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ABSTRACT

In this paper, we investigate how to detect intruders with low la-
tency for Active Authentication (AA) systems with multiple-users.
We extend the Quickest Change Detection (QCD) framework to the
multiple-user case and formulate the Multiple-user Quickest Intruder
Detection (MQID) algorithm. Furthermore, we extend the algorithm
to the data-efficient scenario where intruder detection is carried out
with fewer observation samples. We evaluate the effectiveness of the
proposed method on two publicly available AA datasets on the face
modality.

Index Terms— Active Authentication, mobile-based biomet-
rics, multiple user authentication.

1. INTRODUCTION

Balancing the trade-offs between security and usability is one of the
major challenges in mobile security [1]. Longer passwords with a
combination of digits, letters and special characters are known to
be secure but they lack usability in the mobile applications. On the
other hand, swipe patterns, face verification and fingerprint verifica-
tion have emerged as popular mobile authentication methods owing
to the ease of use they provide. However, security of these methods
are challenged due to different types of attack mechanisms employed
by intruders ranging from simple shoulder attacks to specifically en-
gineered spoof attacks [2], [3]. In this context, Active Authentication
(AA), where the mobile device user is continuously monitored and
user’s identity is continuously verified, has emerged as a promising
solution [4], [5], [6], [7], [8].

In our previous work [9], [10] we identified three characteristics
that are vital to a practical AA system: accuracy, latency and effi-
ciency. However, for AA to be deployed in the real-world, it needs
to be equipped with another functionality: transferability. Mobile
devices are not private devices that people use in isolation. In prac-
tice, it is common for mobile devices to be used interchangeably
among several individuals. For example, these individuals could be
the members of a family or a set of professionals operating in a team
(such as physicians in a hospital). Therefore, it is important that the
AA systems facilitate smooth transition between multiple enrolled
individuals [11], [12].

The presence of multiple enrolled subjects poses additional chal-
lenges to an AA system. Detecting intrusions with low latency in this
scenario is even more challenging. With this new formulation, the
device cannot simply declare an intrusion when there is a change in
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Fig. 1. Problem of quickest detection of intruders in multiple-user
active authentication. In this example, there are two users enrolled in
the mobile device. First user uses the device between frames (a) to
(c). At frame (d), another legitimate user starts using the device. The
second user uses the device between frames (d) to (g). At frame (h),
an intruder starts using the device. The goal of quickest intrusion
detection is to detect the change with the lowest possible latency.
However, intruder detector should not declare a false detection prior
to frame (h).

the device usage pattern. This is because two legitimate users oper-
ating on the phone could potentially have different behavior patterns
[13]. As a result, the system is not only expected to identify intru-
sions, but also to provide smooth functioning when there is a transfer
of legitimate users. For example, consider the scenario shown in Fig-
ure 1. There are two legitimate users of the device in this scenario.
The first user operates the mobile device between frames (a) and (c).
At frame (d), the device is handed over to a second legitimate user.
At this point, although there is a change in pattern in device usage,
the AA system should not declare an intrusion. On the other hand,
when an intruder starts using the device at frame (h), the device is
expected to declare an intrusion.

In this paper, we extend our previous work proposed in [9] and
study the effectiveness of Quickest Change Detection (QCD) algo-
rithm for multiple-user AA. Specifically, we study possible strate-
gies that can be used to extend Mini-max QCD in AA to the case
where multiple users are enrolled in the device. Furthermore, we
study the effectiveness of data-efficient sampling for this case. In
the experimental results section, we show that QCD algorithm and
it’s data-efficient extension are effective even in the case of multiple-
user AA.

2. PROPOSED METHOD

When a user or multiple users start using a mobile device, typically
they are required to register with the device. This process in called
enrollment of the user(s) to the mobile device. During enrollment,
the device gathers sensor observations of the legitimate users and
creates user-specific classifiers. Let U be the number of users en-
rolled in a given device. Technically, U could be any finite number
greater or equal to one. However, in practice, it’s not common for a
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Fig. 2. Overview of the problem setup for the case of two enrolled
users. For each enrolled user, i, the enrolled images are obtained
during the enrollment phase. These images are used to train a user
specific classifier ci. A matched score distribution f0,i and a non-
matched distribution f1,i is obtained for each user. A known set of
negative users are used to obtain the latter. If more users are present
the same structure will be cascaded. During inference, Multi-user
Quickest Intruder Detection (MQID) module will produce a deci-
sion (d) by considering the obtained distributions and past decision
scores.

mobile device to be shared between more than 5-7 individuals (i.e.
normal family size).

For each user i, the device gathers enrollment data Yi =
{yi,1, yi,2, . . . , yi,k}. Then, the device develops a set of user spe-
cific classifiers ci for each user which produce classification scores
for each user. The classifier ci can be a simple template matching
algorithm or a complex neural network. In our experiments, we con-
sider a template matching algorithm due to the easiness in training
the classifier. Our template matching classifier ci generates a user
specific score si = ci(y) = mink(cos(y, Yi)) for a given input y
where cos(.) is the Cosine angle between the two inputs1.

In addition, matched and non-match distributions with respect
to the learned classifier are obtained and stored during the enroll-
ment phase. Match distribution f0,i(.) of user i can be obtained by
considering pairwise score values of Yi with respect to ci. On the
other hand, a known set of negative samples can be used to obtain
the non-matched scores f1,i(.) of user i. This process is illustrated
in Figure 2. In this work, we approximate the score distribution of
intruders with the non-matched distribution. Therefore, we use the
terms matched distribution and pre-change distribution interchange-
ably. Similarly, in the context of this paper, non-matched distribution
and post-change distribution will also mean the same.

As the AA system receives observations {x1, x2, . . . , xN}, and
at time n < N , it produces a decision dn = f(C(x1), . . . , C(xn)) ∈
{0, 1} based on the set of classifiers C = {c1, . . . , cU} where f(.)
is a mapping function. If dn = 1, an intrusion is declared. Given
this formulation, the goal of an AA system is to detect intrusions
with the lowest possible latency when a new observation is received.
If an intrusion occurs at time T , the following two properties are
desired from the AA system.

• Low detection delay. The latency between an intrusion oc-
curring and the system detecting the intrusion should be low.
If the system detects an intrusion at time τ , the detection
delay is given by (τ − T )+ where (x)+ denotes the posi-
tive part of x. For all users, this property is quantified using
the Average Detection Delay (ADD) defined as ADD(τ) =
E[(τ − T )+]. Here T denotes the real change point.

1Score si represents dissimilarity

• Low false detections. In practice, the detection delay alone
cannot characterize the desired functionality of an AA sys-
tem. It is also desired that the AA system does not produce
false detections prior to the intrusion point. These events can
be quantified by considering the Probability of False Detec-
tions (PFD) as PFD(τ) = P [τ < T ].

It is desired for an AA system to have low ADD and low PFD.

2.1. Efficient Quickest Change Detection

Quickest Change Detection (QCD) is a branch of statistical signal
processing that thrives to detect the change point of statistical prop-
erties of a random process [14], [15], [16]. The objective of QCD is
to produce algorithms that detect the change with a minimal delay
(ADD) while adhering to false alarm rate constraints (PFD). Con-
sider a collection of obtained match scores, s1, s2, · · · , sN , from
the AA system. Assuming that the individual scores are mutually in-
dependent, QCD theory can be used to determine whether a change
has occurred before time n or not.

Consider a sequence of time instances n = 1, 2, · · · , N in
which the device operates. At each time n, n > 0, a decision is
made whether to take or skip an observation at time n + 1. Let
Mn be the indicator random variable such that Mn = 1 if the
score xn is used for decision making, and Mn = 0 otherwise.
Thus, Mn+1 is a function of the information available at time n,
i.e. Mn+1 = φn(In), where φn is the control law at time n, and
In = [M1,M2, · · · ,Mn, s

M1
1 , sM2

2 , · · · , sMn
n ] represents the in-

formation at time n. Here, sMn
n represents sn if Mn = 1, otherwise

xn is absent from the information vector In. Let S be the stopping
time on the information sequence {In}. Then, average percentage
of observations (APO) obtained prior to the change point can be

quantified as APO = E

[
1
S

∑S
n=1Mn

]
, where E denotes the

Expected value.
In a non-Bayesian setting, due to the absence of a priori dis-

tribution on the change point, a different quantity should be used to
quantify the number of observations used for decision making. Work
in [15], [16], proposes Prechange Duty Cycle (PDC) as PDC =

lim supn
1
n
En

[∑n−1
k=1 Mk|τ ≥ n

]
for this purpose. It should be

noted that both PDC and APO are similar quantities. With the defi-
nition of PDC, efficient QCD in a minimax setting can be formulated
as the following optimization problem

minimize
φ,τ

ADD(φ, τ)

subject to PFD(φ, τ) ≤ α, PDC(φ, τ) ≤ β.
(1)

In [15], a two threshold algorithm called DE-CumSum algorithm, is
presented as a solution to this optimization problem. For suitably
selected thresholds chosen to meet constraints α and β, it is shown
to obtain the optimal lower bound asymptotically as α → 0. The
DE-CumSum algorithm is presented below.

Start with W0 = 0 and let µ > 0, A > 0 and h ≥ 0. For n ≥ 0
use the following control rule Mn+1 = 0 if Wn < 0 otherwise 1 if
Wn ≥ 0. Statistic Wn is updated as follows

Wn+1 =

{
min(Wn + µ, 0), if Mn+1 = 0

max(Wn + logL(sn+1),−h), if Mn+1 = 1,

where L(s) = f1(s)
f0(s)

. A change is declared at time τW , when the
statistic Wn passes the threshold A for the first time as τW =
inf{n ≥ 1 : Wn > A}.



2.2. Multi-user Quickest Intruder Detection (MQID)

Based on the discussion above, we introduce the Multiple-user
Quickest Intruder Detection (MQID) algorithm. Whether an intru-
sion has occurred or not is determined using a score value. When
the score value is above a pre-determined threshold, an intrusion
is declared. At initialization, it is assumed that the user operating
the device is a legitimate user; therefore the score(in our case a
dissimilarity score, i.e. a distance) is initialized with zero. The algo-
rithm updates the score value when new observations come. During
the update step, the algorithm considers matched and non-matched
distributions of all users along with the current score value to pro-
duce the updated score. Pseudo code of the algorithm is shown in
Algorithm 1.

The algorithm has three arguments. Argument Efficient de-
termines whether to use data-efficient version of QCD or not. If
data-efficient QCD is used then the parameter γ determines the floor
threshold. Parameter D governs how fast the score is increased.

During training, enrolled images of each user along with the
known negative dataset is used to construct matched and non-
matched score distributions. In addition, enrolled images of the
user are used to construct a classifier ci. During inference, given
an observation x, first classification scores from each classifier are
obtained. Then, the likelihood of the obtained classifier score is eval-
uated using the likelihood ratio of each matched and non-matched
distribution belonging to each user. The minimum likelihood ratio is
considered as the statistic to update the current score of the system.

Updating the score based on the distribution is done as per the
Algorithm considering the parameters as well as the magnitude of
previous score value.

input : score, xn, {f0,i, f1,i, ci|∀i}, γ,D,Efficient
output: score

L = mini log(
f1,i(ci(xn))

f0,i(ci(xn))
)

if Efficient then
if score < 0 then

score = min(score +D, 0);
else

score← max(score+ L,−γ) ;
end

else
score← score+ L ;

end
Return (score);

Algorithm 1: Algorithm to update the score based on the obser-
vations for the proposed method. n denotes time and i denotes
individual.

3. EXPERIMENTAL RESULTS

We test the proposed method on two publicly available Active Au-
thentication datasets - UMDAA01 [17] and UMDAA02 [18] using
the face modality. The UMDAA-01 dataset [17] contains images
captured using the front-facing camera of an iPhone 5S mobile de-
vice of 50 different individuals captured across three sessions with
varying illumination conditions, see Figure 3(a).

The UMDAA-02 Dataset [18] is an unconstrained multimodal
dataset with 44 subjects where 18 sensor observations were recorded
across a two month period using a Nexus 5 mobile device. Authors
of [18] have made the face modality and the touch-data modality [19]

(a) (b)

Fig. 3. Sample face images from the (a) UMDAA01 dataset and
(b) UMDAA02 dataset used for evaluation. Samples from the same
subject are shown in each column.

publicly available. In our work we only consider the face modality
to perform tests. A sample set of images obtained from this dataset
is shown in Figure 3(b).
Protocol: In both datasets, the first 22 users were used as possi-
ble enrolled users. Users 23-33 were used as the known negative
samples. Remaining users were considered as intruders. From the
enrolled users 10% of data were randomly chosen to represent the
enrolled images. These image frames were removed from the test
set. For each dataset, we varied the number of enrolled users from 1
to 7. If the number of enrolled users is U , we partitioned the first 22
users into disjoint groups of U and carried out floor(22/U) trials.

In order to simulate an intrusion, the following process was fol-
lowed. The entire video clips of the enrolled users were appended
in the order of their index to form an augmented video for each trial.
Then, each intruder from the intruder set was considered one at a
time. Considered intruder’s video clip was appended at the end of
the augmented video clip to produce the test video clip. Shown in
Figure 1 is a summary of such a clip for the case of two enrolled
users. During training, we extracted the image frames from the
video clip with a sampling rate of 1 image per 3 seconds. We used
the Viola-Jones face detector to detect faces in the extracted image
frame and performed local histogram normalization. The extracted
image was resized to 224 × 224 and image features were extracted
from the ResNet18 deep architecture which was pre-trained on the
ImageNet dataset. For all cases, we considered the distance to the
nearest neighbor as the user specific classifier ci.
Metrics: The performance of a quickest change detection scheme
depends on ADD and PFD. Ideally, an AA system should be able to
operate with low ADD and a low PFD. In order to evaluate perfor-
mance of the system following [9], we used the ADD-PFD graph.
Methods: We evaluated the following methods using the protocol
presented: Single Score-based Authentication (SSA), Time decay
fusion (Sui et al.) [20], Confidence functions (Crouse et al.) [21],
Probability of Negativity Pn(FG17) [11], Multi-user Quickest In-
truder Detection (MQID) – the method proposed in this paper with
the Min-Max formulation [9] and, Data Efficient Multi-user Quick-
est Intruder Detection (DEMQID)– The method proposed in this pa-
per using the Min-Max formulation with data-efficient constraints.
For a fair comparison, in all cases except for Pn(FG17) [11] we
used the statistic L = mini log(

f1,i(ci(xn))

f0,i(ci(xn))
) as the score value to

perform intrusion detection.
Results: The ADD-PFD curves corresponding to the experiments
on the UMDAA01 and UMDAA02 datasets are shown in Figure 4
when the number of users are varied from 1 to 7. Due to space limi-
tations only curves corresponding to users 2 and 7 are shown. ADD
values obtained for PFD of 2% and 5% are tabulated for UMDAA01
and UMDAA02 in Tables 1 and Tables 2, respectively. These ta-
bles indicate the latency of detecting an intrusion in average while
guaranteeing a fixed false detection rate.
Results on UMDAA01: In all considered cases MQID method has



Table 1. Tabulation of ADD for PFD of 2% and 5% when the users are varied from 1 to 7 on the UMDAA01 dataset. When a particular
method failed to achieve prescribed PFD it is indicated by N/A.

5% 2%
# of Users 1 2 3 4 5 6 7 1 2 3 4 5 6 7
SSH 1.14 1.14 1.17 1.18 1.25 1.35 1.31 2.28 2.49 4.73 3.98 4.41 5.84 4.49
Sui et al N/A 1.82 1.66 1.98 1.89 1.86 2.51 N/A 2.04 4.74 7.74 13.41 8.59 13.41
Crouse et al N/A N/A 57.20 33.92 29.65 19.49 47.8 28.4 N/A N/A 40.44 32.25 37.04 56.2
Pn (FG17) 2.10 2.20 2.16 3.29 2.35 2.23 2.51 3.96 3.84 2.89 5.48 4.41 5.06 4.51
MQID (present work) 1.14 1.14 1.17 1.20 1.25 1.19 1.31 1.63 1.65 1.79 2.08 2.02 2.12 2.49
DEMQID (present work) 2.14 1.52 2.37 1.59 2.51 1.86 2.51 2.28 1.64 2.51 1.84 2.72 1.92 2.49

Table 2. Tabulation of ADD for PFD of 2% and 5% when the users are varied from 1 to 7 on the UMDAA02 dataset. When a particular
method failed to achieve prescribed PFD it is indicated by N/A.

5% 2%
# of Users 1 2 3 4 5 6 7 1 2 3 4 5 6 7
SSH 19.7 19.6 51.82 24.33 52.64 10.01 110.2 72.92 90.71 150.0 36.23 107.6 93.6 118.1
Sui et al 63.1 284.9 N/A 243.1 N/A 237.6 109.4 N/A N/A N/A N/A N/A N/A N/A
Crouse et al 364.5 N/A N/A N/A N/A N/A N/A 467.8 N/A N/A N/A N/A N/A N/A
Pn (FG17) 2.71 3.31 10.91 11.22 34.64 7.06 44.55 4.30 39.56 72.52 37.44 86.3 64.0 116.0
MQID (present work) 3.83 4.28 5.42 6.67 6.11 5.61 5.30 5.58 5.77 8.14 10.38 9.10 8.03 7.78
DEMQID (present work) 3.47 3.17 4.13 4.618 6.93 3.85 5.82 4.32 4.39 6.38 8.34 9.12 4.79 10.15

performed better than the other baseline methods when it was desired
to achieve a PFD of 2%. It is also seen that Pn(FG17), which is
a method proposed for multi-user AA has also outperformed SSH
method which uses log-likelihood ratio in all cases. Furthermore,
data-efficient version of the algorithm, DEMQID, has performed on
par with MQID, even performing better in certain cases. Average
percentage of observations obtained in DEMQID for this dataset was
0.304.

However, it can be observed that when 5% of PFD is allowed,
even other baseline methods perform reasonably well. For exam-
ple, in majority of the cases SSH has performed on par with MQID.
We also observe that DEMQID is slightly worse than MQID in this
case. This suggests that for the employed deep feature, a PFD rate of
5% can be obtained even when the sequence of data are not consid-
ered. DEMQID takes more sparse samples when deciding the score
value. As a result, when the score function is noisy, DEMQID is
not affected by the noise as much as MQID. Even-though sparser
sampling would result in some latency in detection, overall trade-off
can be beneficial. This is why DEMQID outperforms MQID when
decision making is more challenging (as was the case when PFD of
2% was considered).

However, when the decision making becomes easier, DEMQID
does not contribute towards improving the detection accuracy as
score values are less noisy. This is why in the case of 5% of PFD,
DEMQID performs worse than MQID.

Results on UMDAA02: As a result of having higher complexity,
detecting intruders become more challenging in UMDAA02 com-
pared to UMDAA01. However, due the challenging behavior of the
dataset, the importance of the proposed method is magnified. In
all ADD-PFD curves obtained for UMDAA02 in Figure 4, it is evi-
dent that the proposed methods significantly outperform the baseline
methods. Furthermore, DEMQID has outperformed MQID in most
of the cases showing the significance of data efficient QCD.

In our evaluations we show that even when the number of users
are increased, the performance of the proposed system does not drop
drastically. For the UMDAA01 dataset, only 2.35 additional sam-
ples were required to maintain a probability of false detection of 2%
when the users were increased from 1 o 7. In a more challenging
UMDAA02 dataset, 4.33 more samples were required on average to
maintain the same false detection rate.
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Fig. 4. The ADD-PFD curves corresponding to the UMDAA01 (top
row) and UMDAA02 (bottom row) datasets when the number of
users are varied from 1 to 7. Due to space limitations only curves
corresponding to users 2 and 7 are shown (color image).

4. CONCLUSION

It has been previously shown that AA yields superior detection per-
formance when the QCD algorithm is used [9]. However, this is the
first work that studies the problem of QCD in a multiple-user AA
scenario. We proposed MQID algorithm for multiple-user AA with
low latency. Furthermore, we extended the initial formulation to a
data efficient version by proposing DEMQID algorithm. We evalu-
ated the performance of the proposed methods on two face-based AA
datasets. Our experiments suggest that the proposed method is more
effective compared to the baseline methods we considered. The pro-
posed method allows the number of enrolled users to be increased
with a relatively smaller cost in terms of observations. Only 2.35
and 4.33 observations were required on average to maintain a false
detection rate of 2% when the users were increased from 1 to 7 in
the UMDAA01 and UMDAA02 datasets, respectively.
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