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ABSTRACT

In this paper, we present a deep sparse representation based fusion
method for classifying multimodal signals. Our proposed model
consists of multimodal encoders and decoders with a shared fully-
connected layer. The multimodal encoders learn separate latent
space features for each modality. The latent space features are
trained to be discriminative and suitable for sparse representation.
The shared fully-connected layer serves as a common sparse coeffi-
cient matrix that can simultaneously reconstruct all the latent space
features from different modalities. We employ discriminator heads
to make the latent features discriminative. The reconstructed latent
space features are then fed to the multimodal decoders to reconstruct
the multimodal signals. We introduce a new classification rule by
using the sparse coefficient matrix along with the predictions of the
discriminator heads. Experimental results on various multimodal
datasets show the effectiveness of our method.

Index Terms— Sparse representation, multimodal sparse repre-
sentation, multimodal sparse representation classification, deep mul-
timodal sparse representation classification

1. INTRODUCTION

Sparse representation is an established technique in signal and image
processing with various applications [1, 2, 3, 4]. Among the many
applications, Sparse Representation Classification (SRC) methods
exploit the discriminative nature of sparse codes and provide ro-
bust classification models less sensitive to non-constant variability,
outliers, and small data sets [1, 5, 6, 7]. The SRC method uses a
sparsity-promoting optimization problem to represent an unlabeled
test sample as a sparse linear combination of labeled training sam-
ples. This representation is then used in assigning a label to the test
sample based on the minimum reconstruction error rule [1]. Vari-
ous SRC-based methods have been proposed in the literature. These
methods include linear models in various applications [5, 6], ker-
nel trick-based nonlinear models [8, 9, 10], and a recent deep neu-
ral network-based SRC method [11] (DSRC) that finds an explicit
nonlinear mapping for data, while simultaneously obtaining sparse
codes that can be used for classification.

Many real-world phenomena involve multiple modalities. Learn-
ing from multimodal sources offers the opportunity to gain an
in-depth understanding of the phenomena by integrating the com-
plementary information provided in different modalities [12, 13].
In multimodal learning, the model receives the data from multiple
modalities and learns to fuse them. The information from different
modalities can be fused at feature level (i.e., early fusion), decision
level (i.e., late fusion), or intermediately [12, 13, 14].

In this paper, we propose a multimodal deep SRC-based method.
We enforce the different modalities to interact through the sparse co-
efficients of their latent space features. Our deep networks learn the

latent space features of different modalities through an autoencoder
framework. Our framework encourages different modalities to learn
latent features that are discriminative, suitable for sparse coding, and
lie in mutual subspaces. The latent space features for the test samples
are reconstructed by a linear combination of training samples with a
sparse coefficient matrix that is shared among all the modalities.

Sharing the coefficient matrix among all the modalities pushes
the test sample to interact with the training samples of all the modal-
ities simultaneously. Therefore a more reliable coefficient matrix,
which is calculated by the complementary information from differ-
ent modalities, is constructed. Since the labels for the training sam-
ples are available, we use extra supervision based on labels to de-
velop discriminative latent features. This extra supervision is em-
ployed by discriminator heads that are connected to latent space fea-
tures of different modalities and are trained by a classification loss.
At the test time, we combine the prediction of discriminator heads
with the minimum reconstruction error rule, and introduce a new
classification rule to assign labels to the test samples.

2. RELATED WORK

Sparse Representation-based Classification: In the SRC task, we
are given a set of labeled training samples, and the goal is to classify
an unseen set of testing samples. Suppose that we collect all the
vectorized training samples in the matrix Xtrain ∈ Rd0×n, where
d0 is the dimensional size of each sample, and n is the number of
training samples.

SRC is based on the assumption that an observed sample xtest ∈
Rd0 can be well approximated by a linear combination of samples in
Xtrain that share the same class label as xtest. Therefore, one can pre-
dict class label of a given unseen data such as xtest by finding the set
of few samples in the training set that can better approximate xtest.
These samples can be picked out by solving the following optimiza-
tion problem.

min
α
‖α‖0 s.t. xtest = Xtrainα. (1)

where ‖α‖0 counts the number of non-zero elements in α. In prac-
tice, the `0 norm is replaced by the `1 norm [15, 16]. Thus, in the
case of noisy obseervations, the SRC solves the following sparsity-
promoting problem

min
α
‖xtest −Xtrainα‖2F + λ0‖α‖1 (2)

where λ0 is a positive regularization parameter.
The solution, α, is used in the minimum reconstruction rule to

estimate the class label of xtest as follows

class(xtest) = arg min
k
‖xtest −XtrainΓk(α)‖2F (3)
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Fig. 1. An overview of the proposed deep multimodal sparse representation-based classification network in a two-modality task. Features
of different modalities are fed to their corresponding encoder, where a discriminative criterion is enforced to develop discriminative latent
features that are especially suitable for jointly sparse representation. The latent features of different modalities are reconstructed by optimal
joint sparse codes and are fed to decoders to reconstruct the raw modality features. The optimal joint sparse codes, along with the predictions
of discriminator heads are exploited to predict the class labels of test samples.

where Γk(·) is the matrix indicator function defined by setting all
the rows but those corresponding to the ith class equal to zero.

Linear Multimodal Sparse Representation-based Classification:
A number of multimodal extensions for the linear SRC problem
have been proposed in the literature [5, 17, 18, 19, 20, 21]. Among
those, the methods proposed in [5, 19, 21] are the closest to our
model. They impose joint sparsities within and across different
modalities. This way, the correlations and coupling the information
among modalities are simultaneously taken into account.

Assume the given multimodal data is observed inM modalities,
each with n training samples. For each modality m = 1, 2, · · · ,M ,
let’s denote Xm

train ∈ Rdm×n as the dictionary of training samples
in m-th modality where dm is the feature dimension of data in m-th
modality. Similarly, the representation of a multimodal test sample
in the m-th modality can be represented as xm

test ∈ Rdm .
The SRC model can be applied to the individual modalities. In

other words, xm
test can be reconstructed by a linear combination of a

few atoms in the dictionary Xm
train. Thus, we have

xm
test = Xm

trainα
m + Nm, (4)

where αm ∈ Rn is a sparse coefficient vector, and Nm ∈ Rdm×n

is the noise matrix. The joint sparsity model argues that αm

has the same sparsity pattern across the different modalities for
m = 1, 2, · · · ,M . In other words, the matrix A = [α1, · · · ,αM ]
formed by concatenating the coefficient vectors of an observation
across different modalities has the same non-zero rows in its dif-
ferent columns. The matrix A can be found by the following
`1/`q-regularized least square problem

A = arg min
A

1

2

M∑
m=1

‖xm
test −Xm

trainα
m‖2F + λ0‖A‖1,q. (5)

where q > 1. Here, ‖A‖1,q is a norm defined as ‖A‖1,q =∑n
k=1 ‖γ

j‖q , where γj’s are the rows in A.
Once A is found, similar to problem (3), one can predict the

class label of the test observation by solving the following problem

min
k
‖xm

test −Xm
trainΓk(αm)‖2F (6)

3. DEEP MULTIMODAL SPARSE
REPRESENTATION-BASED CLASSIFICATION

NETWORKS

Joint sparse representation-based classification methods [5, 19, 21]
are able to extend the SRC model to a model that incorporates mul-
tiple modalities while keeping the benefits of sparse representation

such as being less sensitive to outliers, and small data sets. How-
ever, they still rely on the assumption that the data points across
different modalities show linear similarities within samples of the
same class. This provides a strong motivation to incorporate deep
neural networks to capture complex underlying structures of data
across different modalities. We bridge multimodal SRC models and
deep neural networks by proposing a transductive multimodal clas-
sification model based on deep sparse representation. A transductive
model is a model in which both training and test sets are observed,
and the learning process pursues reasoning from the specific training
samples to a specific set of test cases [22].

We use stacked multimodal autoencoders to exploit the nonlin-
ear relations between the data points. In particular, we have a set of
encoder and decoder per each available modality. The encoders and
decoders are trained together to find latent space features that are dis-
criminative, lie into a union of linear subspaces, and are constructed
with the integrated information from all the available modalities.

To meet these properties, the autoencoder in each modality is
trained according to both the training labels and the underlying
structures of data in other modalities. The autoencoders of differ-
ent modalities interact with each other by invoking the same linear
relation between data points of different modalities in the training
process. The same linear relation is imposed by sharing the same
sparse codes in a sparsity-promoting reconstruction loss. As will be
described in detail, the sparse codes can be modeled with a fully-
connected layer in the deep neural networks framework. Figure 1
shows an overview of our framework.

Thus, the training objective of our model can be divided into
reconstruction criteria and discriminative criterion.

Reconstruction Criteria: Reconstruction criteria itself consists of
the reconstruction criterion in sparse coding and the reconstruction
constraint for autoencoders.

Let {Xm
train}Mm=1 and {Xm

test}Mm=1 be the given set of training
and test samples across the different modalities. We concatenate
the training and test samples of each modality and construct the
input matrices. The input matrix of m-th modality is denoted by
Xm ∈ Rdm×n, and is constructed by the concatenation of Xm

train ∈
Rdm×ntrain and Xm

test ∈ Rdm×ntest , which are respectively the avail-
able training and testing samples in the m-th modality.

We feed Xm to its corresponding encoder and develop the em-
bedding features Zm. The matrix Zm consists of two types of em-
bedding features. Those that are associated with the training samples
and those that are corresponded to the testing samples. We respec-
tively indicate to them with Zm

train and Zm
test.

The SRC problem can be employed in the embedding feature



space of each individual modality. However, if we couple infor-
mation among different modalities, richer representations can be
learned. We propose to tie the embedding features of different
modalities by enforcing them to share the same sparse code solu-
tions in the SRC problem across the embedding space of all the
different modalities. This way, the complementary information
across different modalities are integrated without imposing an extra
burden on the networks for explicitly learning to represent a joint
representation.

Thus, we propose to find common sparse codes by solving the
following optimization problem

Ac = arg min
Ac

1

2

M∑
m=1

‖Zm
test − Zm

trainAc‖2F + λ0‖Ac‖1, (7)

where Ac is the common sparse coding matrix. This matrix can
be modeled by parameters of a set of M fully-connected lay-
ers with shared parameters. Note that the reconstruction term
‖Zm

test−Zm
trainAc‖2F in them-th modality is equivalent to the penalty

term of a fully-connected layer with the input Zm
train, the output Zm

test
and the parameters Ac. We use this in the implementation of our
model and refer to the fully-connected layer as joint sparse coding
layer.

The joint sparse coding layer is located between encoder and de-
coder of different modalities. This layer performs an identical task
across all the modalities. It passes the training features to the cor-
responding decoder, and uses the parameters Ac to reconstruct the
testing features, and passes the reconstructions to the decoders.

Assuming that Ẑm
train and Ẑm

test are respectively outputs of the
common sparse coding layer for the training set and testing set in
the m-th modality, we have

Ẑm
train = IntrainZ

m
train, Ẑm

test = Zm
trainAc, (8)

where Intrain ∈ Rntrain×ntrain is the identity matrix. Therefore, if for
the mth decoder the input is Ẑm = [Ẑm

train, Ẑ
m
test], from (8) we can

calculate Ẑm as Ẑm = ZmΘsc, where

Θsc =

[
Intrain Ac

0ntrain×ntest 0test

]
, (9)

where 0ntrain×ntest ∈ Rntrain×ntest and 0test ∈ Rm×m are zero matrices.
Combining the criteria in sparse coding and training of the

encoder-decoders, one can write the reconstruction objective as

Lrec =

M∑
m=1

‖Zm−ZmΘsc‖2F +λ0‖Θsc‖1+

M∑
m=1

λ1‖Xm−X̂m‖2F

(10)
Discriminative Criterion: We aim to train encoders by which the
embeddings of different classes are best discriminated against. This
property can be enforced on the encoders by incorporating labels
for the training set. We plug discriminator heads to the output of
encoders and train them to discriminate embedding features of dif-
ferent classes. Let Y represent the labels of the training samples; we
define the discriminative criterion as follows

Lcls =

M∑
m=1

CE (Dm(Zm
train),Y) (11)

where Dm denotes the discriminator head that is dedicated to clas-
sifying the embedding features of m-th modality and CE(·, ·) is the

cross-entropy loss. We let the error of these discriminators be back-
propagated to the encoders so that the encoders learn to produce sep-
arable embedding features.

Lcls =

M∑
m=1

‖Zm−ZmΘsc‖2F +λ0‖Θsc‖1+

M∑
m=1

λ1‖Xm−X̂m‖2F

(12)
The discriminative criterion aims to train encoders that produce

separable embedding features.

Full Objective: Combining the reconstruction and the discrimina-
tive criteria, our full objective function for training our networks is
as follows:

L = Lrec + βLcls, (13)
where β > 0 is a regularization parameter. Note that with our
formulation, it is possible to train the networks in an end-to-end
manner, and yet find the optimal sparse codes and encoder-decoder
parameters, simultaneously.

Classification Rule: Once the networks are trained and the common
sparse coding matrix Ac is found, we can use them for associating
class labels to the test samples. Each test sample comes with m
modalities as {xm

test}Mm=1. They have the corresponding embedding
features as {zm

test}Mm=1, and the corresponding sparse code column as
α in the common sparse code matrix Ac. We can estimate the label
of the sample by

class({xm
test}Mm=1) = arg min

k

M∑
m=1

‖zm
test − Zm

trainΓk(α)‖2F (14)

with Γk(·) similar to the equation (3).
In addition to the solution of (14), in our model, the discrimina-

tor heads in our framework can provide extra class label predictions
for the test samples. Thus, we determine the final label estimates by
ensembling the predictions of discriminator heads and the solution
of (14). This is done by averaging the normalized scores.

4. EXPERIMENTAL RESULTS

We evaluate our method on three multimodal datasets for digit clas-
sification, face recognition, and food categorization. We evaluate our
method against state-of-the-art unimodal SRC methods, multimodal
SRC methods, and the commonplace fusion methods. In particular,
we compare against SRC [1] and DSRC [11] as unimodal baselines.
For multimodal SRCs, we compare against Joint Sparse represen-
tation (J-SRC) [5] as well as the classical SRC performed on the
concatenation of individual modalities denoted as SRC-C. Finally,
in the last category of our baselines, we compare against the late
feature fusion (feature-fusion), and score-fusion methods. Feature-
fusion and score-fusion are of the most effective approaches in deep
multimodal learning [12, 13].

We use the following datasets in our experiments:
Digits: We combine SVHN [23], USPS [24] and MNIST [25] dig-
its datasets to assemble a multiview digit dataset. Here, we view
images from the individual datasets as different views of the same
digit. Since the number of parameters in the sparse coding layer of
our model scales quadratically with the size of the data, we randomly
select 200 samples per digit to keep the networks to a tractable size.
In total, we have 2000 multiview digits.
Faces: We view different Sessions of the UMD mobile faces dataset
(UMDAA-01) [26] as different modalities. We randomly select 50
facial images per subject from each Session.
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[…] Combine almonds, walnut, sugar and cinnamon together. To make 
sugar syrup, combine 1 cup sugar and 1 cup water by adding cinnamon 
and lemon. Let it boil and simmer for 10 minutes.Keep it aside. Brush a 
12 x 10 inch baking tray with butter.  Lay the phyllo sheets and spread 
the melted butter on first sheet and then almond mixture.[…]

[…] Mix the yeast, water, and sugar in a mixer bowl fitted with a dough 
hook. Let stand until foamy, about 5 minutes. Add the salt, lemon zest, 
nutmeg, egg, milk, and 1 1/2 cups flour; mix on medium speed until 
combined. Add the butter; mix until incorporated. Add 1 3/4 cups flour, 
and mix until the dough comes together. Turn the dough onto a lightly 
floured surface. Knead in the remaining  […]

Image Text

(c) UMPC-Food101(b) UMD-AA01(a)

Fig. 2. Samples from different modalities of datasets used in our experiments. (a) Digits from MNIST, SVHN and USPS. (b) Face images
from different Sessions of UMDAA-01. (c) Food images and their recipe from UMPC-food101.

SRC-C J-SRC score-fusion feature-fusion DMSRC (ours) Unimodal SRC Unimodal DSRC
M1 M2 M3 M1 M2 M3

Digits 91.87 92.34 18.25 18.13 96.25 11.98 88.13 92.25 62.75 94.25 95.37
Faces 83.45 84.76 14.37 15.17 94.13 78.32 77.21 75.83 91.21 90.56 89.12
Foods∗ 63.42 65.12 90.62 87.31 92.75 55.18 49.81 n/a 91.16 76.66 n/a

∗ All the methods for food-101 dataset use deep features extracted from DenseNet and BERT (for images and texts, respectively).

Table 1. Classification accuracy of different methods. M1 is SVHN in digits, Session1 in Faces and Images in Foods. M2 is USPS in digits,
Session2 in Faces and texts in Foods. M3 is MNIST in digits, Session3 in Faces.

UMPC Food-101 [27]: The dataset contains images of 101 differ-
ent foods along with recipes found from the web for these datasets.
We keep the first 10 classes and randomly select 200 samples per
class in our experiments. For text normalization, we remove dou-
ble spaces, lower case all characters, and remove any character other
than the English alphabets.

Figure 2 (a), (b), and (c) show samples from the digits, UMDAA-
01 and UMPC Food-101 datasets, respectively. We use 60% of the
samples in each dataset as the training set, and the remaining 20%
as the testing set.

Training details: We implemented our method with Tensorflow-
1.4. We use the adaptive momentum-based gradient descent method
(ADAM) [28] to minimize our loss functions, and apply a learning
rate of 10−3. Before we start training on our objective function,
in each experiment, we pre-train our encoder and decoder on the
dataset without the sparse coding layer. We set the regularization
parameters as λ0 = 1, λ1 = 8 and β = 1000 in all the experiments.

4.1. Digits and Faces

For Digits and Faces datasets, we adopt the same architecture as
described in [11]. That is using stacked autoencoders of four convo-
lutional layers for the encoder and three deconvolution layers for the
decoder per each modality. The first two rows in Table 1 compare
the performance of our method against unimodal and multimodal
classifiers on digits and faces datasets. In the first row of Table 1,
M1, M2, and M3 refer to SVHN, MNIST, and USPS datasets, re-
spectively. In the second row, M1, M2 and M3 respectively refer to
Session 1, Session 2 and Session 3 of UMDAA-01.

We observe multimodal SRC-based methods outperform the
unimodal methods. This clarifies the benefits of integrating multi-
ple modalities. However, score-fusion and feature fusion perform
poorly here since the networks are shallow and are trained from
scratch. Our DMSRC provides the best performance in both the
datasets by using both the benefits of deep multimodal learning and
the robustness of SRC-based methods.

4.2. Deep Networks with State-of-the-art Architectures

In this experiment, we evaluate our method against state-of-the-art
deep neural networks. We adopt DenseNet [29] and BERT [30] net-
works that are of the most efficient deep architectures for processing

images and texts, respectively. We use Wikipedia pre-trained BERT
and pre-train DenseNet on Imagenet.

For both the networks, we add a fully-connected layer with
100 hidden nodes before the final classifier layer to provide a low-
dimensional in-depth feature space in which the experiments of
SRC-based methods are conducted. This layer is fine-tuned by the
training samples of our UMPC-Food101 subset. Score-fusion and
feature-fusion methods also use the same architecture.

For unimodal DSRC and our method, we use two fully-
connected layers with 40 hidden state nodes as encoder and decoder.

In Table 1, we refer to the image modality as M1 and denote the
text modality as M2. The results of Table 1 are interesting to com-
pare with unimodal accuracies of 90.12% for DenseNet in the image
modality, and 72.33% for BERT in the text modality. As Table 1 re-
veals, score-fusion and feature-fusion methods perform quite well,
and on contrast, linear SRC-based method does not show a strong
performance. It shows that although the in-depth features provide
discriminative features, the learned features are not suitable for a
linear sparse representation. DSRC and our MDSRC, on the other
hand, can successfully map the features to a latent space in which
the benefits of SRC-based methods can be exploited. Our MDSRC,
outperforms all the baselines.

5. CONCLUSION

We presented a deep sparse representation-based fusion method for
classifying multimodal signals. We use autoencoders to develop
features that may be different across different modalities but share
the same sparse codes in sparse representation classification prob-
lems that are applied to separate modalities. The training objective
for encoders consists of reconstruction criteria and discriminative
criterion. We proposed a classification rule that uses sparse codes as
well as the prediction of classification heads in different modalities
to determine an accurate estimate for classifying the test samples.
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