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Deblurring Face Images Using Uncertainty Guided
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Abstract— We propose a novel multi-stream architecture
and training methodology that exploits semantic labels for
facial image deblurring. The proposed Uncertainty Guided
Multi-Stream Semantic Network (UMSN) processes regions
belonging to each semantic class independently and learns to
combine their outputs into the final deblurred result. Pixel-wise
semantic labels are obtained using a segmentation network.
A predicted confidence measure is used during training to
guide the network towards the challenging regions of the
human face such as the eyes and nose. The entire network is
trained in an end-to-end fashion. Comprehensive experiments
on three different face datasets demonstrate that the proposed
method achieves significant improvements over the recent
state-of-the-art face deblurring methods. Code is available at:
https://github.com/rajeevyasarla/UMSN-Face-Deblurring

Index Terms— Facial image deblurring, semantic masks, con-
fidence scores.

I. INTRODUCTION

IMAGE deblurring entails the recovery of an unknown
true image from a blurry image. Similar to the other

image enhancement tasks, image deblurring is experiencing
a renaissance as a result of convolutional networks (CNNs)
establishing themselves as powerful generative models. Image
deblurring is an ill-posed problem and therefore it is crucial
to leverage additional properties of the data to successfully
recover the lost facial details in the deblurred image. Priors
such as sparsity [1]–[3], manifold [4], low-rank [5] and patch
similarity [6] have been used in the literature to obtain
a regularized solution. In recent years, deep learning-based
methods have also gained some traction [7]–[10].

The inherent semantic structure of natural images such as
faces is an important information that can be exploited to
improve the deblurring results. Few techniques [11], [12] make
use of such prior information in the form of semantic labels.
These methods do not account for the class imbalance of
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Fig. 1. Sample deblurring results: (a) Blurry image; (b) results corresponding
to Shen et al. [11] and to Song et al. [12] (last row); (c) Results correspond-
ing to our proposed Uncertainty Guided Multi-Stream Semantic Network
(UMSN); (d) ground-truth. Our approach recovers more details and better
preserves fine structures like eyes and hair.

semantic maps corresponding to faces. Interior parts of a face
like eyes, nose, and mouth are less represented as compared
to face skin, hair and background labels. Depending on the
pose of the face, some of the interior parts may even disap-
pear. Without re-weighting the importance of less represented
semantic regions, the method proposed by Shen et al. [11]
fails to reconstruct the eyes and the mouth regions as shown
in Fig. 1. Similar observations can also be made regarding
the method proposed in [12] (Fig. 1) which uses semantic
priors to obtain the intermediate outputs and then performs
post-processing using k-nearest neighbor algorithm.

To address the imbalance of different semantic classes,
we propose a novel CNN architecture, called Uncertainty
guided Multi-stream Semantic Networks (UMSN), which
learns class-specific features independently and combine them
to deblur the whole face image. Class-specific features are
learned by sub-networks trained to reconstruct a single seman-
tic class. We use nested residual learning paths to improve the
propagation of semantic features. Additionally, we propose
a class-based confidence measure to train the network. The
confidence measure describes how well the network is likely
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to deblur each semantic class. This measure is incorporated in
the loss to train the network. We evaluate the proposed network
by conducting experiments on three face datasets - Helen [13],
CelebA [14] and PuBFig [12]. Extensive experiments demon-
strate the effectiveness of our approach compared to a number
of well established face deblurring methods as well as other
competitive approaches. Fig. 1 shows sample results from
our UMSN network, where one can clearly see that UMSN
is able to provide better results as compared to the state-
of-the-art techniques [11], [12]. An ablation study is also
conducted to demonstrate the effectiveness of different parts
of the proposed network. To summarize, this paper makes the
following contributions:

• A novel multi-stream architecture called, Uncertainty
Guided Multi-Stream Semantic (UMSN), is proposed
which learns class-specific features and uses them to
reconstruct the final deblurred image.

• We propose a novel method of computing confidence
measure for the reconstruction of every class in the
deblurred image, which is to rebalance the importance
of semantic classes during training.

Rest of the paper is organized as follows. In Section II,
we review a few related works. Details of the proposed method
are given in Section III. Experimental results are presented in
Section IV, and finally, Section V concludes the paper with a
brief summary.

II. BACKGROUND AND RELATED WORK

Single image deblurring techniques can be divided into
two main categories - blind and non-blind. In the non-blind
deblurring problem, the blur kernel is assumed to be known
while in the blind deblurring problem, the blur kernel needs
to be estimated. Since the proposed approach does not assume
any knowledge of the blur kernel, it is a blind image deblurring
approach. Hence, in this section, we review some recent blind
image deblurring techniques proposed in the literature.

Classical image deblurring methods estimate the blur kernel
given a blurry image and then apply deconvolution to get the
deblurred image. To calculate the blur kernel some techniques
assume prior information about the image, and formulate
maximum a-posertior (MAP) to obtain the deblurred image.
Different priors such sparsity, L0 gradient prior, patch prior,
manifold Prior, and low-rank have been proposed to obtain
regularized reconstructions [1]–[6], [15]–[17]. Xu et al. [8]
estimate the Fourier coefficients of the blur kernel to deblur
the image. Nimisha et al. [7] learn the latent features of the
blurry images using the latent features of the clean images to
estimate the deblurred image. These CNN-based methods do
not perform well compared to the state-of-the-art MAP-based
methods for large motion kernels. Recent non-blind image
deblurring methods like [2], [18]–[21] assume and use some
knowledge about the blur kernel. Given the latent blurry input,
Vasu et al. [21] estimate multiple latent images corresponding
to different prior strengths to estimate the final deblurred
image. CNN-based techniques like [22] and [23] estimate the
blur kernel and address dynamic deblurring. Another recent
image deblurring method based on Feature Pyramid Network

and conditional generative adversarial network (GAN) was
recently proposed by Kupyn et al.in [24].

The usage of semantic information for image restoration
is relatively unexplored. While semantic information has
been used for different object classes [25]–[28], a substan-
tial body of literature has focused their attention to human
faces [11], [29]–[31]. Pan et al. [30] extract the edges of
face parts and estimate exemplar face images, which are
further used as the global prior to estimate the blur kernel.
This approach is complex and computationally expensive
in estimating the blur kernel. Recently, Shen et al. [11]
proposed to use the semantic maps of a face to deblur
the image. Furthermore, they introduced the content loss to
improve the quality of eyes, nose and mouth regions of
the face. Bulat and Tzimiropoulos [32] proposed Super-FAN
architecture which is an end-to-end network that outputs
high-resolution of face, along with heatmap for face alignment.
Chen et al. [33] proposed FSRGAN architecture which con-
sists of coarse and fine Super-Resolution (SR) networks where
they estimate coarse estimate of high-resolution output image,
follwed by fine estimate using Fine SR Network. Yu et al. [34]
propose a multi-task network to upsample LR image where
they predict face structure along with super-resolving LR face
image. Ren et al. [35] proposed a face video deblurring method
by predicting facial structure and identity from the blurry
face using a deep network that generates a textured 3D face
from the video. Textured 3D face mask can be generated
accurately only from videos. This method is not beneficial
if we have a single face image to deblur. Lu et al. [36] pro-
posed a domain-specific single face image deblurring method
by disentangling the content information in an unsupervised
fashion using the KL-divergence. In contrast to these meth-
ods, we learn a multi-stream network which reconstructs the
deblurred images corresponding to different classes in a facial
semantic map. Furthermore, we propose a new loss to train
the network.

III. PROPOSED METHOD

A blurry face image y can be modeled as the convolution
of a clean image x with a blur kernel k, as

y = k ∗ x + η,

where ∗ denotes the convolution operation and η is noise.
Given y, in blind deblurring, our objective is to estimate the
underlying clean face image x . We group 11 semantic face
labels into 4 classes as follows: m1 = {background}, m2 =
{ f ace skin}, m3 = {le f t eyebrow, right eyebrow, le f t eye,
right eye, nose, upper li p, lower li p, teeth} and
m4 = {hair}. Thus, the semantic class mask of a clean
image x is the union m = m1 ∪ m2 ∪ m3 ∪ m4. Similarly we
define the semantic class masks of a blurry image m̂.

Semantic class masks for blurry image, m̂ are generated
using the semantic segmentation network (S-Net) (Fig. 3), and
given together with the blurry image as input to the deblurring
network, UMSN. This is important in face deblurring as some
parts like face skin and hair are easy to reconstruct, while face
parts like eyes, nose, and mouth are difficult to reconstruct
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Fig. 2. An overview of the proposed UMSN network. First stage semantic networks consist of F-Net-i . Second stage is constructed using the base network
(B-Net), where outputs of the F-Net-i’s are concatenated with the output of the first ResBlock layer in B-Net.

Fig. 3. An overview of the segmentation network. Conv l× l (p, q) contains
instance normalization [37], Rectified Linear Unit (ReLU), Conv (l × l) -
convolutional layer with kernel of size l × l, where p and q are the number
of input and output channels respectively.

and require special attention while deblurring a face image.
This is mainly due to the fact that parts like eyes, nose and
mouth are small in size and contain high frequency elements
compared to the other components. Different from [30] that
uses edge information and [11] that feed the semantic map to
a single-stream deblurring network, we address this problem
by proposing a multi-stream semantic network, in which
individual branches F-net-i learn to reconstruct different parts
of the face image separately. Fig. 2 gives an overview of the
proposed UMSN method.

As can be seen from Fig. 2, the proposed UMSN net-
work consists of two stages. We generate the semantic class
maps, m̂, of a blurry face image using the S-Net network.
The semantic maps are used as the global masks to guide
each stream of the first stage network. These semantic class
maps m̂ are further used to learn class specific residual feature
maps with nested residual learning paths (NRL). In the first
stage of our network, the weights are learned to deblur the
corresponding class of the face image. In the second stage

of the network, the outputs from the first stage are fused to
learn the residual maps that are added to the blurry image
to obtain the final deblurred image. We train the proposed
network with a confidence guided class-based loss.

A. Semantic Segmentation Network (S-Net)

The semantic class maps m̂i of a face, are extracted using
the S-Net network as shown in Fig. 3. We use residual
blocks (ResBlock) as our building module for the segmentation
network. A ResBlock consist of a 1 × 1 convolution layer,
a 3 × 3 convolution layer and two 3 × 3 convolution layers
with dilation factor of 2 as shown in Fig. 4.

B. Base Network (B-Net)

We construct our base network using a combination of
UNet [38] and DenseNet [39] architectures with the ResBlock
as our basic building block. To increase the receptive field size,
we introduce smoothed dilation convolutions in the ResBlock
as shown in Fig. 4. B-Net is a sequence of eight ResBlocks
similar to the first stage semantic network as shown in Fig. 5.
Note that all convolutional layers are densely connected [39].
We follow residual-based learning in estimating the deblurred
image for our base network as shown in Fig. 5.

C. UMSN Network

The UMSN network is a two-stage network. The first stage
network is designed to obtain deblurred outputs from the
semantic class-wise blurry inputs. These outputs are further
processed by the second stage network to obtain the final
deblurred image. The first stage semantic network contains
a sequence of five ResBlocks with residual connections,
as shown in Fig. 5. We call the set of all convolution layers
of the first stage network excluding the last ResBlock and
Conv3 × 3 as F-Net.
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Fig. 4. First row shows an example of gridding effects caused by the dilated
convolutions. For instance, a red pixel in the output feature map will be
a function of the corresponding red pixels in the input feature map. This
causes gridding artifacts. Second row shows the benefit of using separable
and shared convolution layer, where every pixel in the output feature map is a
function of every pixel in the corresponding neighborhood of the input feature
map. Third row is an overview of the ResBlock. Conv l × l(p, q) contains
Instance Normalization [37], ReLU - Rectified Linear Units, convolutional
layer with kernel of size l × l, where p and q are number of input and
output channels respectively. In the right side of the figure, we show smoothed
dilation convolutions introduced in ResBlock which is similar to [40].

Fig. 5. An overview of the first stage semantic network. We define the set of
all convolution layers of the first stage network excluding the last ResBlock
and Conv3 × 3 as F-Net.

The blurry image y and the semantic masks m̂i are fed to
F-Net-i to obtain the corresponding class-specific deblurred
features which are concatenated with the output of the first
layer (ResBlock-Avgpool) in Base Network(B-Net) for con-
structing the UMSN network. We also use the Nested Residual
Learning (NRL) in UMSN network where class specific resid-
ual feature maps are learned and further used in estimating
the residual feature maps that are added to the blurry image
for obtaining the final output. For example, we can observe
a residual connection between the last layer of UMSN and
class-specific feature maps obtained from Conv 1 × 1 using y
and m̂. Output of this residual connection is further processed
as the input to the residual connection with the input blurry
image, y. In this way, we define our NRL and obtain the final
deblurred image. We propose a class-based loss function to
train the UMSN network.

D. Loss for UMSN

The network parameters � are learned by minimizing a
loss L as follows,

�̂ = argmin
�

L( f�(y, m̂), x) = argmin
�

L(x̂, x), (1)

where f�(.) represents the UMSN network, x̂ is the deblurred
result, m̂ is the semantic map obtained from S-Net. We define
the reconstruction loss as L = ‖x − x̂‖1. A face image can
be expressed as the sum of masked images using the semantic
maps as

x =
M∑

i=1

mi � x,

where � is the element-wise multiplication and M is the total
number of semantic maps. As the masks are independent of
one another, Eq. (1) can be re-written as,

�̂ = argmin
�

M∑

i=1

L(mi � x̂, mi � x). (2)

In other words, the loss is calculated for every class indepen-
dently and summed up in order to obtain the overall loss as
follows,

L(x̂, x) =
M∑

i=1

L(mi � x̂, mi � x). (3)

E. Uncertainty Guidance

We introduce a confidence measure for every class and use
it to re-weight the contribution of the loss from each class
to the total loss. By introducing a confidence measure and
re-weighting the loss, we benefit in two ways. If the network
is giving less importance to a particular class by not learning
appropriate features of it, then the Confidence Network (CN)
helps UMSN to learn those class specific features by esti-
mating low confidence values and higher gradients for those
classes through the CN network. Additionally, by re-weighting
the contribution of loss from each class, it counters for the
imbalances in the error estimation from different classes. The
loss function can be written as,

Lc(x̂, x) =
M∑

i=1

CiL(mi � x̂, mi � x) − λ log(Ci ), (4)

where log(Ci ) acts as a regularizer that prevents the value
of Ci going to zero and λ is a constant. We estimate the
confidence measure Ci for each class by passing mi �x̂, mi �x
as inputs to CN as shown in Fig. 6. Ci represents how
confident UMSN is in deblurring the i th class components
of the face image. Note that, Ci (∈ [0, 1]), confidence measure
is used only in the loss function while training the weights of
UMSN, and it is not used (or estimated) during inference.

Inspired by the benefits of the perceptual loss in style
transfer [41], [42] and image super-resolution [43], we use
it to train our network. Let �(.) denote the features obtained
using the VGG-Face model [44], then the perceptual loss is
defined as follows,

Lp = ‖�(x̂) − �(x)‖2
2. (5)

The features from layer relu1_2 of a pretrained VGG-Face
network [44] are used to compute the perceptual loss. The
total loss used to train UMSN is as follows,

Ltotal = Lc + λ1Lp, (6)

where λ1 is a constant.
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Fig. 6. An overview of the Confidence Network (CN). x is ground truth
image. x̂ is deblurred image obtained from UMSN. m semantic maps of x .

TABLE I

PSNR AND SSIM VALUES FOR EACH DEBLURRED SEMANTIC CLASS
ON THE CelebA DATASET (C) AND HELLEN DATASET (H)

IV. EXPERIMENTAL RESULTS

We evaluate the results using the images provided by the
authors of [11] which consists of 8000 blurry images generated
using the Helen dataset [13], and 8000 blurry images generated
using the CelebA dataset [14].1 Furthermore, we test our
network on a test dataset called PubFig, provided by the
authors of [12] which contains 192 blurry images. We quan-
titatively evaluate the results using the Peak-Signal-to-Noise
Ratio (PSNR) and the Structural Similarity index (SSIM) [45].

A. Implementation Details

1) Segmentation Network: We initially train the S-Net
network using the Helen dataset [13] which contains 2000
clean images with corresponding semantic labels provided by
Smith et al. [46]. S-Net is trained using the cross entropy
loss with the Adam optimizer and the learning rate is set
equal to 0.0002. We train S-Net for 60000 iterations on clean
images. As can be seen from Fig. 7 and Table II, S-Net trained
on clean images only is not able to produce good results on
the blurry images. Thus, we fine-tune S-Net using the blurry
images and the corresponding semantic maps generated using
the Helen dataset [13]. In this case, S-Net is fine-tuned for
30000 iterations with the learning rate of 0.00001. We test
our S-Net network on 330 clean Test images provided by the
Helen dataset as well as 8000 blurry images. Results are shown
in Fig. 7 and Table II in terms of F-scores. As can be seen
from these results, our method is able to produce reasonable
segmentation results from blurry images.

2) UMSN Network: Training images for UMSN are gen-
erated using 2000 images from the Helen dataset [13], and
randomly selected 25000 images from the CelebA dataset [14].
We generate 25000 blur kernels sizes ranging from 13 × 13
to 29 × 29, using 3D camera trajectories [47]. Patches of size
128 × 128 are exacted from those images and convolved with

1We follow the same training and testing protocols defined by [11].

TABLE II

F-SCORE VALUES OF SEMANTIC MASKS FOR CLEAN AND
BLURRY IMAGES FROM THE HELEN DATASET

25000 blur kernels randomly to generated about 1.7 million
pairs of clean-blurry data. We added Gaussian noise with
σ = 0.03 to the blurry images.

a) First stage semantic network: Every first stage seman-
tic network is trained with clean-blurry paired data where only
the corresponding class components of the face images are
blurred. The first stage semantic network is trained with a
combination of the L1-norm and the perceptual losses using
the Adam optimizer with learning rate of 0.0002. The first
stage network is trained for 50, 000 iterations. To illustrate
what kind of outputs are observed from the first stage semantic
networks, in Fig. 8 we display semantic masks (first row),
the corresponding blurry images (second row) and the final
estimated deblurred outputs from first stage semantic networks
(last row). As it can be seen from the last row, first stage
semantic networks are able to remove most of the blur from
corresponding class in the image. Note that, F-Net-i ’s from
these first stage semantic networks are used along with B-Net
to construct UMSN, and trained to perform deblurring face
image.

b) Overall UMSN network: UMSN is trained using Ltotal

with the Adam optimizer and batchsize of 16. The learning
rate is set equal to 0.0002. Note that, semantic maps {mi }4

i=1
of the ground truth clean images in Ltotal are generated using
S-Net, since we do not have the actual semantic maps for them.
λ and λ1 values are set equal to 0.01 and 0.0002, respectively.
UMSN is trained for 0.1 million iterations.

B. Evaluation

1) PSNR and SSIM: We compare the performance of
our method with the following state-of-the-art algorithms:
MAP-based methods [15], [16], [48]–[50], face deblurring
exemplar-based method [30], and CNN-based methods [9],
[11], [24]. Results are shown in Table III. As can be seen
from this table, UMSN outperforms state-of-the-art methods
including the methods that make use of semantic maps for
image deblurring [11]. Furthermore, we evaluate UMSN’s
performance in reconstructing individual semantic classes
against [11]. As it can be seen from the Table I, our method’s
performance in reconstructing individual classes is better than
the sate-of-the-art method [11]. In addition, we compare the
performance of our method against CNN-based face deblurring
method that uses post processing [12] on the PubFig dataset
consisting of 192 images released by the authors of [12]. The
PSNR and SSIM values achieved by [12] are 30.21 and 0.84,
whereas our method achieved 30.95 and 0.87, respectively.
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Fig. 7. Semantic maps generated by S-Net on blurry images from the Helen dataset. First row contains Blurry images. Second rows consists of the
corresponding Semantic masks obtained from S-Net trained on the clean images. Third row consists of the corresponding Semantic masks obtained from
S-Net fine tuned with the blurry images.

Fig. 8. First row: semantic masks. Second row: blurry images. Third row:
deblurred images using first stage semantic network for classes (a) m1, (b) m2,
(c) m3 (d) m4. Note that first stage semantic network is combination of
F-Net-i , ResBlock and Conv3 × 3.

2) VGG-Face Distance: We compare the performance of
our method with the following state-of-the-art algorithms
using feature distance (i.e, L2−norm distance between output
feature map from network) between deblurred image and the
ground truth image. We use the outputs of pool5 layer from the
VGG-Face [44] to compute the VGG-Face distance (dV GG ).
dV GG is a better perceptual metric to compare as it computes
the L2−norm distance in the feature space using VGG-
Face [44] network. Table IV clearly shows that our method
UMSN outperforms the existing state of the art methods using
the perceptual measures like dV GG .

TABLE III

PSNR AND SSIM COMPARISION OF UMSN AGAINST

STATE-OF-THE-ART METHODS

TABLE IV

COMPARISION OF UMSN AGAINST STATE-OF-THE-ART METHODS USING
DISTANCE OF FEATURE FROM VGG-FACE( dV GG ), LOWER IS BETTER

3) Face Recognition: In order to show the significance of
different face deblurring methods, we perform face recognition
on the deblurred images. We use the CelebA dataset to perform
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Fig. 9. Sample results from the Helen and CelebA datasets. As can be seen from this figure, MAP-based methods [15], [50] are adding some artifacts on the
final deblurred images especially near the eyes, nose and mouth regions. Deblurring [24] without prior produced smooth output face images with artifacts, this
can be seen in the fifth column corresponding to [24]. Global prior-based method [11] produces very smooth outputs and some parts of the deblurred images
are deformed. This can be clearly seen by looking at the reconstructions in the fourth column corresponding to [11], where the right eye is added in the face
image, the fingers are removed, the mustache is removed, and the mouth is deformed. On the other hand by using class-specific multi-stream networks and
Ltotal , our method is able to reconstruct all the classes of a face perfectly and produces sharper face images. For example, UMSN is able to reconstruct eyes,
nose, mustache and mouth clearly. Additionally UMSN does not add parts like eyes when they are occluded (last row). Note that the method proposed in [11]
uses a generative adversarial network (GAN) to reconstruct sharper images. In contrast, our method is able to reconstruct sharper images even without using
a GAN.

this comparison, where we use 100 different identities as
the probe set, and for each identity we select 9 additional
clean face images as the gallery set. 8000 blurry images
are generated using the 100 images in the probe set. Given
a blurry image, the deblurred image is computed using the
corresponding deblurring algorithm. The most similar face for
this deblurred image is selected from the gallery set to check
whether they belong to same identity or not.

To perform face recognition we use OpenFace toolbox [51]
to compute the similarity distance between the deblurred
image and all the gallery images. We select the Top-K nearest
matches for each deblurred image to compute the accuracy

of the deblurring method. Table V clearly shows that the
deblurred images by our method have better recognition accu-
racies than the other state-of-the-art methods. This experiment
clearly shows that our method is able to retain the important
parts of a face while performing deblurring. This in turn helps
in achieving better face recognition compared to the other
methods.

4) Qualitative Results: The qualitative performance of dif-
ferent methods on several images from the Helen and CelebA
test images are shown in Fig. 9. We can clearly observe that
UMSN produces sharp images without any artifacts when
compared to the other methods [11], [15], [50].
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Fig. 10. Sample results on real blurry images.

In addition, we conducted experiments on 100 real blurry
images provided by the authors of [11], [15], [50]. Results
corresponding to different methods are shown in Fig. 10.
As can be seen from this figure, UMSN produces sharper and
clear images when compared to the state-of-the-art methods.
For example, methods [15], [50] produce results which contain
artifacts or blurry images. Shen et al. [11], Kupyn et al. [24]
are not able reconstruct eyes, nose and mouth as shown in the
fourth and fifth columns of Fig. 10, respectively. On the other
hand, eyes, nose, and mouth regions are clearly visible in the
images corresponding to the UMSN method.

C. Ablation Study

We conduct experiments on two datasets to study the
performance contribution of each component in UMSN. We
start with the base network (B-Net) and progressively add

components to establish their significance to estimate the
final deblurred image. The corresponding results are shown
in Table VI. It is important to note that B-Net and UMSN are
configured to have the same number of learnable parameters by
setting appropriate number of output channels in the interme-
diate convolutional layers of the ResBlock. The ablation study
demonstrates that each of the components improve the quality
of the deblurred image. In particular, the introduction of the
multi-stream architecture improved the performance by 0.6dB.
When UMSN is trained using Ltotal the performance improved
by an additional 0.75dB. Finally, the combination of all the
components of UMSN produce the best results with 2.5dB
gain compared to B-Net.

Sample reconstructions corresponding to the ablation study
using the Helen and CelebA datasets are shown in Fig. 11.
As can be seen from this figure, B-Net and B-Net+semantic
maps produce reconstructions that are still blurry and they
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Fig. 11. Ablation study. (a) Blurry image, (b) B-Net, (c) B-Net + semantic maps, (d) B-Net + semantic maps + NRL, (e) UMSN without Lc, (f) UMSN
(g) ground Truth.

TABLE V

TOP-1, TOP-3 AND TOP-5 FACE RECOGNITION ACCURACIES

ON THE CelebA DATASET

TABLE VI

PSNR AND SSIM RESULTS OF THE ABLATION STUDY

fail to reconstruct the facial parts like eyes, nose and mouth
well. On the other hand, B-Net+semantic maps+ NRL is
able to improve the reconstruction quality but visually it is
still not comparable to the state-of-the-art method. As shown
in Fig. 12, NRL is able to estimate the class-specific residual
feature maps, which are further used for estimating the final
deblurred image. From Fig. 12 we can see what different
residual feature maps are learning for different classes. In par-
ticular, the use of F-Nets helps UMSN to produce qualitatively
good results, where all the parts of a face are clearly visible.
Furthermore, training UMSN using Ltotal results in sharper
images.

Fig. 12. (a) Blurry image. (b) UMSN. (c) Intermediate residual feature map
learned for the eyes and the hair. (d) Intermediate residual feature map learned
for the face skin in NRL.

Fig. 13. Sample results from the PubFig dataset. (a) Blurry image. (b) Ground
Truth. (c) Song et al. [12](IJCV’19). (d) UMSN.

We also compare our method qualitatively with post
processing-based method [12] on the PubFig dataset. As can
be seen from the results shown in Fig. 13, even after applying
some post processing, [12] tends to produce results that are
smooth. In comparison, UMSN is able to produce sharper and
high-quality images without any post-processing.

V. CONCLUSION

We proposed a new method, called Uncertainty guided
Multi-stream Semantic Network (UMSN), to address the
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Fig. 14. Semantic maps generated by S-Net on a blurry image from the Helen dataset. First row contains Blurry images. Second rows consists of corresponding
Semantic masks obtained from S-Net. Third consists of deblurred images using UMSN. Fourth row contains ground-truth images.

single image blind deblurring of face image problem that
entails the use of facial sementic information. In our approach,
we introduced a different way to use the ouput features from
the sub-networks which are trained for the individual seman-
tic class-wise deblurring. Additionally, we introduced novel
techniques such as nested residual learning, and class-based
confidence loss to improve the performance of UMSN. In com-
parison to the state-of-the-art single image blind deblurring
methods, the proposed approach is able to achieve significant
improvements when evaluated on three popular face datasets.

APPENDIX A
UMSN NETWORK SEQUENCE

The BaseNetwork is similar to the first stage semantic
network as shown in Fig. 5 with the following sequence of
layers,
ResBlock(3,64)-Avgpool-ResBlock(64,64)-ResBlock(64,64)-
ResBlock(64,64)-ResBlock(64,64)-ResBlock(64,64)-
ResBlock(64,64)-Upsample-ResBlock(64,16)-
Conv 3 × 3(16,3).
F-Net-i is a a sequence of five ResBlocks with dense
connections,
ResBlock(3,16)-Avgpool-ResBlock(16,16)-ResBlock(16,16)-
ResBlock(16,16)-ResBlock(16,8)
where ResBlock(m, n) indicates m input channels and n
output channels for ResBlock.

F-Net-i ’s are joined to form the first stage of UMSN, further
these outputs re concatenated to output of first layer of Base
Network(B-Net) for constructing the UMSN network. Thus
UMSN is constructed by combining F-Net-i ’s and B-Net,
where F-Net-i ’s acts as first stage of UMSN, and B-Net acts
as second stage of UMSN.

APPENDIX B
CONFIDENCE SCORES

In this section, we show some example test outputs of
UMSN (trained with Ltotal) at different time instances of
training, and their corresponding confidence values to show
how confidence measure is helping the network. Confidence
measure helps the UMSN in deblurring different parts of the
face. For example, as shown in the Fig. 15 and Table VII,
the outputs of UMSN after 50,000 iterations are blurry around
eyes, nose, and mouth regions which is reflected in low
confidence scores for C3 when compared to the other classes.
Eventually, UMSN learns to reconstruct eyes, nose and mouth
regions which is reflected in high confidence scores for C3.
This can be seen from Figure 15 where the output deblurred
images are sharp with eyes, nose and mouth regions recon-
structed perfectly. Table VIII and Fig. 16 show the confidence
scores for different classes and outputs of UMSN for two
different identities from the test dataset blurred with kernel
sizes of 17 × 17 and 27 × 27.
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Fig. 15. Sample deblurring results corresponding to UMSN at different
time instances of training. (a) Blurry image. (b) Trained for 3000 iterations,
(c) 50,000 iterations, and (d) 0.1 million iterations.

TABLE VII

CONFIDENCE VALUES CORRESPONDING TO IMAGE1 AND IMAGE2 IN

FIRST ROW AND SECOND ROW IMAGES IN FIG. 15, RESPECTIVELY

Fig. 16. Sample deblurring results of UMSN for different kernel sizes 17×17
and 27 × 27 for two different identiies. (a) Blurry images with kernel size
17 × 17. (b) Deblurred images using UMSN. (c) Blurry image with kernel
size 27 × 27. (d) Deblurred image using UMSN.

APPENDIX C
ADDITIONAL RESULTS

Extreme blur and occlusions by object like sun glasses or
other body parts such as hands can cause S-Net to produce
poor quality segmentations as shown in the second row of
Fig. 14. Even when the S-Net fails to produce accurate seg-
mentation masks, UMSN is able to produce visually pleasing
results as shown in the third row of Fig. 14. This is mainly
due to the concatenation of features from F-Net-i with the
feature from the first layer of B-Net. By doing this, features
extracted and reconstructed for each class in corresponding
F-Net helps the UMSN to deblur the face image even if the
face parsing does not work well. Note that the first stage
semantic networks are initially trained on the images where

TABLE VIII

CONFIDENCE VALUES FOR THE BLURRY IMAGES GENERATED USING
IDENTITY1 AND IDENTITY2 CORRESPONDING TO FIRST ROW AND

SECOND ROW IMAGES IN FIG. 16, RESPECTIVELY

Fig. 17. First row corresponds to the images without occlusion and second
row corresponds to the images with occlusion. (a) Blurry images. (b) Ground-
turth clean images. (c) Deblurred images using the proposed UMSN network.

Fig. 18. (a) Blurry image. (b) Ground-turth clean image. (c) Deblurred
images using the proposed UMSN network.

only the corresponding class is blurred and remaining are
clean. Thus even if the class mask is extremely corrupted,
the F-Net can extract the corresponding class features and
helps the UMSN to produce visually pleasing images as shown
in Fig. 14.

Figure 17 and Figure 18 show cases in which the face
images are occluded and taken in low-light conditions, respec-
tively. In such conditions, the proposed method fails to produce
better quality images.
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