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Abstract. Current protocol of Amide Proton Transfer-weighted (APTw)
imaging commonly starts with the acquisition of high-resolution T2-
weighted (T2w) images followed by APTw imaging at particular geom-
etry and locations (i.e. slice) determined by the acquired T2w images.
Although many advanced MRI reconstruction methods have been pro-
posed to accelerate MRI, existing methods for APTw MRI lacks the
capability of taking advantage of structural information in the acquired
T2w images for reconstruction. In this paper, we present a novel APTw
image reconstruction framework that can accelerate APTw imaging by
reconstructing APTw images directly from highly undersampled k-space
data and corresponding T2w image at the same location. The proposed
framework starts with a novel sparse representation-based slice matching
algorithm that aims to find the matched T2w slice given only the un-
dersampled APTw image. A Recurrent Feature Sharing Reconstruction
network (RFS-Rec) is designed to utilize intermediate features extracted
from the matched T2w image by a Convolutional Recurrent Neural Net-
work (CRNN), so that the missing structural information can be incor-
porated into the undersampled APT raw image thus effectively improv-
ing the image quality of the reconstructed APTw image. We evaluate
the proposed method on two real datasets consisting of brain data from
rats and humans. Extensive experiments demonstrate that the proposed
RFS-Rec approach can outperform the state-of-the-art methods.

Keywords: Magnetic Resonance Imaging · Image Reconstruction · Amide
Proton Transfer Imaging

1 Introduction

Amide Proton Transfer-weighted (APTw) imaging is an emerging molecular
Magnetic Resonance Imaging (MRI) method that can generate image contrast
unique from the conventional MRI. As a type of chemical exchange saturation
transfer (CEST) MRI, APTw signal intensity is based on concentrations of en-
dogenous mobile proteins and peptides or tissue pH. Moreover, APTw MRI does
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not require any contrast agent administration. Previous studies in animals and
humans have demonstrated that APT imaging is capable of detecting brain tu-
mors [18] and ischemic stroke [10]. In a recent preclinical study [11], APT imaging
was shown to accurately detect intracerebral hemorrhage and distinctly differen-
tiate hyperacute hemorrhage from cerebral ischemia. Notably, the capability and
uniqueness of APT imaging for the detection of primary and secondary brain
injuries in experimental Controlled Cortical Impact (CCI) Traumatic Brain In-
jury (TBI) models have recently been explored with promising results [14].

However, relatively long acquisition times due to the use of multiple RF sat-
uration frequencies and multiple acquisitions to increase the signal-to-noise ratio
(SNR) hinders the wide spread clinical use of APTw imaging. A typical CEST
MRI acquisition currently requires long scan times in the range of 5 to 10 min-
utes. Recently, several methods have been developed to accelerate CEST/APT
acquisitions. These can be classified into conventional fast imaging techniques
(e.g. turbospin-echo [17]) and reduced k-space acquisition techniques (includ-
ing spectroscopy with linear algebraic modeling [15] and compressed sensing
(CS) [3]) that require more advanced data processing. Due to recent advances in
deep learning, deep learning-based methods have shown to provide much better
generic MRI image reconstruction results from undersampled k-space data than
conventional CS-based methods. The combination of convolutional autoencoder
and generative adversarial networks can perform faster and more accurate recon-
struction [7]. In [12], a pyramid convolutional Recurrent Neural Network (RNN)
was designed to iteratively refine reconstructed image in three different feature
scales.

Despite the success of deep learning-based MR image reconstruction methods
for single contrast/modality imaging, multi-contrast reconstruction still remains
a challenge. In multiple-contrast MR imaging it is beneficial to utilize fully sam-
pled images acquired at one contrast for the reconstruction of undersampled MR
images in another contrast [4]. For instance, information pertaining to under-
sampled T1w images and undersampled T2w images can be mutually beneficial
when reconstructing both images. A joint reconstruction network of T1, T2 and
PD images was proposed in [9] and was shown to outperform single-contrast
models. Furthermore, undersampled T2w image scan be reconstructed more ac-
curately using the information from fully sampled high-resolution T1w images
[2]. To this end, Y-net was proposed in [2] by modifying U-net which takes two
inputs and produces a single output. Features extracted from two independent
encoders are concatenated together to generate the final output reconstruction.
However, these methods are only evaluated on structural MR images and can
be affected by slice mismatch between different scans. To deal with this issue,
additional registration process between the images might be required.

Current 2D APTw imaging protocol starts with a high-resolution 3D T2w
scan that is used to locate the slice of interest (usually contains lesion region) by
examination. After setting the interested slice, to reduce the effect of B0 field in-
homogeneity on APT imaging, high-order localized slab shimming is performed
around the lesion. The final APTw image is defined as the difference of ±3.5
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Fig. 1. An overview of the proposed framework.

ppm image normalized by unsaturated image. While one can accelerate APTw
imaging by reducing the raw k-space measurement data and apply reconstruc-
tion using off-the-shelf algorithms, no existing methods take 3D T2w scan into
reconstruction process as the idea of multi-contrast MR reconstruction suggests.

In this paper, in order to leverage the structural information of T2w images,
we present a Recurrent Feature Sharing Reconstruction network (RFS-Rec) that
has two convolutional RNNs (CRNN). These two CRNNs are connected by the
proposed recurrent feature sharing approach to encourage bi-directional flow of
information. In addition, we propose a sparse representation-based slice match-
ing algorithm to find the corresponding slice in T2w volume given the under-
sampled APT k-space data. As a result, input T2w and APT raw images are
aligned and mutual information can be maximized.

2 Methodology

In this section, we first give a brief introduction of APTw imaging. Then we
describe our recurrent feature sharing reconstruction network and sparse rep-
resentation (SR) based slice matching algorithm. As shown in Fig.1, the slice
matching step in the proposed framework takes T2w images and undersampled
k-space as input and selects out a reference T2w slice. The APT raw images
are reconstructed by RFS-Rec using both reference T2w slice and undersampled
APT k-space data.

2.1 APTw Imaging

CEST effects are usually analyzed using Z-spectrum, in which the intensity of
the water signal during saturation at a frequency offset from water, Ssat(∆ω),
normalized by the signal without saturation S0, is displayed as a function of
irradiation frequency using the water frequency as a zero-frequency reference.
The sum of all saturation effects at a certain offset is called the magnetization
transfer ratio (MTR), defined as follows

MTR(∆ω) = 1− Z(∆ω) = 1− Ssat(∆ω)

S0
, (1)
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where Z = Ssat/S0 is the signal intensity in the Z-spectrum. As a type of CEST,
APTw imaging is designed to detect the exchangeable amide protons in the
backbone of mobile proteins and are assessed using magnetization transfer ratio
asymmetry at 3.5ppm, namely MTRasymm(3.5ppm) as APTw signal

APTw = MTRasymm(3.5ppm)

= MTR(+3.5ppm)−MTR(−3.5ppm)

=
Ssat(−3.5ppm)− Ssat(+3.5ppm)

S0
.

(2)

Hence, the quality of APTw image solely depends on the above three images
at different frequency offsets. An example of APTw quantification is shown in
the right part of Fig. 1. For visualization purpose, skull-stripping procedure is
usually performed on APTw image. In the rest of paper, we refer Ssat(±3.5ppm)
and S0 as APT raw images and MTRasymm(3.5ppm) as an APTw image.

2.2 Recurrent Feature Sharing Reconstruction

The data acquisition process of accelerated MRI can be formulated as follows
y = FDx+ ε , (3)

where x ∈ CM is the fully sampled image, y ∈ CN is the observed k-space, and ε
is the noise. Both x and y are image data represented in vector forms. FD is the
undersampling Fourier encoding matrix which is defined as the multiplication
of the Fourier transform matrix F and the binary undersampling matrix D.
We define the acceleration factor R as the ratio of the amount of k-space data
required for a fully sampled image to the amount collected in an accelerated
acquisition. The goal of MRI image reconstruction is to estimate image x from
the observed k-space y. MRI reconstruction problem is an ill-posed problem due
to the information loss in the forward process as N �M .

We solve the MRI image reconstruction problem in an iterative manner using
CRNN as the base reconstruction network in RFS-Rec. A single contrast CRNN
can be divided into four parts: 1) encoder fenc, 2) decoder fdec, 3) hidden state
transition fres consisting of two residual convolution blocks (ResBlock), and 4)
data consistency (DC) layer. fenc and fdec are constructed using strided and
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transposed convolutions. Input images to CRNN are zero-filled undersampled
complex APT raw images x(0) = FH

D y with real and imaginary values as two
channels. The output of the (t + 1)th iteration of a single CRNNapt model can
be described as follows:

x(t+1) = DC(f(x(t), h(t), y,D)),

= F−1[Dy + (1−D)Ffdec(fres(h
(t)) + fenc(x

(t)))],
(4)

where h(t) = fres(h
(t−1)) + fenc(x

(t−1)) is the hidden state from the previous
iteration and h(0) = 0.

As discussed above, by using the information from other contrast, one can
more accurately reconstruct an image of another contrast. This approach is
known as multi-contrast MRI reconstruction [1]. Information or feature shar-
ing has been shown to be the key for multi-contrast MR image reconstruction
[2][9].

Note that CRNNs have been proposed for MRI reconstruction [6] and it has
been demonstrated that they can outperform cascaded models and U-net [8].
However, feature sharing in CRNN has not been studied in the literature for
MRI reconstruction. In this paper, we present a novel recurrent feature sharing
method that exchanges intermediate hidden state features of two CRNNs (see
Fig.2(a)). This allows us to use CRNNs for multi-contrast MR image reconstruc-
tion in a more efficient way.

The proposed RFS-Rec consists of two CRNNs, CRNNapt and CRNNt2w.
CRNNt2w for T2w images are constructed similar to CRNNapt which is defined
in Eq.4 but without the DC layer. CRNNt2w takes the reference slice x∗s which
is assumed to be aligned with underlying full sampled x.

To enable two-way information flow between APT features ha and structural
T2w features hs, we add bi-directional skip connection links (Fig.2(a)) in each
iteration, which is inspired by the one-time feature concatenation in Y-net [2].
Thus, the overall dynamics of our proposed RFS-Rec is given as follows

h(t)a = fres(h
(t−1)
a ⊕ h(t−1)

s ) + fenc(x
(t−1)), and

h(t)s = fres(h
(t−1)
s ⊕ h(t−1)

a ) + fenc(x
(t−1)
s ),

(5)

where ⊕ stands for channel-wise concatenation. We refer to this hidden state
exchange design as recurrent feature sharing.

In terms of the loss function, we use a combination of the Normalised Mean
Square Error (NMSE) loss and the Structural Similarity Index (SSIM) loss as
our training loss. The overall loss function we use to train the network is defined
as follows

L(x̂, x) = LNMSE + βLSSIM,

=
‖x̂− x‖22
‖x‖22

+ β
(2µx̂µx + c1) (2σx̂x + c2)

(µ2
x̂ + µ2

x + c1) (σ2
x̂ + σ2

x + c2)
,

(6)

where µx̂ and µx are the average pixel intensities in x̂ and x, respectively, σ2
x̂ and

σ2
x are their variances, σx̂x is the covariance between x̂ and x, and c1 = (k1L)2,
c2 = (k2L)2. In this paper, we choose a window size of 7× 7, and set k1 = 0.01,
k2 = 0.03, and define L as the maximum magnitude value of the target image
x, i.e. L = max(|x|). We use β = 0.5 to balance the two loss functions.
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2.3 Sparse Representation-based Slice Matching

As mentioned earlier, a 3D T2w scan is normally acquired prior to 2D APTw
imaging. In order to fully leverage the T2w scan, it is important to identify the
matching slices between T2w and the undersampled APT raw image. We propose
a simple yet effective sparse representation-based slice matching algorithm that
can find the closest slice in T2w scan in terms of location given undersampled
APT raw images.

Sparse representation-based approach, first described in [13], exploits the dis-
criminative nature of sparsity. The average undersampled APT raw image can
be represented by a set of T2w images as a linear combination of all elements.
This representation is naturally sparse and can be recovered efficiently via `1-
minimization, seeking the sparsest representation of the APT raw image. Let
Xs = [x̃1s, x̃

2
s, . . . , x̃

n
s ] be the matrix that contains all n undersampled struc-

tural T2w slices, x̃s = FH
D FDxs and x̃a =

∑3
i=1 F

H
D yi/3 be the average of the

undersampled APT raw images. The sparsest vector wa that represents x̃a in
Xs and gives small reconstruction error ‖x̃a −Xswa‖2 can be found by solving
the following l1-minimization problem

wa = argmin
w
‖w‖1 s.t. ‖x̃a −Xsw‖2 ≤ σ. (7)

After solving the optimization problem, the matching T2w slice x∗s is determined
by the slice index i = argmax |wi

a| (i.e. the slice with the largest absolute weight).
From an example of SR slice matching (σ = 0.1) shown in Fig.2(b), x4s which
has the largest absolute weight w4

a = 0.266 is the one matched to the APT raw
image x̃a and will be used as the reference T2w image in the reconstruction
phase.

3 Experiments

Datasets We evaluate the proposed image reconstruction framework on two
datasets.
Rat TBI Data: 300 MRI scans are performed on 65 open-skull rats with con-
trolled cortical impact model of TBI at different time point after TBI. Each
MRI scan includes high-resolution T2w imaging with a fast spin echo sequence
in coronal plane (number of slices= 7; matrix= 256×256; field of view (FOV) =
32×32 mm2; slice thickness = 1.5 mm) and 2D APT (frequency labeling offsets
of ±3.5 ppm; matrix= 64×64; FOV = 32×32 mm2; single slice; slice thickness =
1.5 mm). An unsaturated image S0 in the absence of radio-frequency saturation
was also acquired for APT imaging signal intensity normalization.
Human Brain Tumor Data: 144 3D T2w and APTw MRI volumes were col-
lected from 90 patients with pathologically proven primary malignant glioma.
Imaging parameters for APTw can be summarized as follows: FOV = 212×212×66
mm3; resolution = 0.82×0.82×4.4 mm3; size in voxel = 256×256×15. T2w se-
quences were acquired with the following imaging parameters: FOV = 212×212×
165 mm3; resolution, 0.41×0.41×1.1 mm3 ; size in voxel, 512×512×150. Co-
registration between APTw and T2w sequences[16], and MRI standardization[5]
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Table 1. Quantitative results of APT raw image reconstruction under the acceleration
factors R = 4 and R = 8. T2w indicates whether T2w image is used during reconstruc-
tion. SM denotes the use of the proposed SR slice matching instead of always using
the center T2w slice. Note that, for Human brain dataset, the slice matching does not
apply because T2w and APT volume are already well co-registered.

R=4 R=8

Dataset Method T2w SM NMSE PSNR SSIM NMSE PSNR SSIM

Rat

U-net[8] 0.144 34.29 0.920 0.242 31.96 0.878
Y-net[2] X 0.111 35.35 0.932 0.218 32.29 0.889
CRNNapt 0.087 36.41 0.939 0.217 32.31 0.889
CRNN X 0.085 36.43 0.940 0.219 32.28 0.893
CRNN X X 0.084 36.56 0.941 0.212 32.37 0.893
RFS-Rec X X 0.076 36.94 0.950 0.187 33.11 0.906

Human

U-net[8] N/A 0.022 37.19 0.910 0.045 33.76 0.872
Y-net[2] X N/A 0.014 39.27 0.938 0.037 34.65 0.889
CRNNapt N/A 0.014 39.64 0.943 0.041 34.30 0.887
CRNN X N/A 0.012 40.35 0.950 0.038 34.84 0.896
RFS-Rec X N/A 0.010 40.99 0.956 0.034 35.27 0.903

Fig. 3. S0 reconstructions at R = 4 and the corresponding error maps.

were performed. After preprocessing, the final volume size of each sequence is
256×256×15. Data collection and processing are approved by the Institutional
Review Board.
Training Details: We simulated undersampled k-space measurements of APT
raw images using the Cartesian sampling method with a fixed 0.08% center
frequency sampled and random sampling in other frequencies uniformly. Train-
ing and testing subsets are randomly selected with 80/20% split. We conducted
model training under the acceleration factors R=4 and 8. All models are im-
plemented in Pytorch and trained on NVIDIA GPUs. Hyperparameters are set
as follows: learning rate of 10−3 with decreasing rate of 0.9 for every 5 epochs,
60 maximum epochs, batch size of 6. Adam optimizer is used in training all the
networks. For CRNN and RFS-Rec, the number of iterations T is set equal to 7.

We compare our proposed RFS-Rec against U-net [8], Y-net [2], single con-
trast CRNN apt, CRNN with concatenation of center T2w slice and undersam-
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Fig. 4. Results of APTw images derived from the reconstructed APT raw images using
Eq.2. Skull-stripping is performed for better visualization. Reference T2w slice x∗

s used
for reconstruction are also shown.

pled APT raw images as input and CRNN using the proposed SR slice match-
ing to select the reference slice. Regarding the U-net implementation, a DC
layer was added at the end of the network. The quantitative metrics, including
NMSE, PSNR and SSIM, are computed between fully sampled APT raw im-
ages (Ssat(±3.5ppm) and S0) and their reconstructions. Detailed quantitative
experimental results are shown in Tab.1. It can be seen from the table that the
proposed RFS-Rec approach outperforms all the other compared methods on
both datasets. Furthermore, the individual contribution of the modules in the
proposed method (SR-based slice matching and RFS), are demonstrated by an
ablation study (i.e. CRNN with/without SM and RFS-Rec). One interesting ob-
servation from Tab. 1 is that the difference between CRNNapt and Y-net, when
R = 8, on the human dataset is inverse of what we observe on the rat dataset.
This may be caused by the good registration of T2w and APT in the human
dataset. The issue of shape inconsistency of the APT raw image and T2w image
in the rat dataset can also be observed by comparing CRNNapt and CRNN with
T2w.

Results of reconstructed S0 and APTw images compared to the ground truth
in Fig.3 and Fig.4 show consistent findings as quantitative results suggest. Our
method yields not only better Ssat(±3.5ppm) and S0 reconstruction but also
more accurate APTw images.

4 Conclusion

We proposed an APTw image reconstruction network RFS-Rec for accelerat-
ing APTw imaging, which can more accurately reconstruct APT raw images by
using the information of fully sampled T2w images. We achieved this goal by in-
corporating a novel recurrent feature sharing mechanism into two CRNNs which
enable two-way information flow between APT and T2w features. In addition,
to maximize the effectiveness of RFS-Rec, we use a sparse representation-based
slice matching algorithm to locate reference T2w slice. Extensive experiments
on two real datasets consisting of brain data from rats and humans showed the
significance of the proposed work.



Improving APTw MRI Reconstruction using T2w Images 9

Acknowledgment. This work was supported in part by grant UG3NS106937
from the National Institutes of Health.

References

1. Bilgic, B., Goyal, V.K., Adalsteinsson, E.: Multi-contrast reconstruction with
bayesian compressed sensing. Magnetic resonance in medicine 66(6), 1601–1615
(2011)

2. Do, W.J., Seo, S., Han, Y., Ye, J.C., Hong Choi, S., Park, S.H.: Reconstruction of
multi-contrast mr images through deep learning. Medical Physics (2019)

3. Heo, H.Y., Zhang, Y., Lee, D.H., Jiang, S., Zhao, X., Zhou, J.: Accelerating chem-
ical exchange saturation transfer (cest) mri by combining compressed sensing and
sensitivity encoding techniques. Magnetic resonance in medicine 77(2), 779–786
(2017)

4. Huang, J., Chen, C., Axel, L.: Fast multi-contrast mri reconstruction. Magnetic
resonance imaging 32(10), 1344–1352 (2014)
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