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Abstract

Recent CNN-based methods for image deraining have
achieved excellent performance in terms of reconstruction
error as well as visual quality. However, these methods
are limited in the sense that they can be trained only on
fully labeled data. Due to various challenges in obtaining
real world fully-labeled image deraining datasets, existing
methods are trained only on synthetically generated data
and hence, generalize poorly to real-world images. The
use of real-world data in training image deraining networks
is relatively less explored in the literature. We propose a
Gaussian Process-based semi-supervised learning frame-
work which enables the network in learning to derain using
synthetic dataset while generalizing better using unlabeled
real-world images. Through extensive experiments and ab-
lations on several challenging datasets (such as Rain800,
Rain200H and DDN-SIRR), we show that the proposed
method, when trained on limited labeled data, achieves on-
par performance with fully-labeled training. Additionally,
we demonstrate that using unlabeled real-world images in
the proposed GP-based framework results in superior per-
formance as compared to existing methods. Code is avail-
able at: https://github.com/rajeevyasarla/
Syn2Real.

1. Introduction

Images captured under rainy conditions are often of
poor quality. The artifacts introduced by rain streaks ad-
versely affect the performance of subsequent computer vi-
sion algorithms such as object detection and recognition
[12, 28, 41, 4]. With such algorithms becoming vital com-
ponents in several applications such as autonomous naviga-
tion and video surveillance [37, 25, 36], it is increasingly
important to develop sophisticated algorithms for rain re-
moval.

The task of rain removal is plagued with several issues
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Figure 1. Top row: (a) Input rainy image. (b) Output from a
network trained using only the synthetic data. (c) Output from
a network trained using the synthetic data and unlabeled real-
world data. This shows better generalization. Bottom row: Results
from Semi-supervised learning (SSL) experiments. Reducing the
amount of labeled data used for training results in the performance
drop. Using the proposed SSL framework, we are able to recover
the performance.

such as (i) large variations in scale, density and orienta-
tion of the rain streaks, and (ii) lack of real-world labeled
training data. Most of the existing work [58, 9, 23, 51, 60,
6, 52, 20] in image deraining have largely focused towards
addressing the first issue. For example, Fu et al. [9] de-
veloped an end-to-end method which focuses on high fre-
quency detail during training a deraining network. In an-
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Figure 2. Derained results. (a) Input rainy images. (a) SSIR output
[49]. (c) Our output. It can be observed that the proposed method
achieves better deraining.

other work, Zhang and Patel [58] proposed a density-aware
multi-steam densely connected network for joint rain den-
sity estimation and deraining. Li et al. [21] incorporated
context information through recurrent neural networks for
rain removal. More recently, Ren et al. [40] introduced
a progressive ResNet that leverages dependencies of fea-
tures across stages. While these methods have achieved su-
perior performance in obtaining high-quality derained im-
ages, they are inherently limited due to the fact that they are
fully-supervised networks and they can only leverage fully-
labeled training data. However, as mentioned earlier, ob-
taining labeled real-world training data is quite challenging
and hence, existing methods typically train their networks
only on synthetically generated rain datasets [57, 51].

The use of synthetic datasets results in sub-optimal per-
formance on the real-world images, typically because of the
distributional-shift between synthetic and rainy images [4].
Despite this gap in performance, this issue remains rela-
tively unexplored in the literature.

Recently, Wei et al. [49] proposed a semi-supervised
learning framework (SIRR) where they simultaneously
learn from labeled and unlabeled data for the purpose of
image deraining. For training on the labeled data, they
use the traditional mean absolute error loss between predic-
tions and ground-truth (GT). For unlabeled data, they model
the rain residual (difference between the input and output)
through a likelihood term imposed on a Gaussian mixture
model (GMM). Furthermore, they enforce additional con-
sistency that the distribution of synthetic rain is closer to
that of real rain by minimizing the Kullback-Leibler (KL)
divergence between them. This is the first method to formu-
late the task of image deraining in a semi-supervised learn-
ing framework that can leverage unlabeled real-world im-
ages to improve the generalization capabilities. Although
this method achieves promising results, it has the follow-
ing drawbacks: (i) Due to the multi-modal nature of rain

residuals, the authors assume that they can be modeled us-
ing GMM. This is true only if the actual residuals are be-
ing used to compute the GMM parameters. However, the
authors use the predicted rain residuals of real-world (un-
labeled) images over training iterations for modeling the
GMM. The same model is then used to compute the like-
lihood of the predicted residuals (of unlabeled images) in
the subsequent iterations. Hence, if the GMM parameters
learned during the initial set of iterations are not accurate,
which is most likely the case in the early stages of training,
it will lead to sub-optimal performance. (ii) The goal of
using the KL divergence is to bring the synthetic rain distri-
bution closer to the real rain distribution. As stated earlier,
the predictions of real rain residuals will not be accurate
during the earlier stages of training and hence, minimizing
the discrepancy between the two distributions may not be
appropriate. (iii) Using GMM to model the rain residuals
requires one to choose the number of mixture components,
rendering the model to be sensitive to such choices.

Inspired by Wei et al. [49], we address the issue of incor-
porating unlabeled real-world images into the training pro-
cess for better generalization by overcoming the drawbacks
of their method. In contrast to [49], we use a non-parametric
approach to generate supervision for the unlabeled data.
Specifically, we propose a Gaussian-process (GP) based
semi-supervised learning (SSL) framework which involves
iteratively training on the labeled and unlabeled data. The
labeled learning phase involves training on the labeled data
using mean squared error between the predictions and the
ground-truth. Additionally, inputs (from labeled dataset)
are projected onto the latent space, which are then modeled
using GP. During the unlabeled training phase, we generate
pseudo-GT for the unlabeled inputs using the GP modeled
earlier in the labeled training phase. This pseudo GT is then
used to supervise the intermediate latent space for the unla-
beled data. The creation of the pseudo GT is based on the
assumption that unlabeled images, when projected to the la-
tent space, can be expressed as a weighted combination of
the labeled data features where the weights are determined
using a kernel function. These weights indicate the uncer-
tainty of the labeled data points being used to formulate the
unlabeled data point. Hence, minimizing the error between
the unlabeled data projections and the pseudo GT reduces
the variance, hence resulting in the network weights being
adapted automatically to the domain of unlabeled data. Fig.
1 demonstrates the results of leveraging unlabeled data us-
ing the proposed framework. Fig. 2 compares the results of
the proposed method with SIRR [49]. One can clearly see
that our method is able to provide better results as compared
to SIRR [49].

To summarize, this paper makes the following contribu-
tions:
• We propose a non-parametric approach for performing



SSL to incorporate unlabeled real-world data into the
training process.

• The proposed method consists of modeling the interme-
diate latent space in the network using GP, which is then
used to create the pseudo GT for the unlabeled data. The
pseudo GT is further used to supervise the network at the
intermediate level for the unlabeled data.

• Through extensive experiments on different datasets, we
show that the proposed method is able to achieve on-par
performance with limited training data as compared to
network trained with full training data. Additionally, we
also show that using the proposed GP-based SSL frame-
work to incorporate the unlabeled real-world data into
the training process results in better performance as com-
pared to the existing methods.

2. Related work
Image deraining is an extensively researched topic in the

low-level computer vision community. Several approaches
have been developed to address this problem. These ap-
proaches are classified into two main categories: single
image-based techniques [58, 9, 23, 51, 60, 54] and video-
based techniques [59, 11, 44, 27, 17, 26]. A comprehensive
analysis of these methods can be found in [19].

Single image-based techniques typically consume a sin-
gle image as the input and attempt to reconstruct a rain-
free image from it. Early methods for single image de-
raining either employed priors such as sparsity [56, 29] and
low-rank representation [3] or modeled image patches us-
ing techniques such as dictionary learning [2] and GMM
[42]. Recently, deep learning-based techniques have gained
prominence due to their effectiveness in ability to learn effi-
ciently from paired data. Video-based deraining techniques
typically leverage additional information by enforcing con-
straints like temporal consistency among the frames.

In this work, we focus on single image-based deraining
that specifically leverages additional unlabeled real-world
data. Fu et al. [7] proposed a convolutional neural network
(CNN) based approach in which they learns a mapping from
a rainy image to the clean image. Zhang et al. [57] intro-
duced generative adversarial network (GAN) for image de-
raining that resulted in high quality reconstructions. Fu et
al. [9] presented an end-to-end CNN called, deep detail net-
work, which directly reduces the mapping range from input
to output. Zhang and Patel [58] proposed a density-aware
multi-stream densely connected CNN for joint rain density
estimation and deraining. Their network first classifies the
input image based on the rain density, and then employs
an appropriate network based on the predicted rain density
to remove the rain streaks from the input image. Wang et
al. [48] employed a hierarchical approach based on esti-
mating different frequency details of an image to obtain the
derained image. Qian et al. [38] proposed a GAN to remove

rain drops from camera lens. To enable the network focus
on important regions, they injected attention map into the
generative and discriminating network. Li et al. [21] pro-
posed a convolutional and recurrent neural network-based
method for single image deraining that incorporates context
information. Recently, Li et al. [18] and Hu et al. [13] incor-
porated depth information to improve the deraining quality.
Yasarla and Patel [53] employed uncertainty mechanism to
learn location-based confidence for the predicted residuals.
Wang et al. [47] proposed a spatial attention network that
removes rain in a local to global manner.

3. Background

In this section, we provide a formulation of the problem
statement, followed by a brief description of key concepts
in GP.

3.1. Single image de-raining

Existing image deraining methods assume the additive
model where the rainy image (x) is considered to be the
superposition of a clean image (y) and a rain component
(r), i.e.,

x = y + r. (1)
Single image deraining task is typically an inverse problem
where the goal is to estimate the clean image y, given a
rainy image x. This can be achieved by learning a function
that either (i) directly maps from rainy image to clean image
[5, 8, 60, 56], or (ii) extracts the rain component from the
rainy image which can then be subtracted from the rainy
image to obtain the clean image [9, 58, 22]. We follow the
second approach of estimating the rain component from a
rainy image.

3.2. Semi-supervised learning

In semi-supervised learning, we are given a labeled
dataset of input-target pairs ({x, y} ∈ DL) sampled from
an unknown joint distribution p(x, y) and unlabeled input
data points x ∈ DU sampled from p(x). The goal is to
learn a function f(x|θ) parameterized by θ that accurately
predicts the correct target y for unseen samples from p(x).
The parameters θ are learned by leveraging both labeled and
unlabeled datasets. Since the labeled dataset consists of
input-target pairs, supervised loss functions such as mean
absolute error or cross entropy are typically used to train
the networks. The unlabeled datapoints form DU are used
to augment f(x|θ) with information about the structure of
p(x) like shape of the data manifold [35] via different tech-
niques such as enforcing consistent regularization [15], vir-
tual adversarial training [34] or pseudo-labeling [16].

Following [49], we employ the semi-supervised learning
framework to leverage unlabeled real-world data to obtain



better generalization performance. Specifically, we con-
sider the synthetically generated rain dataset consisting of
input-target pairs as the labeled dataset DL and real-world
unlabeled images as the unlabeled datasetDU . In contrast to
[49], we follow the approach of pseudo-labeling to leverage
the unlabeled data.

3.3. Gaussian processes

A Gaussian process (GP) f(v) is an infinite collection
of random variables, of which any finite subset is jointly
Gaussian distributed. A GP is completely specified by its
mean function and covariance function which are defined
as follows

m(v) = E[f(v)], (2)
K (v, v′) = E [(f(v)−m(v)) (f (v′)−m (v′))] , (3)

where v, v′ ∈ V denote the possible inputs that index the
GP. The covariance matrix is constructed from a covariance
function, or kernel, K which expresses some prior notion
of smoothness of the underlying function. GP can then be
denoted as follows

f(v) ∼ GP(m(v),K(v, v′) + σ2
ε I). (4)

where is I identity matrix and σ2
ε is the variance of the addi-

tive noise. Any collection of function values is then jointly
Gaussian as follows
f(V ) = [f (v1) , . . . , f (vn)]

T ∼ N
(
µ,K(V, V ′) + σ2

ε I
)

(5)
with mean vector and covariance matrix defined by the GP
as mentioned earlier. To make predictions at unlabeled
points, one can compute a Gaussian posterior distribution
in closed form by conditioning on the observed data. The
reader is referred to [39] for a detailed review on GP.

4. Proposed method
As shown in Fig. 3, the proposed method consists of a

CNN based on the UNet structure [43], where each block
is constructed using a Res2Block [10]. The details of the
network architecture are provided in the supplementary ma-
terial. In summary, the network is made up of an encoder
(h(x, θenc)) and a decoder (g(z, θdec)). Here, the encoder
and decoder are parameterized by θenc and θdec, respec-
tively. Furthermore, x is the input to the network which
is then mapped by the encoder to a latent vector z. In our
case, x is the rainy image from which we want to remove
the rain streaks. The latent vector is then fed to the decoder
to produce the output r, which in our case is the rain streaks.
The rain streak component is then subtracted form the rainy
image (x) to produce the clean image (y), i.e.,

y = x− r, (6)
where

r = g(h(x, θenc), θdec). (7)
In our problem formulation, the training dataset is D =

DL ∪DU , where DL = {xil, yil}
Nl
i=1 is a labeled training set

consisting of Nl samples and DU = {xiu}
Nu
i=1 is a set con-
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Figure 3. Overview of the proposed GP-based SSL framework. We
leverage unlabeled data during learning. The training process con-
sists of iterating over labeled data and unlabeled data. During the
labeled training phase, we use supervised loss function consisting
of l1 error and perceptual loss between the prediction and targets.
In the unlabeled phase, we jointly model the labeled and unlabeled
latent vectors using GP to obtain the pseudo-GT for the unlabeled
sample at the latent space. We use this pseudo-GT for supervision.

sisting of Nu unlabeled samples. For the rest of the paper,
DL refers to labeled “synthetic” dataset and DU refers to
unlabeled “real-world” dataset, unless otherwise specified.

The goal of the proposed method is to learn the network
parameters by leveraging both labeled (DL) and unlabeled
dataset (DU ). The training process iterates over labeled and
unlabeled datasets. The network parameters are learned by
minimizing (i) the supervised loss function (Lsup) in the la-
beled training phase, and (ii) the unsupervised loss function
(Lunsup) in the unlabeled training phase. For the unlabeled
training phase, we generate pseudo GT using GP formula-
tion, which is then used in the unsupervised loss function.
The two training phases are described in detail in the fol-
lowing sections.

4.1. Labeled training phase

In this phase, we use the labeled dataDL to learn the net-
work parameters. Specifically, we minimize the following
supervised loss function

Lsup = L1 + λpLp, (8)
where λp is a constant, and L1 and Lp are l1-loss and per-
ceptual loss [14, 55] functions, respectively. They are de-



fined as follows
L1 = ‖ypredl − yl‖1, (9)

Lp = ‖ΦV GG(ypredl )− ΦV GG(yl)‖22, (10)
where ypredl = g(z, θdec) is the predicted output, yl is
the ground-truth, z = h(x, θenc) is the intermediate latent
space vector and ΦV GG(·) represents the pre-trained VGG-
16 [46] network. For more details on the perceptual loss,
please refer to supplementary material.

In addition to minimizing the loss function, we also store
the intermediate feature vectors zil ’s for all the labeled train-
ing images xil’s in a matrix Fzl . That is Fzl = {zil}

Nl
i=1. It

is used later in the unlabeled training phase to generate the
pseudo-GT for the unlabeled data. In our case, zil is a vec-
tor of size 1×M , where M = 32,768 for the network in our
proposed method. Thus Fzl is a matrix of size Nl ×M .

4.2. Unlabeled training phase

In this phase, we leverage the unlabeled data DU to
improve the generalization performance. Specifically, we
provide supervision at the intermediate latent space by
minimizing the error between the predicted latent vectors
and the pseudo-GT obtained by modeling the latent space
vectors of the labeled sample images Fzl and zpredu jointly
using GP.

Pseudo-GT using GP: The training occurs in an iterative
manner, where we first learn the weights using the labeled
data (DL) followed by weight updates using the unlabeled
data (DU ). After the first iteration onDL, we store the latent
space vectors of the labeled data in a list Fzl . These vec-
tors lie on a low dimension manifold. During the unlabeled
phase, we project the latent space vector (zu) of the unla-
beled input onto the space of labeled vectorsFzl = {zil}

Nl
i=1.

That is, we express the unlabeled latent space vector zku cor-
responding to the kth training sample from DU as

zku =

Nl∑
i=1

αiz
i
l + ε, (11)

where αi are the coefficients, and ε is additive noise
N (0, σ2

ε ).
With this formulation, we can jointly model the distribu-

tion of the latent space vectors of the labeled and the unla-
beled samples using GP. Conditioning the joint distribution
will yield the following conditional multi-variate Gaussian
distribution for the unlabeled sample

P (zku|DL, Fzl) = N (µku,Σ
k
u), (12)

where
µku = K(zku, Fzl)[K(Fzl , Fzl) + σ2

ε I]−1Fzl , (13)

Σku = K(zku, z
k
u)−K(zku, Fzl)[K(Fzl , Fzl) + σ2

ε I]−1

K(Fzl , z
k
u) + σ2

ε

(14)
where σ2

ε is set equal to 1, K is defined by the kernel func-

tion as follows

K(Z,Z)k,i = κ(zku, z
i
l ) =

〈zku, zil 〉
|zku| · |zil |

. (15)

Note that Fzl contains the latent space vectors of all the
labeled images, K(Fzl , Fzl) is a matrix of size Nl × Nl,
and K(zku, Fzl) is a vector of size 1 × Nl. Using all the
vectors may not be necessarily optimal for the following
reasons: (i) These vectors will correspond to different re-
gions in the image with a wide diversity in terms of con-
tent and density/orientation of rain streaks. It is important
to consider only those vectors that are similar to the unla-
beled vector. (ii) Using all the vectors is computationally
prohibitive. Hence, we use only Nn nearest labeled vectors
corresponding to an unlabeled vector. More specifically, we
replace Fzl by Fzl,n in Eq. (11)-(14). Here Fzl,n = {zjl :

zjl ∈ nearest(zku, Fzl , Nn)}with nearest(p,Q,Nn) being
a function that finds top Nn nearest neighbors of p in Q.

We use the mean predicted by Eq. (13) as the pseudo-
GT ( zku,pseudo) for supervision at the latent space level. By
minimizing the error between zku,pred = h(xu, θenc) and
zku,pseudo, we update the weights of the encoder h(·, θenc),
thereby adapting the network to unlabeled data which re-
sults in better generalization. We also minimize the pre-
diction variance by minimizing Eq. (14). Using GP we are
approximating zku, latent vector of an unlabeled image using
the latent space vectors in Fzl , by doing this we may end up
computing incorrect pseudo-GT predictions because of the
dissimilarity between the latent vectors. This dissimilarity
is due to different compositions in rain streaks like different
densities, shapes, and directions of rain streaks. In order to
address this issue we minimize the variance Σku,n computed
between zku and theNn nearest neighbors in the latent space
vectors using GP. Additionally, we maximize the variance
Σku,f computed between zku and the Nf farthest vectors in
the latent space using GP, in order to ensure that the latent
vectors in Fzl are dissimilar to the unlabeled vector zku and
do not affect the GP prediction, as defined below

Σku,f = K(zku, z
k
u)−K(zku, Fzl,f )[K(Fzl,f , Fzl,f ) + σ2

ε I]−1

K(Fzl,f , z
k
u) + σ2

ε ,
(16)

where Fzl,f is the matrix of Nf labeled vectors that are far-
thest from zku.

Thus, the loss used during training using the unlabeled
data is defined as follows
Lunsup = ‖zku,pred−zku,pseudo‖2+log Σku,n+log(1−Σku,f ),

(17)
where zku,pred is the latent vector obtained by forwarding
an unlabeled input image xku through the encoder h, i.e.,
zku,pred = h(xu, θenc) , zku,pseudo = µku is the pseudo-GT
latent space vector (see Eq. (13)), and Σku,n is the variance
obtained by replacing Fzl in Eq. (14) with Fzl,n.



Table 1. Effect of using unlabeled real-world data in training process on DDN-SIRR dataset. Evaluation is performed on synthetic dataset
similar to [49]. Proposed method achieves better gain in PSNR as compared to SIRR[49] in the case of both Dense and Sparse categories.
DL indicates training using only labeled dataset and DL +DU indicates training using both labeled and unlabeled dataset.

Dataset Input
Methods that use only synthetic dataset Methods that use synthetic and real-world dataset

DSC [30]
(ICCV ’15)

LP [24]
(CVPR ’16)

JORDER [51]
(CVPR ’17)

DDN [9]
(CVPR ’17)

JBO [60]
(CVPR ’17)

DID-MDN [58]
(CVPR ’18)

UMRL [53]
(CVPR ’19)

SIRR [49] (CVPR ’19) Ours
DL DL +DU Gain DL DL +DU Gain

Dense 17.95 19.00 19.27 18.75 19.90 18.87 18.60 20.11 20.01 21.60 1.59 20.24 22.36 2.12
Sparse 24.14 25.05 25.67 24.22 26.88 25.24 25.66 26.94 26.90 26.98 0.08 26.15 27.26 1.11

4.3. Total loss

The overall loss function used for training the network is
defined as follows

Ltotal = Lsup + λunsupLunsup, (18)
where λunsup is a pre-defined weight that controls the con-
tribution from Lsup and Lunsup.

4.4. Training and implementation details

We use the UDeNet network that is based on the UNet
style encoder-decoder architecture [43] with a slight differ-
ence in the building blocks. Details of the network architec-
ture are provided in the supplementary material. The net-
work is trained using the Adam optimizer with a learning
rate of 0.0002 and batchsize of 4 for a total of 60 epochs.
Furthermore, we reduce the learning rate by a factor of
0.5 at every 25 epochs. We use λp = 0.04 (Eq. (8)),
λunsup = 1.5 × 10−4 (Eq. (18)), Nn = 64 and Nf = 64.
During training, the images are randomly cropped to the
size of 256×256. Ablation studies with different hyper-
parameter values are provided in supplementary material.

5. Experiments and results

In this section, we present the details of the datasets and
various experiments conducted to demonstrate the effective-
ness of the proposed framework. Specifically, we conducted
two sets of experiments. In the first set, we analyze the ef-
fectiveness of using the unlabeled real-world data during
training using the proposed framework. Here, we compare
the performance of our method with a recent SSL frame-
work for image deraining (SIRR) [49]. In the second set of
experiments, we evaluate the proposed method by training
it on different percentages of the labeled data.

5.1. Datasets

Rain800: This dataset was introduced by Zhang et al.
[57] and it contains a total of 800 images. The train split
consists of 700 real-world clean images, with 500 images
chosen randomly from the first half of the UCID dataset
[45] and 200 images chosen randomly from the BSD-500
train set [1]. The test set consists of a total of 100 images,
with 50 images chosen randomly from the second half of
the UCID dataset and the rest 50 chosen randomly from the
test set of the BSD-500 dataset. The authors generate the
corresponding rainy images by synthesizing rain-streaks of

different intensities and orientations.

Rain200H: Yang et al. [51] collected images from BSD200
[31] to create 3 datasets: Rain12, Rain200L and Rain200H.
Following [22], we use the most difficult one, Rain200H,
to evaluate our model. The images for the training set
are collected from the BSD300 dataset. Rain streaks with
different orientations are synthesized using photo-realistic
techniques. There are 1,800 synthetic image pairs in the
Rain200H train set, and 200 pairs in the test set.

DDN-SIRR dataset: Wei et al. [49] constructed a dataset
consisting of labeled synthetic training set and unlabeled
real-world dataset. This dataset is constructed specifically
to evaluate semi-supervised learning frameworks. The la-
beled training set is borrowed from Fu et al. [9] and it con-
sists of 9,100 image pairs obtained by synthesizing differ-
ent types of rain streaks on the clean images from the UCID
dataset [45]. The unlabeled real-world synthetic train set
comprises of images collected from [50, 51, 57] and Google
image search. Furthermore, the test set consists of two cat-
egories: (i) Dense rain streaks, and (ii) Sparse rain streaks
Each test set consists of 10 images.

5.2. Use of real-world data

The goal of this experiment is to analyze the effect
of using unlabeled real-world data along with labeled
synthetic dataset in the training framework. Following the
protocol set by [49], we use the “labeled synthetic” train set
from the DDN-SIRR dataset as DL and the “real-world”
train set from the DDN-SIRR dataset as DU . Evaluation is
performed on (i) Synthetic test set from DDN-SIRR, and
(ii) Real-world test set from DDN-SIRR.

Results on synthetic test set: The evaluation results on the
synthetic test set are shown in Table. 1. Similar to [49], we
use PSNR as the evaluation metric. We compare the pro-
posed method with several existing approaches such as DSC
[30], LP [24], JORDER [51], DDN [9], JBO [60] and DID-
MDN [58]. These methods can use only synthetic dataset.
Since the proposed method has the ability to leverage un-
labeled real-world data, it is able to achieve significantly
better results as compared to the existing approaches.

Furthermore, we also compare the performance of our
method with a recent GMM-based semi-supervised derain-
ing method (SIRR) [49]. It can be observed from Table



(a) (b) (c) (d) (e) (f)
Figure 4. Qualitative results on DDN-SIRR synthetic test set. (a) Input rainy image (b) DID-MDN [58](CVPR ’18) (c) DDN [9](CVPR
’17) (d) SIRR [49](CVPR ’19) (e) Ours (f) ground-truth image.

(a) (b) (c) (d) (e)
Figure 5. Qualitative results on DDN-SIRR real-world test set. (a) Input rainy image (b) DID-MDN [58] (c) DDN [9] (d) SIRR [49] (e)
Ours.

1 that the proposed method outperforms SIRR with signif-
icant margins. Additionally, we also illustrate the gains1

achieved due to the use of additional unlabeled real-world
data by both the methods. The proposed method achieves
greater gains as compared to SIRR, which indicates that the
proposed method has better capacity to leverage unlabeled
data.

Qualitative results on the test set are shown in Fig. 4. As
can be seen from this figure, the proposed method achieves
better quality reconstructions as compared to the existing
methods.
Results on real-world test set: Similar to [49], we eval-
uate the proposed method on the real-world test set from
DDN-SIRR. We use no-reference quality metrics NIQE
[33] and BRISQUE [32] to perform quantitative compari-
son. The results are shown in Table. 2. We compare the per-

1The gain is computed by subtracting the performance obtained using
only DL from the performance obtained using DL +DU .

formance of our method with SIRR [49] which also lever-
ages unlabeled data. It can be observed that the proposed
method achieves better performance than SIRR. Note that
lower scores indicate better performance. Furthermore, the
proposed method is able to achieve better gains with the use
of unlabeled data as compared to SIRR.

From these experiments, we can conclude that the pro-
posed GP-based framework when leverages unlabeled real-
world data results in better generalization as compared to
not using the unlabeled data.

5.3. Ablation study: SSL experiments

In this set of experiments, we analyze the capacity of
the proposed method to leverage unlabeled data by varying
the amount of labeled data used for training the network.
Since, the goal is to evaluate the method quantitatively, we
use synthetic datasets (Rain800 and Rain200H) for these
experiments. Specifically, we run 5 experiments where we
train the network on 10%, 20%, 40%, 60% and 100% of



Table 2. Effect of using unlabeled real-world data in training pro-
cess on the DDN-SIRR dataset. Evaluation is performed on the
real-world test set of DDN-SIRR dataset using no-reference qual-
ity metrics (NIQE and BRISQUE). Note that lower scores indicate
better performance.

Metrics Input SIRR [49] Ours
DL DL +DU Gain DL DL +DU Gain

NIQE 4.671 3.86 3.84 0.02 3.85 3.78 0.07
BRISQUE 31.37 26.61 25.29 1.32 25.77 22.95 2.82

Table 3. SSL experiments on Rain800 [57] dataset: The percentage
of labeled data used for training is varied between 10% and 100%.
Consistent gains are observed when unlabeled data is leveraged
using the proposed method as compared to the use of only labeled
data.

DL % PSNR SSIM
DL DL +DU Gain DL DL +DU Gain

10% 21.31 22.02 0.71 0.729 0.750 0.021
20% 22.28 22.95 0.67 0.752 0.768 0.016
40% 22.61 23.60 0.99 0.761 0.788 0.027
60% 22.96 23.70 0.74 0.775 0.795 0.020
100% 23.74 – – 0.799 – –

Table 4. SSL experiments on Rain200H [51] dataset: The per-
centage of labeled data used for training is varied between 10%
and 100%. Consistent gains are observed when unlabeled data is
leveraged using the proposed method as compared to the use of
only labeled data.

DL % PSNR SSIM
DL DL +DU Gain DL DL +DU Gain

10% 22.92 23.64 0.72 0.742 0.767 0.025
20% 23.22 24.00 0.78 0.755 0.776 0.021
40% 23.84 24.75 0.91 0.772 0.794 0.022
60% 24.32 25.26 0.94 0.782 0.808 0.026
100% 25.27 – – 0.810 – –

the dataset as the labeled data DL. The rest of the dataset
is leveraged as the unlabeled data DU . We use PSNR and
SSIM metrics for this ablation study.

The results on the Rain800 test and Rain200H set are
shown in Table 3 and 4, respectively. From these tables,
we make following observations: (i) Reducing the amount
of labeled data leads to significant drop in performance as
compared to using 100% of the data as the labeled data.
For example, the performance drops from 23.74 dB when
using 100% data to 22.6dB after reducing the labeled data
to 40%. (ii) By using unlabeled data in the proposed SSL
framework, we are able to achieve improvements as com-
pared to using only labeled data. (iv) The gain in perfor-
mance obtained due to the use of unlabeled data is consis-
tent across different amounts of labeled data. (iii) Finally,
the proposed method with just 60% labeled data (and unla-
beled data) is able to achieve performance that is compara-
ble to that achieved by using 100% labeled data.

Fig. 6 and 7 show sample qualitative results when using
10% and 40% labeled data, respectively. It can be observed
that using additional unlabeled data results in better perfor-
mance as compared to using only labeled data.

(a) (b) (c)
Figure 6. Results of experiments with 10% labeled data on
Rain200H (a) Input rainy image (a) Using only labeled data (c)
Using labeled and unlabeled data.

(a) (b) (c)
Figure 7. Results of experiments with 40% labeled data on
Rain200H (a) Input rainy image (a) Using only labeled data (c)
Using labeled and unlabeled data.

From these experiments, we can conclude that the pro-
posed method can effectively leverage unlabeled data even
with minimal amount of labeled training data. Addition-
ally, only a fraction of the labeled data is sufficient to obtain
performance similar to that when using 100% labeled data.

5.4. Ablation study: Hyperparameters

We also conduct a detailed ablation study to analyze the
effects of different hyperparameters present in the proposed
method. Due to space constraints, these results along with
more qualitative visualizations are provided in supplemen-
tary material.

6. Conclusion
We presented a GP-based SSL framework to leverage

unlabeled data during training for the image deraining task.
We use supervised loss functions such as l1 and the percep-
tual loss to train on the labeled data. For unlabeled data, we
estimate the pseudo-GT at the latent space by jointly mod-
eling the labeled and unlabeled latent space vectors using
the GP. The pseudo-GT is then used to supervise for the
unlabeled samples. Through extensive experiments on sev-
eral datasets such as Rain800, Rain200H and DDN-SIRR,
we demonstrate that the proposed method is able to achieve
better generalization by leveraging unlabeled data.
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