriminator’s
estimate of how much probability that the data instance is
real/fake depending on whether it is a real data instance or if it
is synthesized from the generator. LFM is the feature matching
loss which is a perceptual loss [44] calculated across different
layers in the discriminator. λ1 is the factor which controls
the amount of feature matching loss that is to affect objective
function. Ni denotes the number of elements in the ith layer
and T denotes the total number of layers in the network.

IV. EXPERIMENTS AND RESULTS

In this section, we present details of the experiments and
quality measures used to evaluate the proposed synthesis and
segmentation methods. We also discuss the dataset and training
details followed by comparison of the proposed methods
against a set of baseline methods and recent state-of-the-art
approaches.

A. Dataset

After obtaining institutional review board (IRB) approval,
retrospective brain US scans were collected. A total of 1629
in vivo B-mode US images were obtained from 20 different
subjects (age<1 years old) who were treated between 2010 and
2016. The dataset contained subjects with IVH and without
(healthy subjects but in risk of developing IVH). The US
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scans were collected using a Philips US machine with a
C8-5 broadband curved array transducer using coronal and
sagittal scan planes. For every collected image ventricles
and septum pellecudi are manually segmented by an expert
ultrasonographer. We split these images randomly into 1300
Training images and 329 Testing images for experiments. Note
that these images are of size 512 × 512. During the random
split of the dataset the training and testing data did not include
the same patient scans. Sample images and the corresponding
segmentation masks from this dataset are shown in Fig. 6. As
there are more variations in each ultrasound used, our dataset
does not have much potential for over-fitting.

(a) (b)

Fig. 6. Sample brain ultrasound image from the dataset. (a) Brain US image.
(b) the corresponding segmentation mask.

We evaluate the performance of both our segmentation
and synthesis methods with recent methods on the randomly
selected 329 test images. We compare the performance of
our synthesis method against, pix2pix [5], U-Net [6], UDe-
Net [40], and Wang et al. [7]. We conduct these experiments
three times and average out the obtained results. We use
DICE coefficient and Intersection over Union (IoU) to measure
the performance of different segmentation networks. For the
synthesis network, we compare our method with pix2pix [5],
Self-Attention GAN [41] and pix2pixHD [8]. We calculate the
DICE accuracy of CBAS when trained with the synthetic data
generated from each of the compared methods to validate the
performance of our method apart from the qualitative results.

B. Training Details

CBAS is trained using Lfinal with the Adam optimizer [45]
and batch size of 1. The learning rate is set equal to 0.0002
and annealed by 5% for every 10 epochs. λ is set equal to
0.1 for initial epochs, but when the mean of all values in the
confidence maps c×1, c×2 is greater than 0.75 then λ is set
equal to 0.01. CBAS is trained for 100 epochs. We perform
data augmentation using horizontal, vertical flips and random
crops to extend the training images to 6500 images. We resize
the images to 640 × 640 and crop 512 × 512 size patches to
obtain random crop images.

MSSA is trained using a learning rate of 0.0002 with the
Adam optimizer [45] and batch size of 1. The half-scale self-
attention guided part of the generator is trained separately for
the first 200 epochs. Then, the full scale part of the network is
trained along with this for the next 300 epochs. λ1 in Eq. (6)
is set equatl to 0.1.

C. Qualitative Performance

Fig. 5 shows the qualitative performance of different seg-
mentation methods on the test images. We can clearly see that
pix2pix [5], U-Net [6], UDe-Net [6], [40], and Wang et al. [7],
misclassified normal regions as the brain ventricular regions.
For example, from the second column of Fig. 5, we can
clearly observe under segmentation of brain ventricles regions
in the outputs produced using pix2pix [5]. Brain ventricle
segmentations obtained using U-Net [6], and UDe-Net [40]
also contain under segmentation for large size ventricles (in
the fourth row) and over segmentation for small size ventricles
as shown in the third and the fourth columns of Fig. 5. Wang et
al. [7] produce brain segmentations which contain inaccurate
edges for large ventricles and under segmentation for small
size ventricles. On the other hand, the estimated shape of
the brain ventricular regions by those methods are slightly off
when compared to the original shape. Visually we can see that
CBAS produces more accurate brain ventricular regions, and
does not miss-classify the normal regions as brain ventricular
regions.

Fig. 8 shows the qualitative performance of different syn-
thesis methods. We observe that pix2pix [5] is very unstable
at generating high-resolution images and performs very poorly
in almost every case. The pix2pixHD method [8] synthesizes
high-resolution images but fails to synthesize realistic looking
images. In the second row, it can be observed that pix2pixHD
does not properly capture the features of the US image near
the edges. Similarly, as can be seen from the third, fourth
and fifth rows, the structures inside the US image are not
captured by pix2pixHD. Our proposed method captures all
these structures that are missed by pix2pixHD which can be
seen in the illustration.

D. Quantitative Performance

Table. I shows the quantitative performance of our proposed
segmentation method and the other investigated methods. As
it can be seen from this table, our method clearly outperforms
these recent segmentation methods (p<0.05 for paired t-test
with 5% significance). The paired t-test value using the DICE
scores between CBAS and Wang et.al[7] (second best method),
resulted in an average p value of 3.63× 10−9. Note that, our
method has very less number of parameters in the network
as compared to Wang et al. [7]. Time taken by our method to
process an image of 512×512 is about 0.01 seconds compared
to 0.02 seconds for [7]. This presents a 50% improvement in
computation time.

Table III shows the quantitative performance of our pro-
posed synthesis method and the other recent methods. The
DICE accuracy is calculated by training our proposed seg-
mentation method (CBAS) on equal proportion of real and
synthetic images, where the synthetic images are generated by
the methods we compare. We use a total of 2600 (1300 real
and 1300 synthetic) images to train our CBAS network. Also,
the number of synthetic data that can be synthesized once
MSSA is trained is indefinite as minor transformations in the
segmentation mask like translation, resizing of the mask can
be done to obtain a new ground truth. In our work we have
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(a) (b) (c) (d) (e)

Fig. 7. Qualitative results on test images for ablation study. (a) Input brain ultrasound image, (b) BN, (c) BN w/ SB, (d) CBAS (ours), (e) Ground-truth
ventricle segmentation. Brain ventricular segmentations from BN and BN w/ SB have over segmentation for small size ventricles, and incorrect segmentation
at the edges of large size ventricles. CBAS trained with Lfinal produced best results with accurate segmentation for both small and large sized ventricles.

TABLE II
QUANTITATIVE RESULTS CORRESPONDING TO ABLATION STUDY. RESULTS SHOWN CORRESPOND TO MEAN VALUES.

Method Loss DICE IoU(%) p-value
BN CE 0.8538 77.90 6.48 ×10−3

BN w/ SB CE 0.8673 78.48 3.34 ×10−2

BN w/ SB and CB CE 0.8664 78.56 4.74 ×10−2

CBAS Lfinal 0.8813 80.25 –
CBAS (with synthetic data) Lfinal 0.8901 81.03 –

fixed the number of synthetic data generated to be always
equal to the number of real data. We train the mixture of real
and synthetic data for half the number of epochs we train
with only real data for fair comparison. From Table III, it
can be observed that the segmentation network performs the
best when the synthesized images added are generated using
our proposed method. It can be noted that the addition of self
attention to the base network [8] improved the qualitative and
quantitative results as seen in Table III and Fig 8.

TABLE III
COMPARISON OF DIFFERENT IMAGE SYNTHESIS METHODS IN TERMS OF
DICE (SEGMENTATION PERFORMANCE OF CBAS WHEN TRAINED ON A

MIXTURE OF REAL AND SYNTHETIC IMAGES, SYNTHESIZED USING
METHODS WHICH ARE COMPARED)

Method DICE Accuracy (%)
pix2pix[5] 80.12

SA-GAN[41] 83.41
pix2pixHD[8] 86.23
MSSA (ours) 89.01

We conduct further experiments to ascertain the importance

of the synthetic data that is generated. Table IV contains DICE
accuracies of the CBAS network when trained with different
proportions of the real data. The total number of images on
which the images are trained are always 1300 in every case.
The percentage of real data out of the 1300 is different for
every case except for the 100% case. For example when the
network is trained with 50% real data, it is trained with 650
images. When it is trained with 50% real and synthetic data,
it is trained with 650 real images and 650 synthetic images.
Only in the 100% case, the number of images used for the
real case is 1300 and the number of images used for real with
synthetic data is 2600 images. Real+Syn (ST-Ratio) column
corresponds to the results where the Synthesis network was
also trained with ratios of data same as that of segmentation
network was trained on. ST-Full corresponds to the results
where synthesis network was trained with full data. It can
be seen from the table that the addition of synthetic data
is highly useful in cases where the real data availability is
very low. Also, even when the network is trained only on the
synthetic data, it gives a dice accuracy of 83.42%. We also
illustrate the performance gap produced by adding synthetic
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Fig. 8. Qualitative results on test images for the synthesis task. (a) Input segmentation mask, (b) Synthesized image using pix2pix [5], (c) Synthesized image
using pix2pixHD [8], (d) Synthesized image using MSSA (ours), (e) Real B-Mode Ultrasound image for the input segmentation mask in (a). Images shown
in (f),(g) and (h) are the zoomed in parts inside the green box as shown in (c),(d) and (e) respectively. The red boxes in (f),(g) and (h) denote the specific
structures that show how our method is closer to the real image than pix2pixHD [8].



11

(a) (b) (c) (d) (e) (f)

Fig. 9. Confidence maps visualization for a test image. (a) Input brain ultrasound image. (b) Ground-truth ventricle segmentation. (c), (e) are the estimated
vetricle segmentations at different scales ŝ×2, and ŝ×1, respectively. (d),(f) are the corresponding confidence maps c×2, and c×1, respectively. Note that in
the confidence maps blue means 1 and red means 0

data in Fig 10 where we can see how synthetic data helps
when the real data is very less. It should also be noted that in
all these experiments (except in 100% case), the upper bound
of the number of training data was fixed as 1300 to give a
reasonable comparison. An interesting point to be noted in this
comparison is that our proposed method always outperforms
the normal baseline even if it is trained with less number of
data than the normal baseline. For example, from Table IV,
it can be seen that when we train CBAS with 50 % data, the
dice accuracy is 83.61. When we train CBAS with mixture of
25 % real and synthetic data, we get 87.43 % for ST-Full and
84.63 % for ST-Ratio, both of which are larger than 50 % data
protocol. This trend can be observed across all ratios in the
Table IV. So our proposed method actually works better than
the baseline even if it is trained with half of the real data as
used to train the baseline.

E. Ablation Study

We study the performance of each block’s contribution to
CBAS by conducting various experiments on the test images.
We start with the UNet base network (BN), and then add SB
blocks to estimate the segmentation maps at different scales.
Finally, we add CB block to construct CBAS and train it
with Lfinal. Table. II shows the contribution of each block
on the CBAS network. Note that BN and BN w/ SB are
trained using the cross-entropy (CE) loss. The base network,
BN itself produces poor results. However, when SB blocks
are added to BN, the performance improves significantly. The
combination of BN, SB and CB to construct CBAS and trained
with Lfinal produces the best results. Table. II clearly shows
the importance of formulating ML inference and training
CBAS with Lfinal. This can be clearly seen by comparing
the performance of CBAS when trained with and without
Lfinal. We computed the p values using the DICE scores for
the results obtained after adding different components to base

Fig. 10. Performance of the segmentation network while trained on different
proportions of the real data. Real+Syn (ST-Ratio) corresponds to performance
of segmentation network trained on a mixture of real and synthetic data where
the synthetic data is trained with ratios of the data, and the segmentation
network is also trained with ratios of data. Real+Syn (ST-Full) corresponds
to performance of segmentation network trained on a mixture of real and
synthetic data where the synthetic data is trained on full data, and the
segmentation network is trained with ratios of data.

network to obtain CBAS, against the DICE scores for the final
results obtained using CBAS shown in the Table. II.

Fig. 7 shows the qualitative performance of BN, BN w/SB,
and CBAS. We can clearly see the progressive improvements
visually when each block is added to BN. For example
in the first column of Fig. 7, the output brain ventricular
segmentation regions are random at the edges for large size
ventricles, and contains over segmentation of normal regions
for small size ventricles. Once we add the SB blocks to BN,
the outputs get much better compared to BN, but we can
still observe some under segmentations in large ventricles and
over segmentation in small size ventricles as shown in the
third column of Fig 7. Finally, when we add the CB blocks



12

TABLE IV
COMPARISON OF THE SEGMENTATION PERFORMANCE OF CBAS ACROSS DIFFERENT PROPORTIONS OF THE REAL DATA.

% Real Only Real Real+Syn (ST-Ratio) Real+Syn (ST-Full)
100 % 0.8813 0.8901 0.8901
75 % 0.8439 0.8646 0.8833
50 % 0.8361 0.8512 0.8789
25 % 0.8233 0.8463 0.8743
10 % 0.7630 0.8195 0.8665

0 % (only synthetic) - - 0.8342

to construct CBAS and train it with Lfinal, we observe the
best results as shown in the fourth column of Fig. 7. Final
outputs have clear edges for larger ventricles and accurate
segmentation for smaller size ventricles.

Fig. 9 shows brain ventricle segmentation, and the cor-
responding confidence maps at different scales. We clearly
observe c×2, c×1 (fourth and sixth columns in Fig. 9 re-
spectively) highlight the erroneous regions ŝ×2, ŝ×1 (third
and fifth columns in Fig. 9 respectively) which guide the
CBAS to learn the accurate segmentation in those regions.
For example, as shown in Fig. 9, the edges of the brain
ventricle segmentation are highlighted in the confidence maps
by producing low confidence scores using the CB blocks. This
makes CBAS more attentive in those regions while calculating
the segmentation maps.

V. CONCLUSION

We proposed a novel method, called CBAS, to address
the US brain anatomy segmentation task. In our approach,
we introduced a technique to estimate segmentation and the
corresponding confidence maps. Additionally, we trained our
CBAS network with proposed novel loss function Lfinal.
Extensive experiments showed that CBAS outperformed the
state-of-the-art methods with fewer number of parameters. The
reported computational time makes CBAS the best match for
real-time applications. On top of that, we proposed a image
synthesis method to add synthetic data to our training data,
which further boosts the performance of CBAS. We also show
from various experiments that our proposed synthesis method
is better than recent methods.

Although, our proposed method outperforms state-of-the-
art methods, several limitations in our study still exists. First
our method is geared towards segmenting 2D US data. 2D
scans are inherently limited to cross-sectional analysis and
do not take advantage of surface continuity between adjacent
images (i.e., along the axis perpendicular to the scan plane
direction). Currently, we are in the process of collecting 3D
US scans. Therefore, in the future, we will extend our method
for processing volumetric US data. Second limitation is related
to the the fact that manual segmentation, performed by single
expert ultrasonographer with more than 20 years of experience,
was treated as gold standard in our study. Due to the typical
US imaging artifacts manual segmentation of US data is an
error prone process. Shape of the anatomical region to be
segmented and expertise of the ultrasonographer will bias the
obtained segmentation results. Future work will also involve

the investigation of inter- and intra-user variability of the
segmentation and its effect on the proposed method. During
monitoring of the preterm neonates in situations where the
diagnosis can not be assessed with US additional imaging us-
ing MRI is performed. Anatomical structures segmented from
MRI data could be treated as a gold standard segmentation
to minimize the variability of manual segmentation from US
data. Unfortunately, none of the enrolled subjects had an MRI
scan available. Therefore this analysis could not be performed
during this work. We also did not calculate any quantitative
US measurements such as ventricular index (VI), anterior horn
width (AHW), and thalamo-occipital distance (TOD). These
measurements are usually calculated manually from B-mode
US data [46]. In or future work we will extend out network
for simultaneous segmentation and anatomical landmark ex-
traction in order to automate the quantitative measurement
process. Finally, during this work we have only focused on
lateral ventricles and septum pellecudi. Segmentation of third
and fourth ventricles were beyond the scope of this study.
However, quantitative measures obtained from these ventricles
should be considered as a valuable additional information to
evaluate the pathophysiology of ventriculomegaly [47].

APPENDIX A
DETAILS OF DIFFERENT BLOCKS IN CBAS

Table V shows the details regarding ResBlock, Segmenta-
tion Block and Confidence Block in our network. Note that in
Table V C,H and W denote the number of channels, height
and width of the intermediate feature maps respectively.

TABLE V
CONFIGURATION OF BLOCKS IN THE CBAS NETWORK.

Block name Layer Kernel size Filters dilation Input size Output size

ResBlock
Conv1 1 x 1 2C 1 C × H × W 2C × H × W
Conv2 3 × 3 2C 1 2C × H × W 2C × H × W
Conv3 3 × 3 C 2 2C × H × W C × H × W

Segmentation Block

Conv1 1 × 1 32 1 64 × H × W 32 × H × W
Conv2 3 × 3 32 1 32 × H × W 32 × H × W
Conv3 3 × 3 16 1 32 × H × W 16 × H × W
Conv4 3 × 3 1 1 16 × H × W 1 × H × W

Confidence Block

Conv1 1 × 1 16 1 33 × H × W 16 × H × W
Conv2 3 × 3 16 1 16 × H × W 16 × H × W
Conv3 3 × 3 16 1 16 × H × W 16 × H × W
Conv4 3 × 3 1 1 16 × H × W 1 × H × W

Sigmoid – – – 1 × H × W 1 × H × W

APPENDIX B
DETAILS OF MSSA NETWORK

A. Generator
Table VI shows the details of each block in the generator

network’s architecture. Note that, k is the number of filters
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in the convolutional layers in blocks, where ever specified. C
is the number of channels of input fed into the convolutional
layer in the blocks, where ever specified.

TABLE VI
CONFIGURATION OF THE SYNTHESIS GENERATOR NETWORK.

Block name Layer Kernel size Filters Stride Input size Output size

ConvBlock 1
Conv1 7 × 7 k 1 1 × H × W k × H × W

InstanceNorm – – – k × H × W k × H × W
ReLU – – – k × H × W k × H × W

ConvBlock 2

Conv1 3 × 3 k 2 C × H × W k × H/2 × W/2
InstanceNorm – – – k × H/2 × W/2 k × H/2 × W/2

ReLU – – – k × H/2 × W/2 k × H/2 × W/2

ConvBlock 3
Conv1 3 x 3 k 0.5 C × H × W k × 2H × 2W

InstanceNorm – – – k × 2H × 2W k × 2H × 2W
ReLU – – – k × 2H × 2W k × 2H × 2W

Self Attention Block
Query-Conv1 1 x 1 128 1 C × H × W 128 × H × W
Key-Conv2 1 × 1 128 1 128 × H × W 128 × H × W

Value-Conv3 1 × 1 1024 128 × H × W 1024 × H × W

ResBlock Conv1 3 × 3 k 1 C × H × W k × H × W
Conv2 3 × 3 k 1 k × H × W k × H × W

B. Discriminator
Table VII shows the details of each block in the discrimina-

tor’s network architecture. Note that, k is the number of filters
in the convolutional layers in the block.

TABLE VII
CONFIGURATION OF BLOCKS IN THE DISCRIMINATOR NETWORK.

Block name Layer Kernel size Filters Stride Input size Output size

ConvBlock
Conv1 4 x 4 k 1 1 × H × W k × H × W

InstanceNorm – – – k × H × W k × H × W
LeakyReLU – – – k × H × W k × H × W
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