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Abstract. For any recognition system, the ability to identify novel class
samples during inference is an important aspect of the system’s robust-
ness. This problem of detecting novel class samples during inference is
commonly referred to as Multiple Class Novelty Detection. In this pa-
per, we propose a novel method that makes deep convolutional neural
networks robust to novel classes. Specifically, during training one branch
performs traditional classification (referred to as global inference), and
the other branch provides patch-level information to keep track of the
class-specific activation patterns (referred to as local inference). Both
global and local branch information are combined to train a novelty de-
tection network, which is used during inference to identify novel classes.
We evaluate the proposed method on four datasets (Caltech256, CUB-
200, Stanford Dogs and FounderType-200) and show that the proposed
method is able to identify novel class samples better compared to the
other deep convolutional neural network-based methods.

Keywords: Multiple class novelty detection, class activation patterns.

1 Introduction

Improving the robustness of recognition models has been one of the primary
research topics in computer vision and machine learning in recent years. Specif-
ically, problems such as adversarial attacks [37,12,30,21,8,34], recognition bias
[16,40,36], out-of-distribution detection [14,19,9], open-set recognition [2,23,26],
outlier removal [42,43] and novelty/anomaly detection [28,5,20,32,1,25,3] have
received tremendous interest. In this paper, we focus on one such aspect of ro-
bustness, referred to as multi-class novelty detection.

Typically, in a recognition problem, the goal is to learn a model that can
identify the underlying features using data samples from a given set of classes
(i.e., known classes). Later, these features can be used at inference stage to
identify data samples into a given set of known classes. The problem arises when
samples from novel classes (i.e. samples that do not belong to any of the known
classes) are observed during inference. In this case, the network misidentifies
the sample from a novel class as one of the known classes. Novelty detection
was specifically introduced to address this issue [15,22,22,32,29,27]. Generally,
a novelty detector attempts to identify whether a sample during inference is
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Fig. 1. (a) Typical example of a multiple class novelty detection scenario, where a
novelty detector is used to differentiate between in-class and novel class data. (b)
Baseline and the proposed method are able to produce high scores for in-class data.
However, for novel class data the proposed approach does is better at assigning low
scores compared to the baseline. Here, the “Baseline” refers to the novelty detection
using traditional deep convolutional neural network with penultimate layer scores.

either from in-class (i.e, one of the known classes) or is from a novel class. When
the number of known classes are more than one, the problem is also referred
to as multi-class novelty detection [28,5,20,24]. When employed, the multi-class
novelty detection module allows data samples only from known classes to pass
through the recognition model, which results in increased robustness for the
model. This is useful in many real-world vision applications. For example, in the
case of autonomous navigation systems, it is important to stop and re-plan the
navigation path by detecting a novel class as obstacle rather than misclassifying
it and risking a potential crash.

The major challenge in developing multi-class novelty detector is the un-
availability of novel class samples during training. Since the knowledge or data
samples of novel classes are impossible to attain beforehand, the majority of
novelty detection algorithms rely on how well they can encode the in-class data.
There have been a few multi-class novelty detection methods proposed in recent
years that try to overcome this challenge. Some of the earlier methods such as
[5,20] use the feature encoding of in-class data to learn a subspace (referred to
as null space of training data in [5,20]), and during inference the novelty score
is calculated based on the distance of a test sample projected onto that sub-
space with the learned in-class data projections. However, these methods can
not be integrated with deep convoluitonal neural networks (DCNN) to perform
end-to-end training.

Recently, Perera and Patel [28] proposed a DCNN-based multi-class novelty
detection method that can be trained in an end-to-end fashion. Specifically, to
improve the novelty detection capability of a DCNN, they proposed a fine-tuning
approach, where a reference dataset is used as a proxy for novel-class data. The
authors argue that, since novelty detection methods often operate on features
extracted from DCNN models which are pre-trained on the reference dataset,
it would be beneficial, especially for novelty detection, to utilize the samples
from a reference dataset as well. However, that argument does not always hold
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true. There are many cases where access to such reference datasets might not
be possible. For example, consider a dataset having biometric information of
users. Such datasets have high privacy risk associated with them and hence
might not be available for public use. Additionally, for many private companies
it is a competitive advantage to keep their datasets only for internal use, e.g.,
recently Google released state of the art neural network recognition models1

trained on their internal datasets which are not publicly released. Also, in the
case of Federated Learning [6] based applications, sharing dataset across devices
is restricted to promote data privacy. However, in such scenario sharing a trained
model parameters is possible as it contains very little risk on the privacy of the
corresponding data. Hence, for the cases described above, it is not possible to
access the reference dataset. Moreover, the reference dataset as described in [28]
has to be fully labeled and hence can not be replaced by any randomly collected
set of images. Ideally, we would want a novelty detection method that is flexible
enough to work on scenarios where the reference dataset is not available, and
when available it should be able to utilize the reference dataset to improve the
novelty detection capability of the model.

In this paper, we propose a multiple class novelty detection to address the
above mentioned concerns. Specifically, we use two parallel DCNN branches,
where one branch learns features for identifying what class is present in the im-
age and the second branch learns class-wise activations in the image patches. The
information from both branches are combined in proposed training strategy to
train a novelty detection network, without requiring a reference dataset. More-
over, to increase the flexibility of the approach, we also extend the method for
the cases where reference dataset is available to further improve the performance.
The advantage of this approach is that, as opposed to previous methods [28],
it does not rely heavily on the availability of a reference dataset. We show that
this proposed approach performs well on the novelty detection task compared to
the other methods in the literature.

In summary, this paper makes the following contributions:
– We propose multiple class novelty detection approach, trained using a novel

training strategy which utilizes both image-level and patch-level information.
– The proposed approach does not rely heavily on the availability of reference

dataset, but when reference dataset is accessible, it can be easily extended to
further improve the novelty detection performance.

– The performance is evaluated on four benchmark datasets and is shown to
achieve improvements over several recent novelty detection methods.

2 Related Work

Over the years many novelty detection methods have been proposed some the
earliest methods include principle component analysis-based [39,15], support vec-
tor machine-based [31,38], sparse representation-based [41,44], nearest neighbors-
based [17,13,11]. In some of the recent works, Bodesheim et al. [5] proposed a

1 github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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kernel-based method that projects all in-class data onto a subspace (referred
to as null-space of training data), where all in-class categories are forced to
have zero intra-class variance. Specifically, they employ a special case of linear
discriminant analysis formulation, called Null-space Foley-Shannon Transform
(NFST), to achieve zero intra-class variance. The smallest distance between the
test sample projection with the class projections is used to decide whether an
input is from a known class or a novel class. Liu et al. [20] pointed out that
NFST training does not scale well with the increase in dataset size due to its
high computation cost. To counter that, they proposed an incremental addi-
tion of classes to learn NFST subspace, which results in improved scalability
with increased dataset size. Bodesheim et al. [4] proposed another variant of
NFST-based novelty detection method which rather than using all in-class data
samples, learns the NFST model based on the k nearest neighbor samples. This
selective sampling helps to locate the local manifold on the feature space and
learn specific models for each test sample.

However, all of these methods provide a general framework for novelty detec-
tion and none of them are specifically designed for DCNNs. Schultheiss et al. [32]
proposed a DCNN-based novelty detection method by examining the extreme
signatures observed in the penultimate layer. More precisely, depending on the
input data there are specific dimensions in the penultimate layer of DCNNs,
which produce high activation values (referred to as extreme value signatures) if
the input is from novel class. Recently, Perera et al. [28] proposed a DCNN-based
training method using a reference dataset. Instead of just utilizing pre-trained
models trained on some reference dataset, they propose to use samples from the
reference dataset as well. They show that having access to these additional data
samples acts as a novel class proxy and benefits the novelty detection aspect of
DCNNs. The reference dataset used during training, enables learning of negative
filters which forces low activations at penultimate layer, when the input data is
not from a novel class.

Ground Truth: USA Flag Rank-2 Class: Hoop
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Rank-3 Class: Hammock
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Rank-1 Class: USA Flag
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Score: 0.75
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Fig. 2. (a) Original image with corresponding ground truth label. (b), (c) and (d)
represent grad-cam visualizations for rank-1, rank-2 and rank-3 classes and predicted
probability scores.
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3 Proposed Approach

Deep convolutional neural networks have the ability to learn high-quality repre-
sentations that are class-discriminative, making them the most successful tool for
image recognition. These representations are learned by an end-to-end training
and are computed by aggregating patch-level convolution responses (or activa-
tion maps) through non-linear activation functions and pooling process. Fur-
thermore, these activation maps are aggregated depending on the strength of
the activation to predict the probability scores for each class. The classes are
ranked based on the predicted probability score and the class having the maxi-
mum score (i.e. rank-1 class) is predicted as the label. Fig. 2 illustrates this point
with grad-cam [33] visualizations of top-3 classes. Here, the classes are ranked
based on the predicted probability scores. The visualizations in Fig. 2 are not
limited to top-3 classes and can be shown for all categories in the training set.
This figure shows that given an image, a DCNN produces activation maps that
has some contribution from all known classes.

For novel class test samples, none of the predictions would be correct, since
the training set did not contain these classes. Furthermore, as shown in Fig. 3,
often the rank-1 prediction scores for novel classes are very high, making it dif-
ficult for DCNNs to identify them as novel. However, looking at the examples
shown in Fig. 3, one can notice that the patch-level activation patterns for both
known class samples and novel class samples are different, even when both im-
ages are classified as the same class with high scores. The activation patterns for
in-class (i.e. known class) samples are focused on the underlying object, whereas
for novel class data the patterns are spread out across the image producing high
activations at multiple image-patch locations. Given this information, we make
an assumption that this type of discrepancy in the patch-level activation pattern
exists across all novel class samples. Based on this assumption, we propose a nov-
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Score: 0.93
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Fig. 3. (a)-(b) In-class samples from Doorknob and Diamond Ring classes with grad-
cam visualizations and the predicted scores. (c)-(d) Novel class samples from Rotary-
Phone and Tambourine are mis-classified as Doorknob and Diamond Ring as shown
with grad-cam visualizations and predicted scores.
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elty detection algorithm that learns to detect novel class samples by identifying
discrepancy in the patch-level activation patterns.

Typically, for multi-class novelty detection we have access to only in-class
data samples, {xi, yi}i=n

i=1 , where yi ∈ {1, 2, ...,K} is the class label corresponding
to the data point xi, n is the total number of data samples and K is the total
number of classes. In the following subsections, we provide details of the proposed
novelty detection method.

3.1 Global Inference Network

The global inference network can be decomposed in to two parts, feature extrac-
tor (G) and classifier (C). The feature extractor (G), processes the image through
stacked convolutional, pooling and activation layers to produce a global feature
encoding of the object present in the image, as shown in Fig. 4(a). The classifier
(C), uses this global feature encoding to classify the image into one of K classes.
The cross entropy loss used to train such network can be defined as follows

Lglobal =
1

n

n∑
i=1

Lce(C(G(xi)), yi), (1)

where yi is the ground truth class label for the input xi, n is total number of
images from known classes and C(G(xi)) is the predicted probability vector.

3.2 Local Inference Network

For local inference, the network needs to process individual image patches and
provide predictions at patch-level as opposed to the global inference network
where the predictions are provided at the image level. To achieve this, we utilize a
recently proposed BagNet architecture [7] as local inference network. Specifically,
BagNet processes the input image using a series of convolutional layers with
1 × 1 convolutions and 3 × 3 convolutions. The limiting of receptive field size
restricts the network to perform patch-level processing and produce patch-level
feature encodings. These patch-level encodings are used to produce patch-level
prediction scores for all K classes, here referred to as local feature encodings.
All these predictions are average pooled to produce the final prediction score,
which is trained using the cross entropy loss in an end-to-end fashion. This
process is illustrated in Fig. 4(b). The local feature encodings provide us with
information regarding what each image-patch corresponds to and also the details
regarding patch-level activation patterns for a particular class. This information
is particularly useful in our approach and is utilized in the next section to train
the novelty detection network. The local inference network is trained using the
following loss function

Llocal =
1

n

n∑
i=1

Lce(gap(R(xi)), yi), (2)

where R denotes the local inference network, R(xi) denotes the prediction map
having all patch-level prediction scores corresponding to all K classes and gap
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Fig. 4. (a) The global inference network processes the image to produce a global feature
encoding which is used by the classifier to predict the class label. (b) The local inference
network architecture provides patch-level features which are used to produce class-wise
local feature encoding for all K classes, providing information regarding the presence
of all classes at the patch-level. (c) Both global and local network information are
combined in a novel training strategy for novelty detection, specifically to model mis-
match between local activations and global predictions. For given any image xi, the
global and local features of the predicted class ỹi are concatenated to create a positive
example. Local feature of the predicted class ỹi for another randomly sampled image
xj from a different class is combined with the same global feature to create a negative
example. The novelty detection network is trained to distinguish between these positive
and negative examples. The Global and Local inference networks are trained using the
cross entropy classification loss on their respective predictions. Note that, both xi and
xj are sampled from in-class data.

represents global average pooling operation along the height and width of the
prediction map (shown in Fig. 4).

3.3 Novelty Detection Network

The proposed novelty detection method utilizing global and local inference is
illustrated in Fig. 4(c). As discussed earlier, the proposed approach relies on two
assumptions, 1) the activation patterns for a particular global predictions are
different in the case of in-class sample and novel class sample, and 2) for each
image from in-class data belonging to a particular class (yi), DCNN produces
activation maps that has some contribution from all known classes.

Based on these assumptions, we train the novelty detection network to model
the probability of mis-match (discrepancy) between the predicted label by the
global inference and corresponding patch-level activation patterns predicted by
the local inference. This modeling should help during testing to detect novel
samples by detecting the mis-match between the activation patterns and the
prediction. Specifically, consider two randomly sampled images xi and xj having
corresponding labels yi and yj , such that yi 6= yj . The predicted label and
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global feature encoding for image xi is denoted as ỹi = arg maxi C(G(xi)) and
gi = G(xi), respectively. The local feature encoding belonging to the predicted
class ỹi for both images xi and xj are denoted as ri = R(xi)ỹi and rj = R(xj)ỹi ,
respectively. This process is illustrated in Fig. 4(c). The following loss is used
for training the novelty detection network

Lnovelty =
1

n

n∑
i=1,yi 6=yj
j∼{1,..,n}

Lce(N (cat(gi, ri)), 0)

+ Lce(N (cat(gi, rj)), 1),

(3)

where N denotes the novelty detection network and cat represents reshape and
concatenation operations. Also, j ∼ {1, .., n} and yi 6= yj denote that for every
training image xi an index j is randomly sampled from the given in-class data,
such that both xj and xi have different labels. During, testing the novel samples
are identified by using predictions from network N . The overall objective for the
proposed approach can be written by combining Eq. (1)-(3) as follows

min
N , G, R, C

Lglobal + Llocal + Lnovelty. (4)

Details regarding the network architectures and training procedures are provided
in supplementary material.

3.4 Leveraging a Reference Dataset

The proposed method can be easily extended in the case where the reference
dataset is available. We apply regularization on penultimate activations of the
global inference network, similar to the loss function proposed in [10]. Such
regularization of the final layer activations penalizes the high activations of any
input from the reference dataset. Let us denote the reference dataset as Dref

having m number of images, then the regularization loss can be expressed as
follows

Lreg =
1

m

∑
x∈Dref

‖C(G(x))‖2. (5)

The final objective function in this case is updated by adding Lreg, in Eq. 4 as,

min
N , G, R, C

Lglobal + Llocal + Lnovelty + λLreg. (6)

Here, the parameter λ controls the effect of regularization on the final activations,
and is chosen using the validation accuracy of the dataset. In experiments, we
set parameter λ equal to 0.001.

4 Experiments and Results

4.1 Novelty Detection Datasets

Caltech-256. The Caltech-256 dataset contains 256 object classes and a total
of 30607 images. The dataset has a minimum of 80 images to a maximum of



Utilizing Patch-level Category Activation Patterns for Novelty Detection 9

Table 1. Novelty detection performance measured using the Area Under the receiver
operating characteristic Curve evaluation metric (AUC). The best performing method
for each dataset is shown in bold. The second best method is shown in italics. Here,
symbol † indicate that reference dataset was used during training for that method.

Method
Caltech CUB Stanford Dogs FounderType Overall

PerformanceVGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet

Fine-tune 0.827 0.785 0.931 0.909 0.766 0.702 0.841 0.650 0.801

K-extremes [32] 0.546 0.521 0.520 0.514 0.610 0.592 0.557 0.512 0.546

OC-SVM [31] 0.576 0.561 0.554 0.532 0.542 0.520 0.627 0.612 0.567

KNFST [5] 0.743 0.688 0.891 0.748 0.633 0.602 0.870 0.678 0.732

Local KNFST [4] 0.712 0.628 0.820 0.690 0.626 0.600 0.673 0.633 0.673

OpenMax [2] 0.831 0.787 0.935 0.915 0.776 0.711 0.852 0.667 0.809

Fine-tune† [28] 0.848 0.788 0.921 0.899 0.780 0.692 0.754 0.723 0.800

DTMND† [28] 0.869 0.807 0.958 0.947 0.825 0.748 0.893 0.741 0.848

Proposed 0.859 0.826 0.972 0.952 0.827 0.751 0.876 0.798 0.857

Proposed† 0.870 0.847 0.979 0.965 0.873 0.812 0.898 0.801 0.879

827 images per category. Based on the protocol defined in [28], we first sort all
classes into the alphabetical order according to their class name. The first 128
classes and the last 128 classes are considered as in-class and novel categories,
respectively. The in-class categories are further divided into 50-50 splits to create
training and test sets.
Caltech-UCSD Birds-200. The Caltech-UCSD Birds (CUB-200) is a fine-
grained bird classification dataset. It contains 200 distinct bird categories and
6033 images in total. Similar to the protocol used before, the first 100 classes in
the alphabetical order are picked as in-class categories and the last 100 classes in
the alphabetical order are considered as the novel classes. The in-class categories
are further divided into 50-50 splits to create training and test sets. As before, we
make sure that both novel and in-class categories have equal number of images.
Stanford Dogs. This is another fine-grained classification dataset, containing
120 distinct dog breeds and a total of 20580 images. After sorting the dog breed
classes in the alphabetical order, we pick the first and the last 60 breed cate-
gories as in-class and novel class, respectively. The in-class categories are further
divided into 50-50 splits to create training and test sets. The number of images
are the same for both in-class and novel classes during testing.
FounderType-200. The FounderType-200 dataset contains 200 different font
types corresponding to the Chinese characters. Each font type category contains
6763 images. Similar to the other datasets, the first 100 font types are used
as in-class categories and the last 100 font types are used as the novel class
categories. We keep 50% of the image samples per category as the training set
and the remaining 50% are used for testing. The number of images are the same
for both in-class and novel classes during testing.

4.2 Quantitative Analysis

Novelty Detection Performance We evaluate the performance of our method
and compare it with several recent novelty detection methods. Each method pro-
vides a score to quantify the novelty of a test image. The lower the score, the
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higher the probability of input being from a novel class and vice versa. Follow-
ing the protocol proposed in [28], we compare all methods using AlexNet [18]
and VGG16 [35] as the global inference network architectures. In our approach,
BagNet-33 [7] is used as the local inference network. Below is the list of methods
used for comparison:

• Fine-tune: In this baseline, the pre-trained DCNN models are fine-tuned on
the in-class data samples. The scores from penultimate layer of the models are
used to evaluate novelty detection performance.
• OC-SVM: One-class SVM [31] is trained on the fine-tuned features and the
SVM scores are used to evaluate the novelty detection performance.
• KNFST: KNFST as proposed in [4]. It uses fine-tuned deep features to learn
a subspace for in-class data. The distance from the subspace is used to evaluate
the performance.
• Local KNFST: Local KNFST [4] is an extension of the previous baseline,
where a local region of in-class data are used to compute the score for perfor-
mance evaluation.
• OpenMax: OpenMax [2] uses penultimate layer scores of a fine-tuned DCNN
and distance from class-wise mean vectors combined with extreme value model-
ing for performance evaluation.
• K-extremes: This baseline focuses on the penultimate activations where top
10% of the sorted activations are binarized to find extreme signatures, which are
later used to compute the normalized scores for performance evaluation.
• Fine-tune†: This is another fine-tuning baseline proposed in [28]. Here, during
fine-tuning DCNN on any given novelty detection dataset, a reference dataset is
used to improve the quality of the features. During testing, the maximum score
from the penultimate layer of a DCNN, extracted from the in-class categories
(excluding the reference dataset) is used for performance evaluation.
• DTMND: Recently proposed novelty detection method, where a reference
dataset is utilized in a novel training strategy to learn better model that can re-
spond negatively to the novel classes. Maximum activation from the penultimate
layer of the model is used for evaluating the novelty detection performance.

The evaluation protocol proposed by [28] considered two more baselines,
namely KNFST-pre and Local KNFST-pre. However, we excluded these from
comparison here as they do not observe any improvement over the KNFST and
Local KNFST baselines. More details regarding these baselines are provided in
[28]. For the proposed method, we use addition of scores from the global inference
and the novelty detection networks to evaluate the performance.

The performance of different methods are evaluated using the area under the
receiver operating characteristic curve (AUC) metric. The results are reported
in Table 1. As can be seen from this table, OC-SVM and K-extremes meth-
ods have the lowest performances. Local KNFST performs better than both
OC-SVM and K-extremes for all four datasets. KNFST provides better per-
formance compared to Local KNFST on average, and has consistently better
performance on all datasets. On average Fine-tune and Fine-tune† have similar
performances. However, their performances are inconsistent across datasets and
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network architectures. For the Caltech-256 dataset, Fine-tune† performs better
than Fine-tune for both AlexNet and VGG16, while for CUB-200 the trend is
reversed. For both the Stanford Dogs and the FounderType-200 datasets, Fine-
tune† performs better when the VGG16 architecture is used and the reverse trend
is observed when the AlexNet architecture is used. The performance obtained
by Fine-tune† baseline shows that simple fine-tuning is not an efficient way to
utilize a reference dataset for novelty detection. OpenMax performs better than
both Fine-tune and Fine-tune† baselines, resulting in 1% overall improvement.
Except for the FounderType-200 dataset using the VGG16 architecture, Open-
Max consistently performs better than OC-SVM, K-extremes, Local KNFST,
KNFST, Fine-tune and Fine-tune† baselines. Out of all the baselines, DTMND
yields the best performance. DTMND on average performs 3% better than the
next best performing baseline and performs approximately 5% better than Fine-
tune† on average. Even-though both of these baselines have access to a reference
dataset, DTMND utilizes this additional data more efficiently, resulting in the
better performance. The performance of DTMND is largely attributed to their
approach for fine-tuning using the reference dataset.

In the absence of reference dataset, the best method in the literature DTMND
would become similar to that of fine-tune baseline and the performance will drop
by ∼5% to 0.80. Whereas the proposed approach without the reference dataset
during training provides approximately 6% improvement over the DTMND with-
out reference dataset. This is due to the fact that the performance gain for
DTMND is mainly due to the fact that it uses an external reference dataset for
training the network. When the reference dataset is utilized during the training of
the proposed approach (described in Eq. 5), the proposed approach consistently
performs better than DTMND for all datasets and network architectures. Over-
all, when the proposed approach is trained with the help of reference dataset it
improves by ∼2% and provides ∼4% improvement over the DTMND. The perfor-
mance improvement with the proposed† method shows that our approach can be
easily extended to a scenario where a reference dataset is available to further en-
hance the novelty detection performance. On the other hand, DTMND becomes
sub-optimal for the cases where a reference dataset is not available. Especially
in such cases the proposed approach is a better alternative for DCNN-based
multi-class novelty detection compared to DTMND.

Ablation Analysis In this section, we provide an ablation analysis showing the
significance of combining patch-level information with global in our approach.
For ablation experiments, we consider all four novelty detection datasets and the
corresponding protocol proposed in Sec. 4.1. For all experiments, VGG16 is used
as the global inference network. The following ablation baselines are considered:

• Global Only: This baseline is similar to Fine-tune as described in Sec. 4.2.
The in-class data samples are used to fine-tune the VGG16 network. The maxi-
mum activation score from the penultimate layer of VGG16 is used to evaluate
the novelty detection performance.
• Local Only: Fine-tuning only the local inference network using the given
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Table 2. Ablation analysis using AUC. The best performing method is shown in bold.

Method Caltech CUB Stanford Dogs FounerType
Overall

Performance
Global Only 0.827 0.931 0.766 0.841 0.841
Local Only 0.799 0.785 0.598 0.773 0.739

Global+Local 0.831 0.943 0.741 0.835 0.837
Proposed 0.859 0.972 0.827 0.876 0.883

in-class data. The maximum activation score from the penultimate layer of the
local inference network is used to evaluate the novelty detection performance.
• Global+Local: Here, we perform a straight forward concatenation of in-
formation from the global and local inference networks. The novelty detection
performance is evaluated based on the addition of scores from both networks.
• Proposed: This is the method proposed in the paper, where instead of a
straight-forward fusion we utilize novel training strategy proposed in Sec. 3, to
train a novelty detector network, which can better identify the mismatch of local
activity patterns for global feature of a given category.

The performance of all three ablation baselines are reported in Table. 2.
The lowest performance is obtained by local only baseline. The local inference
network processes image patches and classifies images based on the local image
features. This leads to relatively poor classification of in-class samples, which
in turn hurts the novelty detection performance. On the other hand, the global
inference network processes the entire image with a cascade of convolutional,
pooling and fully connected layers to get a feature encoding for the entire image.
This helps the global only baseline perform better classification and generates
high prediction scores for the in-class samples. However, the problem with the
global only baseline is that it ends up providing high prediction scores for the
novel class samples as well, hurting the novelty detection performance. In the
proposed approach, the novelty detection network is trained using both local and
global inference networks. The combined information and novel training strategy
helps the trained novelty detection network to perform better in identifying novel
classes. Specifically, the local inference network provides patch-level activation
information corresponding to the prediction provided by the global inference
network. The novelty detection network identifies the mismatch between the
patch-level activation patterns and global feature encoding to predict whether
the input image belongs to either in-class or novel class. As a result, the proposed
method performs approximately 14% and 4% better than the local and the global
baselines, respectively. We also compare the performance of our method with a
naive fusion baseline, i.e. Global+Local, where the information from global and
local networks are directly concatenated and the performance evaluation is done
using the added scores. From Table. 2, it can be observed that the proposed
approach is able to perform better than the Global+Local baseline.

4.3 Qualitative Analysis
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Ground Truth: Backpack Ground Truth: Tambourine

Ground Truth: TreadmillGround Truth: Ladder

Prediction: Backpack

Prediction: LadderPrediction: Ladder

Prediction: Backpack

Baseline: 0.76

Proposed: 0.19

Baseline: 0.67

Proposed: 0.13

Baseline: 0.93

Proposed: 0.81

Baseline: 0.85

Proposed: 0.83(a) (b)

(c) (d)

In-class Novel-class

Fig. 5. Image examples of in-class (a) & (c) and novel class (b) & (d) data with
corresponding class activation heat-maps as predicted by local inference network and
scores assigned using both baseline and proposed.

Fine-tune Baseline vs Proposed Method To show the effectiveness of the
proposed approach, we provide a qualitative comparison with the Fine-tune base-
line (i.e. traditional DCNN) in Fig. 5. Specifically, we provide image examples,
prediction from the global inference network, their corresponding local class-
activation heat-maps and scores assigned by both baseline and the proposed
method. The heat-maps are generated by normalizing the local feature encod-
ings of the class predicted by the global inference network. The images presented
here are from two novel classes, namely, ‘Tambourine’ and ‘Treadmill’, as shown
in Fig. 5(b), Fig. 5(d), respectively. These images are wrongly identified by the
baseline as in-class data, and assigned the category ‘Backpack’, and ‘Ladder’
with high scores. Additionally, we show the images from the corresponding in-
class categories ‘Backpack’ and ‘Ladder’ and their corresponding class activation
heat-maps in Fig. 5(a) and Fig. 5(c), respectively. This figure shows the differ-
ence in class activation heat-maps for the case where the image samples are from
in-class data and the case where the image samples are from novel classes. For
example, in Fig. 5(a), the image sample is from a known class with category
label ‘Backpack’ and the network is able to correctly identify it by assigning a
high score. The patch-level class activation patterns shown in heat-map focuses
on highly discriminative patch locations providing strong presence of the given
class. On the other hand, in Fig. 5(b), the image sample is from a novel class, but
the network wrongly identifies it as ‘Backpack’ with a high score. However, if we
look at the class activation patterns, there are moderate to high activations all
over the image, as opposed to in-class image in Fig. 5(a). The novelty detector
of the proposed method is specifically trained to identify this mis-match in acti-
vation patterns and predicted label. This helps the proposed approach correctly
predict a high score for the image sample of ‘Backpack’ and a low score for the
image sample of a novel class, ‘Tambourine’. Similar observations can be made
for the other example provided for ‘Ladder’ in Fig. 5(c) and Fig. 5(d).
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Category : Rifle

Prediction: AK47

Baseline: 0.99

Proposed: 0.96

(a)

(b)

Category: Unicorn

Prediction: Horse

Baseline: 0.91

Proposed: 0.92

Category: Toad   

Prediction: Frog

Baseline: 0.93

Proposed: 0.97

Category: Sword   

Prediction: Knife

Baseline: 0.95

Proposed: 0.89

Category: Mandolin  

Prediction: Guitar

Baseline: 0.99

Proposed: 0.81

Fig. 6. Examples of images from novel classes that are wrongly identified as in-class
samples with high scores.

Examples of Wrong Prediction Though the proposed approach exhibits
reasonable novelty detection performance, there are some cases where it fails to
predict low scores when the samples are from novel classes. Some of these exam-
ples are illustrated in Fig. 6 with their corresponding class activation heat-maps
and the predicted scores using the Fine-tune baseline (i.e. traditional DCNN)
and the proposed method. The image sample from novel category ‘Toad’ is iden-
tified as in-class category ‘Frog’. In this case, the novelty detector network fails to
detect any mis-match between the local patch-wise activation patterns and the
predicted label. Similarly, the novel categories ‘Unicorn’, ‘Rifle’ and ‘Mandolin’
are identified as in-class categories ‘Horse’, ‘AK47’ and ‘Guitar’, respectively.
For all of these examples presented here, the reason for failure can be due to
very subtle differences between these novel categories with their respective mis-
classified in-class categories.

5 Conclusion

We proposed a novel DCNN-based multi-class novelty detection method, that
is end-to-end trainable. Unlike recent methods, the proposed approach does not
rely on the availability of a reference dataset and is flexible enough to work on
both scenarios, when the reference dataset is available and when it is not. We
discussed assumptions regarding patch-level activation patterns of DCNNs when
the test image is from novel classes. Based on these assumptions, we proposed a
novel training methodology which utilizes both global level predictions from the
traditional DCNNs and a local inference network, which processes image at patch
level. Furthermore, we show how the proposed approach can be extended when
a reference dataset is accessible by regularizing the reference data penultimate
activations. Experimental results, evaluated on four multi-class novelty detection
datasets, show that the proposed method is able to identify novel class samples
better compared to the other DCNN-based methods.
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