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Abstract. Acoustic bone shadow information in ultrasound (US) is im-
portant during imaging bones in US-guided orthopedic procedures. In
this work, an end to end deep learning-based method is proposed to
segment the bone shadow region from US data. In particular, we decom-
pose the bone shadow segmentation task into two subtasks, coarse bone
shadow enhancement (BSE) and horizontal bone interval mask (HBIM)
estimation. Outputs from two subtasks are processed by a masking oper-
ation to generate the final bone shadow segmentation. To better leverage
the mutual information in different tasks, our model features a shared
encoder as deep feature extractor for both subtasks and two multi-scale
pyramid pooling decoders. Additionally, we propose a conditional shape
discriminator to regularize the shape of the output segmentation map.
The proposed method is validated on 814 in vivo US scans obtained from
knee, femur, distal radius and tibia bones. Validation against expert an-
notation achieved statistically significant improvements in segmentation
of bone shadow regions compared to the state-of-the-art method.

1 Introduction

In order to provide a safe alternative to intra-operative fluoroscopy, ultrasound
(US)has been investigated as an alternative intra-operative imaging modality in
various orthopedic procedures [4]. US provides real-time, safe, and 2D/3D imag-
ing. However, low signal-to-noise (SNR) ratio, limited field of view, and various
imaging artifacts have hindered the wide spread use of US in computer assisted
orthopedic surgery (CAOS) applications. Furthermore, regions corresponding to
bone boundaries appear several millimeters (mm) in thickness due to the width
of the US beam further complicating the interpretation of the collected US data.
In order to alleviate some of these difficulties, various groups have proposed bone
segmentation or enhancement methods [4].

In the context of bone imaging, using US, bone boundaries have the highest
intensity in the image followed by a region with low intensity values denoted
as the shadow region. Shadow region is the result of a high acoustic impedance
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Fig. 1. (a) B-mode US image of in vivo femur. Thick yellow arrows point to the bone
shadow region. Red arrows point to the bone surface response. Green arrows point
to soft tissue interface resembling bone response. (b) Bone shadow enhanced image
obtained using [3]. (c) Gold standard bone shadow obtained by expert manual segmen-
tation. In both (a) and (c) regions corresponding to soft tissue are displayed with black
color coding, regions corresponding to bone shadow are displayed with gray/white color
coding.

mismatch between the soft tissue and the bone boundary resulting in most of the
US signal being reflected back to the transducer surface. In order to improve the
accuracy and robustness of bone segmentation, several groups have incorporated
bone shadow information into their framework [4]. Bone shadow information can
also be used in order to guide the orthopedic surgeon to a standardized diagnos-
tic viewing plane with minimal artifacts. Most recently, bone shadow informa-
tion was also incoporated into deep learning-based bone segmentation methods
[9, 10]. In [10], the authors have proposed a simultaneous bone enhancement,
classification and segmentation framework based on deep learning. The bone
enhancement stage [10] uses bone shadow image features extracted using the
method proposed in [3]. The bone shadow enhancement method, proposed in
[3], is based on the construction of a signal transmission map from the local
phase bone image features. Although the method improves general appearance
of the bone shadow region, it produces suboptimal bone shadow enhancement
results and can not run in real-time. (Fig.1)

In this work, our goal is to improve the bone shadow segmentation by propos-
ing a deep learning-based method which yields better performance over other
methods. The motivation and contribution of the proposed method are as fol-
lows:

– Because of US imaging principle and anatomy of bone structures, bone shad-
ows share some common shape profiles. In Fig.1 (c), the gold standard bone
shadow will ideally have sharp horizontal cut-off for non-bone area and cer-
tain bone surfaces on top. Thus we propose an adversarial network to im-
plicitly impose the shape regularization.

– Expert manual annotations of medical images are expensive and time con-
suming. We leverage the bone shadow image features extracted using the
method proposed in [3] and use it as surrogate ground truth to not only
provide additional supervision on intermediate results, but also enable the
semi-supervised learning for US bone shadow segmentation.

– By using only left and right boundary of bone, one can create a horizontal
bone interval mask and apply it on bone shadow enhanced image, Fig.1 (b),
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Fig. 2. An overview of the proposed multi-task learning-based method for bone shadow
segmentation from US images.

to output bone shadow segmentation results that are close to ground truth.
we propose a subnetwork that estimate the bone regions horizontally by only
learning from manually annotated bone landmarks which has lower annota-
tion cost than full segmentation. This could lead to larger scale dataset for
training.

2 Proposed Method

In the proposed method, two subnetworks are first trained separately to pro-
duce a coarse bone shadow enhancement (BSE) and horizontal bone interval
mask (HBIM). After obtaining both coarse BSE and HBIM, a masking opera-
tion is used to generate the final bone shadow. As a result, we provide a joint
trainable end-to-end deep learning model for robust bone shadow segmentation.
The proposed CNN model consists of one shared encoder and two independent
multi-scale decoders for coarse BSE and HBIM estimation. To further regularize
the shape of the output bone shadow, we introduce a conditional shape discrim-
inator which can guide the training of bone shadow segmentation network by
adding the adversarial loss on the shape information. Fig.2 provides an overview
of our framework.

2.1 Conditional Shape Discriminator

Unlike other semantic segmentation tasks, bone shadow segmentation is differ-
ent in many ways. One major difference of the output segmentation map is the
general shape. The type of bones (knee, fibia , femur, etc), view planes (longitu-
dinal and transverse), and most importantly the orientation of the US transducer
with respect to the imaged bone anatomy would affect the bone shadow shape
individually.
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To ensure specific shape on the estimated bone shadows by a CNN, a condi-
tional shape discriminatorD is added in the training stage and designed following
a conditional Generative Adversarial Network (cGAN) framework [6]. It takes
both the input image and its corresponding bone shadow segmentation (segmen-
tation from proposed network or ground truth) to identify if the segmentation is
ground truth on the basis of binary images. From the perspective of segmentation
network, it regularizes N output Ŷ using the binary cross entropy loss:

LAD = − 1

N

N∑
i=1

[log(1−D(Xi, Ŷi)) + log(D(Xi, Yi))], (1)

where Xi is input image and Yi is the corresponding ground truth. Because,
for binary segmentation task, the output segmentation is binary which varies in
different shapes, this adversarial loss can effectively enforce the output segmen-
tation map to follow a reasonable shape even with different types of bones and
view planes.

2.2 Coarse Bone Shadow Enhancement

One of the main challenges in deep learning-based medical image analysis is the
generalization ability of the trained model due to the lack of large amounts of
manually annotated data. However, recent studies have shown that, by training
the model through semi supervised learning on automatic annotated or weakly
labelled data, the model gains better generalization ability and improves the
overall performance even for different imaging modalities [2].

In this work, we propose to use Bone Shadow Enhancement (BSE) method,
proposed in [3], to filter the US image and generate a coarse estimation of the
bone shadow regions. BSE image signal at position (x, y) is computed by mod-
eling the interaction of the US signal within the tissue as scattering and atten-
uation information using:

BSE(x, y) = [(CMLP (x, y)− ρ)/[max(USA(x, y), ε)]δ] + ρ, (2)

where CMLP (x, y) is the confidence map image obtained by modeling the prop-
agation of US signal inside the tissue taking into account bone features present
in local phase bone image LP (x, y) [3]. USA(x, y) maximizes the visibility of
high intensity bone features inside a local region and satisfies the constraint
that the mean intensity of the local region is less than the echogenicity of the
tissue confining the bone [3]. Tissue attenuation coefficient is represented by δ.
ρ is a constant related to tissue echogenicity confining the bone surface, and ε is
a small constant used to avoid the division by zero [3].

2.3 Horizontal Bone Interval Mask

As shown in Fig.1 (b) and (c), the previously defined BSE image can be regarded
as a coarse estimation of bone shadow regions. While the sharp boundary of the
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bone surface is usually well preserved, it can also have high confidence shadows
leaking into non-bone regions horizontally. To solve this shadow leakage problem,
image processing technique that can remove shadows corresponding to non-bone
structure while keeping the bone shadow needs to be applied on the BSE image.
From the observation that the shadow leakage usually happens below the bone
surface and expands horizontally, a Horizontal Bone Interval Mask (HBIM) is
proposed to mask out the non-bone shadows. Given a US image X(m,n) of size
N ×M , its corresponding BSE image BSE(m,n) and the manually segmented
bone shadow Y (m,n), HBIM is defined as follows:

HBIM(n) =

{
1, if ∃ m, Y (m,n) > 0

0, otherwise.
(3)

HBIM can be seen as a vector in which 1 indicates the presence of bone surface
along corresponding vertical line in US image. Thus we can derive the final fine
bone shadow segmentation Ŷ using HBIM as follows,

Ŷ (m,n) = BSE(m,n) ·HBIM(n). (4)

As a result, one is able to calculate a high quality bone shadow segmentation
using only the input US image and the horizontal location information of the
bone in the US image. Moreover, as will be shown later, this leads to a much
more robust and predictable bone shadow segmentation than a simple end-to-end
training scheme.

2.4 Network Structure

The proposed framework features three tasks: 1) Coarse BSE estimation, 2)
HBIM estimation, and 3) final bone shadow segmentation. Noticeably, with three
different tasks, our proposed framework is a multi-task learning (MTL) model.

We view the first two tasks as intermediate tasks that are highly correlated
with the final task. In the proposed method, we use a ResNet50 [5] pretrained
on ImageNet [1] as the shared encoder to take the advantage of very deep neural
network. The first convolutional layer is modified to take a single channel input.
While the ResNet50 encoder is shared across all tasks for deep feature extraction,
each of the intermediate tasks has its own decoder. As noted in U-Net [8], the key
part of precise pixel-wise prediction for biomedical image segmentation task is to
make good use of the multi-scale features. In our network, we adopt the decoder
that was first proposed in [11]. For HBIM estimation, the desired output is a one-
dimensional row vector. In order to achieve that, we changed the pyramid pooling
to (1, 1), (1, 2), (1, 3), (1, 6) and add another average pooling layer between the
input deep feature and concatenation to align the feature size.

Finally, we complete the final bone shadow segmentation by using the esti-
mated HBIM and BSE of previous two tasks following Eq.4. Given the proposed
MTL model for these three tasks, it turns out helpful to extract comprehen-
sive image features by sharing a shared encoder and then branching out for
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task-specific losses for each task. To further maximize the synergy across all the
tasks, we propose a combined loss function containing four task-specific losses:
L = LBSE + LHBIM + LB + λLAD, where LHBIM and LB are binary cross
entropy loss of estimated HBIM and bone shadow, and LBSE is the L1 loss of
estimated BSE. LAD represents the adversarial loss (loss from the discriminator
D) as defined in Eq.1 with weight λ. As for the structure of the discriminator
D, we follow the structure that was proposed in [7].

3 Dataset and Training

After obtaining the institutional review board (IRB) approval, a total of 814 dif-
ferent US images, from 20 healthy volunteers, were collected using SonixTouch
US machine (Analogic Corporation, Peabody, MA, USA). The scanned anatom-
ical bone surfaces include knee, femur, radius, and tibia. All bone shadows of the
collected data were manually annotated by an expert ultrasonographer in the
preprocessing stage. The BSE images were obtained using the filter parameters
defined in [3] and the HBIMs were obtained using Eq.3 with bone shadow anno-
tations. The datasets were randomly separated on the subject level into training
and testing sets by an 60%/40% split (573/241 in images level). Any subject
with data included in the training set were excluded from the testing set. Dur-
ing preprocessing, the images were resampled into 0.15mm isotropic resolution,
and resized to 256× 256.

The coarse BSE and HBIM estimation tasks are trained first with a batch
size of 32 for 100 epochs in which only LBSE and LHBIM are used to train the
network. The base network is optimized by the Adam optimizer with a learning
rate of 10−4. A joint training using all four losses is applied afterwards with
a batch size of 32 for 50 epochs with λ = 0.1. During testing, the image can
be forwarded though the network for all tasks by one shot. The experiments
are performed on a Linux workstation equipped with an Intel 3.50 GHz CPU
and a 12GB NVidia Titan Xp GPU using the PyTorch framework. The average
running time of our model for single testing image is around 0.03 seconds which
makes real-time application possible.

4 Experimental Results

4.1 Bone Shadow Segmentation

We compare the performance of our method with that of the following four meth-
ods: Unet [8], PSPnet [11], PSPGAN and PSPnet-MTL. PSPGAN denotes the
method that combines the proposed conditional shape discriminator in Sec.2.1
and PSPnet. PSPnet-MTL is the multi-task version of PSPnet without condi-
tional shape discriminator. The comparison between PSPGAN, PSPnet-MTL
and PSPGAN-MTL is for the purpose of ablation study. For all the compared
methods, parameters are set as suggested in their corresponding papers and
trained using the same training dataset as used to train our network.
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Table 1. Bone shadow segmentation and bone surface localization comparison of meth-
ods on various metrics. The proposed PSPGAN-MTL achieves statistically significant
improvements using two-tailed t test with p values < 0.05.

Bone shadow segmentation Bone surface localization

Dice mIoU(%) pAcc.(%) AED Recall Precision F-score
U-net[8] 0.890±0.068 80.97 87.86 2.11±1.05 0.625 0.616 0.620

PSPnet[11] 0.911±0.062 85.69 92.76 1.36±1.41 0.730 0.825 0.775
PSPGAN 0.927±0.056 86.98 92.83 1.49±1.69 0.727 0.826 0.774

PSPnet-MTL 0.956±0.052 92.08 96.47 0.25±0.19 0.894 0.748 0.918
PSPGAN-MTL 0.962±0.046 92.97 96.63 0.19±0.13 0.907 0.775 0.934
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0.847

0.898

0.897

0.938

0.904

0.941

0.983

0.980

Fig. 3. Bone shadow segmentation results for in vivo tibia, distal radius, knee and
femur. Dice coefficients computed against the ground truth are shown on top of the
each result.

The Dice coefficient, mean Intersection over Union (mIoU) and pixel-wise
accuracy (Acc.) are used to measure the segmentation performance of differ-
ent methods. Average results of all test scans are shown in Table 1. As can be
seen from this table, in all three metrics, our method provides the best per-
formance compared to the other methods. Going directly from PSPGAN to
PSPGAN-MTL provides implicit data augmentation and bone shadow prior for
the tasks with limited data, thus results in a much more robust and accurate
bone shadow segmentation. By adding proposed conditional shape discriminator,
both PSPGAN and PSPGAN-MTL can outperform their counterparts, PSPnet,
PSPnet-MTL. These experiments clearly show the significance of each compo-
nent of proposed method, integrating coarse BSE estimation and HBIM for bone
shadow segmentation and conditional shape discriminator.
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Fig. 4. From left to right: In vivo US scan of spine, estimated BSE, estimated HBIM,
PSPGAN-MTL, PSPGAN.

Apart from the quantitative comparison of Dice, mean IoU and pixel accu-
racy, we also compared our method PSPGAN-MTL with others qualitatively by
visual inspection. The segmentation results corresponding to different methods
and the intermediate outputs of PSPGAN-MTL are shown in Fig.3. The more
shape alike PSPGAN result shows the effect of the proposed conditional shape
discriminator comparing to PSPnet.

For the final experiment of bone shadow segmentation, we compare two meth-
ods: PSPGAN-MTL and PSPGAN, in term of their ability to correctly segment
spine (multiple bones) which is not present in the dataset. From the results
shown in Fig.4, it is clear that with the help of the proposed multi-task bone
shadow segmentation, PSPGAN-MTL suffers no mis-segmentation and provides
a more complete segmentation compared with PSPGAN.

4.2 Bone Surface Localization

One main application of bone shadow segmentation is bone surface localiza-
tion from bone shadow in which accurate and robust localization is important
for the improved guidance in US-based CAOS procedures. In this experiment,
we applied raycasting method to perform bone surface localization from bone
shadows.

The Average Euclidean Distance (AED) results (mean+std) in Table 1 show
that the proposed PSPGAN-MTL outperforms the other methods on test scans
by a large margin. Note that the bone surface localization experiment was carried
out using previous bone shadow segmentation results for all methods. Therefore,
the networks are not trained specificly on the bone surface localization task. A
further paired t-test between PSPGAN-MTL and PSPGAN at a 5% signifi-
cance level with p-value of 0.0009 clearly indicates that the improvements of our
method are statistically significant.

5 Conclusion

In this paper, we proposed an end-to-end deep learning framework that enabled
robust and accurate bone shadow segmentation for bone ultrasound examination.
The main novelty lies in (1) the introduction of conditional shape discriminator
to shape specific image segmentation problem, (2) the design of two subtasks,
coarse bone shadow enhancement and horizontal bone interval mask to improve
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the performance of each task and (3) the integration of the highly-related homo-
geneous tasks into a single unified bone shadow segmentation network. Formu-
lating the network with a single powerful encoder based on Resnet50 and two
pyramid pooling decoders, the proposed network brings strong synergy across
all tasks when extracting shared deep features. Future work will include more
extensive validation and extension to 3D data for processing volumetric US scans.
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