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Abstract
Purpose Automatic bone surfaces segmentation is one of the fundamental tasks of ultrasound (US)-guided computer-assisted
orthopedic surgery procedures. However, due to various US imaging artifacts, manual operation of the transducer during
acquisition, and different machine settings, many existing methods cannot deal with the large variations of the bone surface
responses, in the collected data, without manual parameter selection. Even for fully automatic methods, such as deep learning-
based methods, the problem of dataset bias causes networks to perform poorly on the US data that are different from the
training set.
Methods In this work, an intensity-invariant convolutional neural network (CNN) architecture is proposed for robust seg-
mentation of bone surfaces from US data obtained from two different US machines with varying acquisition settings. The
proposed CNN takes US image as input and simultaneously generates two intermediate output images, denoted as local phase
tensor (LPT) and global context tensor (GCT), from two branches which are invariant to intensity variations. LPT andGCT are
fused to generate the final segmentation map. In the training process, the LPT network branch is supervised by precalculated
ground truth without manual annotation.
Results The proposed method is evaluated on 1227 in vivo US scans collected using two US machines, including a portable
handheld ultrasound scanner, by scanning various bone surfaces from 28 volunteers. Validation of proposed method on
both US machines not only shows statistically significant improvements in cross-machine segmentation of bone surfaces
compared to state-of-the-art methods but also achieves a computation time of 30 milliseconds per image, 98.5% improvement
over state-of-the-art.
Conclusion The encouraging results obtained in this initial study suggest that the proposed method is promising enough
for further evaluation. Future work will include extensive validation of the method on new US data collected from various
machines using different acquisition settings. We will also evaluate the potential of using the segmented bone surfaces as an
input to a point set-based registration method.
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Introduction

In order to provide a radiation-free, real-time, cost-effective
imaging alternative for intra-operative fluoroscopy ultra-
sound (US) has been incorporated into various computer-
assisted orthopedic surgery (CAOS) procedures such as per-
cutaneous scaphoid fixation and pelvic ring facture surgery
[1]. US-based guidance systems for non-surgical procedures
such as epidural anesthesia and/or spinal blocks have also
been developed [2,3].

Nonetheless, problems such as high levels of noise, imag-
ing artifacts, limited field of view, and bone boundaries
appearing several millimeters (mm) in thickness have hin-
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dered the wide spread adaptability of US-guided CAOS
systems. These difficulties prohibited the use of US as a
stand-alone intra-operative imaging modality, and focus was
given on developing automated bone segmentation, enhance-
ment [4–7] and intra-operative US-based image registration
[8] methods. Our groups main focus is the development of an
US-based CAOS systemwhere automatically extracted bone
surfaces are used for continuous real-time guidance. There-
fore, complete, accurate, and robust segmentation of bone
surfaces is of paramount importance.

Early work for segmenting bone surfaces from US uti-
lized image intensity and gradient information [1]. However,
thesemethods are not robust for processing low contrast bone
surfaces and are affected by acquisition settings, image arti-
facts, and body mass index (BMI) of the patient. To address
this challenge, local phase-based bone surface enhancement
methods have been proposed [1]. Local phase information
is extracted by filtering the B-mode US data in frequency
domain using bandpass quadrature filters. Most common fil-
ters include Log-Gabor filter, monogenic filter, and local
phase tensor filter [1]. The enhanced bone surfaces were
localized using post-processing methods such as dynamic
programming [1] or simple bottom up ray-casting. Although
phase-based approaches are more robust to image artifacts
and low-contrast bone surfaces, successful segmentation
depends on the robustness of the post-processing method
used. Furthermore, local phase-based methods require the
optimization of band-pass quadrature filter parameters which
requires large processing time making the methods not suit-
able for real-time processing [4,9].

Due to some recent advances in deep learning, deep
learning-based methods have shown to provide much bet-
ter bone segmentation given enough training data. In [10],
a modified version of U-net was used for localizing verte-
bra bone surfaces. However, low-quality bone surfaces were
excluded from the validation and testing procedure. Recently,
various filtered feature-guidedmethods [5–7]were proposed.
These methods propose to incorporate filtered features, such
as local phase tensor image or enhanced bone shadow image,
into the convolutional neural network (CNN) by either using
early feature fusion or late fusion operations. Particularly,
the multi-feature-guided CNN in [5] takes US image, local
phase tensor image, bone shadow enhanced image, and local
phase image as concatenated input. And it demonstrated
the state-of-the-art performance when testing on different
US machines. However, it was shown that average compu-
tational time for additional input local phase and shadow
enhancement was 2 seconds, making real-time application
impossible. In summary, despite the fact that methods based
on deep learning produce robust and accurate results, the
success rate is dependent on either: (1) consistent and high-
quality US scans used for training and testing [10] or (2)
additional computation time required for image filtering [5].

High-quality US data refer to US images where bone
surfaces appear sharp with high intensity followed by inten-
sity dropout representing the bone shadow interface. During
the data collection, quality of the US images and machine
plays an important role in acquiring high-quality US data.
Most of the clinically available US machines are equipped
with high-quality transducers. However, this is not valid with
the point-of-care portable low-cost transducers. Furthermore,
manual operation of the transducer introduces additional
difficulties during data collection since a single-degree devi-
ation angle by the operator can reduce the signal strength by
50% [1].Most of previously proposed deep learningmethods
are trained on high-quality US data from single US machine.
If the acquisition involves low bone surface contrast and
image quality, the ability of complete and accurate segmen-
tation always decreases dramatically.

In this paper, in order to address the problem of seg-
menting bone data more robustly, we propose a novel local
phase tensor [11]-guided CNN architecture for bone surface
segmentation from US data of various qualities. In order to
improve the computation time of multi-feature-guided CNN
[5], our proposed framework accommodates a local phase
tensor (LPT) network that is trained to capture contrast and
noise-invariant local phase information. To further improve
the robustness and suppress non-bone responses of LPT net-
work, a global context tensor (GCT) network that focuses on
learning global context is proposed. The two subnetworks
share a common encoder, and their outputs are fused to gen-
erate the final segmentation map. To take the full advantages
of bothLPTandGCT,wepropose and evaluate three different
fusion methods including addition, multiplication, and con-
catenation. The fundamental difference of leveraging LPT
image between multi-feature-guided CNN [5] and proposed
method is that our proposed method sees LPT image as a
supervision signal during training instead of a input feature
to the network. This allows the further optimization of LPT
image toward better bone segmentation. Thus, the proposed
method can provide robust, accurate, and real-time segmen-
tation for bone US data.

Method

Terminology: In the following sections, we use LPT in italic
font to represent the ground truth local phase tensor image,
LP̂T for approximated LPT and LPT in non-italic font for
general concept including both LPT and .

In our proposed robust real-time bone segmentation net-
work architecture (Fig. 1), we first construct an encoder with
a series of CNN blocks using convolution (Conv), batch nor-
malization (BN) [12], and rectified linear unit (ReLU) [13]
to capture mainly low-level features from the input US scan.
Then, the network splits into two branches to generate the
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Fig. 1 Overview of the proposed method. 3×3 zero-padded convolutions are used for all convolution layer. The network, including LPT and GCT,
is trained jointly in an end-to-end fashion with LossLPT and LossSeg

estimated local phase tensor images, denoted as LP̂T(x, y),
and global context tensor images, denoted asGCT(x, y), sep-
arately.Different from the original LPT in [11,14], LP̂T(x, y)
is the approximation of LPT using CNN. The LPT network
output provides a local phase image response of contrast
information that is independent of not only the US trans-
ducer but even the quality of the scans. Hence, the LPT
network can be seen as a general boundary indicator. On
the other hand, GCT network provides bone-related global
context information. Considering the expected feature level
of each branch, the LPT and GCT subnetworks feature dif-
ferent network architectures to extract low- and mid-level
features, respectively. Finally, the two outputs are combined
together using different fusion methods (addition, multipli-
cation, and concatenation) to generate the final segmentation
map. To ensure the capability of LPT subnetwork outputs
intensity-invariant local phase features, we employ LossLPT
that takes precalculated local phase tensor images, denoted
as LPT(x, y), using its definition as the ground truth which
we explain in the next section.

Local phase tensor

In the proposed work, local phase information is obtained
using a gradient energy tensor filter. This information is used
to construct local phase tensor image, denoted as LPT(x, y),
which highlights the contrast change and weak edges includ-
ing bone surfaces in US scans. Because LPT is derived
in a non-data-driven way, the calculation of LPT(x, y) is
independent of imaging deviceswhich provides a perfect fea-

ture for cross-machine bone segmentation. In the proposed
framework, the LPT network is designed to learn a mapping
function between the input image and its LPT(x, y) image
calculated by three Conv–BN–ReLU blocks (Fig. 1). This
enables weakly-supervised training of the LPT subnetwork
without manual annotations.

Given aB-modeUS image, denoted asUS(x, y), LPT(x, y)
is obtained from odd (Todd) and even (Teven) filter responses
using [11]:

Teven = [H(USDB(x, y))] [H(USDB(x, y))]T ,

Todd = −0.5 × ([∇USDB(x, y)]
[
∇∇2USDB(x, y)

]T

+
[
∇∇2USDB(x, y)

]
[∇USDB(x, y)]T ), (1)

where Teven and Todd represent the symmetric and asymmet-
ric features of US(x, y), respectively.H,∇, and∇2 represent
the Hessian, Gradient, and Laplacian operations, respec-
tively. In order to improve the enhancement of bone surfaces
located deeper in the image and mask out soft tissue inter-
faces close to the transducer, US(x, y) image is masked with
a distance map and band-pass filtered image using the Log-
Gabor filter [11,14]. The resulting image, from this operation,
is represented as USDB(x, y). The final LPT(x, y) image is
obtained using the instantaneous phase φ:

φ = ang
(
seven

√
Trace(Teven) + i · sodd

√
Trace(Todd)

)

(2)

LPT(x, y) =
√
T 2
even + T 2

odd × cos(φ), (3)
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where seven = − sign(oT [HUSDB(x, y)]o), seven = − sign
(oT [∇USDB(x, y)]) and o is the orientation vector obtained
from gradient energy tensor (GET) filter [11,14].

In order to regularize the network to approximate Eq. 3,
we employ the following loss function between the estimated
LP̂T(x, y) and the ground truth LPT(x, y):

LossLPT = 1

WH

W∑
x=1

H∑
y=1

|LPT(x, y) − LP̂T(x, y)|, (4)

where it is assumed that LPT and LP̂T are of size W × H .

Global context tensor

As mentioned above, the LPT network can be seen as a gen-
eral boundary indicator. Although it can effectively enhance
the bone surfaces in theUS image, non-bone boundaries such
as soft tissues will also be highlighted (Fig. 3). To overcome
the drawbacks of the LPT network, we propose a global
context tensor (GCT) subnetwork for extracting the miss-
ing bone-related global context information in LPT. Unlike
locally computed LPT, the GCT network requires a larger
receptive field to extract high-level features. Thus, we use
the widely used contractive-expansive design with skip con-
nections similar to U-net [15].

Given the output features from the shared encoder, it is fed
through a 4-stage maxpooling and upsampling U-net with
half the feature maps compared to the original U-net. The
output ofGCTnetwork is a 2D image, denoted asGCT(x, y),
of same size as LP̂T(x, y).

Although there is nodirect supervisiononGCT(noground
truth), GCT is indirectly supervised by the final segmentation
loss which is discussed in following section and the goal is to
refine the coarse segmentation of LP̂T(x, y) through a fusion
layer.

LPT and GCT fusion

Despite that the shared encoder and LPT network are
guided by back propagating LossLPT, GCT must be prop-
erly regularized by incorporating it into the end-to-end bone
segmentation framework. Therefore, some kind of fusion for
LPT and GCT should be applied to generate the final pre-
dicted bone segmentation map Ŷ . The following three fusion
methods (addition,multiplication, and concatenation) to gen-
erate Ŷ are proposed for our framework:

Ŷ = Sigmoid(LP̂T + GCT) (5)

Ŷ = Sigmoid(LP̂T · GCT) (6)

Ŷ = Sigmoid(w1 · LP̂T + w2 · GCT + b). (7)

Note that for concatenation in Eq. 7, it is implemented by
concatenation along channel dimension followed by a linear
layer with learnable weight (w1, w2) and bias b that are opti-
mized during the training process as part of the network. For
all fusionmethods, we define the segmentation loss using the
binary cross-entropy loss:

LossSeg = − 1

WH

W∑
x=1

H∑
y=1

Y (x, y) · log Ŷ (x, y)

+ (1 − Y (x, y)) · (1 − log Ŷ (x, y)), (8)

where Y is ground truth segmentation mask.

Dataset and experiments

With the institutional review board (IRB) approval, 25
healthy volunteers were included in the study. We have col-
lected a total of 1042 different US images using SonixTouch
US machine (Analogic Corporation, Peabody, MA, USA)
using 2D C5-2/60 curvilinear and L14-5 linear transducer.
In order to collect new test data not used for training, we
have recruited 3 new subjects and collected a total of 185
US scans using a handheld wireless US system (Clarius C3,
ClariusMobile Health Corporation, BC, Canada). Image res-
olution varied between 0.1mmand 0.15mmdepending on the
depth setting. Because of differences in transducer design
and images reconstruction pipeline, the US scans from Clar-
ius C3 have lower image quality in terms of bone imaging.
The following bones were scanned: knee, femur, radius, and
spine. Bone surfaces from the collected data were manually
segmented by an expert ultrasonographer in order to generate
the gold standard surfaces.

A random split of US images based on subjects from
SonixTouch in training (80%) and testing (20%) sets was
applied. The training set consists of a total of 834 images
obtained from SonixTouch only. The remaining 208 images
from SonixTouch and all 185 images from Clarius C3 were
used for testing. During the random split of the SonixTouch
dataset, the training and testing data did not include the same
patient scans. All images including ground truth LPT are
normalized to [−1, 1] before feeding to the networks. For
training, the overall loss is defined as:

LossSeg = LossSeg + λ · LossLPT, (9)

where λ is balancing weight of two losses. We searched for
the optimal λ by varying it from 0 to 1 using 10% of training
set as validation set. We observed that the segmentation per-
formance will be severely impacted when λ is either less than
0.01 or larger than 0.25. But when λ is inside that range, the
result stays relatively stable. Therefore, we empirically set
it to 0.1 for all experiments. ADAM stochastic optimization
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[16] with batch size of 16 and a learning rate of 0.001 is used
for learning the weights.

For validation and comparison, two reference meth-
ods were selected: original U-net [15] and state-of-the-art
for bone segmentation [5] (MFGCNN). For the proposed
method, we included four configurations with three different
fusionmethod and one ablation study inwhich LossLPT is not
added. All these methods were implemented and evaluated
by segmenting collected data. By thresholding the estimated
segmentation map, we used the center pixels along each
scanline as a single bone surface. The quality of the localiza-
tion was evaluated by computing average Euclidean distance
(AED) between the two surfaces along each scanline.We also
evaluated the bone segmentation methods in terms of recall,
precision, and their harmonic mean, the F-score. True posi-
tive is considered with 1-mm tolerance. Bone surface point
outside 1-mm tolerance is excluded from AED error.

Results

Quantitative results

TheAED results in Table 1 show that all variations of the pro-
posed method achieve comparable bone surface localization
performance against the stat-of-the-art method, MFGCNN
for both datasets. GCT-only represents the network without
LPT branch and has a sigmoid activation layer added to the
end. Note that training set only contains images from US
machine (SonixTouch), while testing is performed on both
including the low-quality images from handheld wireless US
scanner (Clarius C3). It is worth mentioning that although
AED results do not show significant difference across dif-
ferent methods, 0.3-mm (2 pixels) error for segmented bone
surfaces can be very well accepted for US-based segmenta-
tion.

The average recall and precision rates as well as F-scores
in Table 1 clearly demonstrate the robustness of our proposed
method for both datasets. By adding LossLPT, the F-score on
Clarius C3 is boosted from 0.817 to 0.882 compared to 0.841
for MFGCNN (paired t test p < 0.05). Similar significant
improvements are also observed for precision and recall rates
(paired t test p < 0.05). Although both MFGCNN and the
proposed method utilize LPT features, MFGCNN does not
have direct supervision on leveraging/extracting information
of LPT features. LPT features are used as supervision signals
to generate potentially better intermediate features for bone
segmentation. This is done by optimizing the estimated LP̂T
over final segmentation loss LossSeg.

It is also shown that fusion by addition outperformsmulti-
plication and concatenation in terms of recall, precision, and
F score. The possible reason for concatenation fusionmethod
is that it can easily let the estimated GCT dominate the final

segmentation without leveraging the information in LPT. For
example, in concatenation fusion equation Eq. 7, the network
can solely depend on GCT by simply putting w1 to near zero
without increasing the training loss. This conjecture is sup-
ported by the observation that optimized w1 = 0.0031 and
w2 = 7.5725 after training. As for multiplication fusion,
it requires GCT subnetwork to precisely localized the false
predicted pixels in LP̂T in order to correct it by flipping the
sign since LP̂T is in the range of [−1, 1], while for addition
fusion, false predictions in LP̂T can be possibly corrected by
uncertain prediction from GCT.

The box plot for recall rates of U-net, MFGCNN, and the
proposed method with addition as fusion in Fig. 2 further
demonstrates the superior cross-machine bone surface seg-
mentation ability of providing more complete result. Note
that from the AED and recall rate results on SonixTouch and
Clarious C3 data in Table 1 and Fig. 2, one can observe that
all methods suffer performance drops when tested on Clari-
ous C3 data. This is the result of low bone surface contrast
of Clarious C3.

Qualitative results

Qualitative results in Fig. 3 show that our method achieves
improved and complete segmentation results, while U-net
and MFGCNN suffer from missing bone segments which
is crucial for US-based intra-operative guidance using fea-
tures extracted from US data. Average computational time
for our method is 30 ms compared to 2 seconds for the
complete MFGCNN framework. This is an improvement of
98.5%overMFGCNN[5]. The comparison in terms of image
quality between two US machines can be made by compar-
ing first and last rows in Fig. 3 that both are femur bone
US scans. The US image (last row) from Clarius C3 shows
lower bone surface contrast compared to SonixTouch. How-
ever, both estimated LP̂T images can enhance bone surfaces
very well despite of intensity/gradient difference in two US
images.

Although LPT is used as supervision signal to regulate the
estimated LP̂T, we observed that the estimated LPT in our
proposed network can produce a better coarse bone segmen-
tation inside bone regions. We demonstrated this in Fig. 4 by
showing both LPT and ground truth bone segmentation. It is
clear to see that estimated LP̂T has more clear and complete
bone enhanced signal around bone surfaces.

Conclusion

In order to make US an essential imaging modality in
orthopedics clinically acceptable accuracy and robustness
of guidance system need to be ensured. Therefore, com-
plete, accurate, and robust bone segmentation is of paramount
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Table 1 AED (mm), standard deviation of AED, recall, precision, and F-scores for the proposed and state-of-the-art methods

Method U-net [15] MFGCNN [5] GCT-only Proposed

CAT � �
ADD � �
MUL � �
LPT � � �

SonixTouch AED 0.371 0.332 0.358 0.340 0.334 0.359 0.332 0.347 0.325

Std 0.172 0.164 0.169 0.158 0.152 0.173 0.148 0.167 0.158

Recall 0.878 0.939 0.917 0.934 0.935 0.932 0.941 0.940 0.948

Precison 0.809 0.809 0.808 0.81 0.805 0.812 0.806 0.811 0.815

F-score 0.842 0.869 0.859 0.869 0.865 0.868 0.868 0.870 0.877

Clarious C3 AED 0.500 0.401 0.453 0.416 0.429 0.438 0.422 0.427 0.410

Std 0.351 0.201 0.310 0.217 0.228 0.243 0.237 0.235 0.215

Recall 0.698 0.787 0.712 0.750 0.765 0.727 0.817 0.803 0.847

Precison 0.880 0.902 0.894 0.897 0.882 0.906 0.898 0.911 0.920

F-score 0.779 0.841 0.793 0.817 0.819 0.807 0.856 0.854 0.882

All methods are trained only on SonixTouch data. CAT, ADD, and MUL denote three fusion methods: concatenation, addition, and multiplication.
LPT is the option of adding LossLPT. Best number across all methods is in bold font

Fig. 2 Recall rates reflect the
completeness of segmentation
results which is the main
drawback of existing bone
segmentation methods when
testing on data from different
US machine
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importance for US-based orthopedic surgical and non-
surgical procedures where automatically extracted bone
surfaces are used for continuous real-time guidance.

Weproposed an end-to-end local phase-guided framework
that enables robust and accurate bone surfaces segmentation
for US-based computer-assisted orthopedic procedures. The
main novelty of our work lies in (1) the integration of learn-
ing local phase tensor (LPT) and global context tensor (GCT)
into a single network, (2) the design of fusion method of
LPT and GCT to improve cross-machine segmentation per-
formance of various bone imaging quality, and (3) the first
systematic design of a fully automatic real-time framework
for robust multi-machine LPT-guided bone surface segmen-

tation from US images. It is critical for an automatic US
segmentation algorithm to maintain robust performance on
variousUSmachineswithout anymodification. Furthermore,
this is the first study proposing a CNN-based local phase
image generation network which we believe is an important
contribution in the field of US-based orthopedic procedures.

Through validation, we demonstrate the state-of-the-art
sensor adaption capability of our proposed method by sep-
arating training and testing data into two US machines.
our proposed method achieves an AED of 0.32mm and
0.41mm, respectively,with a processing timeof 30ms (98.5%
improvement over state-of-the-art in processing speed [5]).
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Ground Truth Proposed-ADD-LPT MFGCNN U-net

Fig. 3 Bone segmentation results. Top four and bottom two rows
show in vivo B-mode US scans from SonixTouch and Clarius C3 US
machines, respectively. Manual expert augmentations are shown in the

first column. Note that U-net completely fails to segment bone surface
in bottom sample imaged using Clarius C3
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Fig. 4 Comparison of ground truth LPT and estimated LP̂T. Ground truth bone segmentation is shown at the top row for reference

One limitation of our study is that the uncertainty present
in the gold standard labels (manual expert segmentation),
resulting from intra- and inter-user variability, was not inves-
tigated. These errors can have direct impact on the accuracy
of the developed deep neural networks. Another limitation
is that only two US machines were used to collect the data.
In order to fully investigate the true generalization of our
method, more US machines should be used for data collec-
tion. We also would like to mention that one of the ongoing
limitations in US bone segmentation research is that there are
still no publicly available large data sets on which different
algorithms could be trained and evaluated on. One solution to
this could be joint effort in order to construct a publicly avail-
able database. Such an effort was most recently proposed in
[17]. Our future work will include the extensive evaluation of
our proposed method on this publicly available dataset. We
will also investigate the incorporation of the extracted bone
surfaces into a registration method.
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