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Abstract

We address the problem of open-set recognition, where
the goal is to determine if a given sample belongs to one
of the classes used for training a model (known classes).
The main challenge in open-set recognition is to disentangle
open-set samples that produce high class activations from
known-set samples. We propose two techniques to force
class activations of open-set samples to be low. First, we
train a generative model for all known classes and then
augment the input with the representation obtained from the
generative model to learn a classifier. This network learns
to associate high classification probabilities both when the
image content is from the correct class as well as when
the input and the reconstructed image are consistent with
each other. Second, we use self-supervision to force the
network to learn more informative features when assign-
ing class scores to improve separation of classes from each
other and from open-set samples. We evaluate the perfor-
mance of the proposed method with recent open-set recog-
nition works across three datasets, where we obtain state-
of-the-art results.

1. Introduction
Supervised classification systems are trained with the

knowledge of a finite set of labeled training examples.
When training data comes from k distinct known classes,
a deep network classifier simultaneously learns a descrip-
tive feature space and a decision rule that segments the
feature space into k non-overlapping regions as shown in
Figure 1(a). When an object outside the known class set
(known as a novel object or an open-set object) is intro-
duced to the network, the network will still associate it with
one of the known k classes (Figure 1(b)). The goal of open-

∗This work was completed while the author was working as an intern
at Adobe Research.

Figure 1. (a) Given a set of known classes, a classifier defines a
positive half space for each class by only considering class sep-
aration. (b) An open-set object could project either near a deci-
sion boundary (samples B and C) or deep into the positive half
space (samples A and D) of a given class. The latter is harder
to detect when the class activation scores are considered. (c) We
learn a classifier which takes into account more factors than just
class separation. First, we use self-supervision to make the feature
space more descriptive to force open-set samples to separate better
from known classes. Second, we augment the feature space with
a generative representation. The disparity between input images
and their representations are taken into consideration when the de-
cision boundaries are defined. When open-set samples produce
high disparity, better open-set sample detection is obtained.

set detection1 is to identify whether a given object instance
belongs to the known class set or not. Once identified, open-
set samples can be either discarded to prevent wrong associ-
ation or used to improve the classification system [2], [23].

A straightforward solution to the stated problem is to
threshold the probability of the most probable class pro-
duced by the network [12]. CNNs are trained with the ob-
jective of maximizing the probability of the correct class
over the training data. Therefore, if the training process
generalizes well enough, query samples from known classes

1The terms open-set detection and multiple-class novelty detection have
been used interchangeably in the literature. We make no distinction be-
tween these two terms in this paper.
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can be expected to produce high probabilities. However, the
open-set recognition literature [26] points out the possibil-
ity of novel object samples producing equally high proba-
bilities.

When a discriminative classifier is trained, it learns a
set of features that are needed to discriminate between the
known classes. In the ideal case, features that are not es-
sential to separate the known classes are discarded during
the learning process. We refer to these features as opti-
mal closed-set features. However, optimal closed-set fea-
tures are likely insufficient for capturing differences be-
tween open-set samples and known-classes [22]–additional
features are likely required to separate the known classes
and open-set samples. Open-set samples could end up pro-
ducing high class-activations, depending on where in the
feature space they are projected.

We investigate two techniques that reduce this effect.
First, we extend optimal closed-set features so that features
have the capacity to describe shapes, structure and seman-
tics of known-class objects. During training, the classifier
will consider the overall semantics of images (not just the
discriminative aspects) when class decision boundaries are
defined. As a result, open-set images will not be positioned
in any of the positive half-spaces on the grounds of having
different semantics. We obtain such diverse features by in-
corporating self-supervision in learning.

Second, we model the known-class objects using a gen-
erative model. Then, a classifier is learned by considering
both the input image and its generative representation. The
classifier will take into account the correspondence between
the two inputs when the decision boundaries are obtained as
shown in Figure 1(c). Since the generative model is trained
using known-class images, it will not represent open-set
samples well. As a result, open-set samples will demon-
strate high disparity (Figure 1(c)) thereby getting projected
out-side the positive half spaces of known classes.

Both of these techniques are aimed at enhancing the op-
timal closed-set features to contain richer content-specific
features. Additional knowledge provided by features helps
the network to effectively identify open-set samples. Our
contributions are the following:

1) We learn a richer deep feature space by forcing the net-
work to learn features that capture object structure by per-
forming self-supervision. This leads to a richer feature
space for deciding whether a given sample belongs to a
known class or not.
2) We train a generative model on known-class data and use
the reconstructions from this model as input to the classi-
fication task. This allows the classifier to take into account
the disparity between the input and a generative signal asso-
ciated with the input. Open-set samples which yield a high
disparity are easily detectable as shown in Figure 1(c).

2. Related Work
Open-set Recognition. Open-set recognition has received
considerable attention in the computer vision community in
recent years. The problem of open-set recognition was first
formulated in [26], where authors pointed out the possibil-
ity of an open-set sample generating a very high activation
score for one of the known class categories. Since then, sev-
eral other works have analyzed this challenge in the context
of deep networks [22],[11]. In [3], a k + 1 classifier for a
k class problem was used where the extra class was treated
as the open-set class. A statistical method was used to ap-
portion class probabilities to the open-set class. This alter-
native formulation, OpenMax, was proposed as an alterna-
tive to the SoftMax operator. In [7], a Generative Adversar-
ial Network (GAN) based framework was used to estimate
open-set class activations. A similar approach was taken in
[16] where counterfactual images that lie between decision
boundaries were used to simulate open-set class instances.

More recent works in open-set recognition have deviated
from simulating open-set classes. The method proposed in
[19] used a class conditioned generator to learn a repre-
sentation that preserves only known-class samples. Then,
open-set recognition was carried out based on the recon-
struction error associated with the generator. In [29], the
authors identified the importance of generative features in
open-set recognition. They first learn a sophisticated gen-
erative model (an extension of a ladder network [25]) and
append the learned feature with one of the classifier fea-
tures. Then, an OpenMax classifier was learned using the
augmented features. The feature augmentation proposed in
our work is different from [29]. In [29], a generative model
and a classifier are trained independently. We learn a clas-
sifier trained on the augmented input space and take into
account the disparity between the two representations as we
compute class activation scores.

It is also possible to use one-class classification
algorithms[24],[21],[20] to solve open-set recognition by
modelling known classes. However, since class labels of
known-classes are not used in this approach, recognition re-
sults tend to be poor compared to standard open-set meth-
ods.
Self-Supervision. Self-supervision is an unsupervised ma-
chine learning technique where data itself provides super-
vision. It is usually carried out in addition to a primary
objective (such as classification or detection) with the in-
tention of producing a more generic and robust feature.
Recent works in self-supervision introduced several tech-
niques to improve the performance in classification and de-
tection tasks. In all of these techniques, the network is
forced to learn the shape structures of the underlying ob-
jects and their semantics thereby producing a richer feature.

For example, in [5], given an anchor image patch, self-
supervision was carried out by asking the network to pre-



dict the relative position of a second image patch. To make
such predictions, the network needs to learn object structure
and relative order. In [6], a multi-task prediction framework
extended this formulation, forcing the network to predict a
combination of relative order and pixel color. In [8], the
image was randomly rotated by a factor of 90 degrees and
the network was forced to predict the angle of the trans-
formed image. This method was simpler to implement and
produced better results than previous self-supervision tech-
niques. In our work, we follow [8] by using a series of dif-
ferent transformations (combination of rotating and flipping
the image) in place of rotations. To the best of our knowl-
edge this is the first attempt at using self-supervision for
open-set recognition. The prediction of geometric transfor-
mations has been previously utilized in [10] in the one-class
classification problem domain. However, [10] is different
from our method as they used this network to generate clas-
sifier responses to characterize a signature for a given class.

3. Proposed Method
In this section, we motivate the need for a richer fea-

ture representation for effective open-set recognition. Then,
we introduce conditioning on generative representation and
self-supervision to overcome this challenge. Finally, we de-
scribe the proposed training and testing procedure.

3.1. Challenges in Open-set Recognition

An illustration of why open-set recognition is challeng-
ing is shown in Figure 1. When a classifier is trained, the
positive half spaces of each class are identified (these half
spaces are described by the vector defined using the final
fully connected layer weights corresponding to the class).
When a sample appears deeper in the identified positive
half space, it will generate a larger class activation. On the
other hand, a sample appearing near the half-space bound-
ary will result in a lower class activation. When the network
is trained, a feature embedding is learned such that each
training sample is encouraged to be pushed deeper in to the
positive space corresponding to its ground truth. Therefore,
as long as the query samples follow the same distribution as
the training samples, known-class samples are expected to
produce large activation values.

Consider an open-set image that is projected onto one of
the following regions:
1) Intersection of all class boundaries. This will arise
when the open-set image does not have any compo-
nents/regions common with any of the known classes (See
points B and C in Figure 1)(b). In this case, the class activa-
tion scores of all classes will be low. These types of open-
set samples may be filtered by thresholding the maximum
class activation score.
2) Deep into the positive half space of a class. This
situation (such as points A and D in Figure 1(b)) arises

when the open-set image has a semantically similar com-
ponent/region to that of a known class (or the network per-
ceives to be so). As a result, the activation of the afore-
mentioned class becomes high. These instances cannot be
easily rejected by considering class activations. We specifi-
cally focus on the latter case and investigate techniques that
can reduce class activation scores of open-set samples.

3.2. Self-Supervised Learning

When a closed-set classifier is trained, the classifier
learns only features that are necessary to differentiate be-
tween known classes. However, these features are not al-
ways descriptive enough to separate out open-set samples
from known classes. By introducing a more descriptive fea-
ture, we reduce the activation magnitude of open-set sam-
ples. For this purpose, we extend the conventional classifi-
cation network into a multi-task network where an auxiliary
classifier performs self-supervision.

We adopt the self-supervision framework proposed in
[9]. In [9], a geometric transformation is applied to an in-
put at random from a finite set of transformations, and the
self-supervision branch of the network is used to predict
which transformation was applied. In order to determine
the transformation that was applied, the network needs to
learn structural properties of image content such as shape
and orientation. As a result, when a self-supervision branch
is added on top of the classification task, the intermediate
features becomes more descriptive.

Figure 2(a) and (b) illustrate network architectures of a
conventional classification network and a classification net-
work extended to perform self-supervision respectively. In
the former case, each training instance is passed through
the classification network (C) to produce a classification
loss lc. In the latter case, the classification network (C)
has two output branches. Each forward pass consists of
two steps. In the first step, a classification loss lc is pro-
duced by passing the input through the open-set classifica-
tion branch. During the second step, the input image is sub-
jected to a random transformation. The transformed image
is passed through the transformation classification branch
to arrive at self-supervision loss lss. When evaluating the
self-supervision loss, the transformation applied to the in-
put is considered to be ground truth. The network is trained
by considering a composite loss of the form α1lc + α2lss.
In our experiments, we chose α1 = 0.8, α2 = 0.2 with the
aim of giving more importance to the primary classifica-
tion task2. For our experiments we used 14 transformations
where each transformation was formed by randomly flip-
ping the image (horizontally and vertically) and by rotating
image by multiples of 90 degrees.

2Please refer to the supplementary material for a sensitivity analysis of
these parameters.



Figure 2. Comparison of the network architectures. (a) A conventional classification network. (b) A classification network with self-
supervision. (c) The proposed network consists of a generative model and a self-supervision component. The input is concatenated with
the reconstruction obtained from the generative model prior to feeding into the classification network C.

In section 4.3, we demonstrate the effectiveness of intro-
ducing self-supervision through an ablation study.

3.3. Augmenting with Generative Representation

As the second contribution of our work, we augment the
input with its representation obtained through a generative
framework. Let us first consider a generative model trained
on the images of known classes. For example, the gener-
ative model can be a deep auto-encoder network. Ideally,
the generative model will be able to represent and reproduce
samples of known classes. On the other hand, since the gen-
erative model has not seen samples from open-set classes,
it will not be able to represent (re-produce) such samples
equally well. If this is the case, there will be high corre-
spondence between input images and reconstructed images
generated by the generative model for known class samples.
Correspondence will be low for open-set samples.

In Figure 1(c), we illustrate the implication of augment-
ing a generative reconstruction to the open-set problem. In
this idealistic case, we have denoted the disparity between
the original image and the reconstructed image as an ad-
ditional axis. Here, the disparities for known samples are
smaller compared to open-set samples. In this scenario, the
classifier will learn two new positive half planes defined by
hyper-planes similar to that of shown in Figure 1(c). If dis-
parity is considerably high, it will force opens-set samples
to be outside the positive half space of all the classes.

Based on this intuition, we carry out the training process
in two steps. First, we train a generative network (G) using
training samples. Then, given an input x, we train the clas-
sification network (C) by considering the augmented input
[x,G(x)] as shown in Figure 2(c).

3.4. Training and Testing Procedure

Architecture. We use the network architecture proposed
in [16]. The encoder network used for the autoencoder con-
sists of 10 convolutional 3×3 layers, where each layer is fol-
lowed by a batch-normalization and leaky ReLu(0.2) oper-
ation. The decoder network has a similar structure to that of
the encoder and is constructed with transpose-convolution
layers instead. The classifier network consists of 9 layers of
3 × 3 convolution filters followed by batch-normalization
and leaky ReLu(0.2) operations. It is terminated using a
fully-connected layer. The only difference in our classifier
from [16] is that our network accepts a 6-channel image as
the input.

In order to investigate the impact that different archi-
tectures have on open-set rejection performance, we vary
the classifier and generative model and study the impact
they have on open-set recognition. In Table 1, we tabulate
open-set recognition performance in terms of AUC-ROC
under different architectures across five different known-
openset splits for the CIFAR10 dataset. Here, vanilla AE
and vanilla CNN refers to the network architectures used in
[16]. Conditioned AE [28] is a modified version of Vanilla
AE, where a fully connected layer classifier is connected
to the latent space. This version of the AE produces bet-
ter known-openset separation in reconstructed image space
due to this additional constraint. WRN28-10 and WGAN
refers to standard wide-ResNet(depth 28 and width 10) [31]
and Wasserstein GAN [1] respectively. According to Ta-
ble 1, we observe that using a more sophisticated network,
both as a generative model and a classification model have
contributed towards improving average open-set recogni-
tion performance.



Generative Model Classifier Model Open-set Performance
1 2 3 4 5 Avg

Vanilla AE Vanilla CNN 78.0 76.7 84.9 84.9 79.4 80.8
Conditioned-AE Vanilla CNN 79.1 77.3 85.7 87.4 80.3 82.0
Conditioned-AE WRN28-10 77.5 81.7 86.2 87.5 82.6 83.1
WGAN WRN28-10 81.7 79.2 85.5 87.2 84.3 83.6

Table 1. Impact of using different architectures on open-set recog-
nition on the CIFAR10 dataset. We observe that using more so-
phisticated generative models and classifiers both improve open-
set performance.

Input : Training sample x,label y, Transformation
Set T , Models: G,C , Weights α1,α2

Output: Models: C

Classification Step.
x̂←− G(x)
z = [x, x̂];
lc = CrossEntropy(C(z), y)

Self-supervision Step.
Pick transformation randomly.
r = rand(Ω(T ))
t = T [r];
z = [t(x), ˆt(x)];
lss = CrossEntropy(C(z), r)
lt = α1lc + α2lss
Backpropagate to change and C.

Algorithm 1: Training Algorithm

Training. We trained all networks for 1000 iterations using
the Adam optimizer with a batch size 64, learning rate of
0.001 and parameters (0.5, 0.999). The training process is
outlined in Figure 2(c) and Algorithm 1. First, generative
model G is trained using training data. Then, as descried
in Algorithm 1, each training sample x is first augmented
and z = [x, x̂] is passed through the classification branch
of the network to obtain the classification loss lc. Then, a
transformation is randomly selected from the set of avail-
able transformations. If the chosen transformation index is
r, the transformed image is augmented and z = [t(x), ˆt(x)]
(where t is the transformation selected) is passed through
the self-supervision branch to produce a self-supervision
loss which is calculated using cross-entropy by consider-
ing r as the ground-truth label. The composite loss tl is
backpropagated to find gradients associated with each net-
work weight. Finally, network C is updated according to
the network updating algorithm.
Testing. During inference, the self-supervision branch
of the network is disregarded as shown in Figure 2(d).
Given a query image x, first the augmented representation
[x,G(x)] is obtained. Then, the augmented input is passed
through the classifier network to obtain class activations
a = C([x,G(x)]). If the maximum activation max(a) is
below a predetermined threshold γ, it is declared that the
input is an open-set instance. In practice, threshold γ is
determined such that a minimum true positive rate is guar-

anteed on a validation set. In our experiments we picked γ
such that true positive ratio is at least 0.9.

4. Experimental Results
We evaluate the performance of the proposed method on

standard datasets used for open-set recognition and compare
with state-of-the art methods. First, we report performance
on open-set recognition and out-of-distribution recognition
tasks respectively. Then we consider a case study on the
CIFAR10 dataset to analyze performance of the proposed
method qualitatively. We conclude the latter section with
an ablation study.

4.1. Open-set Recognition

Recent deep learning based open-set recognition meth-
ods followed the protocol in [16] and used the numbers re-
ported in [16] as a baseline for comparison. In [16], an
open-set recognition scenario is simulated on a multi-class
classification dataset by randomly selecting n classes as
known. The remaining classes are considered to be open-
set classes. This protocol is used to simulate five trials of
open-set recognition and performance is measured using the
average area under the curve of ROC (AUC-ROC) curve.

Performance across different splits varies significantly
(in our experiments AUC for CIFAR10 varied between 77%
to 87% across different splits). There are many possible
known-openset combinations one could consider when the
above protocol is followed(

(
10
6

)
for CIFAR10, SVHN and(

200
20

)
for TinyImageNet). Open-set performance is highly

correlated with the classifier performance. A better classi-
fier is able to reject open-set samples more effectively (for
example in [29], open-set performance improves when a
DenseNet backbone is used as compared to a vanilla CNN ).
Therefore, for a fair comparison, we argue that all methods
should use identical splits and the same network backbone.

In this spirit, we use the same autoencoder and classifier
architectures as [16]. Further, we test on the same known-
openset splits as [16]3. Note that [19] used different known-
openset splits in their evaluation. We used the code released
by the authors of [19]4 to evaluate open-set performance on
the same splits and we report these results in our paper.

We carried out tests on the following datasets using the
protocol described in [16]:
CIFAR10 and SVHN. Both CIFAR10 [13] and SVHN [17]
are 10-class classification datasets. CIFAR10 contains data
from four vehicle classes and six animal classes. SVHN is
a dataset of photographed numbers. In our tests we con-
sidered splits from [16] where six classes are chosen to be
known. Remaining classes are considered to be open-set.

3Exact splits used by [16] can be found at
github.com/lwneal/counterfactual-open-set.

4Code is found at github.com/otkupjnoz/c2ae. We validated results ob-
tained for considered class splits with authors of [19].



CIFAR+10. CIFAR+10 training set consists vehicle classes
of CIFAR10 dataset as known-classes. Vehicle classes from
CIFAR10 and 10 vehicle classes samples from CIFAR100
[14] is considered to be open-set classes.
CIFAR+50. Same training setting as CIFAR10+. The ve-
hicle classes from CIFAR10 and 50 vehicle classes samples
from CIFAR100 are considered to be open-set classes.
TinyImageNet. TinyImageNet is a sub-set of 200 classes
taken from the ImageNet dataset [4]. 20 classes are consid-
ered to be known and remaining 180 classes are considered
to be open-set. Known-openset splits are chosen to be the
same as in [16].

In Table 2, we tabulate open-set detection performance
of known-classes for the proposed method with baseline
methods. For each experiment, we indicated the open-

ness[26], defined by 1 −
√

K
M , where K and M denote

the number of known classes and total number of classes,
respectively. The performance of the baseline methods is
obtained from [29] and [16]. According to Table 2, the
proposed method has a significant improvement for the CI-
FAR10 dataset with an increase in performance of over
10%. A similar improvement is seen for the CIFAR+10
and CIFAR+50 test cases. Since CIFAR+50 dataset has
more openness due to more open-set classes, it has pro-
duced slightly lower performance compared to CIFAR+10.
For the SVHN dataset, the performance improvement is
about 2%. For TinyImageNet, our performance is on par
with other open-set methods where the proposed method
performs marginally better. Table 3 lists the closed set
classification accuracy for each dataset. In both Tables 2
and 3, we reported the performance of our method when
WideResNet28-10 [31] classifier is used. It can be observed
that using WideResNet, which is a better classifier, open-set
recognition performance increases in majority of time. This
result suggests that better performance can be obtained by
using more sophisticated classifiers.

4.2. Out-of-distributional Detection

We evaluate the performance of the proposed method
in Out-of-distributional detection (OOD) [12] on CIFAR10
dataset. Out-of-distributional detection is a special case of
open-set detection. Here, it is assumed that the open-set
samples follow a different distribution than the known-set
distribution. Following the protocol outlined in [29], we
considered all classes in CIFAR10 as known-classes and
trained a 13-layer VGG model as specified in [29]. The
output channels of each 3 × 3 convolutional block num-
ber were 64, 128, and 256, and they consist of two, two,
and four convolutional layers with the same configuration.
Then, we consider test images from ImageNet and LSUN
dataset [30] as out-of-distributional images when each are
cropped and resized respectively [15].

Table 4 shows the out-of-distributional performance in

terms of macro-averaged F1 score. For the proposed
method, following other OOD works [15], every sample
producing a score lower than a 10%th percentile of matched
scores were identified as open-set. It should be noted that
it is customary to detect OOD samples based on SoftMax
scores [12]. Therefore in Table 4 we reported F1 scores
for the proposed method both when SoftMax scores and
class activations are considered for decision making. All
other numbers except ours are taken from [29]. Accord-
ing to Table 4, the proposed method out-performs baseline
methods in all test cases. It should be noted that SoftMax
scores yielded better OOD detection compared to class ac-
tivation scores whenever images are cropped instead of re-
sized. This is not surprising as an image crop contains little
structure. As a result, image crops are more likely to pro-
duce balanced probabilities thereby making open-set detec-
tion based on SoftMax probabilities more effective.

4.3. Case Study and Ablation Study

We conducted a case-study on CIFAR10 dataset where
all animal classes (bird, cat, deer, dog, frog and horse) were
considered to be known. Vehicle classes (airplane, car, ship
and truck) were considered to be open-set. We compare the
performance of a conventional CNN network (Figure 2(a))
with the proposed method (Figure 2(c)). The conventional
CNN produced a AUC of 84.35% where as the proposed
method produced an AUC of 91.24%.

Figure 3 visualizes the score histograms generated for
open-set samples and known-class samples for both meth-
ods. As evident from Figure 3, the proposed method has
better score separation between open-set and known-set
samples. This is why a larger AUC value has been obtained
from the ROC curve for the proposed method.

To understand why a better score separation was ob-
tained, we visualized the final feature space for both base-
line CNN and the proposed method using tSNE [27] in Fig-
ure 4. In both cases, six clusters can be observed in the
tSNE visualization plane in Figure 4; these clusters cor-
respond to each class. However, there is a considerable
over-lap between known-set samples and open-set samples
in the baseline CNN (Figure 4(a)). On the other hand, under
the proposed scheme (Figure 4(b)) overlap between known
and open-set samples are less. Further we note that known
clusters appearing under the proposed method is more com-
pact compared to the baseline case. This is because pro-
posed method models the whole data distribution (as a re-
sult of self-supervision and generative feature augmenta-
tion) as opposed to modeling just the boundary as usually
done in conventional CNNs. The proposed method has a
lower overlap between known and open-set samples in the
feature space. Therefore, it produced better separation be-
tween known and open-set distributions as shown in Fig-
ure 3.



CIFAR10 CIFAR+10 CIFAR+50 SVHN TinyImageNet
13.39% 33.33% 62.86% 13.39% 57.35%

SoftMax 67.7± 3.8 81.6± N.R. 80.5± N.R. 88.6± 1.4 57.7± N.R.
OpenMax (CVPR16) [3] 69.5±4.4 81.7± N.R. 79.6± N.R. 89.4±1.3 57.6± N.R.
G-OpenMax (BMVC17) [7] 67.5±4.4 82.7±N.R. 81.9± N.R. 89.6±1.7 58.0± N.R.
OSRCI (ECCV18) [16] 69.9±3.8 83.8± N.R. 82.7± N.R. 91.0±1.0 58.6± N.R.
C2AE (CVPR19) [19] 71.1 ± 0.8 81.0 ± 0.5 80.3 ± 0.0 89.2 ± 1.3 58.1 ± 1.9
CROSR(CVPR19) [29] N.R. N.R. N.R. 89.9±1.8 58.9±N.R.
Ours (Plain CNN) 80.7±3.9 92.8±0.2 92.6±0.0 93.5±1.8 60.8±1.7
Ours (WRN-28-10) 83.1±3.9 91.5±0.2 91.3±0.2 95.5±1.8 64.7±1.2

Table 2. Open-set detection performance in terms of AUC-ROC curve. N.R. is used when the original work did not report a particular
figure.

CIFAR10 CIFAR+10 CIFAR+50 SVHN TinyImageNet
Ours (Plain CNN) 92.8±1.7 94.4±0.0 94.4±0.0 96.6±0.4 49.2±2.9
Ours (WRN-28-10) 95.09±1.3 97.4±0.2 97.4±0.2 97.29±1.3 55.9±2.8

Table 3. Closed-set accuracy for the proposed method.

(a) CNN (Baseline) (b) Proposed Method

Figure 3. Score histograms for open-set and known-set samples.
There is a better separation between the two distributions under
the proposed method.

(a) CNN (Baseline) (b) Proposed Method

Figure 4. tSNE visualization of the feature space for
(a)Conventional CNN and for the (b) proposed method. In
both cases, known-class samples are clustered into six clusters -
each representing each known class. However, variance of each
cluster is large in the baseline CNN. There is considerable amount
of over-lap between known and open-set samples. On the other,
known-class clusters seems more compact under the proposed
method. Overlap between known and open-set samples are lower
compared to (a).

In Figure 5, we show eight open-set images that had pro-
duced the largest activations in the baseline CNN. It should
be noted that although these images have generated high
score activations, none of them have a close resemblance to
any of the known-set of classes. In the same figure, we illus-
trate class activation scores obtained by the baseline CNN
(middle column) and the proposed method (right column).
Since the range of activation scores is different under the
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Figure 5. Top Row: Visualization of open-set samples that pro-
duced highest activations for the baseline CNN. Middle Row: z-
score normalized activations produced by the baseline CNN for
each image. Bottom Row: z-score normalized activations gener-
ated by proposed method. In six instances (out of eight), energy of
produced activation has been reduced by the proposed method.

two methods, as Figure 3 shows, for a fair comparison we
have normalized these scores using z-score normalization
by considering all open-set scores under each scheme.

According to Figure 3 (Middle), the baseline CNN has
produced a score around 2 for all samples. On the other
hand, under the proposed scheme, the same images have
generated lower scores. Except for the third and fourth im-
ages, activations produced by all other images have been re-
duced by at least by a factor of half. This example illustrates
that the proposed method has even lowered activations for
hard open-set samples.

Finally, it is worth noting the contribution each compo-
nent of our proposal has towards the final outcome of the
he algorithm. In order to assess this, we carried out an ab-
lation study on CIFAR10 by considering animal classes as
known-set classes. We considered following cases.
Baseline. The classifier network operating on only the
input images as shown in Figure 2(a).



Training Method Detector ImageNet-Crop ImageNet-Resize LSUN-Crop LSUN-Resize

Cross-entropy SoftMax [12] 63.9 65.3 64.2 64.7
OpenMax [3] 66.0 68.4 65.7 66.8

Counterfactual SoftMax [16] 63.6 63.5 65.0 64.8

LadderNet
SoftMax [12] 64.0 64.6 64.4 64.7
OpenMax [3] 65.3 67.0 65.2 65.9
CROSR [29] 62.1 63.1 62.9 63.0

DHRNet
SoftMax [12] 64.5 64.9 65.0 64.9
OpenMax [3] 65.5 67.5 65.6 66.4
CROSR [29] 72.1 73.5 72.0 74.9

Ours Activations 75.7 79.2 75.1 80.5
SoftMax 82.1 77.7 84.3 78.4

Table 4. Performance of out-of-distributional object detection for CIFAR10 dataset with VGG13 network. Performance is measured using
macro-F1 measure.

Classification Accuracy Open-set Rejection(AUC)
Baseline 89.7 84.4
Self-supervision 92.4 88.8
Augmented Classifier 91.5 88.4
Proposed Method 92.6 91.2

Table 5. Tabulation of classification performance (accuracy) and
open-set rejection performance(AUC) for the ablation study.

Self-supervision. Classification network extended to
perform self-supervision as shown in Figure 2(b).
Augmented Classifier. Generative feature is used to
augment the input image space. A classifier is trained on
the augmented input. No self-supervision is used.
Proposed method. Classifier is learned on augmented
image space with self-supervision (Figure 2(c)).

In Table 5 we report closed-set classification accuracy
along with open-set rejection performance in AUC-ROC.
According to Table 5, the baseline produced a AUC-ROC
value of 84.0%. The introduction of self-supervision and
augmented features both independently improved open-set
performance by 4%, where improvement induced by aug-
mented features is marginally better than self-supervision.
Finally, when both techniques are combined (the proposed
method), performance further improves by 2.7% to arrive
at 91.2%. This study demonstrates that each component of
the proposal is contributing towards the final performance
boost that is observed.

In Figure 6 we visualize reconstructions (of randomly
chosen samples) obtained through the generative model.
According to Figure 6, all reconstructed images take the
form of a blurry version of the input images. However, we
note that known-set samples carry more details compared
to open-set classes. For an example, it is hard to predict
the class label of open-set classes by merely looking at the
reconstructed image. However, the amount of information
preserved in the reconstructed image is not a very good in-
dicator to detect open-set images (AUC is merely 66.7%
when it is used as an indicator). Nevertheless, it provides
information that can be leveraged to make a better informed
decision.

Input Images Reconstructed Images

Known

Open-set

Figure 6. Reconstructed images produced by the auto encoder
trained on known-set images. All reconstructed images are blurred
versions of the input images. However, details are preserved bet-
ter in known-set images. Note that predicting the class without the
ground truth reference is hard for open-set images.

5. Conclusion

We explore the detection of open-set samples more ef-
fectively by learning richer feature representations than are
usually needed for closed-set classification. We used self-
supervision and augmented the input image with a repre-
sentation obtained from a generative model to enhance net-
work’s ability to reject open-set samples. These improve-
ments forced the classifier to look beyond what is required
to perform closed-set classification when producing deci-
sion regions. We evaluated the proposed method in open-set
detection and out-of-distributional image detection experi-
ments where we produced state-of-the-art results.

We carried out a study investigating the importance of
each component of the proposed method. Further, we
demonstrated qualitatively how proposed method results in
better separation in feature space thereby producing lower
activations for open-set samples. Finally, we experimented
with different choices of generative models and classifiers,
where we concluded that using more sophisticated models
in both cases would benefit open-set detection performance.
In the future, we hope to investigate how this algorithm can
be extended to other computer vision tasks such as object
detection and semantic segmentation.
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