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Abstract— Data-driven automatic approaches have
demonstrated their great potential in resolving various
clinical diagnostic dilemmas in neuro-oncology, especially
with the help of standard anatomic and advanced molecular
MR images. However, data quantity and quality remain a
key determinant, and a significant limit of the potential
applications. In our previous work, we explored the
synthesis of anatomic and molecular MR image networks
(SAMR) in patients with post-treatment malignant gliomas.
In this work, we extend this through a confidence-guided
SAMR (CG-SAMR) that synthesizes data from lesion
contour information to multi-modal MR images, including
T1-weighted (T1w), gadolinium enhanced T1w (Gd-T1w),
T2-weighted (T2w), and fluid-attenuated inversion recovery
(FLAIR), as well as the molecular amide proton transfer-
weighted (APTw) sequence. We introduce a module that
guides the synthesis based on a confidence measure of the
intermediate results. Furthermore, we extend the proposed
architecture to allow training using unpaired data.
Extensive experiments on real clinical data demonstrate
that the proposed model can perform better than current
the state-of-the-art synthesis methods. Our code is
available at https://github.com/guopengf/CG-SAMR.

Index Terms— Generative adversarial network, Confi-
dence guidance, Multi-modal MR image synthesis, Glioma,
Segmentation.

I. INTRODUCTION

Glioblastoma (GBM) is the most malignant and frequently
occurring type of primary brain tumor in adults. Despite
the development of various aggressive treatments, patients
with GBM inevitably suffer tumor recurrence with an ex-
tremely poor prognosis [1]–[4]. The dilemma in the clini-
cal management of post-treatment patients remains precise
assessment of the treatment responsiveness. Magnetic res-
onance imaging (MRI) is considered the best non-invasive
assessment method of GBM treatment responsiveness [5]–
[7]. Compared to anatomic MRI, such as T1-weighted (T1w),
gadolinium enhanced T1w (Gd-T1w), T2-weighted (T2w), and
fluid-attenuated inversion recovery (FLAIR) images, amide
proton transfer-weighted (APTw) MRI is a novel molecular
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imaging technique that is able to generate endogenous contrast
to detect mobile proteins and peptides in vivo. APTw MRI
has been proven by many researchers to positively influence
clinical management [8]–[20]. Its application in patients with
brain tumors was approved by the FDA recently. With the help
of convolutional neural networks (CNNs), data-driven medical
image analysis methods have provided exciting solutions in the
neuro-oncologic community [21], [22]. Several studies have
demonstrated that CNNs-based methods outperform humans
on fine-grained classification tasks but require a large amount
of accurately annotated, diversity-rich data [23], [24]. It is
usually impractical to collect large MRI datasets, especially
for advanced MR image data. Furthermore, obtaining aligned
lesion annotations on the corresponding co-registered multi-
modal MR images (namely, paired training data) is costly,
since expert radiologists are required to label the data, monitor
the image preprocessing, and verify the annotation based on
extensive professional knowledge. While deploying conven-
tional data augmentations, such as rotation, flipping, random
cropping, and distortion, during training partly mitigates these
issues, the performance of CNNs models is still limited
because the diversity of datasets is compromised [25].

Many novel approaches, including generative adversarial
networks (GAN), have been explored for generating more
realistic data. Goodfellow et al. [26] proposed GAN and first
applied it to synthesize photo-realistic images. Isola et al.
[27] and Wang et al. [28] further investigated conditional
GAN and achieved an impressive solution to image-to-image
translation problems. Several generative models have been suc-
cessfully proposed for MRI synthesis. Dar et al. [29] developed
conditional GANs for spatially registered/unregistered multi-
contrast MR images. Nguyen et al. [30] and Chartsias et al.
[31] proposed CNNs-based architectures to synthesize cross-
modality MR images. Cordier et al. [32] further used a gener-
ative model for multi-modal MR images of brain tumors from
a single label map. However, their inputs were conventional
MRI modalities, and the diversity of the synthesized images
was limited by the training images. Moreover, the method
is not yet capable of producing manipulated outputs. Shin
et al. [33] adopted Pix2Pix [27] to transfer brain anatomy
and lesion segmentation maps to multi-modal MR images
with brain tumors. This approach is capable of producing
manipulated outputs and realistic brain anatomy for multiple
MRI sequences, but it does not consider significant differences
in radiographic features between anatomic and molecular MRI.
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Moreover, lesions with diverse and complicated patterns may
need extra supervision during synthesis [34], [35]. In this
scenario, more new methods need to be explored for multi-
modal MR images and optimized for lesion regions.

In our previous work, the synthesis of anatomic and molec-
ular MR images networks (SAMR) [36], a novel generative
model was proposed to simultaneously synthesize a diverse
set of anatomic T1w, Gd-T1w, T2w, and FLAIR images, as
well as molecular APTw images. SAMR [36] is a GAN-
based approach. It takes arbitrarily manipulated lesion masks
facilitated by brain atlases generated from training data as
the input and consists of a stretch-out up-sampling module,
a segmentation consistency module, and multi-scale label-
wise discriminators. In this paper, we extend SAMR [36]
by incorporating extra supervision on the latent features and
corresponding confidence information to further improve the
synthetic performance, especially in lesion regions. Intuitively,
directly providing the estimated synthesized images (i.e. in-
termediate results) to the subsequent layers of the networks
may propagate errors to the final synthesized images. With
the confidence map module, the proposed algorithm is capable
of measuring an uncertainty metric of the intermediate results
and blocking the flow of incorrect estimation. To this end, we
formulate a joint task of estimating the confidence score at
each pixel location of the intermediate results and synthesizing
realistic multi-modal MR images, namely confidence guided
SAMR (CG-SAMR). Figure 1(a) presents an overview of
the proposed method corresponding to training using paired
data. Furthermore, to overcome the insufficiency of paired
training data, we modified the network to allow unsupervised
training, namely unpaired CG-SAMR (UCG-SAMR). In other
words, the proposed approach does not require aligned pairs of
lesion segmentation maps and multi-modal MR images during
training. This is achieved by adding an extra GAN which
reverses the synthesis process to a segmentation task. The
schematic of the proposed method that corresponds to training
using unpaired data is presented in Figure 1(b). In summary,
this paper makes the following contributions:

• A novel GAN-based model, called CG-SAMR, is pro-
posed to synthesize high quality multi-modal anatomic
and molecular MR images with controllable lesion infor-
mation.

• Confidence scores of each sequence measured during
synthesis are used to guide the subsequent layers for
better synthesis performance.

• To increase the diversity of the synthesized data, rather
than explicitly using white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF) masks, we leverage
the atlas of each sequence to provide brain anatomic
information in CG-SAMR.

• We demonstrate the feasibility of extending the applica-
tion of the CG-SAMR network to unpaired data training.

• Comparisons are made against several recent state-of-the-
art paired/unpaired synthesis approaches. Furthermore, an
ablation study is conducted to demonstrate the improve-
ments obtained by various components of the proposed
method.

Fig. 1. Overview of the proposed frameworks. (a) The schematic of the
proposed method that corresponds to training using paired data. G is
the generator of a GAN which consists of an encoder, E and a decoder,
F. D represents multi-scale label-wise discriminators. U is the U-net
lesion segmentation module. f×0.5 represents feature maps at a scale
of ×0.5. (b) The schematic of the proposed method that corresponds
to training using unpaired data. E1, and E2 are two encoders that
maps input to the latent codes. F1 is a decoder that maps the latent
codes to lesion segmentation maps and anatomic prior (domain 1). F2

is a decoder that has the same network architecture as the decoder of
CG-SAMR. F1 can generate two types of instances: (1) instances from
the reconstruction stream x1→1

u = F1(E1(xu)), and (2) instances
from the cross-domain stream x2→1

u = F1(E2(yu)). F2 maps the
latent codes to multi-modal MR images (domain 2). Similarly, F2 also
can generate two types of instances. We denote the feature maps used
for confidence estimation in F2 as f×0.5|yu when decoding the latent
code obtained by encoding yu. D1 and D2 are two discriminators for
domain 1 and domain 2, respectively.

The rest of the paper is organized as follows. Section II
provides a review of some related works. Details of the
proposed method are given in Section III. Implementation
details, experimental results, and the ablation study are given
in Section IV. Finally, Sections V and VI conclude the paper
with a discussion and summary.

II. RELATED WORKS

The goal of MR image synthesis is to generate target
images with realistic radiographic features [37]. Technically,
MR image synthesis can be achieved by a generative model
that translates the source domain to the MR image domain.
The source domain usually belongs to noise or different
modalities/contrast types (e.g., from CT images to MR images
or from T1w images to T2w images). In what follows, we
review some recent studies on this topic and applications of
modeling uncertainty in CNNs.

A. Conventional Methods
Conventional medical image synthesis methods include

intensity-based methods and registration-based methods [38].
Intensity-based methods essentially learn a transformation
function that maps source intensities to target intensities. Roy
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Fig. 2. An overview of the proposed CG-SAMR network. The goal of the CG-SAMR network is to produce realistic multi-modal MR images
given the corresponding lesion masks and atlases. The orange blocks indicate the encoder part. The green blocks represent the decoder part with
stretch-out up-sampling, in which we perform a customized synthesis for each MRI sequence. The synthesis module produces the intermediate
results for each branch of stretch-out up-sampling and is denoted as SM. CM represents the confidence map module that computes confidence
maps to guide the subsequent networks. The U-net lesion segmentation module regularized the encoder-decoder part to produce lesion regions
with correct radiographic features.

et al. [39] proposed an example-based approach that relied on
sparse reconstruction from image patches to achieve contrast
synthesis and further extended it under the setting of patch-
based compressed sensing [40]. Joy et al. [41] leveraged ran-
dom forest regression to learn the nonlinear intensity mappings
for synthesizing full-head T2w images and FLAIR images.
Huang et al. [42] proposed a geometry-regularized joint dictio-
nary learning framework to synthesize cross-modality MR im-
ages. For registration-based methods, the synthesized images
are generated by the registration between source images and
target co-registered images [43]. Cardoso et al. [44] further
extended this idea to synthesize expected intensities in an
unseen image modality by a template-based, multi-modal,
generative mixture-model.

B. CNNs-based Methods
With the development of deep learning, CNNs-based medi-

cal image synthesis methods have shown significant improve-
ments over the conventional methods of image synthesis.
Rather than using patch-based methods [45], [46], Sevetlidis
et al. [47] introduced a whole image synthesis approach that
relied on a CNNs-based autoencoder architecture. Nguyen
et al. [30] and Chartsias et al. [31] proposed CNNs-based
architectures that integrated intensity features from images
to synthesize cross-modality MR images. Joyce et al. [29]
presented a multi-input encoder-decoder neural network model
that leveraged learned modality invariant latent embedding to
perform MR image synthesis in both single and multi-input
settings and demonstrated the robustness of dealing with both
missing and misaligned data. Dar et al. [48] addressed the
data scarcity problem in training CNNs models for accelerated
MRI by a transfer-learning approach. They leveraged the pre-
trained networks on a large natural images dataset and fine-

tuned on a small amount of MR images to achieve domain
transfer between natural and MR images. Various GAN-based
methods have also been used for medical image analysis [49],
[50]. Dar et al. [51] proposed mustGAN, which is a multi-
stream approach that integrates information across multiple
source images via a mixture of multiple one-to-one streams
and a joint many-to-one stream for multi-modal MR image
synthesis. Shin et al. [33] adopted pix2pix [27] to transfer
brain anatomy and lesion segmentation maps to multi-modal
MR images with brain tumors, which showed the benefit of
using brain anatomy prior, such as white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) masks, in MR
image synthesis.

One major challenge of image synthesis is that paired
source/target images are required during training which
are expensive to acquire. Recent advances in GAN-based
architectures, cycle-consistent adversarial networks (Cycle-
GAN) [52] and unsupervised image-to-image translation net-
works (UNIT) [53] have outlined to a promising direction
for cross-modality biomedical image synthesis using unpaired
source/target images. Wolterink et al. [54] leveraged cycle
consistency to achieve bidirectional MR/CT image synthesis.
A conditional GAN-based approach has been proposed by Dar
et al. [55] to tackle the multi-contrast MR image synthesis
in the scenarios of registered and unregistered images by
introducing the cycle consistency loss. Chartsias et al. [56]
proposed a two stage framework for MR/CT image synthesis
and demonstrated that the synthesized data can further improve
the segmentation performance. Zhang et al. [57] and Huo
et al. [38] introduced SynSeg-Net to achieve bidirectional
synthesis and anatomy segmentation. In their approach, the
source domain was the MR images and segmentation labels,
while the target domain is CT images. Inspired by these works,
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we also added an extra GAN-based network to CG-SAMR
and leveraged cycle consistency to allow the training using
unpaired data.

C. Modeling Uncertainty in CNNs

Many recent approaches have modeled the uncertainty in
CNNs and used it to benefit the network in different ap-
plications. Kendall et al. [58] leveraged the Bayesian deep
learning models to demonstrate the benefit of modeling uncer-
tainty on semantic segmentation and depth regression tasks.
In [59], Kendall et al. extended the previous work [58] to
multi-task learning by proposing a multi-task loss function
that maximized the Gaussian likelihood with homoscedastic
uncertainty. Yasarla et al. [60] and Jose et al. [61] modeled
the aleatoric uncertainty as maximum likelihood inference on
image restoration and ultrasound image segmentation tasks,
respectively. Inspired by these works, we introduce a novel loss
function to measure the confidence score of the intermediate
synthesis results and guide the subsequent networks of CG-
SAMR by the estimated confidence scores.

III. METHODOLOGY

Figure 2 gives an overview of the proposed encoder and
decoder parts of CG-SAMR framework. By incorporating
multi-scale label-wise discriminators and shape consistency-
based optimization, the generator aims to produce meaningful,
high-quality anatomical and molecular MR images with
diverse and controllable lesion information. While applying
3D convolution operations might reflect the reality of data,
the output of the proposed method is multi-modal MRI
image slices, since the voxel size between anatomical and
molecular MRI in the axial direction is significantly different
and re-sampling to isotropic resolution can severely degrade
the image quality. Detailed imaging parameters are given in
Section IV-A. In what follows, we describe key parts of the
network and training processes using paired and unpaired data.

A. Multi-modal MRI Generation

Our generator architecture is inspired by the models pro-
posed by Johnson et al. [62] and Wang et al. [28]. The
generator network, consists of two components (see Figure 2):
an encoder and a decoder with a stretch-out up-sampling
module. Let the set of multi-modal MR images be denoted
as Y and the corresponding set of lesion segmentation maps
and anatomic prior as X . In CG-SAMR, the anatomic prior
corresponds to multi-modal atlas. Details of atlas generation
are provided in Section IV-A and Supplementary Figure 2
shows an example of generated atlases. The generator aims
to synthesize multi-modal MR images y ∈ Y given input
x ∈ X . Unlike many deep learning-based methods that
directly synthesize MR images from input, we first estimate
the intermediate synthesis results ŷ×0.5 (0.5 scale size of y)
and the corresponding confidence map c×0.5, then use them
to guide the synthesis of the final output ŷ. The input x is
passed through the encoder module to obtain the latent feature

Fig. 3. (a) Synthesis module. (b) Confidence map module. Conv rep-
resents a convolution block that contains a convolutional layer, a batch
normalization layer, and a Rectified Linear Units (ReLU) activation.⊕ is
the channel-wise concatenation. The visualization of confidence maps
are generated by (1 − c×0.5) for better illustration of the uncertain
region.

maps. Then, the same latent feature maps are passed through
each branch of the stretch-out up-sampling block to perform
customized synthesis.

The encoder part (orange blocks in Figure 2) consists of
a fully-convolutional module with five layers and subsequent
three residual learning blocks (ResBlock) [63]. We set the
kernel size and stride equal to 7 and 1, respectively, for the
first layer. For the purpose of down-sampling, instead of using
maximum-pooling, the stride of other four layers was set to 2.
Rectified Linear Unit (ReLu) activation and batch normaliza-
tion were sequentially added after each layer. To learn better
transformation functions and representations through a deeper
perception, the depth of the encoder network is increased by
three ResBlocks [25], [63]. We observed significantly different
radiographic features between anatomic and molecular MR
images, which vastly increased the difficulty of simultaneous
synthesis. To address this issue, the decoder part (green blocks
in Figure 2) consists of three ResBlocks and a stretch-out
up-sampling module that contains five same sub-modules de-
signed to utilize the latent representations from the preceding
ResBlock and perform customized synthesis for each MR
sequence. Each sub-module contains a symmetric architecture
with a fully-convolutional module in the encoder. All convo-
lutional layers are replaced by transposed convolutional layers
for up-sampling. The synthesized multi-modal MR images are
produced from each sub-model. Details of convolutional layers
in the generator are shown in Supplementary Methods and
Supplementary Table 1.

B. Synthesis and Confidence Map Modules
The synthesis networks are prone to generating incorrect

radiographic features at or near the edges, since they usually
involve diverse and complicated patterns. Thus, special atten-
tion to those regions where the network tends to be uncertain
can improve the MR image synthesis task. To address this
issue, a synthesis module and a confidence map module are
added to each branch of the stretch-out up-sampling block
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(see Synthesis Module (SM) and Confidence Map Module
(CM) in Figure 2). Specifically, we estimate the intermediate
synthesis results at a 0.5 scale size of the final output by SM
and measured the confidence map which gives attention to
the uncertain regions by CM. The confidence score at each
pixel is a measurement of certainty about the intermediate
results computed at each pixel. On confidence maps, regions
where the network was certain about the synthesized intensity
showed high confidence values (i.e. close to 1), while the
network assigned low confidence scores (i.e. close to 0) for
those pixels where it was uncertain. To this end, we can block
the erroneous regions by combing confidence maps and the
intermediate results. Thus, the masked intermediate results are
returned to the subsequent networks, which makes the network
more attentive in the uncertain regions.

As shown in Figure 3, feature maps at a scale of ×0.5
(f×0.5) are given as input to SM to compute the intermediate
results of each MR sequence at a scale of ×0.5. SM is a
sequence of four convolutional blocks. Then, we feed the
estimated intermediate results and the feature maps as inputs
to CM to compute the confidence scores at every pixel. CM
is also a sequence of four convolutional blocks. Details of
the convolutional layers in SM and CM are given in Supple-
mentary Table 2. Finally, the confidence-masked intermediate
results (i.e. the element-wise multiplication between ŷ×0.5 and
c×0.5) combined with feature maps at a scale of ×0.5 are fed
back to the network to guide the subsequent layers to produce
the final output. Inspired by modeling the data dependent
aleatoric uncertainty [58], [59], we define the confidence map
loss as follows

LCM(f×0.5) = c×0.5 ⊗ ‖ŷ×0.5 − y×0.5‖1 − λcmC,

ŷ×0.5 = SM(f×0.5),

c×0.5 = CM(f×0.5 ⊕ ŷ×0.5),

C =
∑
i

∑
j

log(cij×0.5),

(1)

where ⊗, ⊕ are the element-wise multiplication and the
channel-wise concatenation, respectively. cij×0.5 represents the
confidence score at the ith row, jth column of the confidence
map c×0.5. ŷ×0.5 represents the intermediate synthesis results
produced by the decoder part. In LCM, the first term minimizes
the L1 difference between ŷ×0.5 and y×0.5, and the values of
c×0.5 as well. To avoid a trivial solution (i.e. cij×0.5 = 0,∀i, j),
we introduced the second term as a regularizer. λcm is a
constant adjusting the weight of this regularization term C.
A similar loss was used for image restoration and ultrasound
segmentation tasks in [61], [64]. To the best of our knowledge,
our method is the first attempt to introduce this kind of loss
in MR synthesis tasks.

C. Multi-scale Label-wise Discriminators
In order to achieve a large receptive field in discriminators

without introducing deeper networks, we adopt multi-scale
PatchGAN discriminators [27], which have identical network
architectures but accept multi-scale inputs [28]. To distinguish
between real and synthesized images, conventional discrim-
inators operate on the whole input. However, optimizing the

Fig. 4. The overview of multi-scale label-wise discriminators. ROI
masks are produced from reorganized input lesion masks. We denote
⊗ as the element-wise multiplication operation. GAP is the global
average pooling that generates a 0.5 scale size of input. D is a set of
discriminators.

generator to produce realistic images in each regions of interest
(ROI) cannot be guaranteed by discriminating on holistic
images, since the difficulty of synthesizing images in different
regions varies. To address this issue, we introduce label-wise
discriminators. Based on the radiographic features, original
lesion segmentation masks were reorganized into three ROIs,
including background, normal brain, and lesion. As shown in
Figure 4, the input of each discriminator is masked by its
corresponding ROI. Since the proposed discriminators are in
a multi-scale setting, for each ROI there are two discrimina-
tors that operate on the original and a down-sampled ×0.5
scale. Thus, there are in total six discriminators for three
ROIs and we refer to these set of discriminators as D =
{D1, D2, D3, D4, D5, D6}. In particular, {D1,D2},{D3,D4},
and {D5,D6} operate on the original and down-sampled ver-
sions of background, normal brain, and lesion, respectively. An
overview of the proposed discriminators is given in Figure 4.
The objective function corresponding to the discriminators
LGAN(G,Dk) is as follows

LGAN(G,Dk) =E(x′,y′)[logDk(x
′, y′)]

+Ex′ [log(1−Dk(x
′, G′(x)))],

LGAN(G,D) =

6∑
k=1

LGAN(G,Dk),

(2)

where x and y are paired input and real multi-modal MR
images, respectively. x′ , mk⊗x, y′ , mk⊗y, and G′(x) ,
mk⊗G(x), where ⊗ denotes element-wise multiplication and
mk corresponds to the ROI mask. For simplicity, we omit the
down-sampling operation in this equation.

D. Training Using Paired Data

A multi-task loss is designed to train the generator and the
discriminators in an adversarial setting. Rather than only using
the conventional adversarial loss LGAN, we also adopt a feature
matching loss LFM [28] to stabilize training, which optimizes
the generator to match these intermediate representations from
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the real and the synthesized images in multiple layers of the
discriminators. For discriminators, LFM(G,Dk) is defined as
follows

LFM(G,Dk) =

T∑
i

1

Ni

[
‖D(i)

k (x′, y′)−D(i)
k (x′, G′(x)‖22

]
LFM(G,D) =

6∑
k=1

LFM(G,Dk),

(3)
where D(i)

k denotes the ith layer of the discriminator Dk, T is
the total number of layers in Dk and Ni is the number of ele-
ments in the ith layer. When we perform lesion segmentation
on images, it is worth noting that there is a consistent relation
between the prediction and the real image serving as input
for the generator. In most of the lesions, the annotations of
different labels are usually irregularly interlaced, which causes
ambiguity for synthesizing realistic MR images. To tackle this
problem, we propose a lesion shape consistency loss LSC by
adding a U-net [65] segmentation module (see Figure 2) that
regularizes the generator to obey this consistency relation. We
adopt a Generalized Dice Loss (GDL) [66] to measure the
difference between the predicted and real segmentation maps
which is defined as follows

GDL(R,S) = 1−
2
∑N

i risi∑N
i ri +

∑N
i si

, (4)

where R denotes the ground truth and S is the segmentation
result. ri and si represent the ground truth and predicted
probability maps at each pixel i, respectively. N is the total
number of pixels. The lesion shape consistency loss LSC is
then defined as follows

LSC(U) = GDL(s, U(y)) + GDL(s, U(G(x))), (5)

where U(y) and U(G(x)) represent the predicted lesion seg-
mentation probability maps by taking y and G(x) as inputs in
the segmentation module, respectively. s denotes the ground
truth lesion segmentation map. The final multi-task objective
function for training CG-SAMR is defined as

min
G,U

(max
D
LGAN(G,D))+λ1LFM(G,D)

+λ2LSC(U) + λ3LCM(f×0.5),
(6)

where λ1, λ2 and λ3 are the three parameters that control the
importance of each loss.

E. Training Using Unpaired Data
Figure 5 shows the schematic of the proposed method that

corresponds to training using unpaired data. Our framework
is based on the proposed CG-SAMR network and additional
GANs: GAN1 = {E1, F1, D1} and GAN2 = {E2, F2, D2}.
Denote the set of lesion segmentation maps and anatomic
prior as domain 1 and the set of multi-modal MR images
as domain 2. Here, we denote unpaired instances in domain
1 and 2 as xu and yu, respectively. In GAN1, D1 aims to
evaluate whether the translated unpaired instances are realistic.
It outputs true for real instances sampled from the domain 1
and false for instances generated by F1. As shown in Figure 5,

Fig. 5. The overview of the proposed method in (a) reconstruc-
tion streams, (b) cross-domain streams, and (c) cycle-reconstruction
streams under the training using unpaired data.

F1 can generate two types of instances: (1) instances from the
reconstruction stream x1→1

u = F1(E1(xu)), and (2) instances
from the cross-domain stream x2→1

u = F1(E2(yu)). We have
similar properties in GAN2, but the decoder F2 is replaced by
the corresponding decoder part in CG-SAMR. Thus, we can
realize confidence-guided customized synthesis for each MR
sequence under unpaired data training. The objective functions
for reconstruction streams (Figure 5a) are defined as follows

Lrecon1 =‖xu − x1→1
u ‖1,

Lrecon2 =‖yu − y2→2
u ‖1 + LCM(f×0.5|yu),

(7)

where LCM is defined in equation (1) and F2 is a decoder
network with the same architecture as used in CG-SAMR.
We denote the feature maps used for LCM in F2 as f×0.5|yu
when decoding the latent code obtained by encoding yu. The
objective functions of cross-domain streams (Figure 5b) can
be expressed as follows

LGAN1
=E(xu)[logD(xu)] + E(z2)[log(1−D1(x

2→1
u )],

LGAN2 =E(yu)[logD(yu)] + E(z1)[log(1−D2(y
1→2
u )],

(8)

where z1 and z2 are the latent codes, z1 = E1(xu), z2 =
E2(yu). Relying on the reconstruction stream and adversarial
training (i.e. cross-domain streams) cannot guarantee learning
of the desired mapping function. To reduce the number of
possible mapping functions, we require the learned mapping
functions to obey cycle-consistent constraints (i.e. xu →
y1→2
u → F1(E2(y

1→2
u )) ≈ xu) [52]. The objective functions

for cycle-reconstruction streams (Figure 5c) are defined as
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TABLE I
QUANTITATIVE COMPARISON. THE QUALITY OF THE SYNTHESIZED DATA UNDER PAIRED DATA TRAINING IS MEASURED BY PIXEL ACCURACY FOR

LESION REGIONS, INCLUDING EDEMA, CAVITY, AND TUMOR. THE UNIT IS IN PERCENT (%). A SYNTHESIZED PIXEL WAS COUNTED CORRECT IF THE

ABSOLUTE DIFFERENCE WAS WITHIN 16 OF THE GROUND TRUTH INTENSITY VALUE. THE QUALITY OF HOLISTIC SYNTHESIZED IMAGES WAS

MEASURED BY SSIM AND PSNR.

Pix2Pix [27] Pix2PixHD [28] Shin et al. [33] SAMR [36] CG-SAMR (ours)
Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNREdema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor

APTw 50.9 43.0 48.2 0.766 17.8 54.9 42.5 51.6 0.765 18.2 45.3 40.4 41.8 0.770 17.2 66.1 53.4 63.3 0.782 18.1 67.3 51.6 64.4 0.782 18.4
T1w 54.5 56.3 49.5 0.789 17.5 53.8 52.8 47.9 0.794 17.5 73.2 72.2 68.4 0.900 25.0 73.3 69.4 67.7 0.821 19.4 76.4 67.8 71.3 0.834 20.2

FLAIR 52.2 41.8 45.3 0.778 20.4 47.4 37.3 46.8 0.774 20.6 59.7 42.8 51.9 0.810 22.1 75.6 62.0 68.2 0.798 22.5 78.5 67.8 71.7 0.809 23.5
T2w 52.9 52.7 43.4 0.799 20.2 51.4 59.4 47.3 0.794 20.3 65.7 56.2 56.5 0.845 22.8 77.1 78.0 71.3 0.822 22.6 81.5 77.9 74.6 0.836 23.5

Gd-T1w 70.5 57.7 38.8 0.747 20.8 72.3 58.3 37.9 0.754 21.0 74.9 65.3 39.4 0.818 22.8 81.7 67.8 64.7 0.790 22.7 83.5 69.5 63.1 0.801 23.4
Avg. 56.2 50.3 45.0 0.776 19.3 56.0 50.1 46.3 0.776 19.5 63.8 55.4 51.6 0.829 22.0 74.8 66.1 67.0 0.803 21.1 77.4 66.9 69.0 0.812 21.8

TABLE II
QUANTITATIVE RESULTS CORRESPONDING TO IMAGE SEGMENTATION

WHEN THE SYNTHESIZED DATA IS USED FOR DATA AUGMENTATION. FOR

EACH EXPERIMENT, THE FIRST ROW REPORTS THE PERCENTAGE OF

SYNTHESIZED/REAL DATA FOR TRAINING AND THE NUMBER OF

INSTANCES OF SYNTHESIZED/REAL DATA IN PARENTHESES. EXP.3
REPORTS THE RESULTS OF THE BASELINE TRAINED ONLY BY REAL

DATA.

Exp.1: 50% Synthesized + 50% Real (1080 + 1080)
Dice Score

Edema Cavity Tumor
Pix2Pix [27] 0.594 0.453 0564

Pix2PixHD [28] 0.597 0.532 0.566
Shin et al. [33] 0.734 0.700 0.733

SAMR [36] 0.789 0.819 0.813
CG-SAMR (ours) 0.807 0.840 0.835
Exp.2: 25% Synthesized + 75% Real (540 + 1080)

Pix2Pix [27] 0.600 0.505 0.565
Pix2PixHD [28] 0.642 0.510 0.662
Shin et al. [33] 0.675 0.647 0.708

SAMR [36] 0.750 0.779 0.773
CG-SAMR (ours) 0.760 0.793 0.772

Exp.3: 0% Synthesized + 100% Real (0 + 1080)
Baseline 0.647 0.610 0.672

follows

Lcyc1 =‖xu − F1(E2(y
1→2
u ))‖1,

Lcyc2 =‖yu − F2(E1(x
2→1
u ))‖1 + LCM(f×0.5|x2→1

u ).
(9)

The overall objective function used to train the UCG-SAMR
in the setting of unpaired data training is defined as follows

G∗ = min
{E1,F1,E2,F2}

max
{D1,D2}

Ldomain1 + Ldomain2 , where

Ldomain1 =Lrecon1 + LGAN1
+ Lcyc1 , and

Ldomain2 =Lrecon2 + LGAN2
+ Lcyc2 .

(10)

IV. EXPERIMENTS AND RESULTS

In this section, we first discuss the data acquisition and
training details. Then, the experimental setup, evaluations of
the proposed synthesis methods against a set of recent state-
of-the-art approaches, and comprehensive ablation studies are
presented.

A. Data Acquisition
This retrospective study was approved by the Institutional

Review Board (IRB) and conducted in accordance with the
U.S. Common Rule, and the need for a consent form was

waived. Patient inclusion criteria were: at least 20 years old;
initial diagnosis of pathologically proven primary malignant
glioma; status post initial surgery and chemoradiation. Data
from 100 patients were re-analyzed in this study [13], [36],
[67]. MRI scans were acquired on a 3T human MRI scanner
(Achieva; Philips Medical Systems) by using a body coil
excite and a 32-channel phased-array coil for reception [67].
T1w, Gd-T1w, T2w, FLAIR, and APTw MRI sequences
were collected for each patient. Image parameters for APTw
can be summarized as: field of view (FOV), 212 × 212 ×
66 mm3; resolution, 0.82 × 0.82 × 4.4 mm3; and size of
matrix, 256 × 256 × 15. Other anatomic MRI sequences
were acquired with image parameters: FOV, 212 × 212 ×
165 mm3; resolution, 0.41 × 0.41 × 1.1 mm3; and size of
matrix, 512 × 512 × 150. Co-registration between APTw and
anatomic sequences [68], skull stripping [69], N4-bias field
correction [70], and MRI standardization [71] were performed
sequentially. The schematic of the data preprocessing pipeline
is shown in Supplementary Figure 3. After preprocessing, the
final volume size of each sequence was 256 × 256 × 15.
For every collected volume, lesions were manually annotated
by an expert neuroradiologist into three labels: edema; cavity;
and tumor. A lesion of postoperative malignant glioma was
first annotated to cover the region of abnormal intensities on
FLAIR MR images. Then, the radiologist further labeled
“cavity” (including surgical cavity and cavity with liquefactive
necrosis), and “tumor” (including active and inactive tumor
residual) within the lesion. Then, the remainder of the lesion
was defined as “edema”. Notably, the prior/follow-up MR
images and daily progress notes were reviewed with caution,
in order to make sure the dynamic changes within the residual
tumor and the prior/ongoing therapies were comprehensively
considered. Then, a multivariate template construction tool
[72] was used to create the group average of each sequence
(atlas) from volumes used for training. Fifteen hundred in-
stances from 100 patients with a size of 256 × 256 × 5 were
extracted from volumetric data, where 5 corresponds to five
MRI sequences. For every instance, the corresponding atlas
slice and two adjunct atlas slices in the axial direction were
extracted to provide the prior of human brain anatomy in
paired data training. The WM, GM, CSF probability masks
were also extracted to provide anatomic prior used in the
scenario of unpaired data training by SPM12 [73]. We split
these instances into 1080 (72 patients) for training, 150 (10
patients) for validation and 270 (18 patients) for testing. The
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patient-based data was split to ensure that training, validation
and testing data did not include the instances from the same
patient.

B. Implementation Details
The hyperparameter selection in deep neural networks,

especially for GAN, is computationally intensive [74]. We
performed commonly used one-fold validation in deep learning
research on the validation dataset to select the optimal com-
bination of hyperparameters [55], [75], [76]. The CG-SAMR
synthesis model was trained based on the final objective func-
tion equation (6) using the Adam optimizer [72]. λ1, λ2 and
λ3 were set equal to 5, 1 and 1, respectively. Hyperparameters
were set as follows: constant learning rate of 2 ×10−4 for the
first 250 epochs then linearly decaying to 0; 500 maximum
epochs; batch size of 8. λcm in equation (1) initially was set
equal to 0.1. When the mean of scores in confidence maps
c×0.5 was greater than 0.7, λcm was set equal to 0.03. Hy-
perparameters for unpaired data training were set as follows:
constant learning rate of 2 ×10−4 for the first 400 epochs then
linearly decaying to 0; 800 maximum epochs; batch size of 1.
To further evaluate the effectiveness of the synthesized MRI
sequences on data augmentation, we leveraged U-net [65] to
train lesion segmentation models. U-net [65] was trained by
the Adam optimizer [72]. Hyperparameters were set as fol-
lows: constant learning rate of 2×10−4 for the first 100 epochs
then linearly decaying to 0; 200 maximum epochs; batch size
of 16. In the segmentation training, all the synthesized data
were produced from randomly manipulated lesion masks by
CG-SAMR. For comparison methods, training procedures and
hyperparameters were adopted from their original publications.

C. Results of Training Using Paired Data
We evaluated the performance of our method against the

following recent state-of-the-art generic synthesis methods:
Pix2Pix [27], Pix2PixHD [28] as well as MRI synthesis
methods: Shin et al. [33], and SAMR [36]. We used pixel
accuracy [27], [28], [52] to compare the performance in lesion
regions. In particular, we calculate the difference between the
synthesized data and the corresponding ground truth data.
A pixel mapping was counted correct if the absolute differ-
ence was within 16 of the ground truth intensity value. The
structural similarity index measure (SSIM) and peak-signal-
to-noise ratio (PSNR) were also introduced to the quality
evaluation of holistic synthesized images. Table I shows the
quantitative performance of different methods in terms of
pixel accuracy, SSIM, and PSNR. As can be seen from this
table, our method clearly outperformed the present state-
of-the-art synthesis algorithms at lesion regions. Figure 6
presents the qualitative comparisons of the synthesized multi-
modal MRI sequences and zoomed-in images around the
gadolinium enhanced region from different methods. It can
be observed that Pix2Pix [27] and Pix2PixHD [28] were
less optimal for the synthesis of realistic looking human
brain MR images. In Figure 6 (b)(c), the disparities included
abnormal brain anatomic structures (i.e., an emerging cerebral

Fig. 6. Qualitative comparison of different methods under paired data
training. The same lesion mask is used to synthesize images from
different methods. (a) Real data (ground truth). (b) Pix2Pix [27]. (c)
Pix2PixHD [28]. (d) Shin et al. [33]. (e) CG-SAMR (ours). (f) Confidence
maps from CG-SAMR. The visualization of confidence maps are gen-
erated by (1 − c×0.5) for better illustration of the uncertain region.
The second row of each approach shows zoomed-in images of the
gadolinium-enhanced regions of the images in the first row, which are
indicated by red boxes.

ventricle dilation, disproportionately atrophic corpus callosum)
and unreasonable radiographic features in the lesion regions.
Moreover, the frontal lobes showed misleading hypointensity
(deep blue), while normal appearing normal brain parenchyma
always presented as green or very light blue (the APTw
intensity is around 0%). Shin et al. [33] produced realistic
brain anatomic structures for anatomic MRI sequences. How-
ever, there is an obvious disparity between the synthesized
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Fig. 7. Examples of lesion mask manipulations in CG-SAMR. (a) Real
images (ground truth). (b) Synthesized images from the original mask.
(c) Synthesized images when tumor size is increased by 100%. (d) Syn-
thesized images when tumor size is reduced to 50%. (e) Synthesized
images when the lesion mask is replaced by another one. In lesion
masks, gray, green, yellow, and blue represent normal brain, edema,
tumor, and cavity, respectively.

and real APTw images, especially in the lesion regions (see
red boxes in Figure 6 (d)). Our proposed method produced
more reasonable radiographic features of lesions and a more
realistic anatomic structure. We provide the visualization of
image differences between synthesized images and the ground
truth in Supplementary Figure 4 and an additional qualitative
comparison in Supplementary Figure 5.

To further evaluate the quality of the synthesized MR
images, we performed data augmentation by using the syn-
thesized images in training and then performed lesion seg-
mentation. The dice score was used as an evaluation metric
to measure the performance of different methods. The data
augmentation by synthesis was evaluated by the improvement
in lesion segmentation models. We arbitrarily controlled le-
sion information to synthesize different amounts of data for
augmentation. Supplementary Figure 1 shows the flowchart of
lesion mask manipulation. To simulate the practical use of data
augmentation, we conducted experiments by using utilizing
all real data. In each experiment, we varied the percentage
of the synthesized data to observe the contribution to data
augmentation. Table II shows the calculated segmentation
performance. Compared to the baseline experiment that only
used real data, the synthesized data from pix2pix [27] and
pix2pixHD [28] degraded the segmentation performance. The
performance was improved when the synthesized data from
Shin et al. [33] and SAMR [36] were used for segmentation,
but the proposed method outperforms the other methods by
a large margin. Figure 7 demonstrates the robustness of the
proposed model under different lesion mask manipulations
(e.g. changing the size of tumor and even reassembling lesion
information between lesion masks). As can be seen from
this figure, our method is robust to various lesion mask

Fig. 8. Qualitative comparison of segmentation and synthesis perfor-
mance under unpaired data training. (a) Real data (ground truth). (b)
CycleGAN [52]. (c) UNIT [28]. (d) SynSeg-Net [38]. (e) UCG-SAMR
(ours). (f) Confidence maps from UCG-SAMR. The visualization of
confidence maps are generated by (1 − c×0.5) for better illustration
of the uncertain region. In lesion masks, gray, green, yellow, and blue
represent normal brain, edema, tumor, and cavity, respectively.

manipulations.

D. Results of Training Using Unpaired Data

We called the proposed method under unpaired data training
as UCG-SAMR and evaluated its performance against the
recent state-of-the-art generic synthesis methods (CycleGAN
[52] and UNIT [53]) as well as another MRI synthesis methods
(SynSeg-Net [38]). Table III shows the quantitative synthesis
performance of different methods in term of pixel accuracy,
SSIM, and PSNR. As can be seen from this table, our method
outperformed the other state-of-the-art synthesis algorithms.
UCG-SAMR improves pixel accuracy by 17.7% 7.6%, and
4.3% at lesion regions (average value of pixel accuracies
from edema, cavity and tumor) compared to CycleGAN
[52], SynSeg-Net [38] and UNIT [53], respectively. Figure 8
presents an example to show the qualitative comparison of the
segmentation and synthesis performance using unpaired data.
Compared to CycleGAN [52], SynSeg-Net [38] and UNIT
[53], UCG-SAMR yields synthesized images with remarkable
visual similarity to reference image and error was obviously
suppressed in lesion regions as shown in the visualization of
image differences between the synthesized images and the
ground truth under unpaired data training (see Supplementary
Figure 6). Table IV shows the comparison of segmentation
performance for different methods. Due to the introduction of
an extra segmentation network, we can observe that SynSeg-
Net [38] exhibited superior capacity and reached the perfor-
mance upper bound (i.e. supervised training by real paired data
in Table II Exp.3). Facilitated by high-quality synthesis, the
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TABLE III
QUANTITATIVE COMPARISON. THE QUALITY OF THE SYNTHESIZED DATA UNDER UNPAIRED DATA TRAINING IS MEASURED BY PIXEL ACCURACY FOR

LESION REGIONS, INCLUDING EDEMA, CAVITY, AND TUMOR. THE UNIT IS IN PERCENT (%). A SYNTHESIZED PIXEL WAS COUNTED CORRECT IF THE

ABSOLUTE DIFFERENCE WAS WITHIN 16 OF THE GROUND TRUTH INTENSITY VALUE. THE QUALITY OF HOLISTIC SYNTHESIZED IMAGES WAS

MEASURED BY SSIM AND PSNR.

CycleGAN [52] SynSeg-Net [38] UNIT [53] UCG-SAMR (ours)
Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNR Pixel Accuracy SSIM PSNREdema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor Edema Cavity Tumor

APTw 51.5 32.8 39.8 0.636 15.8 40.5 38.0 43.9 0.638 15.4 41.9 33.3 50.3 0.628 13.5 51.6 37.3 44.8 0.643 15.6
T1w 35.2 23.5 34.2 0.739 19.1 54.7 54.6 45.2 0.789 20.1 67.7 73.0 63.0 0.801 19.8 66.4 60.8 68.9 0.852 22.7

FLAIR 57.7 33.0 35.8 0.696 19.7 49.0 37.7 44.4 0.707 19.8 65.0 38.9 59.1 0.714 20.1 66.2 37.2 58.1 0.743 20.7
T2w 67.6 5.7 55.1 0.729 19.5 63.8 50.1 56.7 0.755 20.2 64.4 12.8 60.8 0.735 20.4 69.3 48.7 60.0 0.781 21.2

Gd-T1w 47.9 45.1 22.9 0.703 19.8 69.0 59.1 32.1 0.734 20.4 79.1 40.3 39.3 0.733 20.4 72.7 66.3 45.8 0.768 21.2
Avg. 52.0 28.0 37.6 0.701 18.8 55.4 47.9 44.5 0.726 19.2 63.6 39.7 54.5 0.722 18.8 65.2 50.1 55.5 0.757 20.3

TABLE IV
QUANTITATIVE EVALUATION OF THE SEGMENTATION PERFORMANCE OF

DIFFERENT METHODS UNDER UNPAIRED DATA TRAINING.

Dice Score
Edema Cavity Tumor

CycleGAN [52] 0.233 0.138 0.120
UNIT [53] 0.533 0.368 0.509

SynSeg-Net [38] 0.630 0.607 0.591
UCG-SAMR (our) 0.553 0.366 0.527

TABLE V
ABLATION STUDY OF DESIGNED MODULES IN DATA AUGMENTATION BY

SYNTHESIS IS ACCESSED BY DICE SCORE. ABLATION STUDY OF

DESIGNED MODULES IN TERM OF SYNTHESIS QUALITY IS ACCESSED BY

PIXEL ACCURACY. THE REPORTED VALUE IS PIXEL ACCURACY IN THE

LESION REGION (I.E. THE UNION OF EDEMA, CAVITY, AND TUMOR) AS

PERCENT (%). A SYNTHESIZED PIXEL WAS COUNTED CORRECT IF THE

ABSOLUTE DIFFERENCE WAS WITHIN 16 OF THE GROUND TRUTH

INTENSITY VALUE.
Dice Score Pixel Accuracy

Edema Cavity Tumor APTw T1w FLAIR T2w Gd-T1w Avg.
w/o Stretch-out 0.684 0.695 0.678 62.7 66.3 66.6 70.8 73.1 67.9
w/o Multi-label D 0.758 0.798 0.787 63.6 74.3 73.5 74.6 77.8 72.8
w/o Atlas 0689 0.710 0.705 61.7 66.4 69.6 73.7 74.1 69.1
w/o LSC 0.733 0.794 0.772 63.6 72.0 71.6 76.1 76.5 72.4
w/o LCM 0.789 0.819 0.813 64.0 73.0 73.3 77.5 78.5 73.3
CG-SAMR 0.807 0.840 0.835 64.4 75.4 76.6 81.0 79.6 75.4

proposed UCG-SAMR network achieved the second-best per-
formance against other models, as can be seen from Table IV.

E. Ablation Study
We conducted a comprehensive ablation study to separately

evaluate the effectiveness of using a stretch-out up-sampling
module in the decoder network, label-wise discriminators, the
atlas, lesion shape consistency loss LSC, and confidence map
loss LCM in the proposed method. We evaluated each designed
module based on two aspects: (1) the effectiveness of data
augmentation by the synthesized data, and (2) the contribution
to the synthesis quality. For the former, we used the same
experimental setting as exp.1 in Table II. The effectiveness
of modules for data augmentation by synthesis is reported in
Table V. The pixel accuracy in Table V shows the contribution
of designed modules in the MR image synthesis of different
sequences. We could observe that the two experiments showed
a similar trend. Losing the customized reconstruction for
each sequence (stretch-out up-sampling module) can severely
degrade the synthesis quality. We found that when the atlas
was not used in our method, it significantly affected the
synthesis quality due to the lack of human brain anatomy prior.

Moreover, dropping either LSC or label-wise discriminators
in the training also reduced the performance, since the shape
consistency loss and the specific supervision on ROIs were
not used to optimize the generator to produce more realistic
images. In addition, dropping the confidence loss LCM can
lead to performance degradation, since the supervision on
the intermediate results and attention of uncertain regions
during synthesis can provide improved results. The compari-
son between Supplementary Figure 4(e) and (f) demonstrates
that CG-SAMR exhibits better ability of suppressing error on
uncertain regions.

V. DISCUSSION

The potential to leverage lesion masks and anatomic struc-
tures prior by deep learning-based models, and thus, to
synthesize multi-modal anatomic and molecular MR images
was investigated in this study of the post-treatment malignant
gliomas. We demonstrated that the proposed method CG-
SAMR incorporated with a confidence map loss LCM can
effectively improve synthesis quality in lesion regions and
benefit data augmentation by synthesized data. While many
previous methods require paired multi-modal MR images for
training, our UCG-SAMR method utilizes cycle-consistency
loss for training to synthesize MR images from unpaired
data. Extensive evaluations were performed for two distinct
scenarios where training images were paired and unpaired.
The experiments showed that the proposed method highlights
a promising direction for the synthesis of multi-modal MR
images with rich radiographic features for post-treatment ma-
lignant gliomas and facilitates future studies about data-driven
methods for human patients.

On the basis of our experimental results, our proposed
approach has the following unique advantages. First, while
many studies that have developed GAN synthesis methods
have been published, we focused on the specific problem
of synthesizing multi-modal MR images from lesion masks.
On the foundation of our previous method SAMR [36], we
leveraged an atlas of each sequence to provide brain anatomy
prior rather than subject-specific WM, GM, and CSF masks
(used in many previous works). This promotes a wide range of
diversity for the synthesized data. The stretch-out up-sampling
module performs customized synthesis for each MR sequence.
Label-wise discriminators are designed to provide specific
supervision on each ROI. The lesion shape consistency loss
is proposed to regularize the generator to produce realistic
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lesions. Second, we introduced a confidence-guided training
strategy. A synthesis module and a confidence map module
were added on each branch of the stretch-out up-sampling
block. Specifically, we estimated the intermediate synthesis
results by SM and measured the confidence map which pro-
vides attention to the uncertain regions by CM. Error can be
restricted to a coarse level, which means shallower layers can
provide better prior as a good guidance for deeper layers.
In Supplementary Figure 4, we show the image difference
between synthesized images and the ground truth. It can
be observed that the proposed method yields synthesized
images with remarkable visual similarity to reference images
in lesion regions. Third, the stretch-out up-sampling module
and the confidence map loss LCM were also introduced into
the proposed UCG-SAMR for the scenarios of unpaired data
training. Thus, the practicality of the proposed methods is
further demonstrated in the scenario where aligned pairs of
lesion segmentation maps and multi-modal MR images are
not required for training. As shown in Supplementary Figure
6, UCG-SAMR exhibits a similar performance for suppressing
error in lesion regions. In addition, we separately evaluated
the effectiveness of data augmentation by the synthesized data
and the contribution to the synthesis quality for each of the
designed modular network components in Section IV-E.

We adopted SSIM, and PSNR as evaluation criteria on
holistic images, but these might not directly demonstrate
diagnostic quality. To gain a better insight into the quality
of synthesized lesion regions, we conducted evaluation of
the pixel accuracy on three sub-regions: edema; cavity; and
tumor, taking annotated lesion segmentation masks as the gold
standard. In Table I, Shin et al. [33] slightly outperformed our
method in SSIM and PSNR on holistic synthesized images,
but CG-SAMR gained obvious improvement in lesion regions,
increasing pixel accuracy by 13.6% for edema, 11.5% for
cavity, and 17.4% for tumor. Leveraging the atlas of each
sequence to provide brain anatomy prior rather than subject-
specific WM, GM, and CSF masks may mainly contribute to
richer diversity of the synthesized data and further benefit the
data augmentation by synthesis (see Table II). Investigations
of useful synthesis quality evaluation metrics that are close
to a radiologist’s judgment are still an ongoing topic in the
medical image analysis community [77]. If such metrics can
be used as a part of objective functions, the performance of
synthesis networks could be improved further.

Under the scenario of using unpaired data, although our ap-
proach outperformed the baseline methods in all three synthe-
sis metrics, SynSeg-Net [38] showed better segmentation per-
formance in terms of dice score. It demonstrated the benefits
of introducing extra segmentation networks based on the Cy-
cleGAN framework [52] and providing the direct supervision
of manual segmentation masks. However, the segmentation
performance of different methods is still not desirable under
unpaired data training (Table IV). Notably, despite using the
same metric with the BRATS challenge [21] (i.e. dice score),
the segmentation labels and patient cohorts used in our study
were different from those of BRATS challenge. Therefore, the
difficulty of BRATS segmentation challenge [21] might not
comparable with our segmentation task. In addition, the lack

of direct supervision further compromised our segmentation
performance in terms of training unpaired data. In future work
to improve the segmentation performance of our UCG-SAMR
model, the stretch-out sampling decoder for each label, over-
complete representations segmentation architecture [78] and
other adaptions will be added and evaluated.

While our proposed method yielded as convincing per-
formance, there are several limitations in our current study.
First, all subjects in this study were obtained from a single
medical institution, so the deep-learning models were not
trained, tested, or verified by outside data. This leads to a
proportional bias in our study and a study-specific calibration
is could not be performed. We have now begun to collect
data from multiple external institutions to train and validate a
generalizable algorithm. Second, our method is geared towards
synthesizing 2D MR images. As shown in Section IV-A, the
resolutions along the z-axis of APTw images is as large as
four times that of the anatomic images (4.4mm v.s. 1.1mm).
Thus, resampling APTw images to isotropic 3D volume
results in a dramatic compromise of the fidelity of APTw
images. Since isotropic data is indispensable for 3D convo-
lution network, we adopted our approach in a 2D slice-based
manner. Therefore, these two non-comparable resolutions limit
the application of 3D methods. In our future work, we will
acquire APTw images with high resolution, especially along
the z-axis and hope the improved images will allow us to
extend the proposed method to 3D synthesis. Third, the data
augmentation by synthesis is only demonstrated on the lesion
segmentation task. We believe that including various tasks
to prove the quality of synthesized data would make this
study more persuasive in the future work, but extra manual
annotations will be required for training. Once the extra
manual annotations are obtained, we can extend the proposed
method to classification tasks. Fourth, we only conduct the
confidence estimation at a scale of ×0.5 (the half resolution).
If we choose a smaller resolution (64×64), the feature maps
would have contained more abstract features, which might
cause undesirable intermediate synthesis results. If we choose
a full resolution (256×256), the estimated confidence maps
might not provide good guidance for the subsequent networks,
since the full resolution feature maps approaches the end
of the synthesis network. In addition, introducing more SM
and CM modules on different scales might improve the final
synthesis results. However, it also significantly increases the
trainable parameters and subsequently increases the difficulty
of training. Finally, our study leverages co-registered data, so
the impact of misalignment between different MR sequences
is ignored. Recent studies have shown that it is possible
to increase robustness by introducing additional registration
layers to correct the negative impacts from misalignment [29],
[55]. Although a professional radiologist carefully monitored
the image preprocessing in our study, it still would be nice
to utilize these methods to mitigate the potential impairments
from misalignment in our future work.

VI. CONCLUSION

In summary, we propose an effective generative model,
called CG-SAMR, for multi-modal MR images, including
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anatomic T1w, Gd-T1w, T2w, and FLAIR, as well as molecu-
lar APTw MR images. It was shown that the proposed multi-
task optimization under adversarial training further improved
the synthesis quality in each ROI. The synthesized data
could be used for data augmentation, particularly for images
with pathological information about gliomas. Moreover, the
proposed approach is an automatic, low-cost solution, which
is capable of producing high quality data with diverse content
that can be used to train data-driven methods. We further ex-
tend CG-SAMR to UCG-SAMR, demonstrating the feasibility
of using unpaired data for training.
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[32] N. Cordier, H. Delingette, M. Lê, and N. Ayache, “Extended modality
propagation: image synthesis of pathological cases,” IEEE transactions
on medical imaging, vol. 35, no. 12, pp. 2598–2608, 2016.

[33] H.-C. Shin et al., “Medical image synthesis for data augmentation and
anonymization using generative adversarial networks,” in International
workshop on simulation and synthesis in medical imaging. Springer,
2018, pp. 1–11.

[34] R. Bala and R. Eschbach, “Spatial color-to-grayscale transform preserv-
ing chrominance edge information,” vol. 2004, no. 1, pp. 82–86, 2004.

[35] N. Dai and F. Lee, “Edge effect analysis in a high-frequency
transformer,” in Proceedings of 1994 Power Electronics Specialist
Conference-PESC’94, vol. 2. IEEE, 1994, pp. 850–855.

[36] P. Guo, P. Wang, J. Zhou, V. M. Patel, and S. Jiang, “Lesion mask-based
simultaneous synthesis of anatomic and molecular mr images using a
gan,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2020, pp. 104–113.

[37] A. F. Frangi, S. A. Tsaftaris, and J. L. Prince, “Simulation and synthesis
in medical imaging,” IEEE transactions on medical imaging, vol. 37,
no. 3, pp. 673–679, 2018.

[38] Y. Huo et al., “Synseg-net: Synthetic segmentation without target
modality ground truth,” IEEE Transactions on Medical Imaging, vol. 38,
no. 4, pp. 1016–1025, 2019.

[39] S. Roy, A. Carass, and J. L. Prince, “Magnetic resonance image
example-based contrast synthesis,” IEEE transactions on medical imag-
ing, vol. 32, no. 12, pp. 2348–2363, 2013.

[40] S. Roy, A. Carass, and J. Prince, “A compressed sensing approach for
mr tissue contrast synthesis,” in Biennial International Conference on



GUO et al.: ANATOMIC AND MOLECULAR MR IMAGE SYNTHESIS USING CONFIDENCE GUIDED CNNS 13

Information Processing in Medical Imaging. Springer, 2011, pp. 371–
383.

[41] A. Jog, A. Carass, S. Roy, D. L. Pham, and J. L. Prince, “Random forest
regression for magnetic resonance image synthesis,” Medical image
analysis, vol. 35, pp. 475–488, 2017.

[42] Y. Huang, L. Beltrachini, L. Shao, and A. F. Frangi, “Geometry regu-
larized joint dictionary learning for cross-modality image synthesis in
magnetic resonance imaging,” in International Workshop on Simulation
and Synthesis in Medical Imaging. Springer, 2016, pp. 118–126.

[43] M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander, “Math-
ematical textbook of deformable neuroanatomies,” Proceedings of the
National Academy of Sciences, vol. 90, no. 24, pp. 11 944–11 948, 1993.

[44] M. J. Cardoso, C. H. Sudre, M. Modat, and S. Ourselin, “Template-
based multimodal joint generative model of brain data,” in International
conference on information processing in medical imaging. Springer,
2015, pp. 17–29.

[45] R. Li et al., “Deep learning based imaging data completion for improved
brain disease diagnosis,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2014, pp.
305–312.

[46] H. Van Nguyen, K. Zhou, and R. Vemulapalli, “Cross-domain synthesis
of medical images using efficient location-sensitive deep network,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2015, pp. 677–684.

[47] V. Sevetlidis, M. V. Giuffrida, and S. A. Tsaftaris, “Whole image synthe-
sis using a deep encoder-decoder network,” in International Workshop
on Simulation and Synthesis in Medical Imaging. Springer, 2016, pp.
127–137.

[48] S. U. H. Dar, M. Özbey, A. B. Çatlı, and T. Çukur, “A transfer-learning
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